JP4150097B2 - 内燃エンジンの空燃比制御装置 - Google Patents
内燃エンジンの空燃比制御装置 Download PDFInfo
- Publication number
- JP4150097B2 JP4150097B2 JP07013898A JP7013898A JP4150097B2 JP 4150097 B2 JP4150097 B2 JP 4150097B2 JP 07013898 A JP07013898 A JP 07013898A JP 7013898 A JP7013898 A JP 7013898A JP 4150097 B2 JP4150097 B2 JP 4150097B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- ratio control
- control operation
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の属する技術分野】
本発明は、内燃エンジンに供給する混合気の空燃比を制御する空燃比制御装置に関する。
【0002】
【従来の技術】
内燃エンジンに供給する混合気の空燃比をフィードバック制御によって理論空燃比に制御するストイキ制御動作と、燃費の向上を図るために空燃比を理論空燃比よりリーン(希薄)に制御するリーンバーン制御動作とを運転状態に応じて切り換える空燃比制御装置がある。ストイキ制御動作では、排気ガス中の酸素濃度を酸素濃度センサによって検出し、酸素濃度センサの出力に応じて供給混合気の空燃比を制御することが行なわれる。一方、リーンバーン制御動作では、気筒内の圧力、すなわち筒内圧を筒内圧センサによって検出し、その筒内圧に基づいて空燃比をリーン化制御することが行なわれる。例えば、特開昭62−150058号公報には、排気酸素センサの出力信号に応じて供給混合気の空燃比を理論空燃比に制御し、筒内圧センサによって検出した筒内圧の最大値と最小値との比に応じて空燃比をリーン制御することが開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来の空燃比制御装置においては、エンジンが例えば、クルーズ運転のような定常運転状態にあるため空燃比制御動作が例えば、ストイキ制御動作からリークバーン制御動作に切り換えられた場合には、燃焼状態の急変によりエンジン出力が低下するので、ショック(衝撃)が生じて運転性能が悪化するという問題点があった。
【0004】
そこで、本発明の目的は、空燃比制御動作の切り換え直後のエンジンのショックを低減させることができる内燃エンジンの空燃比制御装置を提供することである。
【0005】
【課題を解決するための手段】
本発明の空燃比制御装置は、内燃エンジンの供給混合気の空燃比制御動作を理論空燃比付近に制御する第1空燃比制御動作と理論空燃比よりもリーンに制御する第2空燃比制御動作とのいずれか一方に前記エンジンの運転状態に応じて選択的に切り換える空燃比制御装置であって、第1及び第2空燃比制御動作間の切り換えを検出する切換検出手段と、内燃エンジンの気筒内の圧力に応じた筒内圧検出信号を生成する筒内圧検出手段と、筒内圧検出信号を積分して積分値を得る積分手段と、切換検出手段による第1及び第2空燃比制御動作間の切り換え検出前後の積分値がほぼ一致するようにその切り換え検出直後のエンジン出力を制御するエンジン出力制御手段とを備え、エンジン出力制御手段は、第1及び第2空燃比制御動作間の切り換え検出前後の積分値の差の大きさが所定値以下のときには切り換え検出直後のエンジン出力制御を実施しないことを特徴としている。
【0006】
すなわち、本発明によれば、空燃比制御動作の切り換え検出前後の筒内圧検出信号の積分値がほぼ一致するように空燃比制御動作の切り換え検出直後のエンジン出力を制御するので、空燃比制御動作の切り換え直後もエンジン出力を維持するように動作する故、エンジンのショックを低減させることができ、運転性能の悪化を回避させることができる。
【0007】
