JP4150506B2 - 画像撮像装置及び距離測定方法 - Google Patents

画像撮像装置及び距離測定方法 Download PDF

Info

Publication number
JP4150506B2
JP4150506B2 JP2001036761A JP2001036761A JP4150506B2 JP 4150506 B2 JP4150506 B2 JP 4150506B2 JP 2001036761 A JP2001036761 A JP 2001036761A JP 2001036761 A JP2001036761 A JP 2001036761A JP 4150506 B2 JP4150506 B2 JP 4150506B2
Authority
JP
Japan
Prior art keywords
light
wavelength
subject
intensity
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001036761A
Other languages
English (en)
Other versions
JP2001304821A (ja
Inventor
修司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2001036761A priority Critical patent/JP4150506B2/ja
Publication of JP2001304821A publication Critical patent/JP2001304821A/ja
Application granted granted Critical
Publication of JP4150506B2 publication Critical patent/JP4150506B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被写体の奥行き距離に関する情報を取得する画像撮像装置及び距離測定方法に関する。特に本発明は、光が照射された被写体から得られる出射光を撮影して被写体の奥行きに関する情報を取得する画像撮像装置及び距離測定方法に関する。
【0002】
【従来の技術】
物体までの距離情報や物体の位置情報を得るために、物体にスリットや縞模様などのパターン光を投影し、物体に投影されたパターンを撮影して解析する三次元画像計測の手法が知られている。代表的な計測手法として、スリット光投影法(別名、光切断法)、コード化パターン光投影法などがあり、井口征士、佐藤宏介著『三次元画像計測』(昭晃堂)に詳しい。
【0003】
特開昭61−155909号公報(公開日昭和61年7月15日)及び特開昭63−233312号公報(公開日昭和63年9月29日)には、異なる光源位置から被写体に光を照射し、被写体からの反射光の強度比に基づいて、被写体までの距離を測定する距離測定装置及び距離測定方法が開示されている。
【0004】
特開昭62−46207号公報(公開日昭和62年2月28日)には、位相の異なる2つの光を被写体に照射し、被写体からの反射光の位相差に基づいて、被写体までの距離を測定する距離検出装置が開示されている。
【0005】
また、河北他「三次元撮像装置Axi-Vision Cameraの開発」(3次元画像コンファレンス99、1999年)には、投影光に超高速の強度変調を加え、強度変調光で照明された被写体を高速シャッター機能を備えたカメラで撮影し、被写体までの距離によって変化する強度変調度合いから、距離を測定する方法が開示されている。
【0006】
【発明が解決しようとする課題】
従来の光投影法による計測手法は、3角測量の原理に基づいて、投影パターンが投影された被写体の領域までの距離を測定する。したがって、距離測定の高い分解能を得るためには、原理的に投影光学系と撮影光学系を十分に離して配置する必要があり、測定装置の大型化が避けられないという問題が生じていた。また、投影光学系と撮影光学系の光軸が離れているために、撮影光学系から見た場合に、投影されたパターンが被写体の陰に隠れて観察されない場所ができ、距離情報が得られない「死角」となるという問題も生じていた。
【0007】
特開昭61−155909号公報及び特開昭63−233312号公報に開示された距離測定装置及び距離測定方法では、放射位置を異ならせて光を順次照射し、それぞれの反射光を測定する必要があるため、測定に時間差が生じる。そのため、動きのある被写体の場合、距離を測定することができないという問題が生じる。また光源の位置を変えて照射する間に、撮影装置のぶれにより、測定誤差が生じる可能性がある。
【0008】
また、波長特性の異なる光の場合、同時に照射し、反射光を照射光の波長特性に合わせたフィルターを用いて、分光し、反射光強度を測定することができる。しかし、物体の分光反射率が異なる場合、照射光の波長の違いから反射光強度に違いが生じるため、反射光強度の比から奥行き距離を計算する際の誤差要因となり、正確な奥行き距離が計算できないという問題が生じていた。
【0009】
特開昭62−46207号公報に開示された距離検出装置では、位相差を検出するための精度の高い位相検出器が必要となり、装置が高価になり、簡便性に欠ける。また、被写体の点からの反射光の位相を測定するため、被写体全体の奥行き分布を測定することはできない。
【0010】
また、河北他「三次元撮像装置Axi-Vision Cameraの開発」(3次元画像コンファレンス99、1999年)に開示された強度変調を用いた距離測定手法は、非常に高速に光変調や光シャッター操作を行う必要があり、測定装置は大型で高価になり、簡便に測定することができないという問題がある。
【0011】
そこで本発明は、上記の課題を解決することのできる画像撮像装置及び距離測定装置を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の形態においては、被写体の奥行きに関する情報を取得する画像撮像装置であって、第1の波長を主要な波長成分とする第1の照射光と、第1の波長とは異なる第2及び第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から被写体に照射する照射部と、照射部により第1及び第2の照射光が照射された被写体からの出射光に基づいて、被写体までの奥行き距離を算出する奥行き算出部とを備えたことを特徴とする。
【0013】
照射部は、第1及び第2の照射光を同時に照射してもよい。照射部により第1及び第2の照射光が照射された被写体から得られる出射光を結像する光学結像部と、被写体から得られる出射光から、第1の波長を有する第1の出射光と、第2の波長を有する第2の出射光と、第3の波長を有する第3の出射光とを光学的に分離する分光部と、分光部によって分離され、光学結像部が結像する第1、第2及び第3の出射光を受光する受光部と、受光部が受光する第1、第2及び第3の出射光の強度を検出する光強度検出部とをさらに備え、奥行き算出部は、第1、第2及び第3の出射光の強度を用いて、被写体までの奥行き距離を算出してもよい。
【0014】
受光部は、3板の固体撮像素子を有し、分光部は、光路分割手段を用いて第1、第2及び第3の出射光を分離し、それぞれを3板の固体撮像素子のいずれか1つに受光させてもよい。受光部は、固体撮像素子を有し、分光部は、第1の波長の光を透過する第1の光学フィルターと、第2の波長の光を透過する第2の光学フィルターと、第3の波長の光を透過する第3の光学フィルターとを有し、第1、第2及び第3の光学フィルターが固体撮像素子の受光面に交互に配置させてもよい。
【0015】
照射部は、所定の第1の境界波長より短い波長領域の光を透過する第1の光学フィルターと、所定の第2の境界波長より長い波長領域の光を透過する第2の光学フィルターを有し、第1の光学フィルターを透過する第1の照射光と、第2の光学フィルターを透過する第2の照射光とを、光学的に異なる放射位置から被写体に照射し、分光部は、第1及び第2の境界波長の短い方よりも短い第1の波長の光を透過する第1の光学フィルターと、第1及び第2の境界波長の長い方よりも長い第2及び第3の波長の光をそれぞれ透過する第2及び第3の光学フィルターとを有し、被写体から得られる出射光を第1の光学フィルターに透過させることにより、第1の波長を有する第1の出射光を分離し、出射光をそれぞれ第2及び第3の光学フィルターに透過させることにより、第2の波長を有する第2の出射光及び第3の波長を有する第3の出射光を分離させてもよい。
【0016】
奥行き算出部は、第2及び第3の出射光の強度に基づく値と、第1の出射光の強度とを用いて、被写体までの奥行き距離を算出してもよい。奥行き算出部は、第2及び第3の出射光の強度に基づいて、第1の波長を有する光を第2の照射光の放射位置から照射したと仮定した場合の被写体からの仮の出射光の強度を求め、第1の出射光の強度と仮の出射光の強度とを用いて、被写体までの奥行き距離を算出してもよい。奥行き算出部は、第2の出射光と第3の出射光の平均強度と、第1の出射光の強度とを用いて、被写体までの奥行き距離を算出してもよい。
【0017】
本発明の第2の形態においては、被写体の奥行きに関する情報を取得する画像撮像装置であって、第1の波長を主要な波長成分とする第1の照射光と、第1の波長とは異なる第2及び第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から被写体に照射する照射部と、照射部により第1及び第2の照射光が照射された被写体からの出射光に基づいて、被写体までの奥行き距離を算出する奥行き算出部とを備えたことを特徴とする。
【0018】
照射部は、第1及び第2の照射光を同時に照射してもよい。照射部は、第1の波長を主要な波長成分とする第1の照射光と、第1の波長より短い第2の波長、及び第1の波長より長い第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から被写体に照射し、照射部により第1及び第2の照射光が照射された被写体からの出射光を結像する光学結像部と、被写体から得られる出射光から、第1の波長を有する第1の出射光と、第2及び第3の波長を有する第2の出射光とを光学的に分離する分光部と、分光部によって分離され、光学結像部が結像する第1の出射光及び第2の出射光を受光する受光部と、受光部が受光する第1及び第2の出射光の強度を検出する光強度検出部とをさらに備え、奥行き算出部は、第1及び第2の出射光の強度を用いて、被写体までの奥行き距離を算出してもよい。
【0019】
受光部は、2板の固体撮像素子を有し、分光部は、光路分割手段を用いて、第1の出射光と第2の出射光の光路を光学的に分岐させ、それぞれ2板の固体撮像素子のいずれか1つに受光させてもよい。受光部は、固体撮像素子を有し、分光部は、第1の波長の光を透過する第1の光学フィルターと、第2及び第3の波長の光を透過する第2の光学フィルターとを有し、第1の光学フィルターと第2の光学フィルターとが固体撮像素子の受光面に交互に配置されてもよい。
【0020】
奥行き算出部は、第1の出射光の強度と第2の出射光の強度の半分の値との比に基づいて、被写体までの奥行き距離を算出してもよい。
【0021】
