JPS60203377A - Production of titanium clad material - Google Patents

Production of titanium clad material

Info

Publication number
JPS60203377A
JPS60203377A JP6194784A JP6194784A JPS60203377A JP S60203377 A JPS60203377 A JP S60203377A JP 6194784 A JP6194784 A JP 6194784A JP 6194784 A JP6194784 A JP 6194784A JP S60203377 A JPS60203377 A JP S60203377A
Authority
JP
Japan
Prior art keywords
titanium
titanium clad
metal
cladding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6194784A
Other languages
Japanese (ja)
Other versions
JPH0324317B2 (en
Inventor
Masahiro Aoki
正紘 青木
Akiyasu Ikeda
了康 池田
Takeshi Yoshida
毅 吉田
Taiji Doi
大治 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP6194784A priority Critical patent/JPS60203377A/en
Publication of JPS60203377A publication Critical patent/JPS60203377A/en
Publication of JPH0324317B2 publication Critical patent/JPH0324317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain a titanium clad material having extremely good joint strength and workability in the stage of producing the titanium clad material of which the base metal is a ferrous metal by a roll method by interposing a spacer between an intermediate material and cladding metal together with the intermediate joint material consisting of a specific material between the base metal and the cladding metal. CONSTITUTION:A ferritic stainless steel or martensitic stainless steel is used as an intermediate joint material between a base metal and cladding metal with a titanium clad material of which the base metal is a ferrous alloy and the cladding metal is titanium or titanium alloy. A spacer consisting preferably of fine- diameter wires or coarse meshed wire net or the like consisting of the same material as the intermediate material and having about several mm. diameter is interposed between the intermediate material and the cladding metal and a blank titanium clad material is assembled together with the intermediate material. Said material is hot rolled by an ordinary roll method. The titanium clad material having extremely good joint strength and workability is stably produced by the above-mentioned method.

Description

【発明の詳細な説明】 この発明は、接合強度が高く、かつ優れた加工性を有す
るチタンクラッド°材全、ロール法に1って安定確実に
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a titanium clad material having high joint strength and excellent workability more stably and reliably than the roll method.

 1− 近年、チタン又はチタン合金の有する優れた耐食性に注
目し、比較的安価である割には機械的強度や加工性が良
好な鉄系金属材料の母材に、これらチタン又はチタン合
金tクラッドしたリライニングし九りしたところのチタ
ンクラッド材やチタンライニング材の使用が、化学装置
類全中心として益々増加する傾向をみせている。
1- In recent years, attention has been focused on the excellent corrosion resistance of titanium or titanium alloys, and titanium or titanium alloy T-cladding has been used as a base material for iron-based metal materials, which are relatively inexpensive and have good mechanical strength and workability. The use of titanium cladding materials and titanium lining materials, which have been relined and relined, is increasingly being used in all chemical equipment.

ところで、従来知られている鉄系金属を母材としたチタ
ンクラッド材の製造方法は、 ■ 爆着室内において爆薬全爆発させ、その衝撃圧にニ
ジ対向配置した母材と合せ材とを接合する“爆着法”、 ■ 母材と合せ材との接合界面を清浄化して〃為ら、接
合界面の空間を真空引き保持可能にすべく溶接組立てす
るか或いはパック材に詰める〃)シ、次いで0.1 T
orr以下に接合界面を真空引きした後、チタン及びチ
タン合金の熱間加工時における一般的加熱温度である7
00〜950℃に加熱し、熱間圧延して接合する10−
ル法”、 ■ 母材と合せ材との接合界面を清浄化してから、真空
度、10〜10 m Hyの真空炉中にて界面全0.5
Kf/−11!前後に加圧しながら700〜9oo℃の
温度で30分程度加熱処理して接合する1拡散液合法″
、 の3つに大別することができる。
By the way, the conventionally known manufacturing method of titanium clad material using iron-based metal as a base material is as follows: 1. Explosives are fully detonated in an explosion chamber, and the base material and laminate materials placed opposite each other are bonded to each other under the impact pressure. “Explosion bonding method”, ■ Clean the bonding interface between the base material and the laminate, then assemble by welding so that the space at the bonding interface can be vacuumed and maintain it, or pack it into a pack material), then 0.1T
7, which is the general heating temperature during hot processing of titanium and titanium alloys after evacuating the bonding interface to below orr.
10- Heated to 00~950℃, hot rolled and bonded
■ After cleaning the bonding interface between the base material and the cladding material, the total interface is 0.5
Kf/-11! 1 Diffusion liquid method in which bonding is performed by heat treatment at a temperature of 700 to 90°C for about 30 minutes while pressurizing back and forth.
It can be roughly divided into three categories: , .