また、エンジン出力制御手段は、積分値とエンジン回転数とに対応したスロットル弁の開度データをデータマップとして記憶したメモリと、エンジンのエンジン回転数を検出する回転数検出手段と、切換検出手段によって第1及び第2空燃比制御動作間の切り換えが検出されると、積分値の今回値と回転数検出手段によって検出されたエンジン回転数の今回値とに対応した記憶位置の1の開度データをデータマップから検索して設定する手段と、1の開度データに応じてスロットル弁の開度を制御し、その後、切換検出手段による第1及び第2空燃比制御動作間の切り換え検出直前の積分値と積分値の今回値との差の大きさが所定値以下になるようにスロットル弁の開度を増減するスロットル弁調整手段とを有する。
【0008】
このエンジン出力制御手段の構成により、空燃比制御動作が切り換えられたときに直ちにスロットル弁が予め定められた適切な開度に制御されるので、エンジン出力の急低下を防止することができる。
更に、第1及び第2空燃比制御動作間の切り換え検出直前の積分値と積分値の今回値との差の大きさが所定値以下になったときにはそのときのスロットル弁の開度を示す開度データでデータマップの記憶位置が更新記憶される。
【0009】
これにより、データマップの各開度データが学習制御されるので、エンジンの経時変化に対応することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は本発明による空燃比制御装置が適用された車載内燃エンジン本体を示している。内燃エンジン本体は、4つのシリンダ1〜4を有し、各シリンダ1〜4には吸気管16及び排気管17が連結されている。吸気管16は4つに分岐してシリンダ1〜4に連結しており、その分岐路16a〜16d各々にスロットル弁18a〜18dが設けられている。スロットル弁18a〜18d各々は図示しないアクセルペダルの操作に連動して開弁すると共に、後述の駆動回路35によってモータを含むスロットル弁アクチュエータ19a〜19dを介して開弁駆動される。排気管17には排気中の酸素濃度を検出する酸素濃度センサ20が設けられている。
【0011】
各シリンダ1〜4のシリンダヘッドにはシリンダ内の圧力を検出する筒内圧検出手段である筒内圧センサ5〜8が設けられている。筒内圧センサ5〜8各々は具体的には、図2に示すように、圧電素子からなるセンサ素子部9と、そのセンサ素子部9から生成された電圧を積分(或いは平均化)して増幅する増幅部10とを有している。
【0012】
また、図2に示すように、エンジン本体の各シリンダヘッド11のネジ孔12に点火プラグ13がねじ込まれて固定されており、シリンダヘッド11の点火プラグ取り付け座面14とその点火プラグ座金部13aとの間に筒内圧センサのセンサ素子部9がワッシャ15と共に挟み込まれて圧着固定されている。
筒内圧センサ5〜8各々の検出出力はECU(エンジンコントロールユニット)21に供給されるようになっている。ECU21は、図3に示すようにCPU31、ROM32、RAM33、A/D変換器34、駆動回路35及びカウンタ37を少なくとも備えており、それらは共通バスで互いに接続されている。A/D変換器34には上記の筒内圧センサ5〜8及び酸素濃度センサ20が接続され、駆動回路35には上記のアクチュエータ19a〜19dと共に4つのインジェクタ41〜44が接続されている。インジェクタ41〜44はシリンダ毎に吸気ポート近傍の吸気管16に設けられ、駆動回路35による駆動動作によって燃料を噴射する。
【0013】
A/D変換器34には他のセンサとして、スロットル弁18a〜18d下流の分岐路16a〜16d内の圧力を検出する吸気管内圧センサ39a〜39d、内燃エンジンの冷却水の温度TWを検出する冷却水温センサ40、スロットル弁の開度を検出するスロットル開度センサ(図示せず)等のエンジンパラメータセンサがある。A/D変換器34はクランク角センサ38の出力パルスをサンプリングタイミングとしている。クランク角センサ38はクランクシャフトが例えば、1度回転する毎にクランクパルスを生成するので、A/D変換器34はクランク角センサ38の出力クランクパルスに同期して各センサのアナログ出力電圧を所定の順番にディジタル値に変換してセンサ毎に出力し、そのディジタル値を繰り返し更新する。カウンタ37はクランク角センサ38から出力されるクランクパルスの発生間隔をクロックパルスの発生数の計数により測定してエンジン回転数Neを示す信号を生成する。なお、クランク角センサ38はクランクシャフトの回転角度が所定角度位置にある時点を示す基準位置信号と共に各気筒のピストンの上死点時点を示すTDC信号も発生し、それらはCPU31に供給される。