上記の第1及び第2の形態において、照射部が被写体に第1及び第2の照射光を照射するときの光軸と、結像部が被写体からの出射光を撮像するときの光軸とが略同一であってもよい。光強度検出部は、受光部に撮像された被写体の画像の各画素において第1及び第2の出射光の強度を検出し、奥行き算出部は、画素の各々に対応する被写体の領域までの奥行きを各々求めることにより、被写体の奥行き分布を算出してもよい。
【0022】
上記の第1及び第2の形態において、第1及び第2の照射光は赤外線領域の光であり、分光部は、被写体から得られる出射光から可視光を光学的に分離する手段をさらに備え、受光部は、分光部により光学的に分離され、光学結像部が結像する可視光を受光する可視光用の固体撮像素子をさらに備え、奥行き算出部が算出する被写体の奥行き分布とともに可視光用の固体撮像素子に撮像された被写体の画像を記録する記録部をさらに備えてもよい。
【0023】
上記の第1及び第2の形態において、光強度検出部が検出する被写体からの出射光の強度、及び奥行き算出部が算出する被写体までの奥行き距離の少なくとも1つに基づいて、照射部が照射する第1及び第2の照射光の発光時間、強度、放射位置、及び受光部の露光時間の少なくとも1つを制御する制御部をさらに備えてもよい。
【0024】
本発明の第3の形態においては、被写体の奥行きに関する情報を取得する距離測定方法であって、第1の波長を主要な波長成分とする第1の照射光と、第1の波長とは異なる第2及び第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に被写体に照射する照射段階と、第1及び第2の照射光が照射された被写体から得られる出射光から、第1の波長を有する第1の出射光と、第2の波長を有する第2の出射光と、第3の波長を有する第3の出射光とを光学的に分離する分光段階と、分離された第1、第2及び第3の出射光を撮像する撮像段階と、撮像された第1、第2及び第3の出射光の強度を検出する光強度検出段階と、第1、第2及び第3の出射光の強度を用いて、被写体までの奥行き距離を算出する奥行き算出段階とを備えたことを特徴とする。
【0025】
奥行き算出段階は、第2及び第3の出射光の強度に基づく値と、第1の出射光の強度とを用いて、被写体までの奥行き距離を算出してもよい。奥行き算出段階は、第2及び第3の出射光の強度に基づいて、第1の波長を有する光を第2の照射光の放射位置から照射したと仮定した場合の被写体からの仮の出射光の強度を求め、第1の出射光の強度と仮の出射光の強度の比に基づいて、被写体までの奥行き距離を算出してもよい。奥行き算出段階は、第2の出射光と第3の出射光の平均強度と、第1の出射光の強度との比に基づいて、被写体までの奥行き距離を算出してもよい。
【0026】
本発明の第4の形態においては、被写体の奥行きに関する情報を取得する距離測定方法であって、第1の波長を主要な波長成分とする第1の照射光と、第1の波長より短い第2の波長、及び第1の波長より長い第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に被写体に照射する照射段階と、第1及び第2の照射光が照射された被写体から得られる出射光から、第1の波長を有する第1の出射光と、第2及び第3の波長を有する第2の出射光とを光学的に分離する分光段階と、分離された第1の出射光及び第2の出射光を撮像する撮像段階と、受光された第1の出射光及び第2の出射光の強度をそれぞれ検出する光強度検出段階と、第1の出射光の強度と第2の出射光の強度を用いて、被写体までの奥行き距離を算出する奥行き算出段階とを備えたことを特徴とする。
【0027】
奥行き算出段階は、第1の出射光の強度と第2の出射光の強度の半分の値との比に基づいて、被写体までの奥行き距離を算出してもよい。
【0028】
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。
【0029】
【発明の実施の形態】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0030】
(実施形態1)
本発明の第1の実施形態を説明する。最初に、被写体からの反射光の強度から被写体までの奥行き距離を測定する基本原理について説明する。図1は、本発明の原理説明図である。光源6、8はそれぞれ放射光強度I、Iを有する同一波長特性の点光源である。光源6、8はそれぞれ物体2から距離R、Rの位置にあり、光源6、8の放射位置の間隔はLである。光源6を発光させ、照射された物体2からの反射光をカメラ5によって撮影する。次に光源8を発光させ、照射された物体2からの反射光をカメラ5によって撮影する。
【0031】
光源6から放射された光は全方位に放射される。光源6を中心とする半径rの球を考えると、光の半径rの球面上の単位面積当たりの光密度は、
【0032】
/(4πr
で与えられる。したがって、光源6から距離Rだけ離れた位置に存在する物体2の領域4からの反射光強度Wは、物体2の表面反射率をRfとすると、
【0033】
=Rf・I/(4πR
で与えられる。同様にして、光源8から距離Rだけ離れた位置に存在する物体2の領域4からの反射光強度Wは、
【0034】
=Rf・I/(4πR
で与えられる。
【0035】
光源6による反射光強度Wと光源8による反射光強度Wの比Wは、
=W/W=(I・R )/(I・R
と求められる。これと、R−R=Lの関係から、光源6と光源8の放射位置間隔Lが既知であれば、反射光強度比Wを測定して、距離Rを式
【0036】
=L/{(W・I/I1/2−1}
により求めることができる。
【0037】
このように、同色の光源を用いれば、反射光強度比Wを求める過程で、表面反射率Rfの影響がキャンセルされるため、被写体の奥行き距離に関する情報を取得することができる。この方法では、光源6と光源8を順に発光し、撮像するため、撮影に時間差が生じる。したがって動きのある被写体には適用することができない。そこで光源6と光源8の波長特性を異ならせ、光源6と光源8を同時に発光し、被写体からの反射光から光源6による反射光と光源8による反射光を波長分離して、それぞれの反射光の強度を測定する方法が考えられる。物体2の表面反射率は一般に波長によって異なる。波長λの光を照射した場合の表面反射率をRf(λ)とする。光源6の波長をλ、光源8の波長をλとすると、光源6による反射光強度Wは、
【0038】
=Rf(λ)・I/(4πR
で与えられる。一方、光源8による反射光強度Wは、
【0039】
=Rf(λ)・I/(4πR
で与えられる。
【0040】
波長による表面反射率の違いがあるため、反射光強度比Wを求めても、表面反射率Rfの項がキャンセルされないため、被写体の奥行き距離に関する情報を取得することができない。波長λとλの差を微小にして、表面反射率Rf(λ)とRf(λ)の違いを無視して、反射光強度比Wを求め、被写体の奥行き距離を算出することもできるが、計算に誤差が生じる。表面反射率Rf(λ)とRf(λ)の違いによる計算誤差を小さくするためには、波長λとλの差を十分に小さくしなければならないが、波長λとλの差を小さくすると、波長分離の精度が悪くなり、波長毎の強度測定に誤差が含まれることになる。したがって、波長分離の分解能を上げて強度測定の精度を上げるためには、波長λとλの差を大きくしなければならないし、表面反射率Rf(λ)とRf(λ)の違いを小さくして、距離測定の精度を上げるためには、波長λとλの差を小さくしなければならないというジレンマに陥り、距離測定の精度を改善することに自ずと限界が生じる。
【0041】
そこで、本実施形態では、第1の波長特性を有する光と、第1の波長特性とは異なる第2の波長特性を有する光を光学的に異なる放射位置から同時に被写体に照射し、第1の波長特性を有する光による反射光と、第2の波長特性を有する光による反射光とを光学的に分離し、第2の波長特性の反射光を用いて、仮に第1の波長特性を有する光を第2の波長特性の光の放射位置から照射した場合に、被写体から得られるであろう仮の反射光強度を求め、第1の波長特性の反射光強度と、仮の反射光強度との比に基づいて、被写体の奥行き距離を算出する。仮の反射光強度を求めることにより、波長による表面反射率の違いをキャンセルすることができるため、奥行き距離を正確に求めることができる。
【0042】
図2は、本実施形態の画像撮像装置200の構成図である。画像撮像装置200として、デジタルスチルカメラや静止画像を撮影できるデジタルビデオカメラ等が考えられる。画像撮像装置200は、照射部100と、撮像部120と、処理部60と、制御部80とを有する。
【0043】
照射部100は被写体に光を照射し、撮像部120は照射部100が照射した被写体を撮像する。処理部60は撮像部120が撮像した被写体の画像を処理して、撮像された被写体の奥行き距離を求め、被写体の奥行き分布情報として記録する。処理部60はまた、撮像部120が撮像した被写体の画像を記録することもできる。制御部80は、処理部60が求めた被写体の奥行き距離に基づいてフィードバック制御を行い、照射部100が照射する光の強度、発光のタイミング、発光時間、放射位置等を制御し、撮像部120の露光時間等を制御する。
【0044】
照射部100は、光源10A、10Bと、光学フィルター12A、12Bとを有する。光源10A、10Bは異なる位置に設置され、光源10A、10Bからの光は、それぞれ特定の波長成分を透過する光学フィルター12A、12Bを透過し、被写体に同時に照射される。照射部100は、光量を効率的に利用したい場合や、光源10A、10Bの放射位置の差を光学的に大きくしたい場合には、コンデンサーレンズ等の光学レンズを照射光の光路に挿入して、光を集光させたり、レンズ効果により照射光の光学的な放射位置を変更させてもよい。
【0045】
撮像部120は、光学結像部の一例としての光学レンズ20と、分光部30と、受光部40とを有する。光学レンズ20は、被写体からの反射光を結像する。分光部30は、被写体からの反射光を、照射部100が照射した波長特性に合わせて波長分離する。受光部40は、光学レンズ20が結像し、分光部30によって波長分離された反射光を受光する。
【0046】
受光部40は、一例として固体撮像素子である。被写体像は固体撮像素子の受光面上に結像される。結像された被写体像の光量に応じ、固体撮像素子の各センサエレメントに電荷が蓄積され、蓄積された電荷は、一定の順序に走査され、電気信号として読み出される。
【0047】
固体撮像素子は、被写体からの反射光の強度を、画素単位に高い精度で検出可能なように、S/N比が良く、画素数が大きい電荷結合素子(CCD)イメージセンサであることが望ましい。固体撮像素子としてCCD以外に、MOSイメージセンサ、CdS−Se密着型イメージセンサ、a−Si(アモルファスシリコン)密着型イメージセンサ、又はバイポーラ密着型イメージセンサのいずれかを用いてもよい。
【0048】
処理部60は、画像メモリ62と、光強度検出部64と、奥行き算出部66と、画像補正部67と、記録部68とを有する。画像メモリ62は、撮像部120が撮像した被写体の画像を、照射部100が照射した照射光の波長特性に合わせて格納する。光強度検出部64が画像メモリ62に格納された被写体の画像から反射光の強度を画素単位または画素領域単位で検出する。奥行き算出部66は、光強度検出部64が検出した反射光強度に基づいて、各画素領域に写された被写体の領域までの奥行き距離を算出する。記録部68は奥行き算出部66が算出した被写体の奥行き距離の分布を記録する。画像補正部67は、画像メモリ62に格納された被写体の画像について、階調補正、ホワイトバランス等の補正を行う。記録部68は画像補正部67が処理した被写体の画像を記録する。また、光強度検出部64及び奥行き算出部66はそれぞれ、被写体からの反射光の検出レベル及び被写体の奥行き分布の情報を制御部80に出力する。記録部68は、フラッシュメモリ、メモリカード等の半導体メモリに画像データ及び奥行き分布情報を記録する。