ところが、Fe 、 Cr及びNi等、一般の鉄基金属
全構成する元素のチタンに対する溶解度は比較的低く、
しかもチタンは上記元素を含めて他の金属元素との結合
力(親和力)が強くて金属間化合物を形成しやすい上、
形成された金属間化合物の殆んどは脆くて加工性が著し
く劣るものであることから、10−ル法″或いは“拡散
接合法′等の如き、接合界面における元素の拡散にニジ
母材と合せ材とを接合させるようなりラッド製造法では
、鉄基金属全構成する元素がチタン内部に拡散・侵入す
るニジもチタンと結合して脆弱な金属間化合物1ii1
’i形成する傾向の方が強く表われて、良好な接合強度
が得られないばかり〃)、加工性に著しく劣るクラツド
材しか製造することができなかったのである。
However, the solubility of all elements constituting general iron-based metals such as Fe, Cr, and Ni in titanium is relatively low;
Moreover, titanium has a strong bonding force (affinity) with other metal elements, including the above elements, and it is easy to form intermetallic compounds.
Since most of the intermetallic compounds formed are brittle and have extremely poor workability, it is difficult to use a rainbow base metal to diffuse the elements at the bonding interface, such as the 10-L method or the diffusion bonding method. In the rad manufacturing method, which involves bonding with laminated materials, the elements that make up all the iron-based metals diffuse and penetrate into the titanium, which also combines with titanium and forms fragile intermetallic compounds.
The tendency to form 'i' was more pronounced, and good bonding strength could not be obtained (), and only clad materials with extremely poor workability could be produced.

この工うなことから、チタン又はチタン合金と他の金属
(例えば鋼)とのクラツド材を“ロール法”や“拡散接
合法”で製造しょうとする場合に問題と々る接合界面の
脆弱な拡散層の生成を防止又は抑制するために、母材と
合せ材との間にAr。
Because of this process, when trying to manufacture clad materials of titanium or titanium alloys and other metals (e.g. steel) using the "roll method" or "diffusion bonding method," the problem of weak diffusion at the bonding interface occurs. Ar is applied between the base material and the laminate material to prevent or suppress the formation of layers.

Cu、Nb、Ta、V、Mo、Cr及びN1等の薄板又
はff1k接合中間材として挿入し71、接合界面にこ
れらの金属のメッキ層を施しタシする方法も試みられた
が、このような方法によっても、加工性及び接合強度の
いずれの点をも十分に満足するクラツド材を得ることが
できなかったばかシρ1、クラット゛材の製造コストヲ
も高めることとなるため、未だ実用化されるには至って
いない。
Attempts have also been made to insert a thin plate of Cu, Nb, Ta, V, Mo, Cr, N1, etc. or as an intermediate material for FF1K bonding71, and to apply a plating layer of these metals to the bonding interface. However, it was not possible to obtain a cladding material that satisfactorily satisfies both workability and bonding strength, and it also increased the manufacturing cost of the cladding material, so it has not yet been put into practical use. not present.

これに対して、”爆着法″は、加熱による拡散現象を利
用するものではないので金属間化合物全主体とする脆弱
な拡散層が形成されず、しη)も強大な衝撃圧に工って
強固な接合状態が得られることから、工業的に災用化さ
れている唯一のチタンクラッド°材製造手段と言えるも
のであつπ。
On the other hand, the "explosion bonding method" does not utilize the diffusion phenomenon caused by heating, so a weak diffusion layer consisting entirely of intermetallic compounds is not formed, and it is also difficult to apply strong impact pressure. Because a strong bond can be obtained through the process, it can be said to be the only method for manufacturing titanium clad material that is used industrially.