【0014】
ECU21のCPU31は、エンジンのシリンダ1〜4内に燃料をインジェクタ41〜44によって供給するために燃料噴射制御動作をROM32に予め記憶されたプログラムに従って気筒毎にTDC信号に同期して行なう。いずれの気筒についても同様の燃料噴射制御動作が行なわれるので、次に、シリンダ1について燃料噴射制御動作を説明する。また、燃料噴射制御動作にはその中で実行される空燃比制御動作としてストイキ制御動作(第1空燃比制御動作)と、リーンバーン制御動作(第2空燃比制御動作)とがあるので、先ず、ストイキ制御動作を行なう燃料噴射制御動作を説明する。
【0015】
ストイキ制御動作を行なう燃料噴射制御動作は後述する空燃比選択フラグFが0であるときにTDC信号に応じて割り込み実行され、CPU31は、図4に示すように先ず、基準燃料噴射時間Tiをエンジン回転数Ne及び吸気管内圧力PBとに応じて設定する(ステップS1)。基準燃料噴射時間Tiは例えば、ROM32に予め記憶されたTiデータマップからエンジン回転数Neと吸気管内圧力PBとに応じて検索設定される。エンジン回転数Neはカウンタ37から得られ、吸気管内圧力PBは吸気管内圧センサ39aによって検出されたものであり、A/D変換器34から得られる。
【0016】
基準燃料噴射時間Tiの設定後、酸素濃度センサ20の出力信号レベルをA/D変換器34から読み取って空燃比が理論空燃比に対してリッチ及びリーンのいずれであるか否かを判別する(ステップS2)。酸素濃度センサ20の出力信号レベルは、空燃比が理論空燃比よりリーンであるとき低レベルとなり、空燃比が理論空燃比よりリッチであるとき高レベルとなるので、酸素濃度センサ20の出力信号レベルから実際の空燃比のリッチ・リーンを判別することができる。ステップS2において空燃比がリッチと判別した場合には、供給混合気の空燃比をリーン化させるために空燃比フィードバック補正係数KO2を所定値I(例えば、0.05)だけ減少させる(ステップS3)。一方、空燃比がリーンと判別した場合には、供給混合気の空燃比をリッチ化させるために空燃比フィードバック補正係数KO2を所定値Iだけ増大させる(ステップS4)。よって、リッチの空燃比状態が継続すれば、空燃比フィードバック補正係数KO2が徐々に減少し、リーンの空燃比状態が継続すれば、空燃比フィードバック補正係数KO2が徐々に増大する。なお、空燃比フィードバック補正係数KO2の初期値は1.0である。また、空燃比がリッチからリーンに反転した直後には空燃比フィードバック補正係数KO2を所定値Iより大なる所定値Pだけ減少させ、リーンからリッチに反転した直後には空燃比フィードバック補正係数KO2を所定値Pだけ増大させても良い。
【0017】
CPU31は、空燃比フィードバック補正係数KO2を設定すると、燃料噴射時間Tpを算出する(ステップS5)。燃料噴射時間TpはステップS1で得た基準燃料噴射時間TiとステップS3又はS4で得た空燃比フィードバック補正係数KO2とをTi×KO2の如く乗算することにより求められる。燃料噴射時間Tpをの算出後、駆動回路35に対してインジェクタ41の燃料噴射時間Tpの駆動指令を発する(ステップS6)。駆動回路35はTDC信号に同期して特定の時点(例えば、吸気行程直前)から燃料噴射時間Tpだけインジェクタ41を駆動して燃料を噴射供給させる。
【0018】
一方、リーンバーン制御動作をなす燃料噴射制御動作は空燃比選択フラグFが1であるときにTDC信号に応じて割り込み実行され、CPU31は、図5に示すように先ず、ステップS1と同様に、基準燃料噴射時間Tiをエンジン回転数Ne及び吸気管内圧力PBとに応じて設定する(ステップS11)。
基準燃料噴射時間Tiの設定後、筒内圧センサ5から得られた1サイクル分の筒内圧Piのデータに基づいて正味平均有効圧Pmeを算出する(ステップS12)。
【0019】
正味平均有効圧Pmeは式(1)に示すように図示平均有効圧PmiとポンピングロスPmfとの差である。
【0020】
【数1】
Pme=Pmi−Pmf …(1)
図示平均有効圧Pmiは、
【0021】
【数2】
【0022】