【0049】
制御部80は、処理部60が求めた被写体の奥行き距離に基づいてフィードバック制御を行い、照射部100が照射する光の強度、発光のタイミング、光の放射位置等を制御し、撮像部120の受光部40の受光感度や露光時間等を制御する。制御部80は、図示しない測光センサの測光データや、測距センサの測距データを用いて、照射部100と撮像部120を制御してもよい。また、制御部80は、処理部60が求めた被写体の奥行き距離に基づいて、被写体の画像を撮影するときの撮像部120のフォーカス、絞り、露光時間等を調整してもよい。
【0050】
図3は、本実施形態の照射部100と撮像部120の構成図である。光源10A、10Bはそれぞれ物体2から距離R1、R2の位置にあり、光源10A、10Bの放射位置間隔はLである。光学フィルター12Aは主に波長λの光を透過し、光学フィルター12Bは主に波長λ、λを有する光を透過する。照射部100は、光源10Aの位置から波長λの光を、光源10Bの位置から波長λ及びλを有する光を同時に物体2に照射する。
【0051】
光源10A、10Bからの光が照射された物体2からの反射光を撮像部120の光学レンズ20が結像する。分光部30は、波長λ、λ、λの3つの光に波長分離して光路を分割するプリズムである。受光部40A、40B、及び40Cは3板の固体撮像素子である。分光部30によって、分光された波長λ、λ、λを有する光はそれぞれ受光部40A、40B、40Cに受光される。各受光部40A、40B、40Cに受光された光は、光電効果により電荷として読み出され、図示しないA/D変換器によりデジタル電気信号に変換され、処理部60に入力される。
【0052】
図4は、本実施形態の処理部60の構成図である。各受光部40A、40B、40Cが出力する被写体像は、それぞれ画像メモリ62A、62B、62Cに格納される。光強度検出部64は各画像メモリ62A、62B、62Cに格納された画像データを用いて、波長λ、λ、λの反射光の強度を検出する。奥行き算出部66は、光強度検出部64が検出した波長λ、λ、λの反射光の強度を用いて、光源10Aから物体2の領域4までの距離R1を求める。奥行き算出部66は撮像された画像の画素または画素の領域単位で、画素または画素領域に写された被写体の領域までの奥行き距離を算出し、被写体の奥行き分布を求め、出力する。記録部68は被写体の奥行き分布情報を記録する。
【0053】
光強度検出部64は、検出した波長λ、λ、λの反射光の強度を制御部80へ出力する。奥行き算出部66は、被写体の奥行き分布情報を制御部80へ出力する。制御部80は、強度レベルが適正でない場合や奥行き距離の測定精度が良くない場合、光源10Aまたは10Bの放射光強度を調整するか、または光源10Aと10Bの放射位置間隔を調整する。制御部80は、光源10A、10Bの放射光強度比をあらかじめいくつか容易しておき、被写体の奥行き距離によって、放射光強度比を選択してもよい。たとえば、被写体が近距離にある場合には、放射光強度比を1に近い値に設定し、被写体が遠距離にある場合に、被写体から遠い位置にある光源10Bの放射光強度が大きくなるように、放射光強度比を設定してもよい。
【0054】
図5は、光強度検出部64と奥行き算出部66による奥行き距離計算方法の説明図である。光強度検出部64は、波長λの反射光の強度W、波長λの反射光のW、波長λの反射光のWをそれぞれ検出する。光源10A、10Bの強度をそれぞれI、Iとし、物体2の波長λにおける表面反射率をRf(λ)とすると、波長λの反射光の強度Wは、
【0055】
=Rf(λ)・I/(4πR
と表され、波長λの反射光の強度W、波長λの反射光の強度Wは、
=Rf(λ)・I/(4πR
=Rf(λ)・I/(4πR
と表される。
【0056】
奥行き算出部66は、波長λの反射光の強度W、及び波長λの反射光の強度Wを用いて、波長λを有する放射光強度Iの光を光源10Bの放射位置から照射したと仮定した場合に、被写体から得られる仮の反射光の強度Wを求める。求められたWの値は、理想的には
【0057】
=Rf(λ)・I/(4πR
である。したがって、波長λを有する光源10Aからの光による反射光の強度Wと、同じ波長λを有する光源10Bからの光による仮の反射光の強度Wとの比を求めると、表面反射率Rf(λ)の項がキャンセルされ、
【0058】
/W=(I・R )/(I・R
が得られ、これとR−R=Lより、被写体の奥行き距離Rを算出することができる。
【0059】
波長λの反射光の強度W、及び波長λの反射光の強度Wを用いて、仮の反射光の強度Wを求める方法には、いくつもの変形がありうる。図6は、補間によって仮の反射光の強度を求める方法の説明図である。波長λの反射光の強度W、及び波長λの反射光の強度Wを補間することにより、波長λの場合の仮の強度Wを求める。線形補間して仮の強度Wを求めてもよく、また単純に波長λの反射光の強度W、及び波長λの反射光の強度Wの中間値を仮の強度Wとしてもよい。
【0060】
図7は、外挿によって仮の反射光の強度を求める方法の説明図である。波長λの反射光の強度W、及び波長λの反射光の強度Wを外挿し、波長λより短い波長λの場合の仮の強度Wを求める。
【0061】
さらに次の変形例がある。図8は、光源10A、10Bによるそれぞれの反射光から仮の反射光強度を求める方法を説明する図である。照射部100は、光源10Aから波長λ1及びλ2を有する照射光を、光源10Bから波長λ3及びλ4を有する照射光を同時に照射し、撮像部120は、被写体から得られる反射光を、光源10Aからの波長λ1、λ2を有するそれぞれの反射光と、光源10Bからの波長λ3、λ4を有するそれぞれの反射光とに分離する。光強度検出部64は、光源10Aからの波長λ1、λ2の反射光の強度を求め、奥行き算出部66は、光源10Aの位置から、同一強度で波長λ5の光を照射したと仮定した場合の反射光強度Wを算出する。また、光強度検出部64は、光源10Bからの波長λ3、λ4の反射光の強度を求め、奥行き算出部66は、光源10Bの位置から、同一強度で波長λ5の光を照射したと仮定した場合の反射光強度WDを算出する。奥行き算出部66は仮の反射光強度WとWDの比を求め、被写体の奥行き距離を算出することができる。
【0062】
さらに次の変形例がある。図9(a)〜(d)は、長波長または短波長の光のみを透過させるバンドパスフィルターを用いて照射した場合の仮の反射光強度を求める方法を説明する図である。光源10Aの光学フィルター12Aは、第1の境界波長λよりも長い波長の光のみを透過させるバンドパスフィルターであり、光源10Aからの放射光は光学フィルター12Aを透過し、図9(a)に示した波長特性を有する光として被写体に照射される。光源10Bの光学フィルター12Bは、第2の境界波長λよりも短い波長の光のみを透過させるバンドパスフィルターであり、光源10Bからの放射光は光学フィルター12Bを透過し、図9(b)に示した波長特性を有する光として被写体に照射される。第1の境界波長λは第2の境界波長λより短い波長であってもよい。すなわち光学フィルター12A、12Bが透過させる光の波長特性は、第1の境界波長λから第2の境界波長λまでの波長領域に重なりを有してもよい。したがって、第1の境界波長λが第2の境界波長λより短い場合、光源10A、10Bからの照射光の波長特性は、第1の境界波長λから第2の境界波長λまでの波長領域に重なりを有する。
【0063】
分光部30は、波長λ、λ、λの光をそれぞれ透過する光学フィルターを有し、被写体から得られる反射光を波長分離し、波長λ、λ、λを有する反射光を受光部40に受光させる。光源10Aによる反射光は、分光部30を通過する前は、図9(a)の波長特性を有するが、光学フィルターによって図9(c)のように、波長λの成分だけが取り出される。光源10Bによる反射光についても同様であり、分光部30を通過する前は、図9(b)の波長特性を有するが、光学フィルターによって図9(d)にように、波長λ、λの成分だけがそれぞれ取り出される。ここで、波長λは、第1の境界波長λと第2の境界波長λのどちらか長い方よりも長い波長であり、波長λ、λは、第1の境界波長λと第2の境界波長λのどちらか短い方よりも短い波長であることが必要である。なぜなら、分離された波長λを有する反射光には、光源10Bの照射光による干渉が含まれてはならないし、分離された波長λ、λを有するそれぞれの反射光には、光源10Aの照射光による干渉が含まれてはならないからである。波長λを有する反射光の強度Wを検出し、波長λ、波長λをそれぞれ有する反射光の強度を外挿して、波長λの成分が含まれていたと仮定した場合の仮の反射光強度Wを求める。反射光強度比W/Wから被写体の奥行き距離を求める過程は既に述べた通りである。
【0064】
上記のいずれの方法においても、仮の反射光強度を補間、外挿、平均などの処理によって正確に求めることができるように、波長λと波長λは線形補間または線形の外挿が可能な範囲で近接した値に設定することがより好ましい。図10は、3種の物体の表面反射率を示す図である。グラフの横軸は波長、縦軸は反射率である。グラフ302、304、306は、それぞれ人間の肌、道、木の葉の3種の物体の表面反射率を分光計で測定した結果である。630nm、650nm、670nmの波長に対する各グラフ上の点をマークした。630nm、650nm、670nmの波長領域では、いずれの物体でも線形補間が可能である。また、同波長領域の光源は入手しやすい。波長λ、λ、λとして、このような線形補間が可能で、光源としても入手しやすい波長領域の値を選択することができる。また、受光部40の固体撮像素子の出力信号に対して、通常のデジタルカメラ等で行われる階調補正等の画像補正処理を行うと、信号の線形性が失われる。そこで固体撮像素子への入射光強度に対して線形性を有する信号強度の段階で、強度を検出し、補間、外挿、平均等の処理をすることが好ましい。あるいは、階調補正等の画像補正処理による信号変換関数の逆関数を表すテーブルを用意しておき、画像補正後の信号出力を一旦逆関数のテーブルを参照して、固体撮像素子への入射光強度に対して線形性を有する信号強度に変換してから、強度を検出し、補間、外挿、平均等の処理を行うようにしてもよい。
【0065】
さらに、上記の説明では分光部30として、波長分離して光路を分割する光学分割素子、たとえばプリズム、ビームスプリッターを用いたが、分光部30として、受光部40の受光面に配置した光学フィルターを用いてもよい。図11は、受光部40に設けられる特定波長成分を透過する光学フィルターを説明する図である。受光部40として単板の固体撮像素子を用い、固体撮像素子の受光面に、光学フィルター32を設ける。光学フィルター32は、波長λ、λ、λのみをそれぞれ透過させるフィルターが交互に配置される。これにより、固体撮像素子の画素によって波長λ、λ、λのいずれの光を受光したものであるかがわかり、波長λ、λ、λを有する光を波長分離して受光することができる。プリズムやビームスプリッターを用いる場合と比べて、単板の固体撮像素子に受光させるため、装置を小型化することができる。