して為しながら、爆着法には、例えば薄板材の製 3− 造ができないなど、種々の要因から製品寸法(面積や板
厚)に制限がある上、入社生産方式の採用が不可能で、
しかも製造コストも高いという問題点があり、これらの
難点を克服したチタンクラッド材の製造法が切望されて
いるのが現状であった。
However, the explosive bonding method has limitations on product dimensions (area and plate thickness) due to various factors, such as the inability to manufacture thin plates, and it is also impossible to adopt the in-house production method. in,
Furthermore, there is a problem in that the manufacturing cost is high, and there is currently a need for a method for manufacturing titanium clad materials that overcomes these difficulties.

本発明者等は、上述のような観点から、チタン又はチタ
ン合金を合せ材とし、炭素鋼、低合金鋼及びステンレス
鋼等の鉄系金属を母材とするクラツド材であって、しか
も優れた接合強度や加工性を備えた製品を、形状や寸法
に制限されることなく低コストにて量産し得る方法を見
出して、新機能製品開発の途をも切シ開くべく、特に製
品寸法等に対する制限が比較的少ない上に量産が可能な
前記“ロール法”に着目し、それらの方法を実施する際
に不可避的に生ずる接合界面の金属間化合物脆化層の生
成、並びにその脆化の度合を出来得る限り小さな範囲に
抑え得るところの、安価な手段の開発を月相して研究を
行った結果、前述したような純金属から成る公知の接合
中間材ではなく、これらとは全く異なるフェライト系 
4− ステンレス鋼或いはマルテンサイト系ステンレス鋼〃)
ら成る薄板状等の接合中間材をチタン又はチタン合金合
せ材と鉄系金属母材との界面に挿入しておけば、“ロー
ル法”を適用したとしても、その接合界面に金属間化合
物脆化層の生成されることが防止され、しかもそれらが
強固に結合して、1爆着法”によるものに劣らない優れ
た接合強度と加工性を備えたチタンクラッド材を得るこ
とができる、 との知見を得、該知見に基づいた接合強度と加工性の良
好なチタンクラッド材の製造方法を、特願昭59−17
28号として先に提案した。
From the above-mentioned viewpoints, the present inventors have developed a cladding material that uses titanium or a titanium alloy as a cladding material and uses a ferrous metal such as carbon steel, low alloy steel, and stainless steel as a base material, and that is an excellent material. In order to find a way to mass-produce products with bonding strength and workability at low cost without being limited by shape or size, and to open the way to the development of products with new functions, we will particularly focus on product dimensions, etc. Focusing on the above-mentioned "roll method" which has relatively few restrictions and can be mass-produced, we investigated the formation of an intermetallic compound embrittlement layer at the joint interface that inevitably occurs when implementing these methods, and the degree of embrittlement. As a result of conducting research on the development of inexpensive means that can suppress the amount of metal to as small a range as possible, we found that, instead of using the well-known bonding intermediate material made of pure metal as mentioned above, we used ferrite, which is completely different from these. system
4- Stainless steel or martensitic stainless steel)
If a bonding intermediate material such as a thin plate made of This method prevents the formation of chemical layers, and also allows them to be firmly bonded, making it possible to obtain a titanium clad material with excellent bonding strength and workability comparable to those produced by the "one-burst bonding method." Based on this knowledge, a method for manufacturing titanium clad material with good bonding strength and workability was proposed in a patent application filed in 1983-17.
It was proposed earlier as No. 28.

しかし表から、ロール法にてチタンクラッド材を製造す
る際、素材の厚さく合せ材厚+母材厚)が厚くなると、
熱間圧延加熱工程での素材均熱のために長時間加熱を必
要とすることとなるが(例えば素材厚が100mの場合
には少なくとも2時間の加熱が必要である)、このLう
な場合には、例えフェライト系ステンレス鋼やマルテン
サイト系ステンレス鋼を接合中間材として挿入したとし
ても、該ステンレス鋼薄板接合中間材による拡散防止効
果を乗シ越え、今度は該接合中間材自身の構成元素がチ
タン又はチタン合金合せ材中へ拡散することとなシ、結
局は合ぜ材に脆弱な遷移拡散相が形成されることとなっ
て、夾用上問題を生じる恐れのあることが本発明者等の
その後の研究で明らかとなったのである。
However, from the table, when manufacturing titanium clad material using the roll method, when the material thickness (laminated material thickness + base material thickness) becomes thicker,
In the hot rolling heating process, it is necessary to heat the material for a long time to soak it up (for example, if the material thickness is 100 m, heating for at least 2 hours is required), but in this case, Even if ferritic stainless steel or martensitic stainless steel is inserted as a joining intermediate material, the diffusion prevention effect of the stainless steel thin plate joining intermediate material will be overcome, and the constituent elements of the joining intermediate material itself will be The present inventors believe that if titanium or titanium alloy composite material does not diffuse into the composite material, a fragile transition diffusion phase will eventually be formed in the composite material, which may cause problems in terms of use. This was revealed in subsequent research.