のように算出される。ここで、TDCは上死点位置でのシリンダ容量であり、BDCは下死点位置でのシリンダ容量である。また、dVはシリング容量変化量である。筒内圧Piとシリンダ容量Vとの関係は吸気、圧縮、爆発及び排気からなる1サイクルにおいて図6に示すように図示することができる。図示平均有効圧Pmiは図6の符号Aで示した範囲に相当する。式(2)の第1積分項は図6の1−2−3−4−5−1で囲まれた面積に対応し、第2積分項は図6の1−2−3'−4'−5−1で囲まれた面積に対応する。
【0023】
ポンピングロスPmfは、
【0024】
【数3】
【0025】
のように算出される。ポンピングロスPmfは図6の符号Bで示した範囲に相当する。式(3)の第1積分項は図6の1−2−3−6−1で囲まれた面積に対応し、第2積分項は図6の1−2−3'−6'−1で囲まれた面積に対応する。
CPU31は、正味平均有効圧Pmeを算出すると、閾値a(Ne)を設定し(ステップS13)、正味平均有効圧Pmeが閾値a(Ne)以上であるか否かを判別する(ステップS14)。閾値a(Ne)はエンジン回転数Neに応じて設定される。例えば、エンジン回転数Neが高いほど閾値a(Ne)は小さく設定される。ステップS14の判別によりPme≧a(Ne)の場合には、供給混合気の空燃比をリーン化させるために空燃比リーン化補正係数KAFを所定値Iだけ減少させる(ステップS15)。一方、Pme<a(Ne)の場合には、供給混合気の空燃比をリッチ化させるために空燃比リーン化補正係数KAFを所定値Iだけ増大させる(ステップS16)。よって、Pme≧a(Ne)の状態が継続すれば、空燃比リーン化補正係数KAFが徐々に減少し、Pme<a(Ne)の状態が継続すれば、空燃比リーン化補正係数KAFが徐々に増大する。なお、空燃比リーン化補正係数KAFの初期値は1.0である。
【0026】
CPU31は、空燃比リーン化補正係数KAFを設定すると、ステップS5と同様に、燃料噴射時間Tpを算出する(ステップS17)。この燃料噴射時間TpはステップS11で得た基準燃料噴射時間TiとステップS15又はS16で得た空燃比リーン化補正係数KAFとをTi×KAFの如く乗算することにより求められる。燃料噴射時間Tpの算出後、駆動回路35に対してインジェクタ41の燃料噴射時間Tpの駆動指令を発する(ステップS18)。駆動回路35はTDC信号に同期して特定の時点(例えば、吸気行程直前)から燃料噴射時間Tpだけインジェクタ41を駆動して燃料を噴射供給させる。ここで、リーンバーン制御動作を行なう場合には、前述の空燃比フィードバック補正係数KO2は固定値(例えば、1.0)に固定されている。
【0027】
このようなリーンバーン制御動作をなす燃料噴射制御動作を行なうことにより、Pme≧a(Ne)の状態ではエンジン燃焼が失火せず良好に行われているので、供給混合気の空燃比がリーン化され、これによりリーン燃焼が行なわれる。Pme<a(Ne)の状態が検出されると、失火を生じさせないように空燃比をリッチ化して過度のリーン化を防止することが行なわれるのである。内燃エンジンの燃焼が正常であれば、圧縮行程より爆発行程における膨張時の方が筒内圧は高くなり、内燃エンジンは正の仕事をすることになる。しかしながら、燃焼異常で失火となった場合には図6の5−4−3のラインが3'−4'−5のラインとほぼ等しくなるか又はそのラインより高くならず、図示平均有効圧Pmiは正常燃焼時に比べて小さくなる。よって、正味平均有効圧Pme(又は図示平均有効圧Pmi)を閾値と比較することにより、異常燃焼を防止しつつ空燃比をリーン化させることができる。また、この燃料噴射制御動作は気筒毎に行なわれるので、適正なリーン燃焼がいずれの気筒でも可能になる。
【0028】
なお、ステップS14では正味平均有効圧Pmeと閾値a(Ne)とを比較し、その比較結果に応じて空燃比方向を設定しているが、今回算出した正味平均有効圧Pmenと1サイクル前に算出した正味平均有効圧Pmen-1との差ΔPmeと閾値α(Ne)とを比較し、その比較結果に応じて空燃比方向を設定しても良い。この閾値α(Ne)はエンジン回転数Neに応じて設定される。
【0029】
更に、閾値a(Ne)はエンジン回転数Neに応じて設定されるが、エンジン回転数以外の例えば、スロットル弁開度等のエンジンパラメータに応じて閾値を設定しても良い。