【0066】
上記の実施形態の説明において、照射される光の波長によって表面反射率の違いが大きい被写体を対象にする場合、波長λ、λ、λは仮の反射光強度の算出に誤差が生じないように、できるだけ近接していることが望ましい。一方で、各波長成分の反射光の強度の検出精度を上げるためには、波長λ、λ、λの以外の波長成分ができるだけ含まれないようにするか、波長λ、λ、λの値を互いに離れた値にして、波長λ、λ、λの分解能を上げ、波長の干渉をできるだけ少なくすることが望ましい。したがって、被写体の表面反射率の特性や要求される測定精度に応じて、照射部100の光源10の波長特性、光学フィルター12の波長透過特性、撮像部120の分光部30の波長透過特性を設計することが好ましい。
【0067】
図12は、本実施形態の距離測定方法のフローチャートである。照射部100は、波長λを主要な波長成分とする第1の照射光と、波長λとは異なる波長λ及び波長λを主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に被写体に照射する(S100)。
【0068】
撮像部120の光学レンズ20は、第1及び第2の照射光が照射された被写体からの反射光を結像する(S102)。分光部30は、被写体からの反射光から、波長λを有する第1の反射光と、波長λを有する第2の反射光と、波長λを有する第3の反射光とを光学的に分離する(S104)。
【0069】
受光部40は、分離された第1、第2、第3の反射光を受光する(S106)。処理部60の光強度検出部64は、第1、第2、第3の反射光の強度W、W、Wを検出する(S108)。
【0070】
奥行き算出部66は、第1、第2、第3の反射光の強度W、W、Wを用いて、被写体までの奥行き距離を算出する(S110)。
【0071】
図13は、奥行き距離算出処理S110のフローチャートである。第2及び第3の反射光の強度W、Wに基づいて、波長λで強度がI2の光が第2の照射光の放射位置から照射されたと仮定した場合の被写体からの仮の反射光の強度Wを求める(S112)。仮の反射光の強度Wは、第2及び第3の反射光の強度W及びWを補間または外挿することにより求める。第1の反射光の強度Wと仮の反射光の強度Wの比W/Wを求める(S114)。第1、第2の照射光の強度I、I、第1、第2の照射光の放射位置間隔L、反射光強度比W/Wに基づいて、被写体までの距離を算出する(S116)。
【0072】
図14は、奥行き距離算出処理S110の変形例のフローチャートである。第2及び第3の反射光の強度W、Wの平均値W=(W+W)/2を求める(S118)。第1の反射光の強度Wと、第2及び第3の反射光の平均強度Wの比W/Wを求める(S120)。第1、第2の照射光の強度I、I、第1、第2の照射光の放射位置間隔L、反射光強度比W/Wに基づいて、被写体までの距離を算出する(S122)。
【0073】
以上述べたように、本実施形態の画像撮像装置によれば、異なる波長特性を有する光を光学的に異なる放射位置から同時に被写体に照射し、被写体から得られる反射光から波長特性に合わせて波長分離し、波長分離された反射光の強度を用いて、被写体までの奥行き距離を簡便に求めることができる。
【0074】
また、被写体からの反射光による像を固体撮像素子に撮像し、画像データとして格納するため、画素または画素領域単位で反射光強度を検出して奥行き距離を算出することができ、撮像された被写体の領域の奥行き分布を得ることができる。したがって、被写体の2次元画像から被写体の奥行き分布を獲得して、被写体の3次元立体画像を作成することが可能である。
【0075】
(実施形態2)
本発明の第2の実施形態を説明する。本実施形態の画像撮像装置は、第1の実施形態の画像撮像装置と比較して、照射部100と撮像部120の一部の構成が異なるだけであるから、同一の構成要素については説明を省略し、異なる構成要素についてのみ説明する。図15は、本実施形態の照射部100と撮像部120の構成図である。本実施形態では、照射部100の光学フィルター12Aは主に波長λの光を透過し、光学フィルター12Bは、主に波長λより短い波長λと、波長λより長い波長λを有する光を透過する。照射部100は、光源10Aの位置から波長λの光と、光源10Bの位置から波長λ及びλを有する光を同時に物体2に照射する。
【0076】
撮像部120の分光部30は、波長λを有する光と、波長λ及びλを有する光とに波長分離して光路を分割するプリズムである。受光部40A及び40Bは2板の固体撮像素子である。分光部30によって、分光された波長λを有する光は、受光部40Aに、波長λ及びλを有する光は受光部40Bにそれぞれ受光される。受光部40A、40Bに受光された光は、電気信号に変換され、処理部60に入力される。
【0077】
図16は、本実施形態の処理部60の構成図である。各受光部40A、40Bが出力する被写体像は、それぞれ画像メモリ62A、62Bに格納される。光強度検出部64は各画像メモリ62A、62Bに格納された画像データを用いて、波長λを有する反射光、波長λとλを有する反射光の強度を検出する。奥行き算出部66は、光強度検出部64が検出した波長λの反射光の強度、波長λ及びλの反射光の強度を用いて、光源10Aから物体2の領域4までの距離R1を求める。奥行き算出部66は撮像された画像の画素または画素の領域単位で、画素または画素領域に写された被写体の領域までの奥行き距離を算出し、被写体の奥行き分布を求め、出力する。記録部68は被写体の奥行き分布情報を記録する。
【0078】
図17は、光強度検出部64と奥行き算出部66による奥行き距離計算方法の説明図である。光強度検出部64は、波長λの反射光の強度W、波長λとλを有する反射光の強度Wをそれぞれ検出する。光源10A、10Bの強度をそれぞれI、Iとし、物体2の波長λにおける表面反射率をRf(λ)とすると、波長λの反射光の強度Wは、
【0079】
=Rf(λ)・I/(4πR
と表され、波長λとλを有する反射光の強度Wは、
E=Rf(λ)・I/(4πR
+Rf(λ)・I/(4πR
と表される。
【0080】
奥行き算出部66は、波長λと波長λを有する反射光の強度Wの半分の値をWとする。波長λは、波長λと波長λの中間の値であるから、Wの値は、波長λを有する放射光強度Iの光を光源10Bの放射位置から照射したと仮定した場合に、被写体から得られる仮の反射光の強度にほぼ等しい。得られたWの値は、理想的には
【0081】
=Rf(λ)・I/(4πR
である。したがって、波長λを有する光源10Aからの光による反射光の強度Wと、同じ波長λを有する光源10Bからの光による仮の反射光の強度Wとの比を求めると、表面反射率Rf(λ)の項がキャンセルされ、
【0082】
/W=(I・R )/(I・R
が得られ、これとR−R=Lより、被写体の奥行き距離Rを算出することができる。
【0083】
仮の反射光強度Wが正確に得られるように、波長λは、波長λ、λの中間の波長であることがより好ましい。上記の説明では、分光部30は、波長λを有する光と、波長λ及びλを有する光とに波長分離したが、フィルタリングの方法として、波長λ、λを選択的に透過する必要は必ずしもなく、波長λをカットするバンドカットフィルターを用いても同じ効果を奏する。図18(a)〜(d)は、バンドカットフィルターを用いて反射光を分離する方法を説明する図である。図18(a)のように、光源10Aからの照射光は、波長λを主要な波長成分とする波長特性を有する。図18(b)のように、光源10Bからの照射光は、波長λを間に挟む波長λ、λを主要な波長成分とする波長特性を有する。分光部30は、図18(c)に示すような、主に波長λだけを透過するバンドパスフィルターと、図18(d)に示すような、主に波長λの波長成分をカットするバンドカットフィルターとを有し、被写体からの反射光をバンドパスフィルターに透過させることにより、波長λを有する反射光を分離し、被写体からの反射光をバンドカットフィルターに透過させることにより、波長λと波長λを有する反射光を分離する。波長λと波長λを有する反射光の強度の半分の値と、波長λを有する反射光の強度の比に基づいて、被写体の奥行き値を求める方法は上述の通りである。
【0084】
図19は、本実施形態の距離測定方法のフローチャートである。照射部100は、波長λを主要な波長成分とする第1の照射光と、波長λより短い波長λと、波長λより長い波長λを主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に被写体に照射する(S200)。
【0085】
撮像部120の光学レンズ20は、第1及び第2の照射光が照射された被写体からの反射光を結像する(S202)。分光部30は、被写体からの反射光から、波長λを有する第1の反射光と、波長λ及び波長λを有する第2の反射光とを光学的に分離する(S204)。
【0086】
受光部40は、分離された第1、第2の反射光を受光する(S206)。処理部60の光強度検出部64は、第1、第2の反射光の強度W、Wを検出する(S208)。
【0087】
奥行き算出部66は、第1の反射光の強度W、第2の反射光の強度Wの半分の値Wの比W/Wを求め(S212)、第1、第2の照射光の強度I、I、第1、第2の照射光の放射位置間隔L、反射光強度比W/Wに基づいて、被写体までの距離を算出する(S214)。
【0088】
上記の説明では分光部30として、波長分離して光路を分割する光学分割素子、たとえばプリズム、ビームスプリッターを用いたが、分光部30として、第1の実施形態と同様に、受光部40として単板の固体撮像素子を用い、固体撮像素子の受光面に、光学フィルター32を設けてもよい。光学フィルター32は、波長λのみを透過させるフィルターと、波長λ及びλを透過させるフィルターが交互に配置される。プリズムやビームスプリッターを用いる場合と比べて、単板の固体撮像素子に受光させるため、装置を小型化することができる。
【0089】
以上述べたように、本実施形態の画像撮像装置によれば、第1の波長を主要な波長成分とする第1の照射光と、第1の波長を中間に挟む第2、第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に被写体に照射し、被写体から得られる反射光から、第1の波長を有する第1の反射光と、第2及び第3の波長を有する第2の反射光とに分離し、第1の反射光強度と、第2の反射光強度の半分の値との比に基づいて被写体の奥行き距離を算出することができる。第2の反射光強度を半分にするだけで、第1の波長を有する光を第2の照射光の放射位置から照射した場合の仮の反射光強度を求めることができるため、非常に簡便に被写体の奥行き距離を算出することができる。また、被写体からの反射光を受光する固体撮像素子を2板にすることができ、装置の小型化を図ることができる。
【0090】
(実施形態3)
本発明の第3の実施形態を説明する。本実施形態の画像撮像装置は、第1の実施形態の画像撮像装置と比較して、照射部100と撮像部120の一部の構成が異なるだけであるから、同一の構成要素については説明を省略し、異なる構成要素についてのみ説明する。図20は、本実施形態の照射部100と撮像部120の構成図である。本実施形態では、照射部100の光源10A、10Bは赤外光源である。光学フィルター12Aは赤外領域における波長λの光を透過し、光学フィルター12Bは、赤外領域における波長λ及び波長λを有する光を透過する。照射部100は、光源10Aの位置から赤外領域の波長λの光と、光源10Bの位置から赤外領域の波長λ及びλを有する光とを同時に物体2に照射する。物体2にはさらに可視光領域の光、たとえば自然光や照明光が照射されている。
【0091】
撮像部120の分光部30は、赤外領域の波長λを有する光と、赤外領域の波長λ及びλを有する光と、可視光領域の光とに波長分離して光路を分割するプリズムである。受光部40A、40B、及び40Cは3板の固体撮像素子である。分光部30によって、分光された波長λを有する光は、受光部40Aに、波長λ及びλを有する光は受光部40Bに、可視光は受光部40Cにそれぞれ受光される。赤外領域の反射光の撮影像がピンぼけしないように、受光部40A、40Bはピントが合う位置にあらかじめ設定しておく。受光部40A、40B、40Cに受光された光は、電気信号に変換され、処理部60に入力される。
【0092】
図21は、本実施形態の処理部60の構成図である。各受光部40A、40Bが出力する被写体像は、それぞれ画像メモリ62A、62Bに格納される。光強度検出部64は各画像メモリ62A、62Bに格納された画像データを用いて、反射光の強度を検出し、奥行き算出部66は、光強度検出部64が検出した反射光の強度を用いて、光源10Aから物体2の領域4までの距離R1を求める。光強度検出部64と奥行き算出部66の動作は、第2の実施形態と同様であるから、説明を省略する。奥行き算出部66は撮像された画像の画素または画素の領域単位で、画素または画素領域に写された被写体の領域までの奥行き距離を算出し、被写体の奥行き分布を求め、出力する。記録部68は被写体の奥行き分布情報を記録する。さらに、受光部40Cが出力する被写体像は画像メモリ62Cに格納される。画像補正部67は、画像メモリ62に格納された画像データに対して、階調補正等の画像補正を行い、被写体の画像データとして出力し、記録部68は被写体の画像データを被写体の奥行き分布情報とともに記録する。
【0093】
上記では、波長λ及びλを有する反射光を分離せずに、受光部40Bに受光させたが、受光部40として、4板の固体撮像素子を用いて、分光部30によって波長λを有する反射光と波長λを有する反射光とを分離させて、異なる固体撮像素子にそれぞれの反射光を受光させてもよい。その場合、第1の実施形態と同様の方法で、波長λ、λ、λのそれぞれの反射光の強度を用いて、被写体の奥行き距離を求めることができる。
【0094】
以上述べたように、本実施形態の画像撮像装置によれば、被写体の奥行き距離測定には赤外光を用いるため、被写体に自然光や照明光が照射された自然な条件のもとでも、被写体の奥行き距離を測定することができる。したがって、被写体の奥行き距離測定のために、部屋を暗室にする必要がない。また、可視光領域の反射光を分離させて撮像することができるため、被写体の奥行き分布を測定すると同時に、被写体の画像を撮影することができる。撮影された被写体の画像から奥行き分布に基づいて、主要被写体を抽出したり、背景と人物像を分離するなど、被写体の奥行き分布を用いた、被写体の画像処理が可能である。
【0095】
(実施形態4)
本発明の第4の実施形態を説明する。本実施形態の画像撮像装置は、第1、第2、第3の実施形態の画像撮像装置と比較して、照射部100と撮像部120の光軸を同一にするために、ハーフミラー17と18を用いた点だけが異なる。図22は、本実施形態の照射部100と撮像部120の構成図である。第1の実施形態において、ハーフミラー17と18を用いた例を示すが、第2、第3の実施形態においても同様の構成を取ることができる。照射部100の光源10Aと10Bの放射位置は距離Lだけ離れており、光源10Bからの照射光はハーフミラー17に反射し、さらにハーフミラー18に反射して、物体2に照射される。光源10Aからの照射光はハーフミラー17を通過し、ハーフミラー18に反射して、物体2に照射される。被写体からの反射光はハーフミラー18と通過し、撮像部120の光学レンズ20によって結像される。
【0096】
本実施形態では、照射部100と撮像部120の光軸が光学的に同軸であるため、照射部100によって照射された被写体を撮像部120が撮影する際、影になって撮影できない領域が生じることがない。したがって照射された被写体の全領域の奥行き分布を算出することができ、奥行き距離を算出できない死角が生じることはない。また、照射部100と撮像部120の光軸を同軸にすることにより、画像撮像装置200全体を小型化することができる。
【0097】
(実施形態5)
図23は、本発明の実施形態5にかかる原理説明図である。照射位置112及び照射位置114から、それぞれ強度P1,P2の光を物体120に照射し、物体120によるそれぞれの光の反射光をカメラ110で撮像する。カメラ110は、例えば電荷結合素子(CCD)であって、複数の画素を有し、各画素単位で物体120の被測定部122及び砒素区手部の近傍124からの反射光を撮影し、画素毎にそれぞれの強度を検出する。カメラ110で撮像した反射光に基づいて物体120の被測定部122までの距離L、被測定部122の表面の傾きθ及び、被測定部122の表面の反射率RObjを算出する。照射位置(112,114)は、任意の位置に配置されてよい。照射位置(112,114)から物体120に照射される光の照射角のうち、いずれかを算出するが、本例においては、カメラ110を、照射位置(112,114)のいずれか一つと光学的に同じ位置に配置し、カメラ110が撮像する反射光の入射角に基づいて物体120に照射される光の照射角を算出する。本例においては、照射位置112とカメラ110を光学的に同じ位置に配置した場合について説明する。
【0098】
図23に示すように、照射位置114は、照射位置112からL12離れた位置に配置される。距離L12は、計測系固有の既知の値である。また、照射位置(112,114)から物体120の被測定部122に光を照射する角度をそれぞれθ、θとし、照射位置(112,114)から物体120の被測定部の近傍124に光を照射する角度をそれぞれθ’、θ’とする。また、カメラ110は、照射位置112と光学的に同じ位置に配置されているので、被測定部122からの反射光を受光する角度をθ、被測定部の近傍124からの反射光を受光する角度をθ’とした場合、θ=θ、θ’=θ’である。また、照射位置112から被測定部122までの距離をそれぞれL、被測定部の近傍124までの距離をL’とし、照射位置114から被測定部までの距離をL、被測定部の近傍124までの距離をL’とする。
【0099】
照射位置(112,114)から照射された光の、被測定部122からの反射光の強度をそれぞれD、Dとすると、D、Dは次のように与えられる。
【0100】
【数1】
Figure 0004150506
すなわち、
【数2】
Figure 0004150506
となる。
【0101】
また、
【数3】
Figure 0004150506
であるので、
【数4】
Figure 0004150506
となる。また、
【0102】
【数5】
Figure 0004150506
であり、L12、θは既知の値であるので、θはLの関数で与えられる。すなわち、
【0103】
【数6】
Figure 0004150506
となる。よって、
【0104】
【数7】
Figure 0004150506
となる。ここで、D1、D、P、P、θは、計測値又は既知の値であるので、上の式の未知数はθ及びLの2つである。したがって上の条件を満たす(θ、L)の組み合わせを求めることができる。すなわち、被測定部122までの距離Lを仮定した場合、仮定した距離Lに対応する被測定部の面傾きθを算出することができる。また、被測定部の近傍124についても、同様に被測定部の近傍124までの距離L’と被測定部の近傍124の面傾きθ’の組み合わせを求めることができる。
【0105】
本発明は、物体120の被測定部122までの距離Lと被測定部122の面傾きθとの組み合わせと、物体120の被測定部の近傍124までの距離L’と被測定部の近傍124の面傾きθ’との組み合わせに基づいて、被測定部122までの距離L及び面傾きθを算出する。以下、算出方法について詳細に説明する。
【0106】
図24は、被測定部122までの距離L、被測定部122の面傾きθを算出する方法の一例の説明図である。まず、被測定部122までの距離LをLaと仮定する。図23に関連して説明した数式に基づいて、仮定した距離Laに対応する被測定部122の面傾きθを算出する。次に、算出した面傾きθによって定まる被測定部122の面を延長し、被測定部の近傍124からの反射光の光路と交わる点に、被測定部の近傍124が存在すると仮定した場合の被測定部の近傍124までの仮の距離Lbを算出する。このとき被測定部の近傍124までの仮の距離Lbは、カメラ110と被測定部122までの仮の距離La、被測定部122からの反射光の入射角θ、被測定部の近傍124からの反射光の入射角θ’及び、被測定部122の面傾きθに基づいて幾何的に算出することができる。
【0107】
次に、算出した仮の距離Lbに対応する、被測定部の近傍124の面傾きθ’を算出する。面傾きθ’は、図23に関連して説明した数式により算出することができる。物体120の被測定部122と被測定部の近傍124との間隔は、微小であるので、被測定部122と被測定部の近傍124の面傾きはほぼ同一となる。したがって、算出した面傾きθとθ’とを比較することにより、最初に仮定した被測定部122までの距離Laが正しい値であるかを判定することができる。すなわち、面傾きθとθ’との差が所定の範囲内であれば、仮定した距離Laを被測定部122までの距離Lとすることができる。
【0108】
また、面傾きθとθ’との差が所定の範囲内に無い場合は、最初に仮定した距離Laの設定に誤りがあったとして、被測定部122までの距離Lを他の値に設定して同様の計算を行えばよい。図23に関連して説明した数式を満たす、被測定部122までの距離Lが、上限値を有することは明らかであり、下限値は零であるので、仮の距離Laについて、有限の範囲において調べればよい。例えば、有限の範囲の距離Laについて2分探索法によって、被測定部122までの真の距離Lを抽出してよい。また、仮の距離Laについて、有限の範囲で所定の距離間隔でθ、θ’の差を算出し、真の距離Lを抽出してもよい。また、仮の距離Laについて、複数の値についてθ、θ’の差を算出し、差が最小となる仮の距離Laを真の距離Lとしてもよい。また、被測定部の面傾き情報は、被測定部までの距離情報に基づいて、図23に関連して説明した数式によって算出することができる。また、図23に関連して説明した数式によって被測定部の表面反射率情報も算出することができる。
【0109】
図25は、仮の距離Laについての所定の範囲で所定の距離間隔で、面傾きθ及び面傾きθ’を算出した結果の一例を示す。図25のグラフにおいて、横軸は、被測定部122までの仮の距離Laを示し、縦軸は被測定部122及び被測定部の近傍124の面傾きを示す。本例において、物体120の被測定部122までの距離Lを200mm、被測定部122の面傾きを0度とした。また、照射位置112と照射位置114との距離を10mm、θを20度、仮の距離Laの間隔を10mmとして計算を行った。
【0110】
データ192は、横軸に示される仮の距離Laに対応する被測定部122の面傾きを示し、データ194は、被測定部の近傍124の面傾きを示す。仮の距離200mmにおいて、被測定部122及び被測定部の近傍124の面傾きが0度で一致する。
【0111】
(実施形態6)
図26は、物体までの距離情報等を獲得する情報獲得方法の原理説明図である。照射位置212、照射位置214、照射位置216から、それぞれ強度P1,P2,P3の光を物体220に照射し、物体220によるそれぞれの光の反射光をカメラ210で撮像する。カメラ210は、例えば電荷結合素子(CCD)であって、複数の画素を有し、各画素単位で物体220の被照射部224からの反射光を撮影し、画素毎にそれぞれの強度を検出する。カメラ210で撮像した反射光に基づいて物体220の被照射部224までの距離L、被照射部224の表面の傾きθ及び、被照射部224の表面の反射率RObjを算出する。照射位置(212,214,216)及び、カメラ210は、任意の位置に配置されてよいが、本例においては、照射位置212,照射位置216、カメラ210を一直線上に配置した場合について説明する。
【0112】
図26に示すように、照射位置216は、照射位置212からL12離れた位置に、照射位置214は、照射位置212からL23離れた位置に、カメラ210は照射位置212からX離れた位置に配置される。距離L12、L23、Xは、計測系固有の既知の値である。また、照射位置(212,214,216)が、物体220の被照射部224に、光を照射する角度をそれぞれθ、θ、θとし、カメラ210が、被照射部224における反射光を受光する角度をθとする。このうち、θは、カメラ210の画素毎に撮影された反射光に基づいて算出される。また、照射位置(212,214,216)から被照射部224までの距離をそれぞれL、L、Lとする。
【0113】
照射位置(212,214,216)から照射された光の、被照射部224における反射光の強度をそれぞれD、D、Dとすると、D、D、Dは、次のように与えられる。
【0114】
【数8】
Figure 0004150506
すなわち、
【数9】
Figure 0004150506
ただし、f( )は関数とする。また、
【0115】
【数10】
Figure 0004150506
であるので、
【数11】
Figure 0004150506
となる。また、
【0116】
【数12】
Figure 0004150506
であり、X、L12、θは既知の値であるので、θ、θ、θはそれぞれLの関数で与えられる。すなわち、
【0117】
【数13】
Figure 0004150506
となる。よって、
【0118】
【数14】
Figure 0004150506
となる。D、D、D3、θ、P、P、Pは、計測値又は既知の値であるので、上の2式から、未知数θ、Lを求めることができる。また、θが求まれば、D、D、Dのいずれかの式からRobjを求めることができる。以上より、光学的に異なる3点以上の照射位置から照射した光の、物体による反射光をそれぞれ撮像することにより、物体までの距離情報、物体の表面の傾き情報及び、物体の表面の反射率情報を算出することができる。
【0119】
本例においては、照射位置212、照射位置216、カメラ210を一直線上に配置したが、各要素間の距離がわかっていれば、反射光により、物体までの距離情報、物体の表面の傾き情報及び、物体の表面の反射率情報を算出できることは明らかである。
【0120】
以上説明した情報獲得方法によれば、物体220の表面の傾き等による誤差を無くし、物体220までの距離情報を獲得することができる。また、物体220の表面の傾き情報、物体220の表面の反射率情報を獲得することができる。
【0121】
ただし、照射位置(212,214,216)が一直線上に配置されている場合は、図26に関連して説明した方法では、物体までの距離情報等を算出することができない。以下、照射位置(212,214,216)が一直線上に配置されている場合において、物体までの距離情報、物体の表面の傾き情報及び、物体表面の反射率情報の獲得方法について説明する。
【0122】
図27は、照射位置が一直線上に配置された場合の、物体までの距離情報等を獲得する情報獲得方法の説明図である。照射位置212、照射位置214、照射位置216から、それぞれ強度P1,P2,P3の光を物体220に照射し、物体220によるそれぞれの光の反射光をカメラ210で撮像する。
【0123】
図27に示すように、照射位置216は、照射位置212からL13離れた位置に、照射位置214は、照射位置212からL12離れた位置に、カメラ210は照射位置212と実質的に同位置に配置される。距離L12、L1 は、計測系固有の既知の値である。また、照射位置(212,214,216)が、物体220の被照射部224に、光を照射する角度をそれぞれθ、θ、θとし、カメラ210が、被照射部224における反射光を受光する角度をθとする。このうち、θは、カメラ210の画素毎に撮影された反射光に基づいて算出される。本例においては、カメラ210が照射位置212と同一の位置に配置されているのでθ=θである。また、照射位置(212,214,216)から被照射部224までの距離をそれぞれL、L、Lとする。
【0124】
照射位置(212,214,216)から照射された光の、被照射部224における反射光の強度をそれぞれD、D、Dとすると、D、D、Dは、次のように与えられる。
【0125】
【数15】
Figure 0004150506
すなわち、
【数16】
Figure 0004150506
である。また、
【0126】
【数17】
Figure 0004150506
であるので、
【数18】
Figure 0004150506
となる。また、
【0127】
【数19】
Figure 0004150506
であり、θはθと等しく、L12、L13、θは既知であるのでθ、θはLの関数で与えられる。すなわち、
【0128】
【数20】
Figure 0004150506
となる。よって、
【0129】
【数21】
Figure 0004150506
となる。D、D、D3、θ、P、P、Pは、計測値又は既知の値であるので、上の2式から、未知数θ、Lを求めることができる。また、θが求まれば、D、D、Dのいずれかの式からRobjを求めることができる。以上より、光学的に一直線上にある3点の照射位置から照射した光の、物体220による反射光を、3点の照射位置のいずれか一つと光学的に同位置でそれぞれ撮像することにより、物体までの距離情報、物体の表面の傾き情報及び、物体の表面の反射率情報を算出することができる。本例においては、照射位置212とカメラ210の位置を実質的に同一としたが、θ、θ、θのいずれかとθを同一とすればよいので、照射位置214又は照射位置216のいずれかと、カメラ210の位置を実質的に同一としてもよいことは明らかである。
【0130】
図27に関連して説明した情報獲得方法では、カメラ210と照射位置(212,214,216)のいずれかとの光軸が光学的に同軸であるため、照射位置(212,214,216)から照射された物体220をカメラ210が撮像する際、影になって撮像できない領域を少なくすることができる。また、カメラ210と照射位置(212,214,216)のいずれかとの位置が実質的に同じとすることで、カメラ210と照射位置との距離を予め調べる必要が無く、また、カメラ210と照射位置との距離測定における誤差を無くすことができる。
【0131】
図26又は図27に関連して説明した情報獲得方法においては、3点の照射位置から物体220に光を照射したが、他の例においては、3点以上の照射位置から物体220に光を照射してもよい。また、反射光の強度に基づいて、物体220までの距離情報、物体220の表面の傾き情報及び、物体220の表面の反射率情報を算出することが好ましい。また、カメラ210の画素毎に、距離情報、傾き情報及び、反射率情報を算出し、物体220の距離情報、傾き情報及び反射率情報の分布を算出してもよい。
【0132】
また、図26又は図27に関連して説明した情報獲得方法において、3点の照射位置から照射される光は、それぞれ異なる波長を主要な波長成分とし、それぞれの照射位置において、実質的に同時に物体220に光を照射してもよい。このとき、カメラ210は、異なる波長の光をそれぞれ選択的に透過させる波長選択手段を有し、それぞれの照射位置から照射された光により物体220からの反射光をそれぞれ撮像することが好ましい。異なる波長を主要な波長成分とする光を同時に物体220に照射することにより、動きのある物体についても、距離情報、傾き情報及び、反射率情報を精度よく獲得することが可能となる。しかし、物体220の表面の反射率は、光の波長によってことなるので、測定結果に誤差が生じる。誤差を小さくするためには、波長による反射率の違いを補正する必要がある。
【0133】
図28は、波長による物体220の表面の反射率の違いを補正した情報獲得方法の説明図である。一例として図28(a)に示すように、照射位置212から照射された光の波長をλ、照射位置214から照射された光の波長をλ及びλ、照射位置216から照射された光の波長をλ、λとする。また、照射位置212から照射された光の強度をP、照射位置214から照射された光の強度をP、照射位置216から照射された光の強度をPとし、それぞれの波長毎の反射光の強度をWa、、W、W、Wとする。図28(b)に示すように、照射位置214から強度Pで照射された、波長λ、λの光の反射光の強度W、Wに基づいて、照射位置214から強度Pで波長λの光が照射された場合の反射光の強度Wを算出する。本例においては、波長λ、λに基づいて強度Wを算出しているが、他の例においては、さらに多くの波長成分の反射光に基づいて強度Wを算出してもよい。同様に、図28(c)に示すように、照射位置216から強度Pで照射された、波長λ、λの光の反射光の強度W、Wに基づいて、照射位置214から強度Pで波長λの光が照射された場合の反射光の強度Wを算出する。算出された強度W、W、及び検出された強度Wに基づいて物体220までの距離情報、物体220の表面の傾き情報及び、物体220の表面の反射率情報を算出する。上述した情報獲得方法によれば、3点の照射位置において同時に光を照射するので、動きのある物体に対しても、精度良く距離情報、傾き情報、反射率情報を獲得することが可能となる。
【0134】
図29は、本発明に係る情報獲得方法の一例を示すフローチャートである。本実施例における情報獲得方法は、照射段階(S200)、撮像段階(S202)及び、算出段階(S204)を備える。
【0135】
照射段階(S200)は、図26に関連して説明したように、光学的に異なる3点以上の照射位置から、物体220に光を照射する。撮像段階(S202)は、3点以上の照射位置から照射された光による物体からの反射光をそれぞれ撮像する。算出段階(S204)は、撮像段階によって撮像された反射光に基づいて、物体220までの距離情報、物体220の表面の傾き情報、物体220の表面の反射率情報を算出する。
【0136】
照射段階(S200)は、図27に関連して説明した情報獲得手段と同様に、光学的に一直線上にある3点の照射位置から物体220に光を照射し、また、撮像段階(S202)は、3点以上の照射位置のいずれか一つと光学的に同位置で、3点以上の照射位置からの光の反射光をそれぞれ撮像してもよい。