そこで、本発明者等は、鉄系金属の母材とチタン又はチ
タン合金合せ材との間にフェライト系ステンレス鋼又は
マルテンサイト系ステンレス鋼から成る接合中間材を挾
み込んだチタンクラッド素材の熱間圧延加熱時における
上述の如き拡散全防止し、チタンクラッド°材製品の接
合界面脆化を抑えるべく更に研究を続けた結果、 チタンクラッド素材を組立てる際、合せ材と接合中間材
との間に直径:敷網程度の細径ワイヤーや粗目の金網等
のスペーサーを介在させれば、熱間圧延接合工程での素
材加熱時に合せ材と接合中間材の接触が防止され、従っ
て長時間加熱であっても合せ材中における脆弱な拡散遷
移相の生成が起らず、接合強度と加工性の極めて良好な
チタンクラッド材を得ることができる、 との知見を得るに至ったのである。
Therefore, the present inventors have developed a titanium clad material in which a joining intermediate material made of ferritic stainless steel or martensitic stainless steel is sandwiched between a base material of ferrous metal and a titanium or titanium alloy composite material. As a result of further research in order to completely prevent the above-mentioned diffusion during rolling heating and suppress the embrittlement of the joint interface of titanium clad products, we have found that when assembling titanium clad materials, there is a Diameter: If a spacer such as a wire as small as a bedding net or a coarse wire mesh is used, contact between the laminate and the joining intermediate material will be prevented during the heating of the materials in the hot rolling joining process, and therefore heating will not take place for a long time. We have come to the knowledge that even with this method, the formation of a brittle diffusion transition phase in the laminate does not occur, and it is possible to obtain a titanium clad material with extremely good bonding strength and workability.

この発明は、上記知見に基づいてなされたものであり、 鉄系金属を母材とし、チタン又はチタン合金を合せ材と
したチタンクラッド材をロール法によって製造するに際
し、母材と合せ材との接合中間材としてフェライト系ス
テンレス鋼又はマルテンサイト系ステンレス鋼を用いる
とともに、前記合せ材と接合中間材との間にスペーサー
を介在させてクラット°素材を組立て、これに熱間圧延
を施すことによって、接合界面に脆弱な拡散遷移相の生
成が無い、接合強度と加工性の優れたチタンクラッド材
をコスト安ぐ安定して製造し得る↓うにした点に特徴を
有するものである。
This invention was made based on the above knowledge, and it is important to note that when manufacturing a titanium clad material using a roll method using iron-based metal as a base material and titanium or titanium alloy as a laminate material, the difference between the base material and the laminate material is By using ferritic stainless steel or martensitic stainless steel as the joining intermediate material, interposing a spacer between the joining material and the joining intermediate material, and assembling the crat material, and subjecting it to hot rolling, This method is characterized by the fact that titanium cladding materials with excellent bonding strength and workability can be produced stably at low cost, without the formation of a fragile diffusion transition phase at the bonding interface.

なお、ここで「鉄系金属」とは、炭素鋼、低合金鋼、各
種ステンレス鋼等、あらゆる鉄基合金を総称するもので
あり、また「チタン合金」についても、種類による格別
な制限は無い。
Note that "iron-based metals" here refers to all iron-based alloys such as carbon steel, low-alloy steel, and various stainless steels, and there are no particular restrictions on the type of "titanium alloys." .

−7= また、「ロール法」とは、前記0項で1兄明した工うな
、通常知られているクラット°材製遣手段を指すことは
もちろんである。
-7= Furthermore, the term "roll method" refers to the commonly known method of producing crat material, which is the method described in Section 0 above.