上記の燃料噴射制御動作を実行するに当たってCPU31はエンジンの運転状態に応じてストイキ制御動作とリーンバーン制御動作のうちのいずれの空燃比制御動作を選択的に実行すべきか判別する。すなわち、CPU31は、図7に示すように、空燃比制御動作をストイキ制御動作及びリーンバーン制御動作のいずれにすべきか判別し(ステップS21)、ストイキ制御動作と判別した場合にはステップS1に進んで空燃比制御動作をストイキ制御動作とする燃料噴射制御動作を行なうために空燃比選択フラグFを0とする(ステップS22)、リーンバーン制御動作と判別した場合にはステップS11に進んで空燃比制御動作をリーンバーン制御動作とする燃料噴射制御動作を行なうために空燃比選択フラグFを1とする(ステップS23)。ステップS21の判別としてCPU31は、例えば、エンジン回転数Neが継続して所定の回転数範囲にあって安定したエンジン運転状態にあるときには、リーンバーン制御動作による燃料噴射制御動作と選択し、それ以外はストイキ制御動作による燃料噴射制御動作を選択する。なお、この空燃比制御選択動作はクロックパルス又はクランク角センサ38から出力されるクランクパルスに同期して繰り返し実行しても良い。
【0030】
CPU31は、ストイキ制御動作からリーンバーン制御動作の空燃比制御動作に移行する際の燃焼状態の急変によりエンジンに生じるショックを低減させるためにエンジン出力制御手段としてスロットル弁制御動作を行なう。なお、このスロットル弁制御動作は気筒毎に行なわれ、各気筒のスロットル弁制御動作は同一であるので、シリンダ1についてスロットル弁制御動作を次に説明する。
【0031】
このスロットル弁制御動作においてCPU31は、図8に示すように、先ず、筒内圧センサ5から得られた1サイクル分の筒内圧Piのデータに基づいて正味平均有効圧Pmeを算出する(ステップS31)。これはステップS12と同様であり、ステップS12で得たものを用いても良い。算出された正味平均有効圧PmeはRAM32にPme1として記憶される。ステップS31の実行後、ストイキ制御動作からリーンバーン制御動作への切り換え時か否かを判別する(ステップS32)。この判別は、上記の空燃比選択フラグFが0から1に変化した直後であることを検出することにより行なわれる。
【0032】
ストイキ制御動作からリーンバーン制御動作への切り換え時にならば、エンジン回転数Ne及び正味平均有効圧Pme1に応じてスロットル開度THを設定し(ステップS33)、スロットル弁18aの開度がそのスロットル開度THになるように駆動回路35にスロットル弁駆動指令を発生する(ステップS34)。ROM32にはエンジン回転数Ne及び正味平均有効圧Pmeに対応するスロットル開度THがTHデータマップとして予め記憶されているので、CPU31はそのときのエンジン回転数Ne及び算出した正味平均有効圧Pme1に対応するスロットル開度TH(開度データ)をそのROM32のTHデータマップから検索して読み出す。駆動回路35はスロットル弁駆動指令に応答してスロットル弁18aを駆動してその開度がそのスロットル開度THに等しくなるようにする。
【0033】
ステップS34の実行後、筒内圧センサ5から新たに得られた1サイクル分の筒内圧Piのデータに基づいて正味平均有効圧Pmeを今回値Pme2として算出する(ステップS35)。これはステップS12又はS31と同様に算出する。正味平均有効圧Pme1とPme2との差の絶対値|Pme1−Pme2|が所定値aより大であるか否かを判別する(ステップS36)。|Pme1−Pme2|>aならば、正味平均有効圧Pme1とPme2との差Pme1−Pme2が0より大であるか否かを判別する(ステップS37)。すなわち、Pme1>Pme2ならば、スロットル開度THを所定開度Δθだけ減少させ(ステップS38)、スロットル弁18aの開度が新たなスロットル開度THとなるように駆動回路35にスロットル弁駆動指令を発生する(ステップS39)。一方、Pme1≦Pme2ならば、スロットル開度THを所定開度Δθだけ増大させ(ステップS40)、ステップS29に進んでスロットル弁18aの開度が新たなスロットル開度THとなるように駆動回路35にスロットル弁駆動指令を発生する。
【0034】
ステップS39の実行後、CPU31はステップS35に戻り、ステップS35以降の動作を繰り返す。ステップS36にて|Pme1−Pme2|≦aと判別した場合には本スロットル弁制御動作を終了する。