【0137】
また、算出段階(S204)は、図26又は図2に関連して説明したように、反射光の強度に基づいて物体220までの距離情報、物体220の表面の傾き情報、物体220の表面の反射率情報を算出してもよい。また、照射段階(S200)は、光学的に三角形を形成する3点の照射位置から、物体220に光を照射してもよい。
【0138】
また、照射段階(S200)は、図28に関連して説明した情報獲得方法と同様に、それぞれの照射位置において、異なる波長の光を物体220に照射し、それぞれの照射位置において、実質的に同時に物体220に光を照射してもよい。この場合、撮像段階(S202)は、異なる波長の光のそれぞれを選択的に透過させる波長選択手段を有し、それぞれの照射位置における光による物体220からの反射光をそれぞれ撮像することが好ましい。
【0139】
以上述べたように、本発明の画像撮像装置及び距離測定方法によれば、異なる波長特性を有する光を異なる放射位置から同時に被写体に照射し、被写体からの反射光を波長特性に合わせて光学的に分離し、強度を測定することにより、被写体の奥行き距離を簡便に算出することができる。
【0140】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0141】
そのような変更例として、上記の説明では、光が照射された被写体から得られる出射光の一例として反射光を撮像し、反射光の強度の違いから被写体までの距離を求めたが、被写体が光を透過する透明もしくは半透明の物体である場合、被写体を透過した透過光の強度の違いから被写体の奥行き距離を求めることもできる。
【0142】
【発明の効果】
上記説明から明らかなように、本発明によれば、光が照射された被写体から得られる出射光を撮影することにより、被写体の奥行き距離を簡便に測定することができる。
【図面の簡単な説明】
【図1】 本発明の原理説明図である。
【図2】 第1の実施形態の画像撮像装置200の構成図である。
【図3】 第1の実施形態の照射部100と撮像部120の構成図である。
【図4】 第1の実施形態の処理部60の構成図である。
【図5】 光強度検出部64と奥行き算出部66による奥行き距離計算方法の説明図である。
【図6】 補間によって仮の反射光の強度を求める方法の説明図である。
【図7】 外挿によって仮の反射光の強度を求める方法の説明図である。
【図8】 光源10A、10Bによるそれぞれの反射光から仮の反射光強度を求める方法を説明する図である。
【図9】 長波長または短波長の光のみを透過させるバンドパスフィルターを用いて照射した場合の仮の反射光強度を求める方法を説明する図である。
【図10】 3種の物体の表面反射率を示す図である。
【図11】 受光部40に設けられる特定波長成分を透過する光学フィルターを説明する図である。
【図12】 第1の実施形態の距離測定方法のフローチャートである。
【図13】 奥行き距離算出処理S110のフローチャートである。
【図14】 奥行き距離算出処理S110の変形例のフローチャートである。
【図15】 第2の実施形態の照射部100と撮像部120の構成図である。
【図16】 第2の実施形態の処理部60の構成図である。
【図17】 光強度検出部64と奥行き算出部66による奥行き距離計算方法の説明図である。
【図18】 バンドカットフィルターを用いて反射光を分離する方法を説明する図である。
【図19】 第2の実施形態の距離測定方法のフローチャートである。
【図20】 第3の実施形態の照射部100と撮像部120の構成図である。
【図21】 第3の実施形態の処理部60の構成図である。
【図22】 第4の実施形態の照射部100と撮像部120の構成図である。
【図23】 本発明実施形態5に係る原理説明図である。
【図24】 被測定部122までの距離L、被測定部122の面傾きθ0を算出する方法の一例の説明図である。
【図25】 仮の距離Laについての所定の範囲で所定の距離間隔で、面傾きθ0及び面傾きθ0’を算出した結果の一例を示す。
【図26】 本発明実施形態5に係る情報獲得方法の原理説明図である。
【図27】 照射位置が一直線上に配置された場合の、情報獲得方法の説明図である。
【図28】 波長による物体20の表面の反射率の違いを補正した情報獲得方法の説明図である。
【図29】 情報獲得方法の一例を示すフローチャートである。
【符号の説明】
10 光源 12 光学フィルター
20 光学レンズ 30 分光部
40 受光部 60 処理部
62 画像メモリ 64 光強度検出部
66 奥行き算出部 67 画像補正部
68 記録部 80 制御部
100 照射部 120 撮像部
200 画像撮像装置

Claims (20)

  1. 被写体の奥行きに関する情報を取得する画像撮像装置であって、
    第1の波長を主要な波長成分とする第1の照射光と、前記第1の波長とは異なる第2及び第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から前記被写体に照射する照射部と、
    前記照射部により前記第1及び第2の照射光が照射された前記被写体からの出射光から、前記第1の波長を有する第1の出射光と、前記第2の波長を有する第2の出射光と、前記第3の波長を有する第3の出射光とを光学的に分離する分光部と、
    前記第2及び第3の出射光の強度に基づいて、前記第1の波長を有する光を前記第2の照射光の放射位置から照射したと仮定した場合の前記被写体からの仮の出射光の強度を求め、前記第1の出射光の強度と前記仮の出射光の強度とを用いて、前記被写体までの奥行き距離を算出する奥行き算出部と
    を備えた画像撮像装置。
  2. 前記照射部は、前記第1及び第2の照射光を同時に照射する請求項1に記載の画像撮像装置。
  3. 前記照射部により前記第1及び第2の照射光が照射された前記被写体から得られる出射光を結像する光学結像部と、
    前記分光部によって分離され、前記光学結像部が結像する前記第1、第2及び第3の出射光を受光する受光部と、
    前記受光部が受光する前記第1、第2及び第3の出射光の強度を検出する光強度検出部とをさらに備え、
    前記奥行き算出部は、前記第1、第2及び第3の出射光の強度を用いて、前記被写体までの奥行き距離を算出する請求項2に記載の画像撮像装置。
  4. 前記受光部は、3板の固体撮像素子を有し、前記分光部は、光路分割手段を用いて前記第1、第2及び第3の出射光を分離し、それぞれを前記3板の固体撮像素子のいずれか1つに受光させる請求項3に記載の画像撮像装置。
  5. 前記受光部は、固体撮像素子を有し、前記分光部は、前記第1の波長の光を透過する第1の光学フィルターと、前記第2の波長の光を透過する第2の光学フィルターと、前記第3の波長の光を透過する第3の光学フィルターとを有し、前記第1、第2及び第3の光学フィルターが前記固体撮像素子の受光面に交互に配置された請求項3に記載の画像撮像装置。
  6. 前記照射部は、所定の第1の境界波長より短い波長領域の光を透過する第1の光学フィルターと、所定の第2の境界波長より長い波長領域の光を透過する第2の光学フィルターを有し、第1の光学フィルターを透過する第1の照射光と、第2の光学フィルターを透過する第2の照射光とを、光学的に異なる放射位置から前記被写体に照射し、
    前記分光部は、前記第1及び第2の境界波長の短い方よりも短い第1の波長の光を透過する第1の光学フィルターと、前記第1及び第2の境界波長の長い方よりも長い第2及び第3の波長の光をそれぞれ透過する第2及び第3の光学フィルターとを有し、前記被写体から得られる前記出射光を前記第1の光学フィルターに透過させることにより、前記第1の波長を有する前記第1の出射光を分離し、前記出射光をそれぞれ前記第2及び第3の光学フィルターに透過させることにより、前記第2の波長を有する前記第2の出射光及び前記第3の波長を有する前記第3の出射光を分離する請求項3に記載の画像撮像装置。
  7. 前記奥行き算出部は、前記第2の出射光と前記第3の出射光の平均強度と、前記第1の出射光の強度とを用いて、前記被写体までの前記奥行き距離を算出する請求項に記載の画像撮像装置。
  8. 被写体の奥行きに関する情報を取得する画像撮像装置であって、
    第1の波長を主要な波長成分とする第1の照射光と、前記第1の波長より短い第2の波長、及び前記第1の波長より長い第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から前記被写体に照射する照射部と
    前記照射部により前記第1及び第2の照射光が照射された前記被写体からの出射光を結像する光学結像部と、
    前記被写体から得られる前記出射光から、前記第1の波長を有する第1の出射光と、前記第2及び第3の波長を有する第2の出射光とを光学的に分離する分光部と、
    前記分光部によって分離され、前記光学結像部が結像する前記第1の出射光及び前記第2の出射光を受光する受光部と、
    前記受光部が受光する前記第1及び第2の出射光の強度を検出する光強度検出部と
    前記第2の出射光の強度の半分の値を、前記第1の波長を有する光を前記第2の照射光の放射位置から照射したと仮定した場合の前記被写体からの仮の出射光の強度として、前記第1の出射光の強度と前記仮の出射光の強度とを用いて、前記被写体までの奥行き距離を算出する奥行き算出部と
    を備える画像撮像装置。
  9. 前記受光部は、2板の固体撮像素子を有し、前記分光部は、光路分割手段を用いて、前記第1の出射光と前記第2の出射光の光路を光学的に分岐させ、それぞれ前記2板の固体撮像素子のいずれか1つに受光させる請求項に記載の画像撮像装置。
  10. 前記受光部は、固体撮像素子を有し、前記分光部は、前記第1の波長の光を透過する第1の光学フィルターと、前記第2及び第3の波長の光を透過する第2の光学フィルターとを有し、前記第1の光学フィルターと前記第2の光学フィルターとが前記固体撮像素子の受光面に交互に配置された請求項に記載の画像撮像装置。
  11. 前記奥行き算出部は、前記第1の出射光の強度と前記第2の出射光の強度の半分の値との比に基づいて、前記被写体までの前記奥行き距離を算出する請求項に記載の画像撮像装置。
  12. 前記照射部が前記被写体に前記第1及び第2の照射光を照射するときの光軸と、前記結像部が前記被写体からの前記出射光を撮像するときの光軸とが略同一である請求項4、5、6、、または10に記載の画像撮像装置。
  13. 前記光強度検出部は、前記受光部に撮像された前記被写体の画像の各画素において前記第1及び第2の出射光の強度を検出し、前記奥行き算出部は、前記画素の各々に対応する前記被写体の領域までの前記奥行きを各々求めることにより、前記被写体の奥行き分布を算出する請求項12に記載の画像撮像装置。
  14. 前記第1及び第2の照射光は赤外線領域の光であり、
    前記分光部は、前記被写体から得られる前記出射光から可視光を光学的に分離する手段をさらに備え、
    前記受光部は、前記分光部により光学的に分離され、前記光学結像部が結像する前記可視光を受光する可視光用の固体撮像素子をさらに備え、
    前記奥行き算出部が算出する前記被写体の前記奥行き分布とともに前記可視光用の固体撮像素子に撮像された前記被写体の画像を記録する記録部をさらに備えた
    請求項13に記載の画像撮像装置。
  15. 前記光強度検出部が検出する前記被写体からの前記出射光の強度、及び前記奥行き算出部が算出する前記被写体までの前記奥行き距離の少なくとも1つに基づいて、前記照射部が照射する前記第1及び第2の照射光の発光時間、強度、放射位置、及び前記受光部の露光時間の少なくとも1つを制御する制御部をさらに備えた請求項4、5、6、、または10に記載の画像撮像装置。
  16. 被写体の奥行きに関する情報を取得する距離測定方法であって、
    第1の波長を主要な波長成分とする第1の照射光と、前記第1の波長とは異なる第2及び第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に前記被写体に照射する照射段階と、
    前記第1及び第2の照射光が照射された前記被写体から得られる出射光から、前記第1の波長を有する第1の出射光と、前記第2の波長を有する第2の出射光と、前記第3の波長を有する第3の出射光とを光学的に分離する分光段階と、
    分離された前記第1、第2及び第3の出射光を撮像する撮像段階と、
    撮像された前記第1、第2及び第3の出射光の強度を検出する光強度検出段階と、
    前記第2及び第3の出射光の強度に基づいて、前記第1の波長を有する光を前記第2の照射光の放射位置から照射したと仮定した場合の前記被写体からの仮の出射光の強度を求め、前記第1の出射光の強度と前記仮の出射光の強度とを用いて、前記被写体までの奥行き距離を算出する奥行き算出段階と
    を備えた距離測定方法。
  17. 前記奥行き算出段階は、前記第1の出射光の強度と前記仮の出射光の強度の比に基づいて、前記被写体までの前記奥行き距離を算出する請求項16に記載の距離測定方法。
  18. 前記奥行き算出段階は、前記第2の出射光と前記第3の出射光の平均強度と、前記第1の出射光の強度との比に基づいて、前記被写体までの前記奥行き距離を算出する請求項16に記載の距離測定方法
  19. 被写体の奥行きに関する情報を取得する距離測定方法であって、
    第1の波長を主要な波長成分とする第1の照射光と、前記第1の波長より短い第2の波長、及び前記第1の波長より長い第3の波長を主要な波長成分とする第2の照射光とを、光学的に異なる放射位置から同時に前記被写体に照射する照射段階と、
    前記第1及び第2の照射光が照射された前記被写体から得られる出射光から、前記第1の波長を有する第1の出射光と、前記第2及び第3の波長を有する第2の出射光とを光学的に分離する分光段階と、
    分離された前記第1の出射光及び前記第2の出射光を撮像する撮像段階と、
    受光された前記第1の出射光及び前記第2の出射光の強度をそれぞれ検出する光強度検出段階と、
    前記第2の出射光の強度の半分の値を、前記第1の波長を有する光を前記第2の照射光の放射位置から照射したと仮定した場合の前記被写体からの仮の出射光の強度として、前記第1の出射光の強度と前記仮の出射光の強度を用いて、前記被写体までの奥行き距離を算出する奥行き算出段階とを備えた距離測定方法。
  20. 前記奥行き算出段階は、前記第1の出射光の強度と前記第2の出射光の強度の半分の値との比に基づいて、前記被写体までの前記奥行き距離を算出する請求項19に記載の距離測定方法。
JP2001036761A 2000-02-16 2001-02-14 画像撮像装置及び距離測定方法 Expired - Lifetime JP4150506B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036761A JP4150506B2 (ja) 2000-02-16 2001-02-14 画像撮像装置及び距離測定方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-37771 2000-02-16
JP2000037771 2000-02-16
JP2001036761A JP4150506B2 (ja) 2000-02-16 2001-02-14 画像撮像装置及び距離測定方法

Publications (2)

Publication Number Publication Date
JP2001304821A JP2001304821A (ja) 2001-10-31
JP4150506B2 true JP4150506B2 (ja) 2008-09-17

Family

ID=26585448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036761A Expired - Lifetime JP4150506B2 (ja) 2000-02-16 2001-02-14 画像撮像装置及び距離測定方法

Country Status (1)

Country Link
JP (1) JP4150506B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719372B2 (en) 2004-10-12 2010-05-18 Epson Toyocom Corporation Voltage controlled piezoelectric oscillator that can be linear frequency controlled

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334311A (ja) * 2006-05-18 2007-12-27 Nippon Hoso Kyokai <Nhk> 可視光・赤外光撮影光学系
JP5112702B2 (ja) * 2007-01-16 2013-01-09 富士フイルム株式会社 撮影装置および方法並びにプログラム
KR101591471B1 (ko) * 2008-11-03 2016-02-04 삼성전자주식회사 물체의 특징 정보를 추출하기 위한 장치와 방법, 및 이를 이용한 특징 지도 생성 장치와 방법
US9128036B2 (en) * 2011-03-21 2015-09-08 Federal-Mogul Corporation Multi-spectral imaging system and method of surface inspection therewith
KR101658985B1 (ko) * 2015-01-30 2016-09-23 한국기계연구원 리소그래피용 광학계 장치
JP7076951B2 (ja) * 2017-05-23 2022-05-30 株式会社ディスコ 反射率検出装置
CN108629325B (zh) * 2018-05-11 2021-06-22 北京旷视科技有限公司 物品位置的确定方法、装置及系统
WO2023074404A1 (ja) * 2021-10-29 2023-05-04 ソニーグループ株式会社 発光装置及び電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642915A (ja) * 1992-06-03 1994-02-18 Stanley Electric Co Ltd 光学的測定装置
JPH0989553A (ja) * 1995-09-26 1997-04-04 Olympus Optical Co Ltd 測距装置
JP3414624B2 (ja) * 1997-09-16 2003-06-09 松下電器産業株式会社 実時間レンジファインダ
JP2000002521A (ja) * 1998-06-18 2000-01-07 Minolta Co Ltd 3次元入力装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719372B2 (en) 2004-10-12 2010-05-18 Epson Toyocom Corporation Voltage controlled piezoelectric oscillator that can be linear frequency controlled

Also Published As

Publication number Publication date
JP2001304821A (ja) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4040825B2 (ja) 画像撮像装置及び距離測定方法
EP1126412B1 (en) Image capturing apparatus and distance measuring method
US11792384B2 (en) Processing color information for intraoral scans
JP6480441B2 (ja) 飛行時間型カメラシステム
JP3979670B2 (ja) 三次元カラー結像
KR101296780B1 (ko) 레이저를 이용한 장애물 감지장치 및 방법.
US20140168424A1 (en) Imaging device for motion detection of objects in a scene, and method for motion detection of objects in a scene
US6765606B1 (en) Three dimension imaging by dual wavelength triangulation
JP2007528028A (ja) 異なる焦点に合わせられた画像を生成する光学システム
US10067058B1 (en) Auto-focus system
JP4516590B2 (ja) 画像撮像装置及び距離測定方法
JP4150506B2 (ja) 画像撮像装置及び距離測定方法
US6222631B1 (en) Two-dimensional spectral characteristic measuring apparatus
EP0882211B1 (en) A method and apparatus for reducing the unwanted effects of noise present in a three-dimensional color imaging system
CN111272101A (zh) 一种四维高光谱深度成像系统
KR101226442B1 (ko) 고해상도 분광기를 구비한 광 단층촬영 시스템 및 그 방법
JP4141627B2 (ja) 情報獲得方法、画像撮像装置及び、画像処理装置
JP4204746B2 (ja) 情報獲得方法、撮像装置及び、画像処理装置
KR101438748B1 (ko) 광 간섭 단층 촬영 장치 및 방법
JP3668466B2 (ja) 実時間レンジファインダ
JP4010360B2 (ja) 分光画像撮影装置
CN211205210U (zh) 四维高光谱深度成像系统
JP2000258154A (ja) 撮像装置
JP4266286B2 (ja) 距離情報取得装置、および距離情報取得方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term