そして、本発明方法において接合中間材として使用する
「フェライト系ステンレス鋼」及び「マルテンサイト系
ステンレス鋼」とはFe−Cr系又はFe −Or−M
o系の5US405鋼、5US410L鋼、5US43
0鋼、5US430F鋼、 5US444鋼等として表
示されるフェライト系ステンレス鋼や、5US403鋼
、5US410鋼。
The "ferritic stainless steel" and "martensitic stainless steel" used as joining intermediate materials in the method of the present invention are Fe-Cr-based or Fe-Or-M
o series 5US405 steel, 5US410L steel, 5US43
0 steel, 5US430F steel, 5US444 steel, etc., as well as ferritic stainless steel, 5US403 steel, and 5US410 steel.

5US410J1鋼、5O8416鋼、5US420J
1鋼、5US420J2鋼、5US431鋼、5US4
4OC鋼等として表示されるマルテンサイト系ステンレ
ス鋼のいずれもを意味するものであシ、理由は未だ完全
に解明されていないが、これらいずれのフェライト系ス
テンレス鋼やマルテンサイト系ステンレス鋼を接合中間
材として使用したとしても、“ロール”法にニジ優れ−
7を接合強度及び加工性を有するチタンクラッド材が得
られるのである。
5US410J1 steel, 5O8416 steel, 5US420J
1 steel, 5US420J2 steel, 5US431 steel, 5US4
This refers to any of the martensitic stainless steels indicated as 4OC steel, etc., and although the reason is still not completely clear, any of these ferritic stainless steels or martensitic stainless steels can be used as an intermediate for joining. Even when used as a material, it is superior to the “roll” method.
A titanium clad material having bonding strength and workability of 7 can be obtained.

9− 8− 合せ材と接合中間材との間に介在させる「スペーサー」
としては、前述した工うな数鴫径の細径ワイヤーや粗目
の金網等、合せ材と接合中間材との間に敷部程度の間隔
を隔て得るものであればいずれの形状のものでも良く、
またその材質としては接合中間材と同質のフェライト系
ステンレス鋼やマルテンサイト系ステンレス鋼が望まし
いが、これに限定されるものでは無く、合せ材や接合中
間材に悪影響を及ぼさず、かつ加熱に耐え得るものであ
ればその¥ii類が問われるものではない。
9- 8- "Spacer" interposed between the laminate material and the joining intermediate material
The material may be of any shape, such as a thin wire with a diameter similar to that described above, or a coarse wire mesh, as long as it can provide a spacing similar to that of the floor between the joining material and the joining intermediate material.
In addition, the material is preferably ferritic stainless steel or martensitic stainless steel, which has the same quality as the joining intermediate material, but is not limited to these.It does not have a negative effect on the joining material or the joining intermediate material, and can withstand heat. As long as it is something you can get, there is no question about the ¥II category.

次いで、この発明′f!:*施例にニジ比較例と対比し
ながら説明する。
Next, this invention'f! :*Examples will be explained in comparison with Niji comparative examples.

笑施例 まず、第1図及び第2図に示されるような、寸法が6m
X150+nmX200ttrmで、JIS規格の第1
種相当の純チタン板を合せ材1.1とし、寸法が110
mX150+X200mで、JIS規格の5B42相当
鋼板を母材2とするとともに、その界面に5US430
@−7)hらW ル0.1 wm厚の板材を接合中間材
3,3として挿入した複数のチタンクラッド素材を用意
し、これ全寸法: 2 tan X 26.2wX15
0m又は2mX22.2mX150mのJIS規格第1
種相当純チタン板から成るノ母ツク材4を使ってノ4ツ
ク状に溶接組立てした。
(Example) First, as shown in Figures 1 and 2, the dimensions are 6m.
X150+nmX200ttrm, first in JIS standard
A pure titanium plate equivalent to a seed is used as the laminating material 1.1, and the dimension is 110
mX150+X200m, JIS standard 5B42 equivalent steel plate is used as base material 2, and 5US430 is used at the interface.
@-7) Prepare a plurality of titanium clad materials in which plate materials with a thickness of 0.1 wm are inserted as bonding intermediate materials 3, 3, and the total dimensions are: 2 tan x 26.2w x 15
JIS standard 1st of 0m or 2mX22.2mX150m
A base material 4 made of a pure titanium plate equivalent to a seed was welded and assembled into a four-piece shape.