このようにスロットル弁18aの開度を制御することにより、空燃比制御動作をストイキ制御動作からリーンバーン制御動作へ切り換えた際に正味平均有効圧Pme2が切り換え前のPme1に等しくなるようにスロットル弁18aの開度が制御される。この結果、ストイキ制御動作からリーンバーン制御動作への切り換えによるエンジン出力変動を防止することができる。
【0035】
なお、この実施例におけるステップS31のCPU31による実行が積分手段に相当し、ステップS32の判別が切換検出手段に相当し、ステップS33〜S40のCPU31による実行並びに駆動回路35及びアクチュエータ19a〜19dがエンジン出力制御手段に相当する。
また、RAM33を不揮発性メモリとしてTHデータマップを形成し、ステップS33にてRAM33のTHデータマップを用いてエンジン回転数Ne及び正味平均有効圧Pmeに応じてスロットル開度THを設定することができる。このように構成すれば、THデータマップのスロットル開度THを学習制御することができる。すなわち、図9に示すように、ステップS36にて|Pme1−Pme2|≦aと判別した場合に、ステップS41に進んで、そのときのスロットル開度THをTHデータマップのエンジン回転数Ne及び正味平均有効圧Pmeに対応する記憶位置に書き込むのである。
【0036】
また、上記した実施例においては、スロットル弁18aの開度を増大又は減少させたが、他の気筒に対応するスロットル弁18b〜18dについても上記したスロットル弁制御動作によってその開度が増大又は減少される。更に、正味平均有効圧Pmeを調整するためにスロットル弁開度を変化させることに代わって、別のエンジン出力制御手段として点火時期を変化させても良い。すなわち、図10に示すようにステップS37にてPme1>Pme2と判別した場合には、ステップS42に移行して点火時期を所定角度だけ遅角させ、Pme1≦Pme2と判別した場合にはステップS43に移行して点火時期を所定角度だけ進角させるのである。
【0037】
上記の各実施例においては、空燃比制御動作の切り換えとしてストイキ制御動作からリーンバーン制御動作への切り換えの際のスロットル弁開度又は点火時期の制御ついて説明したが、リーンバーン制御動作からストイキ制御動作への切換の際のスロットル弁開度又は点火時期の制御についても同様に行なうことができる。
【0038】
更に、上記した実施例においては、筒内圧検出信号の積分値として正味平均有効圧Pmeを得ているが、積分値として図示平均有効圧Pmiを用いても良い。また、上記した実施例においては、スロットル弁18a〜18dが各気筒毎に設けられているが、吸気管16に各気筒共通のスロットル弁を設けた内燃エンジンにも本発明は適用することができる。
【0039】
【発明の効果】
以上の如く、本発明によれば、空燃比制御動作の切り換えを検出し、気筒内の圧力に応じた筒内圧検出信号を生成してその筒内圧検出信号を積分して積分値を求め、空燃比制御動作の切り換え検出前後の積分値がほぼ一致するようにその切り換え検出直後のスロットル弁の開度、点火時期等によりエンジン出力を制御することが行なわれる。よって、ストイキ制御動作からリーンバーン制御動作への切り換えるような空燃比制御動作の切り換え直後もエンジン出力を維持するように動作する故、エンジンのショックを低減させることができ、運転性能の悪化を回避させることができる。
【0040】
また、筒内圧検出信号の積分値とエンジン回転数とに対応したスロットル弁の開度データをデータマップとしてメモリに記憶し、エンジンのエンジン回転数を検出し、空燃比制御動作の切り換えが検出されると積分値の今回値と検出されたエンジン回転数の今回値とに対応した記憶位置の1の開度データをデータマップから検索して設定し、その1の開度データに応じてスロットル弁の開度を制御し、その後、空燃比制御動作の切り換え検出直前の積分値と積分値の今回値との差の大きさが所定値以下になるようにスロットル弁の開度を増減することにより、空燃比制御動作を切り換えたときに直ちにスロットル弁が予め定められた適切な開度に制御されるので、エンジン出力の急低下を防止することができる。
【0041】
更に、空燃比制御動作の切り換え検出直前の積分値と積分値の今回値との差の大きさが所定値以下になったときにはそのときのスロットル弁の開度を示す開度データでデータマップの記憶位置を更新記憶することにより、データマップの各開度データが学習制御されるので、エンジンの経時変化に対応することができる。
【図面の簡単な説明】