この際、合せ材1と接合中間材3との間に直径:2wa
の5US430ワイヤーをスペーサー5として入れ置い
たもの(第1図)、及びスペーサー無しのもの(第2図
)の2種類を作成した。
At this time, there is a diameter of 2 wa between the joining material 1 and the joining intermediate material 3.
Two types were made: one in which a 5US430 wire was inserted as a spacer 5 (Fig. 1), and one without a spacer (Fig. 2).

使用した合せ材、母材、並びに接合中間材の化学組成を
第1表に示す。
Table 1 shows the chemical compositions of the laminate material, base material, and bonding intermediate material used.

なお、母材2及び合せ材1の界面は、それぞれ予めパフ
研磨した後、アセトンに工9脱脂し清浄化しておいた。
The interfaces between the base material 2 and the laminate material 1 were each previously puff-polished and then cleaned by degreasing with acetone.

その後、ノ膏ツク材4の1箇所に取り付けたノズル6か
ら0.I Torr以下に真空引きし、これを封止した
Thereafter, the nozzle 6 attached to one place on the plaster material 4 is used to remove 0. It was evacuated to less than I Torr and sealed.

次に、これらを900℃に1〜5時間加熱し、素材総厚
さにて 26.2m又は22.2m+(素材厚)→16.5m→
12簡→9.5鴎のノ(ススケジュールで熱間圧延して
チタンク11− 特開昭60−203377 (5) ラッド鋼板を製造した。
Next, these were heated to 900°C for 1 to 5 hours, and the total thickness of the material was 26.2 m or 22.2 m + (material thickness) → 16.5 m →
A titanium steel plate was produced by hot rolling on a schedule of 12 sheets → 9.5 degrees.

続いて、これを超音波探傷試験に付して接合面の接合状
況が良好なことを確認しπ上で、これらクラツド鋼板を
圧延のまま、並びに700℃で30分の焼鈍ヲ笑施して
から、側曲げ試験(曲げ中径:板厚×3のローラー曲げ
)を行い、それぞれのクラット°の接合強度と加工性を
評価した。
Subsequently, this was subjected to an ultrasonic flaw detection test to confirm that the bonding condition of the joint surface was good, and on π, these clad steel plates were annealed as rolled and for 30 minutes at 700℃. A side bending test (bending medium diameter: plate thickness x 3 roller bending) was conducted to evaluate the joint strength and workability of each crat.

との工うにして得られた曲げ試験の結果を第2表に示す
。なお、第2表では ○印・・・・・・接合界面に剥離割れを生ぜず、接合強
度が良好である、 ×印・・・・・・接合界面に剥離割れを生じ、接合強度
が不良である、 全意味し、それぞれ3個の試料について測定した結果が
示されている。
Table 2 shows the results of the bending tests obtained using this method. In Table 2, ○ mark: No peeling cracks occur at the joint interface, and the joint strength is good; × mark: Separation cracks occur at the joint interface, and the joint strength is poor. The results are shown for each of three samples.

第2表に示される結果からも明らかな↓うに、スペーサ
ーを使用しなかった場合には、熱延加熱時間が1時間以
内であるとそのクラッド製品は良好な接合性と加工性と
を有するものの、加熱時間を2時間以上にしたものは接
合はするけれども曲げ加工試験時に界面割れを生じるの
に対して、スペーサーを使用した場合には2時間程度の
加熱はもちろんのこと、5時間の熱延加熱を行ってもそ
のクラッド製品は良好な曲げ加工性を有しておシ、スペ
ーサー使用に↓る曲げ加工性改善効果が顕著であること
がわかる。
It is clear from the results shown in Table 2 that if a spacer is not used and the hot rolling heating time is less than 1 hour, the clad product will have good bondability and workability. If the heating time is 2 hours or more, the joint will be bonded, but interface cracks will occur during the bending test, whereas if a spacer is used, it will not only take about 2 hours of heating but also 5 hours of hot rolling. It can be seen that even when heated, the clad product has good bending workability, and the bending workability improvement effect of using a spacer is remarkable.

因に、第3図は第2表における試験番号3の方法(比較
法)によって得られたチタンクラッド°鋼板の顕微鏡組
織写真図(倍率:100倍)であり、第4図は第2表に
おける試験番号8の方法(本発明方法)にぶって得られ
たチタンクラッド鋼板の顕微鏡組織写真図(倍率:10
0倍)であるが、スペーサー無しの比較法で得られたチ
タンクラッド鋼板では合せ材(チタン)と接合中間材(
SUS430鋼)との界面に拡散相が認められるのに対
して、スペーサーを使用する本発明方法で得られたチタ
ンクラッド鋼板では、熱間圧延時の加熱時間が5時間で
あったにもカカわらず前記拡散相は殆んど認められなか
った。
Incidentally, Figure 3 is a microscopic structure photograph (magnification: 100x) of a titanium clad steel plate obtained by the method of test number 3 (comparative method) in Table 2, and Figure 4 is a micrograph (magnification: 100x) of the titanium clad steel plate obtained by the method of test number 3 in Table 2 (comparative method). Microscopic structure photograph of a titanium clad steel plate obtained by the method of test number 8 (method of the present invention) (magnification: 10
However, in the titanium clad steel sheet obtained by the comparative method without spacer, the bonding material (titanium) and the joining intermediate material (
In contrast, in the titanium clad steel sheet obtained by the method of the present invention using a spacer, even though the heating time during hot rolling was 5 hours, the diffusion phase was observed at the interface with SUS430 steel). The diffused phase was hardly observed.

この工うに、第3図及び第4図からも、スペーサーに=
る熱延加熱時の界面拡散抑制効果によってチタンクラッ
ド製品の接合強度と曲げ加工性が著しく向上するであろ
うことが明らかである。
From this work, from Figures 3 and 4, the spacer =
It is clear that the bonding strength and bending workability of titanium clad products will be significantly improved by the interfacial diffusion suppressing effect during hot rolling heating.

々お、この例では、接合中間材として5US430鋼を
使用した例について述べたが、その他のフェライト系ス
テンレス鋼(例えば5US41OL)或いはマルテンサ
イト系ステンレス鋼を使用した実施例においても良好な
結果が得られたことはもちろんのことである。
In this example, we have described an example in which 5US430 steel was used as the joining intermediate material, but good results were also obtained in examples using other ferritic stainless steels (for example, 5US41OL) or martensitic stainless steels. Needless to say, it was done.

上述の↓うに、この発明によれば、生産性の高い”ロー
ル法”に工って、接合強度が極めて高く、かつ優れた加
工性を有するチタンクラッド°材をコスト安く量産する
ことが可能となり、チタンクラッド材の適用分野が一層
拡大されるなど、産業上有用な効果がもたらされるので
ある。
As mentioned above, according to this invention, it is possible to mass-produce titanium clad material with extremely high bonding strength and excellent workability at a low cost by using the highly productive "roll method". This will bring about industrially useful effects, such as further expanding the fields of application of titanium clad materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に適用されるクラッド素材の組立て
例を示す概略模式図、第2図は比較法に適用されたクラ
ッド素材の組立て方法を示す概略模式図、第3図は比較
法によって得られたチタンクラッド鋼板の接合部顕微鏡
写真図、第4図は本発明方法によって得られたチタンク
ラッド鋼板の接合部顕微鏡写真図である。 図面において、 1・・・合せ材、 2・・・母材、 3・・・接合中間材、 4・・・パック材、5・・・ス
ペーサー、 6・・・ノズル。 出願人 日本ステンレス株式会社 代理人 富 1)和 夫 ほか1名 第1図 4 架2m 特開昭GO−203377(7) 第3図 × 100 第4図 謎説ど、僧撹
Fig. 1 is a schematic diagram showing an example of assembling cladding material applied to the method of the present invention, Fig. 2 is a schematic diagram showing an example of assembling cladding material applied to the comparative method, and Fig. 3 is a schematic diagram showing an example of assembling cladding material applied to the comparative method. Fig. 4 is a microscopic photograph of the joint of the titanium clad steel plate obtained by the method of the present invention. In the drawings, 1... Laminating material, 2... Base material, 3... Joining intermediate material, 4... Pack material, 5... Spacer, 6... Nozzle. Applicant Nippon Stainless Co., Ltd. Agent Tomi 1) Kazuo and 1 other person Figure 1 4 Shelf 2 m JP-A-Sho GO-203377 (7) Figure 3 x 100 Figure 4 Mysterious theory, etc.

Claims (1)

【特許請求の範囲】[Claims] 鉄系金属を母材とし、チタン又はチタン合金を合せ材と
したチタンクラッド°材をロール法によって製造するに
際し、母材と合せ材との接合中間材としてフェライト系
ステンレス鋼又はマルテンサイト系ステンレス鋼を用い
るとともに、前記合せ材と接合中間材との間にスペーサ
ーを介在させてクラッド素材を組立て、これに熱間圧延
を施すこと’l徴とするチタンクラッド材の製造方法。
When manufacturing a titanium clad material using a roll method using iron-based metal as the base material and titanium or titanium alloy as the laminate material, ferritic stainless steel or martensitic stainless steel is used as an intermediate material to join the base material and the laminate material. A method for producing a titanium clad material, which comprises using a cladding material, assembling a cladding material with a spacer interposed between the cladding material and the joining intermediate material, and subjecting the cladding material to hot rolling.
JP6194784A 1984-03-29 1984-03-29 Production of titanium clad material Granted JPS60203377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194784A JPS60203377A (en) 1984-03-29 1984-03-29 Production of titanium clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194784A JPS60203377A (en) 1984-03-29 1984-03-29 Production of titanium clad material

Publications (2)

Publication Number Publication Date
JPS60203377A true JPS60203377A (en) 1985-10-14
JPH0324317B2 JPH0324317B2 (en) 1991-04-02

Family

ID=13185893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194784A Granted JPS60203377A (en) 1984-03-29 1984-03-29 Production of titanium clad material

Country Status (1)

Country Link
JP (1) JPS60203377A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289588A (en) * 1985-10-16 1987-04-24 Nippon Kokan Kk <Nkk> Manufacture of clad steel
JPS63180386A (en) * 1987-01-22 1988-07-25 Nippon Steel Corp Manufacture of lightweight plate stock
JPS63317267A (en) * 1987-06-18 1988-12-26 Nippon Steel Corp Manufacture of ti clad steel
JPH01309791A (en) * 1988-06-06 1989-12-14 Kobe Steel Ltd Production of titanium clad steel plate having excellent joinability
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289588A (en) * 1985-10-16 1987-04-24 Nippon Kokan Kk <Nkk> Manufacture of clad steel
JPS63180386A (en) * 1987-01-22 1988-07-25 Nippon Steel Corp Manufacture of lightweight plate stock
JPH0372391B2 (en) * 1987-01-22 1991-11-18 Nippon Steel Corp
JPS63317267A (en) * 1987-06-18 1988-12-26 Nippon Steel Corp Manufacture of ti clad steel
JPH0362511B2 (en) * 1987-06-18 1991-09-26 Nippon Steel Corp
JPH01309791A (en) * 1988-06-06 1989-12-14 Kobe Steel Ltd Production of titanium clad steel plate having excellent joinability
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough

Also Published As

Publication number Publication date
JPH0324317B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
EP2272616B1 (en) Clad stainless steel substrates and method for making same
US6722002B1 (en) Method of producing Ti brazing strips or foils
US20040134966A1 (en) Method of producing Ti brazing strips or foils and the resulting brazing strips or foils
US2813332A (en) Process of preparing composite metal products
JPH0335886A (en) Manufacture of titanium clad material
JPS60203377A (en) Production of titanium clad material
JPH08141754A (en) Manufacture of titanium clad steel plate and titanium clad steel plate
JPS60203378A (en) Production of titanium clad stainless steel material
JP4155124B2 (en) Metal clad plate and manufacturing method thereof
JPS60203376A (en) Production of titanium clad material
JPS6018205A (en) Manufacture of titanium-clad steel material
JPS6188984A (en) Manufacture of titanium clad material
JPS5829589A (en) Manufacture of titanium-clad steel plate
JPS6188986A (en) Manufacture of titanium clad material
JPH09103891A (en) Clad plate of aluminum alloy and stainless steel and manufacture thereof
JPS6350113B2 (en)
JP4196776B2 (en) Brazing composite material and method for producing the same
KR100470146B1 (en) Fabrication of titanium/steel clad plate
JPS60124483A (en) Production of titanium clad material
JPS6188985A (en) Manufacture of titanium clad material
JPH01313193A (en) Manufacture of clad steel plate
JPS63306031A (en) Titanium-based metal clad steel and manufacture thereof
JPS60244491A (en) Production of copper or copper alloy clad steel plate
JPS5841685A (en) Titanium clad steel
Saboktakin et al. The Effect of Copper Interlayer on Metallurgical Properties of Roll Bonding Titanium Clad Steel