【図1】内燃エンジン本体を示す図である。
【図2】筒内圧センサの構成を示す図である。
【図3】ECUの構成を示すブロック図である。
【図4】ストイキ制御による燃料噴射制御動作を示すフローチャートである。
【図5】リーンバーン制御による燃料噴射制御動作を示すフローチャートである。
【図6】筒内圧とシリンダ容積との関係を示す図である。
【図7】空燃比制御選択動作を示すフローチャートである。
【図8】スロットル弁制御動作を示すフローチャートである。
【図9】他のスロットル弁制御動作を示すフローチャートである。
【図10】他のスロットル弁制御動作を示すフローチャートである。
【主要部分の符号の説明】
1〜4 シリンダ
5〜8 筒内圧センサ
16 吸気管
17 排気管
21 ECU
38 クランク角センサ
39a〜39d 吸気管内圧センサ
40 冷却水温センサ
41〜44 インジェクタ
Claims (3)
- 内燃エンジンの供給混合気の空燃比制御動作を理論空燃比付近に制御する第1空燃比制御動作と理論空燃比よりもリーンに制御する第2空燃比制御動作とのいずれか一方に前記エンジンの運転状態に応じて選択的に切り換える空燃比制御装置であって、
前記第1及び第2空燃比制御動作間の切り換えを検出する切換検出手段と、
前記内燃エンジンの気筒内の圧力に応じた筒内圧検出信号を生成する筒内圧検出手段と、前記筒内圧検出信号を積分して積分値を得る積分手段と、
前記切換検出手段による前記第1及び第2空燃比制御動作間の切り換え検出前後の前記積分値がほぼ一致するようにその切り換え検出直後のエンジン出力を制御するエンジン出力制御手段と、を備え、
前記エンジン出力制御手段は、前記第1及び第2空燃比制御動作間の切り換え検出前後の前記積分値の差の大きさが所定値以下のときには前記切り換え検出直後のエンジン出力制御を実施しないことを特徴とする空燃比制御装置。 - 前記エンジン出力制御手段は、前記積分値とエンジン回転数とに対応したスロットル弁の開度データをデータマップとして記憶したメモリと、
前記エンジンのエンジン回転数を検出する回転数検出手段と、
前記切換検出手段によって前記第1及び第2空燃比制御動作間の切り換えが検出されると、
前記積分値の今回値と前記回転数検出手段によって検出されたエンジン回転数の今回値とに対応した記憶位置の1の開度データを前記データマップから検索して設定する手段と、
前記1の開度データに応じて前記スロットル弁の開度を制御し、その後、前記切換検出手段による前記第1及び第2空燃比制御動作間の切り換え検出直前の前記積分値と前記積分値の今回値との差の大きさが所定値以下になるように前記スロットル弁の開度を増減するスロットル弁調整手段と、を有することを特徴とする請求項1記載の空燃比制御装置。 - 前記第1及び第2空燃比制御動作間の切り換え検出直前の前記積分値と前記積分値の今回値との差の大きさが所定値以下になったときにはそのときの前記スロットル弁の開度を示す開度データで前記データマップの記憶位置を更新記憶させることを特徴とする請求項2記載の空燃比制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07013898A JP4150097B2 (ja) | 1998-03-19 | 1998-03-19 | 内燃エンジンの空燃比制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07013898A JP4150097B2 (ja) | 1998-03-19 | 1998-03-19 | 内燃エンジンの空燃比制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11264339A JPH11264339A (ja) | 1999-09-28 |
JP4150097B2 true JP4150097B2 (ja) | 2008-09-17 |
Family
ID=13422923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07013898A Expired - Fee Related JP4150097B2 (ja) | 1998-03-19 | 1998-03-19 | 内燃エンジンの空燃比制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4150097B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016113921A (ja) * | 2014-12-12 | 2016-06-23 | アイシン精機株式会社 | ガスエンジン駆動式空気調和機の制御装置 |
-
1998
- 1998-03-19 JP JP07013898A patent/JP4150097B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11264339A (ja) | 1999-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5979397A (en) | Control apparatus for direct injection spark ignition type internal combustion engine | |
US4502442A (en) | Optimum ignition and A/F control for internal-combustion engine | |
KR100317157B1 (ko) | 내연기관용제어시스템 | |
EP0900928B1 (en) | Apparatus for controlling fuel injection for a direct-injection gasoline engine and a method thereof | |
US6145489A (en) | Torque controller for internal combustion engine | |
JP2585898B2 (ja) | 内燃エンジンの空燃比制御装置 | |
JP4050229B2 (ja) | 4ストロークエンジンの制御装置及び制御方法 | |
JP4281445B2 (ja) | 内燃機関の制御装置および内燃機関の制御方法 | |
US5363826A (en) | Air-fuel ratio control apparatus for an internal combustion engine | |
US7086387B2 (en) | Control apparatus of internal combustion engine | |
JP4274055B2 (ja) | 内燃機関の制御装置および制御方法 | |
JP4150097B2 (ja) | 内燃エンジンの空燃比制御装置 | |
EP1284353A2 (en) | Fuel injection control for start-up of internal combustion engine | |
JP4236556B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP3135725B2 (ja) | 多気筒内燃エンジンの制御装置 | |
JP2000110645A (ja) | 多気筒内燃エンジンの燃焼制御装置 | |
JP3401131B2 (ja) | 内燃機関の燃料性状検出装置 | |
JPH066214Y2 (ja) | 内燃機関の燃焼変動制御装置 | |
JPH06193539A (ja) | 多気筒内燃エンジンの制御装置 | |
JP2917417B2 (ja) | エンジンの制御装置 | |
JPH0540289Y2 (ja) | ||
JP3552475B2 (ja) | 内燃機関の制御装置 | |
JPH08261046A (ja) | 内燃機関の空燃比制御装置 | |
JPS61126338A (ja) | 内燃機関の燃料噴射量制御装置 | |
JPH02108827A (ja) | 2サイクル内燃機関の燃料噴射制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080313 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080627 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140704 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |