JP4145758B2 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
JP4145758B2
JP4145758B2 JP2003324221A JP2003324221A JP4145758B2 JP 4145758 B2 JP4145758 B2 JP 4145758B2 JP 2003324221 A JP2003324221 A JP 2003324221A JP 2003324221 A JP2003324221 A JP 2003324221A JP 4145758 B2 JP4145758 B2 JP 4145758B2
Authority
JP
Japan
Prior art keywords
heat storage
temperature
storage tank
hot water
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003324221A
Other languages
English (en)
Other versions
JP2005090849A (ja
Inventor
寿洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2003324221A priority Critical patent/JP4145758B2/ja
Publication of JP2005090849A publication Critical patent/JP2005090849A/ja
Application granted granted Critical
Publication of JP4145758B2 publication Critical patent/JP4145758B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯システムに関するものである。詳しくは、加熱された熱媒体を蓄熱槽に貯めておき、蓄熱槽に蓄熱された熱を利用して給湯するシステムに関する。特に、蓄熱槽から送り出される温水温度が変化するのに抗して、給湯温度が変化するのを抑制する技術に関する。
例えば、太陽熱で熱媒体を加熱し、加熱された熱媒体を蓄熱槽に貯め、蓄熱槽に蓄熱された熱を利用して得られた温水を給湯するシステムが知られている。あるいは、発電にともなって発生する発電熱で熱媒体を加熱し、加熱された熱媒体を蓄熱槽に貯め、蓄熱槽に蓄熱された熱を利用して得られた温水を給湯するシステムが知られている。
この種の給湯システムは、給湯温度を調整するために、ミキシングユニットと加熱バーナ等の給湯温度調整手段を備えている。蓄熱槽から送り出される温水の温度が温水使用箇所(給湯栓、浴槽等)で必要とされる温度よりも高ければ、ミキシングユニットで水道水とミキシングして蓄熱槽から送り出される温水温度よりも給湯温度を下げる。蓄熱槽から送り出される温水の温度が温水使用箇所で必要とされる温度よりも低ければ、加熱ボイラーで加熱することによって蓄熱槽から送り出される温水温度よりも給湯温度を上げる。給湯温度調整手段を設けることによって、温水使用箇所で必要とされる温度に調整された温水を給湯することができる。
特許文献1には、太陽熱で加熱された温水を貯湯槽に貯め、貯湯槽に貯められた温水の温度が高すぎれば水道水とミキシングして温水の温度を下げ、貯湯槽に貯められた温水の温度が低すぎれば、加熱ボイラーで加熱して温水の温度を上げるソーラー給湯機能付き給湯システムが開示されている。
特開平10−332197号公報
蓄熱槽には、大別して2タイプが存在する。一つのタイプは、太陽熱や発電熱で加熱された熱媒体を蓄熱槽の上部から受入れるタイプであり、加熱された熱媒体が蓄熱槽の上部から貯められていく。このタイプの蓄熱槽では熱媒体が温度成層をなした状態で貯められる。上部側の高温熱媒体と下部側の低温熱媒体の境界面がはっきりしている。蓄熱量が増大すれば境界面は下降し、蓄熱量が減少すれば境界面は上昇する。他のタイプの蓄熱槽では、太陽熱や発電熱で加熱された熱媒体が蓄熱槽の下部から受入れられる。蓄熱槽内の熱媒体は対流して攪拌され、はっきりした温度成層をなさない。蓄熱量が増大すれば熱媒体の全体が平均的に加熱され、蓄熱量が減少すれば熱媒体の全体が平均的に冷やされる。加熱された熱媒体を蓄熱槽の下部から受入れる蓄熱槽の場合、受入れた熱媒体を蓄熱槽に貯めてもよいし、受入れた熱媒体を熱交換器に通して蓄熱槽に貯められている熱媒体を加熱してもよい。この熱交換器は蓄熱槽の下部に設けられている。熱交換器を利用するタイプでは、太陽熱や発電熱で加熱する熱媒体と、蓄熱槽に貯めておく熱媒体の種類を変えることができる。熱媒体には水以外の液体(例えば水と不凍液の混合液、固液変態時の潜熱が大きい潜熱材)等を利用することができる。
蓄熱槽に貯められている熱媒体が水である場合には、蓄熱槽に貯められている温水を送り出して給湯に利用することができる。蓄熱槽に貯められている熱媒体で水道水を加熱して蓄熱槽から送出すことができるために、蓄熱槽に貯める熱媒体は水に限られない。
第1タイプの蓄熱槽の場合、熱媒体が温度成層をなした状態で貯められる。蓄熱量が減少するにつれて高温の熱媒体と低温の熱媒体の境界面が上昇し、その境界面が上昇仕切ったときに蓄熱量がゼロになる。このタイプの蓄熱槽の場合、高温の熱媒体と低温の熱媒体の境界面ははっきりしており、蓄熱量がゼロになるときに、蓄熱槽から送り出される温水の温度は急激に低下する。
第2のタイプの蓄熱槽の場合、熱媒体ははっきりした温度成層をなさない状態で貯められる。蓄熱量が減少するのに呼応して、蓄熱槽から送り出される温水の温度は緩やかに低下する。
従来の給湯システムでは、蓄熱量がゼロになって蓄熱槽から送り出される温水が冷水に変化するときの給湯温度を安定させるためには、特別な制御ロジックが必要とされることを認識していない。当然に、第1タイプの蓄熱槽の場合と第2タイプの蓄熱槽の場合とでは、蓄熱槽から送り出される温水が冷水に変化するときに異なる制御ロジックが必要とされることを意識していない。
同様の問題は、蓄熱槽が温水を貯めて温水を送り出すタイプである場合と、蓄熱槽に貯められた加熱媒体で水道水を加熱して温水を送り出すタイプである場合でも生じる。前者のタイプでは、蓄熱量がゼロになるときに、蓄熱槽から送り出される温水の温度は急激に低下する。後者のタイプでは、蓄熱量が減少するのに呼応して、蓄熱槽から送り出される温水の温度は緩やかに低下し、急激な低下は起きない。前者のタイプの蓄熱槽の場合と後者のタイプの蓄熱槽の場合とでは、蓄熱槽から送り出される温水が冷水に変化するときに異なる制御ロジックが必要とされるのに、従来の技術はそのことを認識していない。
本発明では、加熱された熱媒体を蓄熱槽の上部から受入れる第1タイプの蓄熱槽の蓄熱量がゼロになるときの給湯温度の変化を抑制するための制御ロジックと、加熱された熱媒体を蓄熱槽の下部から受入れる第2タイプの蓄熱槽の蓄熱量がゼロになるときの給湯温度の変化を抑制するための制御ロジックが異なることを考慮する。
そのために、第1タイプの蓄熱槽を利用する給湯システムのためのコントローラと、第2タイプの蓄熱槽を利用する給湯システムのためのコントローラを別々に設計しておかなければならないが、それでは2種類のコントローラを用意しておかなければならない。本発明では、1種類のコントローラに2種類の制御ロジックを記憶しておき、第1タイプの蓄熱槽を利用する給湯システムで用いられるときには第1タイプ用の制御ロジックを選択し、第2タイプの蓄熱槽を利用する給湯システムで用いられるときには第2タイプ用の制御ロジックを選択する選択ロジックを用意しておく。
同様に、本発明では、蓄熱槽が温水を貯めて温水を送り出すタイプである場合と、蓄熱槽に貯められた加熱媒体で水道水を加熱して温水を送り出すタイプである場合とでは、蓄熱槽の蓄熱量がゼロになるときに給湯温度が変化するのを抑制するための制御ロジックが異なることを考慮する。本発明の別の具現化例では、1種類のコントローラに2種類の制御ロジックを記憶しておき、温水を貯めて温水を送り出すタイプの蓄熱槽を利用する給湯システムで用いられるときにはそのタイプ用の制御ロジックを選択し、加熱媒体で水道水を加熱して温水を送り出すタイプの蓄熱槽を利用する給湯システムで用いられるときにはそのタイプ用の制御ロジックを選択する選択ロジックを用意しておく。
本発明の給湯システムは、加熱された熱媒体を貯める蓄熱槽と、蓄熱槽から送り出された温水の温度を調整する給湯温度調整手段と、給湯温度調整手段を制御するコントローラを備えている。
蓄熱槽は、蓄熱槽の上部から加熱された熱媒体を受入れる第1タイプと、蓄熱槽の下部から加熱された熱媒体を受入れる第2タイプのなかから選択されている。
本発明のコントローラは、蓄熱槽が第1タイプであるときの制御ロジックと、蓄熱槽が第2タイプであるときの制御ロジックと、選択された蓄熱層のタイプを判別して制御ロジックを選択するロジックを記憶している。
この給湯システムのコントローラは、蓄熱槽が第1タイプであるか第2タイプであるかによって、異なる制御ロジックで給湯温度調整手段を制御する。このため、蓄熱槽のタイプに適した給湯温度制御を行うことができる。特に、蓄熱槽の蓄熱量がゼロになるときに給湯温度が大きく変化しないように制御することができ、蓄熱槽から送り出される温水の温度変化が急激な第1タイプには第1タイプに適した制御ロジックを用いて給湯温度の変化を抑制することができ、温度変化が緩やかな第2タイプには第2タイプに適した制御ロジックを用いて給湯温度の変化を抑制することができる。
上記の給湯システムでは、蓄熱槽内の温度を検出する蓄熱槽温度検出手段を用意し、単位蓄熱量に対する蓄熱槽内温度の上昇幅に基づいて、蓄熱槽のタイプを判別するようにすることができる。
第2タイプの蓄熱槽では、蓄熱量と温度上昇幅はほぼ比例する。第1タイプの蓄熱槽では、蓄熱量と温度上昇幅は全く関係しない。蓄熱量が増大して加熱熱媒体と低温熱媒体の境界面が下がり、その境界面が蓄熱槽温度検出手段のレベルを上下動すると、検出される蓄熱槽温度は急激に増大する。その一方において、その境界面が蓄熱槽温度検出手段のレベルを上下動しなければ、蓄熱量が増加しても温度は変化しない。第2タイプの蓄熱槽では、単位蓄熱量に対して中間の温度上昇幅が検出されるのに対し、第1タイプの蓄熱槽では、単位蓄熱量に対して大きな温度上昇幅(境界面が蓄熱槽温度検出手段のレベルを上下動するとき)あるいは小さな温度上昇幅(境界面が蓄熱槽温度検出手段のレベルを上下動しないとき)が検出される。単位蓄熱量に対する温度上昇幅の大中小から、蓄熱槽が第1タイプと第2タイプのいずれであるかを判別することができる。
あるいは、蓄熱槽内の上部の温度を検出する蓄熱槽上部温度検出手段と、蓄熱槽内の下部の温度を検出する蓄熱槽下部温度検出手段を用意し、蓄熱槽内の上下の温度差に基づいて、蓄熱槽のタイプを判別するようにようにしてもよい。
第1タイプの蓄熱槽は、温度成層が形成されるので上下の温度差が大きい。第2タイプの蓄熱槽は、温度成層が形成されないので上下の温度差が小さい。蓄熱槽内の上下の温度差に基づいて、蓄熱槽が第1タイプと第2タイプのいずれであるかを判別することができる。
蓄熱槽内の温度を検出する蓄熱槽温度検出手段と、蓄熱槽に送込まれる熱媒体の温度を検出する入力温度検出手段を用意し、蓄熱槽温度検出手段の検出温度と入力温度検出手段の検出温度の差に基づいて、蓄熱槽のタイプを判別するようにようにしてもよい。
第1タイプの蓄熱槽では、温度成層が形成されるので、蓄熱槽温度検出手段の検出温度と入力温度検出手段の検出温度の差は大きい。第2タイプの蓄熱槽では、温度成層が形成されないので、両者の検出温度の差は小さい。蓄熱槽温度検出手段の検出温度と入力温度検出手段の検出温度の差に基づいて、蓄熱槽が第1タイプと第2タイプのいずれであるかを判別することができる。
蓄熱槽内から送り出された温水の温度を検出する出湯温度検出手段を用意し、出湯温度検出手段の検出温度が、所定時間以内に所定温度幅以上低下する事象を観測したとき以降は第1タイプであると判別し、その事象が観測されないうちは第2タイプであると判別するようにしてもよい。
第1タイプの蓄熱槽は、温度成層が存在するために、蓄熱量を使い切ってしまうと出湯温度が急激に低下する。第2タイプの蓄熱槽は、温度成層が形成されないので、蓄熱量を使い切ってしまったときの出湯温度が急激に低下しない。コントローラが給湯システムに組込まれて利用され始めた段階では、第2タイプであると判別するようにしておき、所定時間以内に所定温度幅以上低下する事象を観測したとき以降は第1タイプであると判別するようにしておくと、蓄熱槽が第1タイプと第2タイプのいずれであるかを判別することができる。
後述する実施例の主要な特徴を列記する
(1)給湯システムは、蓄熱槽、補助熱源機、ミキシングユニット、コントローラ等を備えており、給湯栓への給湯や浴槽への湯張りを行う。
蓄熱槽は、給湯システム外部に設けられたソーラー集熱器と発電ユニットのいずれかと接続される。補助熱源機とミキシングユニットは、蓄熱槽から給湯栓や浴槽に送られる温水の温度を調整する。
(2)蓄熱槽がソーラー集熱器と接続された場合には、蓄熱槽の下部に蓄熱槽熱交換器が装着される。ソーラー集熱器から蓄熱槽熱交換器へは、高温の熱媒体が送られる。熱媒体は、蓄熱槽熱交換器を介して蓄熱槽に貯められた水を加熱して温水にする。この場合には、温水の上下方向の温度分布に大きな差は生じない。このような蓄熱槽を非温度成層タイプと言う。
蓄熱槽が発電ユニットと接続された場合には、発電ユニットから蓄熱槽上部に温水が供給される。この場合には、蓄熱槽にフルに蓄熱されていないときに、蓄熱槽の上部に温水の層(温度成層)が形成される。このような蓄熱槽を温度成層タイプと言う。
(3)コントローラは、蓄熱槽の上部に設けられた上部サーミスタが検出する温水温度の上昇率や、上部サーミスタと蓄熱槽の下部に設けられた下部サーミスタが検出する温度差等を用いて、蓄熱槽が温度成層タイプであるか非温度成層タイプであるかを判別する。そして、その判別結果によって、補助熱源機に設けられているバーナに点火したり、バーナの点火タイミングを調整したりする処理を切り替える。コントローラがこのような制御を行うことにより、蓄熱槽のタイプによって給湯栓や浴槽に送られる温水の温度が大きく変動してしまうことが防止される。
本発明の給湯システム10は、ソーラー集熱器12と接続されることもあるし、発電ユニット110と接続されることもある。以下、給湯システム10にソーラー集熱器12が接続された形態と、給湯システム10に発電ユニット110が接続された形態のそれぞれについて、図面を参照しながら説明する。
(給湯システムにソーラー集熱器が接続された形態)
図1に示されているように、給湯システム10は、蓄熱槽20、補助熱源機22、ミキシングユニット24、これらを連通する複数の経路、コントローラ21等を備えている。
蓄熱槽20の底部には、蓄熱槽20に水道水を給水する給水経路26が接続されている。給水経路26の入口26aの近傍には、減圧弁28が装着されている。給水経路26の減圧弁28の下流側とミキシングユニット24の給水入口24aは、ミキシングユニット給水経路30によって接続されている。減圧弁28は、蓄熱槽20とミキシングユニット24への給水圧力を調整する。蓄熱槽20内の温水が減少したり、ミキシングユニット24の給水入口24aが開くと、減圧弁28の下流側圧力が低下する。減圧弁28は、下流側圧力が低下すると開き、その圧力を所定の調圧値に維持しようとする。このため、蓄熱槽20内の温水が減少したり、ミキシングユニット24の給水入口24aが開くと、それらに水道水が給水される。
蓄熱槽20の上部には出口部20aが設けられており、さらにその上にリリーフ弁31が装着されている。リリーフ弁31の開弁圧力は、減圧弁28の調圧値よりも僅かに大きく設定されている。減圧弁28の調圧が不能になった場合には、リリーフ弁31が開き、蓄熱槽20内の圧力が耐圧々力を超えるのを防止する。リリーフ弁31には、圧力開放経路32の一端32aが接続されている。圧力開放経路32の他端32bは、蓄熱槽20の外部に開放されている。
蓄熱槽20の底部と、圧力開放経路32の他端32b近傍を接続する排水経路33が設けられている。排水経路33の途中には、排水弁34が装着されている。排水弁34は手動で開閉することができる。排水弁34を開くと、蓄熱槽20内の水が排水経路33と開放経路32を通って外部に排水される。
コントローラ21は、CPU、ROM、RAM等を備えており、CPUがROMに格納されている制御プログラムを処理することにより、給湯システム10を制御する。RAMには、コントローラ21に入力される各種信号や、CPUが処理を実行する過程で生成される種々のデータが一時的に記憶される。コントローラ21には、リモコン23が接続されている。リモコン23には、給湯システム10を操作するためのスイッチやボタン、給湯システム10の動作状態を表示する液晶表示器等が設けられている。
ソーラー集熱器12は、家屋の屋根上等に設置され、太陽熱を集熱する。ソーラー集熱器12内には、ソーラー熱交換器13が設けられている。ソーラー熱交換器13は、太陽熱によって加熱される。また、蓄熱槽20内の下部には、蓄熱槽熱交換器37が取付けられている。
蓄熱槽熱交換器37の入口37aとソーラー熱交換器13の出口13aは、循環復路39によって接続されている。蓄熱槽熱交換器37の出口37bとソーラー熱交換器13の入口13bは、循環往路38によって接続されている。循環往路38の途中には、循環ポンプ40が装着されている。循環ポンプ40が作動すると、熱媒体が蓄熱槽熱交換器37とソーラー熱交換器13との間を循環する。ソーラー熱交換器13で太陽熱によって加熱されて高温になった熱媒体は、蓄熱槽熱交換器37に送られる。蓄熱槽熱交換器37で蓄熱槽20内の水を加熱して低温になった熱媒体は、ソーラー熱交換器13に戻り、再び加熱される。循環往路38の途中には、蓄熱槽熱交換器37を出た熱媒体の温度を検出する往路サーミスタ44が装着されている。循環復路39の途中には、蓄熱槽熱交換器37に入る熱媒体の温度を検出する復路サーミスタ45が装着されている。往路サーミスタ44と復路サーミスタ45の検出信号は、コントローラ21に出力される。熱媒体は、水に不凍液が混入されたものである。不凍液が混入されていることにより、低温環境下(冬季の夜間、降雪時等)に熱媒体が凍結してしまうことが防止されている。
詳しくは後述するが、蓄熱槽20に貯えられた温水は、給湯栓64からの給湯や浴槽79の湯張りに用いられる。蓄熱槽熱交換器37を介して間接的に蓄熱槽20を加熱することにより、熱媒体中の不凍液が蓄熱槽20内の温水と混じってしまうのが防がれている。
蓄熱槽熱交換器37が蓄熱槽20の下部に設けられているので、蓄熱槽20内の温水は、蓄熱槽熱交換器37によって加熱されると対流する。蓄熱槽20内の温水が対流することにより、温水の上下方向の温度分布の差は小さくなる。以下においては、このような、温水の上下方向の温度分布の差が小さい蓄熱槽20を「非温度成層タイプ」と呼ぶ。非温度成層タイプの蓄熱槽20が、請求項に記載の第2タイプの蓄熱槽に相当する。
蓄熱槽20の上部に上部サーミスタ35が取付けられ、下部に下部サーミスタ36が取付けられている。上部サーミスタ35と下部サーミスタ36は、蓄熱槽20内の温度を検出する。上部サーミスタ35と下部サーミスタ36の検出信号は、コントローラ21に出力される。
ミキシングユニット24は、温水入口24c、温水出口24b、第1水量センサ67、温水サーミスタ50、給水サーミスタ48、温水サーミスタ54、ハイカットサーミスタ55、および既に説明した給水入口24aを有している。蓄熱槽20の出口部20aとミキシングユニット24の温水入口24cは、温水経路42によって接続されている。第1水量センサ67は、温水出口24bから流出する温水の流量を検出する。温水サーミスタ50は、温水入口24cに流入する温水の温度を検出する。給水サーミスタ48は、給水入口24aに流入する水道水の温度を検出する。温水サーミスタ54とハイカットサーミスタ55は、温水出口24bから流出する温水の温度を検出する。第1水量センサ67、温水サーミスタ50、給水サーミスタ48、温水サーミスタ54、ハイカットサーミスタ55の検出信号は、コントローラ21に出力される。
コントローラ21は、温水サーミスタ54の検出信号を用いて、温水入口24c側の開度と、給水入口24a側の開度を変化させる。温水入口24c側の開度と、給水入口24a側の開度を変化させると、蓄熱槽20からの温水と、水道水(冷水)とのミキシング割合が調整される。蓄熱槽20からの温水と水道水とのミキシング割合が調整されると、温水出口24bから流出する温水の温度が所定値に維持される。コントローラ21は、ハイカットサーミスタ55によって温水が前記所定値を大きくオーバーしたことが検出された場合(すなわち、温水サーミスタ54、あるいはミキシングユニット24が故障した可能性が高い場合)に、温水出口24bを閉じる。温水出口24bが閉じると、前記所定値を大きくオーバーした温度の温水が、補助熱源機22に供給されてしまうのが防止される。
ミキシングユニット24の温水出口24bと補助熱源機22のバーナ熱交換器52(後述する)は、温水経路51によって接続されている。温水経路51には、第2水量センサ47が装着されている。第2流量センサ47の検出信号は、コントローラ21に出力される。
補助熱源機22は、バーナ熱交換器52、60、バーナ56、57、追焚き熱交換器58、補給水弁59、シスターン61等を備えている。
バーナ熱交換器52には、温水経路51を経由してミキシングユニット24から温水が流入する。ガス燃焼式のバーナ56は、バーナ熱交換器52を加熱する。バーナ熱交換器52の下流側と、給湯栓64は、給湯栓経路63によって接続されている。給湯栓64は、浴室、洗面所、台所等に配置されている(図1では、これら複数の給湯栓64を1つで代表している)。給湯栓経路63には、出湯サーミスタ65が装着されている。出湯サーミスタ65は、バーナ熱交換器52から流出する温水の温度を検出する。出湯サーミスタ65の検出信号は、コントローラ21に出力される。コントローラ21は、出湯サーミスタ65が検出した温水温度が所定値よりも低い場合に、バーナ56を作動させてバーナ熱交換器52を加熱する。
補助熱源機22内の温水経路51の途中から、シスターン入水経路62が分岐している。シスターン入水経路62の開放端は、シスターン61の上部に差し込まれている。シスターン入水経路62の途中には、補給水弁59が設けられている。補給水弁59は、コントローラ21によって制御され、内蔵しているソレノイドが駆動されることによって開閉する。補給水弁59が開かれると、ミキシングユニット24からの温水がシスターン61に供給される。
シスターン61内には、水位電極66が装着されている。水位電極66は、棒状のハイレベルスイッチ66aとローレベルスイッチ66bを有している。ハイレベルスイッチ66aの下端は、シスターン61のハイレベル水位に位置している。ローレベルスイッチ66bの下端は、シスターン61のローレベル水位に位置している。ハイレベルスイッチ66aとローレベルスイッチ66bは、水に触れていると検出信号をコントローラ21に出力する。コントローラ21は、水位電極66からの検出信号によって、シスターン61の水位がハイレベル水位を超えているか、ハイレベル水位とローレベル水位の間にあるか、ローレベル水位よりも低いかを判別する。シスターン61として適正なのは、水位がハイレベルとローレベルの間に位置している状態である。コントローラ21は、水位電極66からの水位検出信号に基づいて補給水弁59を開閉制御し、シスターン61の水位を適正範囲に維持する。
シスターン61の底部には、シスターン出水経路68の一端が接続されている。シスターン出水経路68の途中には、暖房ポンプ69が装着されている。暖房ポンプ69は、コントローラ21によって制御される。シスターン出水経路68の他端は、バーナ上流経路71と低温水経路70とに分岐している。バーナ上流経路71は、シスターン出水経路68とバーナ熱交換器60の上流側とを接続している。バーナ上流経路71には、内部を流れる温水の温度を検出する暖房低温サーミスタ72が装着されている。暖房低温サーミスタ72の検出信号は、コントローラ21に出力される。
ガス燃焼式のバーナ57は、バーナ熱交換器60を加熱する。バーナ熱交換器60の下流とシスターン61は、高温水経路73によって接続されている。高温水経路73には、上流側から順に、暖房高温サーミスタ74、暖房端末熱動弁75、暖房端末機76が装着されている。
暖房高温サーミスタ74は、高温水経路73を流れる温水の温度を検出する。暖房高温サーミスタ74の検出信号は、コントローラ21に出力される。
暖房端末機76は、熱交換器76bと、操作スイッチ76aと、電動ファン(図示省略)を備えている。熱交換器76bは、高温水経路73を流れる温水と空気との間で熱交換を行う。操作スイッチ76aは、暖房端末熱動弁75とコントローラ21に接続されている。
暖房端末熱動弁75は、膨張エレメントと、膨張エレメントと機械的に連結された開閉弁を内蔵している。暖房端末機76の操作スイッチ76aがオンにされると、暖房端末熱動弁75の膨張エレメントに通電が行われる。通電された膨張エレメントは高温になって膨張する。膨張した膨張エレメントは開閉弁を駆動し、これによって暖房端末熱動弁75が開かれる。また、操作スイッチ76aがオンにされると、コントローラ21は、暖房ポンプ69を作動させる。このように、操作スイッチ76aがオンにされたことによって、暖房端末熱動弁75が開かれるとともに、暖房ポンプ69が作動すると、シスターン61から温水が吸い出される。コントローラ21は、暖房低温サーミスタ72と暖房高温サーミスタ74が検出した温水温度に基づいて、バーナ57を制御し、バーナ熱交換器60から流出する温水の温度を所定範囲に維持する。暖房端末機76の電動ファンは、操作スイッチ76aがオンにされると回転し、熱交換器76bに空気を吹き付ける。熱交換器76bに吹き付けられた空気は、熱交換器76bを介して温水と熱交換を行って暖められる。暖められた空気は暖房端末機76から吹き出し、部屋を暖房する。熱交換器76bで空気と熱交換を行うことによって、温水の温度は低下する。温度が低下した温水は、高温水経路73を流れてシスターン61に戻る。
高温水経路73の暖房高温サーミスタ74の下流側と、高温水経路73のシスターン61への入口部の上流側とは、追焚き経路77によって接続されている。追焚き経路77は、追焚き熱交換器58を通過している。追焚き経路77の追焚き熱交換器58の下流側には、追焚き熱動弁78が装着されている。追焚き熱動弁78は、コントローラ21によって制御される。
浴槽79には、吸出口79aと供給口79bが設けられている。吸出口79aと供給口79bは、風呂循環経路80によって接続されている。風呂循環経路80は、追焚き熱交換器58を通過している。上述したように、追焚き経路77も追焚き熱交換器58を通過している。このため、追炊き熱交換器58では、風呂循環経路80と追焚き経路77との間で熱交換が行われる。風呂循環経路80の追焚き熱交換器58の上流側には、風呂水位センサ81、風呂循環ポンプ82、湯張り量センサ83、風呂水流スイッチ84が装着されている。風呂循環ポンプ82は、コントローラ21によって制御される。風呂水位センサ81、湯張り量センサ83、風呂水流スイッチ84は、コントローラ21に検出信号を出力する。風呂水位センサ81は、水圧を検出する。コントローラ21は、風呂水位センサ81が検出した水圧から、浴槽79に張られている湯の水位を推定する。湯張り量センサ83は、風呂循環経路80を流れる水量を検出することにより、浴槽79への湯張りの際に、それがどの程度行われたかを推定する。風呂水流スイッチ84は、風呂循環経路80を水が流れるとオンになる。
風呂循環経路80の風呂水位センサ81の上流側には、浴槽79から吸出された温水の温度を検出する風呂サーミスタ85が装着されている。風呂サーミスタ85の検出信号は、コントローラ21に出力される。
バーナ57と暖房ポンプ69が作動している状態で追焚き熱動弁78が開くと、温水が追炊き経路77に流入して追炊き熱交換器58を通過する。風呂循環ポンプ82が作動すると、温水が浴槽79の吸出口79aから吸出され、風呂循環経路80を流れて再び供給口79bから浴槽79に戻る循環が行われる。風呂循環経路80を流れる温水は、追炊き熱交換器58で追炊き経路77を流れる温水によって加熱され、浴槽79の湯が追炊きされる。
給湯栓経路63の途中と、風呂循環経路80の風呂循環ポンプ82の下流側とを接続する湯張り経路25が設けられている。湯張り経路25には、ソレノイド駆動タイプの注湯弁27が装着されている。注湯弁27は、コントローラ21によって制御され、湯張り経路25を開閉する。
浴槽79に湯を張るときには、注湯弁27が開かれ、補給水弁59が閉じられる。注湯弁27が開かれ、補給水弁59が閉じられると、温水が給湯栓経路63から湯張り経路25を経て風呂循環経路80に流入する。風呂循環経路80に流入した温水は、吸出口79aと供給口79bから浴槽79に供給され、浴槽79を湯張りする。このときには、風呂循環ポンプ82は駆動されず、湯張り経路25に加わっている水圧によって浴槽79への湯張りが行われる。
三方弁86は、Aポート86a、Bポート86b、Cポート86cを備えている。三方弁86は、コントローラ21に制御されて、Aポート86aとCポート86cを連通させるか、Bポート86bとCポート86cを連通させるかを切替える。
シスターン出水経路68と三方弁86のCポート86cは、低温水経路70によって接続されている。低温水経路70の途中には、低温サーミスタ94、床暖房熱動弁90、床暖房機91が設けられている。低温サーミスタ94は、低温水経路70を流れる温水の温度を検出する。低温サーミスタ94の検出信号は、コントローラ21に出力される。床暖房熱動弁90は、コントローラ21によって制御される。床暖房機91は、低温水経路70を流れる温水によって床を暖める。
高温水経路73の暖房端末熱動弁75の上流側と、低温水経路70の床暖房機91の下流側とは、バイパス経路92によって接続されている。バイパス経路92の途中には、バイパス熱動弁93が装着されている。バイパス熱動弁93は、コントローラ21によって開閉制御される。
床暖房を行う場合には、床暖房熱動弁90が開かれ、温水が床暖房機91に導かれる。導かれた温水は、床暖房機91を暖める。床暖房を行わない場合には、床暖房熱動弁90が閉じられる。
低温水戻り経路87が設けられており、三方弁86のBポート86bと、高温水経路73の暖房端末機76の下流側とを接続している。低温水戻り経路87には、低温戻りサーミスタ89が装着されている。低温戻りサーミスタ89は、低温水戻り経路87を流れる温水の温度を検出する。低温戻りサーミスタ89の検出信号は、コントローラ21に出力される。
三方弁86のAポート86aと、低温水戻り経路87の途中とを接続する蓄熱槽経路88が設けられている。蓄熱槽経路88には、蓄熱槽20の上部を通過する熱交換部88aが形成されている。
コントローラ21は、低温サーミスタ94と上部サーミスタ35が検出した温度を比較し、その結果によって三方弁86を切替える。具体的には、低温サーミスタ94が検出した温度よりも上部サーミスタ35が検出した温度の方が低い場合には、三方弁86のBポート86bとCポート86cが連通するように切替える。Bポート86bとCポート86cを連通すると、低温水経路70からの温水は、蓄熱槽経路88をバイパスし、低温水戻り経路87と高温水経路73を流れてシスターン61に戻る。シスターン61に戻った温水は、再びシスターン出水経路68に吸込まれる。低温サーミスタ94が検出した温度よりも上部サーミスタ35が検出した温度の方が高い場合には、三方弁86のAポート86aとCポート86cが連通される。Aポート86aとCポート86cが連通すると、低温水経路70からの温水は、蓄熱槽経路88を流れる。蓄熱槽経路88を流れる温水は、熱交換部88aで蓄熱槽20の上部に貯められている温水によって加熱され、温度が上昇する。温度が上昇した温水は、低温水戻り経路87と高温水経路73を流れてシスターン61に戻される。すなわち、蓄熱槽20の上部に貯められている温水が蓄熱槽経路88の熱交換部88aを加熱することができる場合にのみ、蓄熱槽経路88に温水が導かれる。
(給湯システムに発電ユニットが接続された形態)
以下、給湯システム10に発電ユニット110が接続された形態について説明する。
最初に、発電ユニット110について説明する。図2に示されているように、発電ユニット110は、改質器112、燃料電池114、熱交換器116、118、熱媒放熱器120、熱媒三方弁122、それらを接続する経路等を備えている。
改質器112には、バーナ131が設けられている。バーナ131が作動して熱を発生すると、改質器112は炭化水素系のガスから水素ガスを生成する。熱交換器116を燃焼ガス経路126が通過している。燃焼ガス経路126の一端は改質器112に接続され、他端は外部に開放されている。燃焼ガス経路126は、熱交換器116にバーナ131が発生する燃焼ガスを導き、熱交換によって温度が低下した燃焼ガスを外部に排出する。熱交換器116には、循環経路128も通過している。循環経路128は、循環復路128aと、循環往路128bから構成されており、給湯システム10と接続される。循環経路128が給湯システム10にどのように接続されているのかについては、後述にて詳細に説明する。循環経路128は、温水を流通させる。循環経路128を流れる温水は、熱交換器116を通過することによって燃焼ガス経路126を流れる燃焼ガスに加熱され、温度が上昇する。
燃料電池114は、複数のセルを有している。燃料電池114と改質器112は、水素ガス供給経路121によって接続されている。改質器114で生成された水素ガスは、水素ガス供給経路121を流れて燃料電池114に供給される。燃料電池114は、改質器112から供給された水素ガスと、空気中の酸素とを反応させて発電を行う。燃料電池114は、発電すると発電熱を発生する。
熱媒循環経路124は、燃料電池114、熱交換器118、リザーブタンク125、熱媒ポンプ127、熱媒三方弁122を通って燃料電池114に戻る循環経路を形成している。熱媒循環経路124の燃料電池114の下流側には、熱媒温度センサ117が装着されている。熱媒温度センサ117は、熱媒循環経路124を流れる熱媒の温度を検出する。熱媒温度センサ117の検出信号は、給湯システム10に装着されているコントローラ21に出力される。
熱媒三方弁122は、1つの入口122aと、2つの出口122b、122cを備えている。熱媒三方弁122は、入口122aと出口122bを連通させるか、入口122aと出口122cを連通させるかを切替える。
熱媒三方弁122の出口122bと、熱媒循環経路124の熱媒三方弁122の出口122cの下流側とを接続する冷却経路129が設けられている。熱媒循環経路124と冷却経路129は、熱媒としての純水を流通させる。冷却経路129の途中には、熱媒放熱器120が装着されている。熱媒放熱器120に隣接して、熱媒冷却ファン119が設けられている。熱媒冷却ファン119を運転すると、空気が熱媒放熱器120に吹付けられ、冷却経路129を流れる熱媒が冷却される。
改質器112、燃料電池114、バーナ131、熱媒三方弁122、熱媒ポンプ127、熱媒冷却ファン119は、コントローラ21によって制御される。
燃料電池114が作動すると、熱媒三方弁122の入口122aと出口122cが連通されるとともに、熱媒ポンプ127が運転される。熱媒ポンプ127が運転されると、熱媒循環経路124を熱媒が循環する。熱媒循環経路124を熱媒が循環することにより、燃料電池114から発電熱が回収される。熱媒によって回収された発電熱は、熱媒とともに熱交換器118まで運ばれ、循環経路128を流れる温水を加熱する。
熱媒温度センサ117が検出した熱媒温度が高くなりすぎると、熱媒三方弁122の入口122aと出口122bが連通される。また、同時に熱媒冷却ファン119が運転される。熱媒三方弁122の入口122aと出口122bが連通されると、熱媒は冷却経路129に流入し、熱媒放熱器120を通過する。熱媒は、熱媒放熱器120を通過することによって冷却される。熱媒放熱器120は、熱媒冷却ファン119から空気が吹付けられることにより、高い効率で熱を放熱する。熱媒の温度が低下すると、熱媒三方弁122の入口122aと出口122cが再び連通される。このような熱媒三方弁122の切替えが繰返されることにより、熱媒の温度は、所定範囲内に維持される。
給湯システム10について説明する。なお、既に説明したソーラー集熱器12が接続される給湯システム10と重複する説明は省略し、特徴的な部分のみを説明する。
図2に示されているように、蓄熱槽130は、発電ユニット110の循環経路128(循環復路128a、循環往路128b)と接続されている。詳しくは、循環復路128aが蓄熱槽130の上部に接続され、循環復路128bが蓄熱槽130の下部に接続されている。これによって、蓄熱槽130と発電ユニット110との間の循環経路が形成されている。循環往路128bの途中には、循環ポンプ40が装着されている。
循環ポンプ40が作動すると、蓄熱槽130の底部から温水が吸出される。蓄熱槽130から吸出された温水は、循環往路128bを流れてから発電ユニット110の熱交換器116、118を通過することによって加熱されて温度が上昇する。温度が上昇した温水は、循環復路128を流れて蓄熱槽130の上部に戻される。このように、蓄熱槽130の底部から吸出された温水が、発電ユニット110の熱交換器116、118によって加熱されてさらに高温になり、蓄熱槽130の上部に戻される循環が行われることにより、蓄熱槽130に高温の温水が貯えられる。蓄熱槽130内の温度が低い状態から、蓄熱槽130に発電ユニット110から高温の温水が供給されると、その供給が蓄熱槽130の上部に行われることから、蓄熱槽130に貯められている温水の上部に、高温の温水の層(以下、「温度成層」と言う)が形成される。温度成層よりも深くなると、温水の温度は急激に低下する。蓄熱槽130に高温の温水の供給が継続されると、温度成層の厚さ(深さ)は次第に大きくなり、蓄熱槽130にフルに蓄熱された状態では、蓄熱槽130の全体に高温の温水が貯まった状態になる。温度成層が形成されることにより、蓄熱槽130にフルに蓄熱が行われていなくても、蓄熱槽130の最上部に設けられている出口部130aからは、高温の温水が送り出される。以下においては、蓄熱槽130にフルに蓄熱が行われていない状態を「部分蓄熱状態」と言う。また、蓄熱槽130のように、温度成層が形成される蓄熱槽を「温度成層タイプ」と言う。
図3のグラフは、温度成層タイプと非温度成層タイプの蓄熱槽について、その内部の温度分布を示したものである。縦軸は蓄熱槽の高さ方向の距離であり、横軸は蓄熱槽内の温水温度である。実線は、温度成層タイプの蓄熱槽の温度分布を示している。点線は、非温度成層タイプの蓄熱槽の温度分布を示している。図3中の「%」は、蓄熱槽がフルに蓄熱された場合の蓄熱量に対する割合を示している。
図3から明らかなように、温度成層タイプでは、フル(100%)に蓄熱されていない場合(30%、50%、80%、すなわち、部分蓄熱状態)でも、蓄熱槽上部の温水温度はフルに蓄熱された状態と変わらない。しかし、部分蓄熱状態では、蓄熱槽の温水温度は、その下部に向かうと急激に低下する。この蓄熱槽の温水温度が急激に低下する位置(深さ)が、温度成層の下限である。蓄熱量が少ないほど、温度成層の深さは浅くなる傾向を示す。
これに対して、非温度成層タイプの場合には、蓄熱槽内の温水の上下方向の温度差は小さい。なお、図3では、非温度成層タイプ、およびフル蓄熱状態(100%)の温度成層タイプの温度分布を一定としているが、実際には、蓄熱槽上部から蓄熱槽下部に向かうに従って、温水温度は僅かずつ低下する。
上述したように、温度成層タイプで蓄熱量が少ない場合には、温度成層は浅く形成される。このため、蓄熱量が少ない状態で、例えば、給湯栓64を長時間開いたりすると、蓄熱槽130の温度成層部分を使い切ってしまい、蓄熱槽130から送り出される温水の温度が急激に低下する。もちろん、この場合には、ミキシングユニット24や補助熱源機22が作動して湯温を維持しようとする。しかしながら、従来においては、ミキシングユニット24によるミキシング割合の調整や、補助熱源機22の作動が遅れ、湯温が不安定になりがちであった。詳しくは後述するが、本実施例の給湯システム10は、コントローラ21が蓄熱槽のタイプ(温度成層タイプであるか、非温度成層タイプであるか)を判別し、それぞれのタイプに適した湯温制御を行う。このため、温度成層タイプであっても、湯温が不安定になるのが防止されている。
蓄熱槽タイプの判別に係る蓄熱槽タイプ判別処理〔1〕、〔2〕、〔3〕について、フローチャートを参照しながら説明する。なお、蓄熱槽タイプ判別処理〔1〕、〔2〕、〔3〕は、給湯システム10を設置して初めて運転したときにのみ行ってもよいし、給湯システム10が運転を開始する毎に行ってもよいし、給湯システム10運転中に繰り返し行ってもよい。
図4に示されている蓄熱槽タイプ判別処理〔1〕S10の最初の処理S12では、熱回収中であるか否かを判別する。熱回収中とは、給湯システム10がソーラー集熱器12や発電ユニット110から、熱を供給されている状態を意味する。熱回収中であるか否かは、例えば、復路サーミスタ45の検出温度によって判別することができる。具体的には、復路サーミスタ45の検出温度が所定温度以上の場合には熱回収中であると判別し、復路サーミスタ45の検出温度が所定温度以下の場合には熱回収中でないと判別する。S12で熱回収中であると判別した場合(YESの場合)には、S14に移行する。
S14では、熱回収量を算出する。熱回収量は、次式から求まる。
熱回収量=比熱×(熱回収戻り温度−熱回収往き温度)×熱回収流量
ここで、比熱とは、熱媒体または水の比熱(kJ/(リットル/℃))である。熱回収戻り温度とは、復路サーミスタ45が検出する循環復路39、128aを流れる熱媒体あるいは温水の温度(℃)である。熱回収往き温度とは、往路サーミスタ44が検出する循環往路38、128bを流れる熱媒体あるいは温水の温度(℃)である。熱回収流量とは、循環復路39、128aまたは循環往路38、128bを流れる熱媒体、温水の流量(リットル/h)である。熱回収量の単位は「kJ/h」である。
例えば、水の比熱を4.19(kJ/(リットル/℃))、熱回収戻り温度を50(℃)、熱回収往き温度を40(℃)、熱回収流量を60(リットル/h)とすると、熱回収量は次のようになる。
熱回収量=4.19×(50−40)×60=2514(kJ/h);
S14に続くS16では、温度上昇率T(℃/h)を算出する。具体的には、S14で算出した熱回収量を、上部サーミスタ35よりも上側の蓄熱槽20、130の容積(本実施例の場合には、30(リットル))と水の比熱(4.19kJ/(リットル/℃))で除すことにより、温度上昇率Tを算出する。すなわち、Tとは、上部サーミスタ35の上側に貯められている水のみに回収した熱量が加えられた場合のその部分の水の温度上昇率である。熱回収量が2514(kJ/h)の場合には・・・・・。
T=2514/(30×4.19)=20(℃/h);
S16の次にはS18が実行される。S18では、上部サーミスタ35が検出した温度の上昇率が、S16で算出した温度上昇率Tの0.8倍よりも大きいか否かを判別する。例えば、温度上昇率Tが20(℃/h)の場合には、20(℃/h)の0.8倍の16(℃/h)よりも上部サーミスタ35が検出した温度上昇率が大きいか否かを判別する。つまり、上部サーミスタ35が検出した温度上昇率が、上部サーミスタ35よりも上側の容積の水に基づいて算出された温度上昇率Tの0.8倍よりも大きい場合には、回収した熱量のほとんどが上部サーミスタ35よりも上側の水の温度を上昇させるのに用いられたと判断できる。すなわち、蓄熱槽20、130の上部に温度成層が形成されている。S18で、上部サーミスタ35が検出した温度の上昇率が0.8Tよりも大きいと判別した場合(YESの場合)には、S20に移行する。
S20では、蓄熱槽が温度成層タイプであると判別する。そして、蓄熱槽タイプ判別処理〔1〕S10を終了する。S18で上部サーミスタ35が検出した温度の上昇率が0.8Tよりも大きくないと判別した場合(NOの場合)には、S22に移行して蓄熱槽が非温度成層タイプであると判別する。S22を行ってから、蓄熱槽タイプ判別処理〔1〕S10を終了する。
一方、S12で熱回収中でないと判別された場合(NOの場合)には、S24を行う。S24では、上部サーミスタ35の検出温度から下部サーミスタ36の検出温度を差し引いた値が30(℃)以上であるか否かを判別する。S24で上部サーミスタ35の検出温度から下部サーミスタ36の検出温度を差し引いた値が30(℃)以上であると判別した場合(YESの場合)には、S26に移行する。S26では、蓄熱槽が温度成層タイプであると判別する。このように、上部サーミスタ35と下部サーミスタ36の検出温度の差が30(℃)よりも大きい場合には、蓄熱槽に温度成層が形成されているとして、蓄熱槽が温度成層タイプであると判別する。この場合には、温度成層が形成されているので、蓄熱槽130は、部分蓄熱状態である。S26を行ってから、蓄熱槽タイプ判別処理〔1〕S10を終了する。S24で上部サーミスタ35の検出温度から下部サーミスタ36の検出温度を差し引いた値が30(℃)以上でないと判別した場合(NOの場合)には、S28に移行する。S28では、蓄熱槽が非温度成層タイプであると判別する。そして、蓄熱槽タイプ判別処理〔1〕S10を終了する。判別された蓄熱槽のタイプは、コントローラ21に記憶される。
なお、蓄熱槽タイプ判別処理〔1〕は、給湯システム10がコールドスタート(蓄熱槽20、130に蓄熱されていない状態からの運転開始)してから所定時間後(例えば、1時間後)に行われるのが好ましい。コールドスタートしてから所定時間後でないと上部サーミスタ35の検出温度が安定しないし、所定時間からさらに時間が経過すると、蓄熱槽20、130がフルに蓄熱されてしまい、温度成層タイプであっても、非温度成層タイプであっても、上部サーミスタ35と下部サーミスタ36の検出温度の差が生じなくなってしまうからである。
図5は、蓄熱槽タイプ判別処理〔2〕S30を示している。この処理によっても、蓄熱槽のタイプを判別することができる。蓄熱槽タイプ判別処理〔2〕S30の処理S32では、給湯システム10が熱回収中であるか否かを判別する。S32で熱回収中であると判別した場合(YESの場合)には、S34に移行する。
S34では、復路サーミスタ45の検出温度から上部サーミスタ35の検出温度を差し引いた値が5(℃)以下であるか否かを判別する。S34で復路サーミスタ45の検出温度から上部サーミスタ35の検出温度を差し引いた値が5(℃)以下であると判別した場合(YESの場合)には、S36に移行して蓄熱槽が温度成層タイプであると判別する。このように判別するのは、復路サーミスタ45の検出温度から上部サーミスタ35の検出温度を差し引いた値が5(℃)以下のように小さい場合には、供給された温水のほとんどが蓄熱槽20、130の上部に貯まり、それによって蓄熱槽20、130の上部に温度成層が形成されていると判断できるからである。S36実行後、蓄熱槽タイプ判別処理〔2〕を終了する。
S34で復路サーミスタ45の検出温度から上部サーミスタ35の検出温度を差し引いた値が5(℃)以下でないと判別した場合(NOの場合)には、S38に移行して蓄熱槽は非温度成層タイプであると判別する。つまり、復路サーミスタ45の検出温度から上部サーミスタ35の検出温度を差し引いた値が5(℃)以下でない場合には、温度成層が形成されていないと判断できる。よって、この場合には、蓄熱槽は非温度成層タイプであると判別する。S38を行ってから、蓄熱槽タイプ判別処理〔2〕を終了する。
図6は、蓄熱槽タイプ判別処理〔3〕S40を示している。この処理によっても、蓄熱槽のタイプを判別することができる。蓄熱槽タイプ判別処理〔3〕S40の処理S42では、ミキシングユニット24の第1水量センサ67が検出した水量が1(リットル/min)を超えているか否かを判別する。このS42は、補助熱源機22への温水供給の有無を判断するために設けられている。S42で第1水量センサ67が検出した水量が1(リットル/min)を超えていると判別した場合(YESの場合)には、S44を行う。
S44では、ミキシングユニット24の温水サーミスタ50が検出した温度が、給水サーミスタ48が検出した温度に5(℃)を加えた温度以上であるか否かを判別する。このS44は、給湯システム10がコールドスタート直後であるか否かを判別するために設けられている。温水サーミスタ50が検出した温度が、給水サーミスタ48が検出した温度に5(℃)を加えた温度以上でない場合には、蓄熱槽20、130から送り出された水の温度と、給湯システム10に供給された水道水の温度にほとんど差がないので、コールドスタート直後であると判断できる。逆に、温水サーミスタ50が検出した温度が、給水サーミスタ48が検出した温度に5(℃)を加えた温度以上である場合には、コールドスタート直後ではないと判断できる。この場合には、S44でYESと判別され、S46に移行する。
S46では、ミキシングユニット24の第1水量センサ67が検出した水量が2.7(リットル/min)を超えているか否かを判別する。この判別に用いる水量2.7(リットル/min)は、補助熱源機22が作動する最低水量(最低作動水量)として設定されているものである。S46の判別が設けられているのは、補助熱源機22の動作に矛盾を生じさせないためである。S46で第1水量センサ67が検出した水量が2.7(リットル/min)を超えていると判別した場合(YESの場合)には、S48を行う。
S48では、温水サーミスタ50が検出した温度が55(℃)以上であるか否かを判別する。温水サーミスタ50が検出した温度(貯湯槽20、130から送り出された水の温度)が55(℃)以上の場合には、蓄熱槽20、130に蓄熱されていると判断できる。S48で温水サーミスタ50が検出した温度が55(℃)以上であると判別した場合(YESの場合)には、S50を実行する。
一方、S42、S44、S46、S48でNOと判別された場合には、蓄熱が温度成層タイプであるか、非温度成層タイプであるかの判別を行うことができない。従って、この場合には、S56に移行して給湯システム10が前回運転されたときの給湯制御を選択する。詳しくは後述するが、給湯制御は、蓄熱槽が温度成層タイプであるか、非温度成層タイプであるかによって異なっている。そして、そのまま蓄熱槽タイプ判別処理〔3〕を終了する。
S50が行われると、タイマーがスタートする。タイマーがアップするまでの時間は60秒である。
S50の次に行われるS52では、タイマーアップであるか否か(タイマーがスタートしてから60秒が経過したか否か)を判別する。S52でタイマーアップではないと判別した場合(NOの場合)には、そのまま待機する。S52でタイマーアップであると判別した場合(YESの場合)には、S54に移行する。
S54では、温水サーミスタ50が検出した温度が55(℃)以上であるか否かを判別する。S54で温水サーミスタ50が検出した温度が55(℃)以上であると判別した場合(YESの場合)には、S56を実行する。S54で温水サーミスタ50が検出した温度が55(℃)以上でないと判別した場合(NOの場合)には、S58を行う。
S54は、S48で温水サーミスタ50の検出温度が55(℃)以上であると判別された場合(YESの場合)に実行される。このため、S54で温水サーミスタ50が検出した温度が55(℃)以上であると判別された場合には、タイマーアップまでの時間である60秒間に亘って蓄熱槽20、130から55(℃)以上の温水が送り出されたことになる。蓄熱槽が温度成層タイプであっても、フルに蓄熱が行われているか、部分蓄熱状態で温度成層が厚く形成されている場合には、60秒間に亘って蓄熱槽20、130から55(℃)以上の温水が送り出されることがあり得る。蓄熱槽が非温度成層タイプである場合には、温度成層が形成されない。このため、蓄熱槽が非温度成層タイプである場合にも、60秒間に亘って蓄熱槽20、130から55(℃)以上の温水が送り出される可能性が高い。従って、S54でYESと判別された場合には、蓄熱槽のタイプが温度成層タイプであるか、非温度成層タイプであるかを判断することができない。よって、この場合にはS56に移行し、給湯システム10が前回運転されたときの給湯制御を選択する。
S58では、温水サーミスタ50の検出温度が、給水サーミスタ48の検出温度に5(℃)を加えた温度以下であるか否かを判別する。S58で温水サーミスタ50の検出温度が、給水サーミスタ48の検出温度に5(℃)を加えた温度以下であると判別されるのは、蓄熱槽20、130から送り出される温水の温度と、給水された水道水の温度の差が5(℃)以内の場合である。また、S58はS52でYESと判別した(タイマーアップした)場合に行われる。よって、S48で温水サーミスタ50の検出温度が55(℃)であると判別されていたのに、60秒後には、蓄熱槽20、130から送り出される温水の温度は、水道水の温度近くまで低下してしまったことになる。このため、蓄熱槽20、130の上部に形成されていた温度成層が60秒の間に無くなったと判断できる。従って、S58で温水サーミスタ50の検出温度が、給水サーミスタ48の検出温度に5(℃)を加えた温度以下であると判別された場合(YESの場合)には、S60に移行して蓄熱槽のタイプが温度成層タイプであると判別する。そして、蓄熱槽タイプ判別処理〔3〕S40を終了する。
S58で温水サーミスタ50の検出温度が、給水サーミスタ48の検出温度に5(℃)を加えた温度以下ではないと判別した場合(NOの場合)には、蓄熱槽のタイプは温度成層タイプではない。従って、この場合にはS62に移行して蓄熱槽のタイプは非温度成層タイプであると判別する。S62を実行してから、蓄熱槽タイプ判別処理〔3〕を終了する。
以上説明した蓄熱槽タイプ判別処理〔3〕S40は、ミキシングユニット24に設けられている第1水量センサ67、温水サーミスタ50、給水サーミスタ48の検出値を用いて蓄熱槽が温度成層タイプか、非温度成層タイプであるかを判別している。従ってコントローラ21で蓄熱槽のタイプ判別を行うのではなく、ミキシングユニット24に蓄熱槽のタイプ判別を行う判別回路を設け、ミキシングユニット24で蓄熱槽のタイプ判別を行うこともできる。このように構成する場合には、ミキシングユニット24と、補助熱源機22等との間は信号線によって接続し、相互に作動状態の情報を伝達する。ミキシングユニット24のみで蓄熱槽のタイプ判別を行うことができると、メーカや型式が異なる蓄熱槽や補助熱源機22に、それらとのインターフェイスに係る最小限の改修を行うのみで、ミキシングユニット24を装着することができる。
以上説明したように、蓄熱槽タイプ判別処理〔1〕、〔2〕、〔3〕を実行することによって、蓄熱槽が温度成層タイプであるか、非温度成層タイプであるかを判別することができる。以下説明する温度制御処理〔1〕、〔2〕、〔3〕のいずれによっても、給湯システム10に対して、蓄熱槽のタイプに応じた制御を行うことができる。
図7に示されているように、温度制御処理〔1〕S70のS72では、第1水量センサ67の検出流量が2.7(リットル/min)を超えているか否かを判別する。既に説明したように、2.7(リットル/min)は補助熱源機22の最低作動流量である。第1水量センサ67の検出流量が最低作動流量以上でないと、補助熱源機22が作動しないため、給湯システム10は温度制御を行うことができない。よって、S72で第1水量センサ67の検出流量が2.7(リットル/min)を超えていないと判別した場合(NOの場合)には、そのまま待機する。S72で第1水量センサ67の検出流量が2.7(リットル/min)を超えていると判別した場合(YESの場合)には、S74を実行する。
S74では、蓄熱槽のタイプが温度成層タイプの場合には「α」の値として5(℃)を設定し、非温度成層タイプの場合には「α」の値として1(℃)を設定する。
S74に続くS76では、温水サーミスタ50の検出温度が、リモコン23の設定温度に「α」を加えた温度以下であるか否かを判別する。上述した値に「α」が設定されているので、S76では、温水サーミスタ50の検出温度が低下すると、蓄熱槽のタイプが温度成層タイプである場合の方が、非温度成層タイプである場合よりも、早めにYESと判別する。S76で温水サーミスタ50の検出温度が、リモコン23の設定温度に「α」を加えた温度以下であると判別した場合(YESの場合)には、S78に移行する。S76で温水サーミスタ50の検出温度が、リモコン23の設定温度に「α」を加えた温度以下ではないと判別した場合(NOの場合)には、リターンして温度制御処理〔1〕の最初処理であるS72を再び実行する。
S78では、補助熱源機22の点火動作を行う。具体的には、バーナ56、57に点火する。S78を行ってから、温度制御処理〔1〕のS72を再び実行する。
上記の温度制御処理〔1〕S70は、蓄熱槽20、130から送り出される温水の温度が低下した場合(温水サーミスタ50の検出温度が低下した場合)に、蓄熱槽のタイプが温度成層タイプである場合の方が、非温度成層タイプである場合よりも、早めに補助熱源機22の点火動作を行う。蓄熱槽のタイプが温度成層タイプだと、温度成層が存在していた場合には、その温度成層分の温水が蓄熱槽130から送り出されてしまうと、温水の温度は急激に低下する。補助熱源機22の点火動作を早めに行うことにより、温水温度が急激に低下しても、給湯システム10が供給する温水温度のアンダーシュートを防止して、温水温度をリモコン23の設定温度に追従させることができる。非温度成層タイプの蓄熱槽20では、蓄熱槽20から送り出される温水の温度は除々に低下する。このため、補助熱源機22の点火動作を遅目に行っても、温水温度はアンダーシュートすることなく、リモコン23の設定温度に追従する。逆に、非温度成層タイプの蓄熱槽20で早めに補助熱源機22の点火動作を行うと、温水温度がリモコン23の設定温度をオーバーシュートしてしまう。よって、温度制御処理〔1〕S70を実行することにより、蓄熱槽のタイプに適した温度制御を実現することができる。
図8に示されているように、温度制御処理〔2〕S80のS82では、ミキシングユニット24の第1水量センサ67の検出流量が2.7(リットル/min)を超えているか否かを判別する。S82で第1水量センサ67の検出流量が2.7(リットル/min)を超えていないと判別した場合(NOの場合)には、そのまま待機する。S82で第1水量センサ67の検出流量が2.7(リットル/min)を超えていると判別した場合(YESの場合)には、S84に移行する。
S84では、蓄熱槽のタイプが温度成層タイプの場合には「α」の値として1(℃)を設定し、非温度成層タイプの場合には「α」の値として0(℃)を設定する。
S84の次に実行されるS86では、蓄熱槽20、130の上部サーミスタ35の検出温度が、リモコン23の設定温度に「α」を加えた温度以下であるか否かを判別する。上述したように「α」の値が設定されているので、S86は、上部サーミスタ35の検出温度が低下すると、蓄熱槽のタイプが温度成層タイプである場合の方が、非温度成層タイプである場合よりも、早めにYESと判別する。S86で上部サーミスタ35の検出温度が、リモコン23の設定温度に「α」を加えた温度以下であると判別した場合(YESの場合)には、S88に移行する。S86で上部サーミスタ50の検出温度が、リモコン23の設定温度に「α」を加えた温度以下ではないと判別した場合(NOの場合)には、リターンして温度制御処理〔2〕の最初処理であるS82を再び実行する。
S88では、補助熱源機22の点火動作を行う。そして、S82を再び実行する。
上部サーミスタ35よりも上側の蓄熱槽20、130には、30リットルの温水が貯められる。このため、上部サーミスタ35の検出温度が低下しても、蓄熱槽20、130から送り出される温水の温度は直ちに低下しない。このため、本温度制御処理〔2〕S80は、上述した温度制御処理〔1〕S70よりも、「α」の値を小さく設定することができる(温度制御処理〔1〕S70では「α=5、1(℃)」、温度制御処理〔2〕S80では「α=1、0(℃)」)。すなわち、温度制御処理〔2〕S80は、温度制御処理〔1〕S70よりも補助熱源機22の点火動作を行うタイミングが遅くなっている。このため、ガス代を節約することができる。
図9に示されているように、温度制御処理〔3〕S90の処理S92では、ミキシングユニット24の第1水量センサ67の検出流量が2.7(リットル/min)を超えているか否かを判別する。S92で第1水量センサ67の検出流量が2.7(リットル/min)を超えていないと判別した場合(NOの場合)には、そのまま待機する。S92で第1水量センサ67の検出流量が2.7(リットル/min)を超えていると判別した場合(YESの場合)には、S94を実行する。
S94では、蓄熱槽のタイプが温度成層タイプで、部分蓄熱状態であるか否かを判別する。温度成層タイプで、部分蓄熱状態であることは、例えば、蓄熱槽タイプ判別処理〔1〕S10のS26で判別されている。S94で蓄熱槽のタイプが温度成層タイプで、部分蓄熱状態であると判別した場合(YESの場合)には、S96を行う。
S96では、浴槽79への自動湯張りが行われているか否かを判別する。浴槽79への自動湯張りは、リモコン23を操作することによって行うことができる。S96で浴槽79への自動湯張りが行われていると判別した場合(YESの場合)には、S98に移行する。
S98では、温水サーミスタ50の検出温度が、リモコン設定温度から2(℃)を減じた温度以下であるか否かを判別する。S98で温水サーミスタ50の検出温度が、リモコン設定温度から2(℃)を減じた温度以下であると判別した場合(YESの場合)には、S100を実行して補助熱源機22の点火動作を行う。そして、リターンして温度制御処理〔3〕S90最初の処理であるS92を再び実行する。S98で温水サーミスタ50の検出温度が、リモコン設定温度から2(℃)を減じた温度以下でないと判別した場合(NOの場合)には、S100をスキップする。
以上説明したように、蓄熱槽のタイプが温度成層タイプで部分蓄熱状態であり、かつ浴槽79に自動湯張り中の場合には、温水サーミスタ50の検出温度が、リモコン設定温度から2(℃)を減じた温度以下になるまで、補助熱源機22の点火動作を行わず、蓄熱槽130に貯められている温水で湯張りを行う。このようにするのは、浴槽79に自動湯張りを行った場合には、その後に浴槽79の湯温がリモコン設定温度になるように補助熱源機22を作動させるので、蓄熱槽130から送り出される温水の温度が低くても、その温水をできるだけ利用したいからである。
蓄熱槽が温度成層タイプで、部分蓄熱状態である場合には、蓄熱槽130の温度成層を使い切ってしまうと、温水の温度は急激に低下する。蓄熱槽130から送り出される温水の温度が急激に低下すると、それから補助熱源機22の点火動作を行ったのでは給湯温度の変動が大きくなってしまう。そこで、S96で浴槽79への自動湯張りが行われていないと判別した場合(NOの場合)には、S100を実行して補助熱源機22の点火動作を行う。補助熱源機22の点火動作をあらかじめ行っておけば、その後に蓄熱槽130から送り出される温水の温度が急激に低下しても、給湯温度が大きく変動するのを防止することができる。
一方、S94で蓄熱槽が温度成層タイプで、部分蓄熱状態でないと判別した場合(NOの場合。すなわち、温度成層タイプで完全蓄熱状態、あるいは非温度成層タイプである場合)には、S102を行う。
S102では、温水サーミスタ50の検出温度が、リモコン設定温度に1(℃)を加えた温度以下であるか否かを判別する。S102で温水サーミスタ50の検出温度が、リモコン設定温度に1(℃)を加えた温度以下となった場合(YESの場合)には、S100に移行して補助熱源機22の点火動作を行う。S102は、蓄熱槽が温度成層タイプで完全蓄熱状態、あるいは非温度成層タイプの場合に行われる。蓄熱槽が温度成層タイプで完全蓄熱状態、あるいは非温度成層タイプの場合には、温度成層タイプで部分蓄熱状態の場合に比べて蓄熱槽20、130から送り出される温水の温度は緩やかに低下する。このため、S96でNOと判別された場合のように、あらかじめ蓄熱槽から送り出される温水の温度低下に備えて補助熱源機22の点火動作を行っておくのではなく、温水サーミスタ50の検出温度が、リモコン設定温度に1(℃)を加えた温度以下になってから補助熱源機22の点火動作を行う。S102で温水サーミスタ50の検出温度が、リモコン設定温度に1(℃)を加えた温度以下でない場合(NOの場合)には、リターンして温度制御処理〔3〕の最初の処理であるS92を再び実行する。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
従って、例えば、以下に記載するように構成することもできる。
(1)本発明に係る給湯システムに接続されるのは、ソーラー熱交換器や燃料電池式の発電ユニットに限られない。給湯システムには、種々の熱供給源(例えば、ガスタービンエンジン、レシプロエンジン)を接続可能である。
(2)判別した蓄熱槽の蓄熱タイプ(温度成層タイプ、非温度成層タイプ)に基づいて実行する温度制御は、補助熱源機の点火動作に係るものに限られない。その温度制御は、蓄熱槽の蓄熱タイプに合わせて実行するものであればよい(例えば、ミキシングバルブの制御を蓄熱槽タイプによって異ならせる)。
(3)蓄熱槽の蓄熱タイプは、給湯システムを設置する際に設置者が設定するように構成することもできる。例えば、コントローラに、温度成層タイプであるか非温度成層タイプであるかを選択するスイッチを設けておく。
(4)温水を貯めて温水を送り出すタイプ(「Aタイプ」と呼ぶ)と、蓄熱槽に貯められた加熱媒体で水道水を加熱して温水を送り出すタイプ(「Bタイプ」と呼ぶ)とから蓄熱槽が選択される給湯システムにおいて、コントローラがAタイプであるか、Bタイプであるかを判別することもできる。この場合にも、上述した給湯システム10と同様の構成で、蓄熱槽のタイプ判別を行うことができる(例えば、蓄熱槽から送り出される温水の温度低下割合によって、蓄熱槽がAタイプであるか、Bタイプであるかを判別する)。
Aタイプの蓄熱槽では、例えば、蓄熱槽外に設けられたバーナで加熱された温水が蓄熱槽に貯められる。Bタイプの蓄熱槽では、例えば、蓄熱槽外に設けられたバーナで加熱された温水が蓄熱槽に貯められ、その温水が蓄熱層内に設けられた熱交換器を通過する水道水を加熱する。
実施例に係る給湯システムの系統図(ソーラー集熱器と接続された状態)。 実施例に係る給湯システムの系統図(発電ユニットと接続された状態)。 実施例に係る蓄熱槽の内部の温度分布を示すグラフ。 実施例に係る蓄熱槽タイプ判別処理〔1〕のフローチャート。 実施例に係る蓄熱槽タイプ判別処理〔2〕のフローチャート。 実施例に係る蓄熱槽タイプ判別処理〔3〕のフローチャート。 実施例に係る温度制御処理〔1〕のフローチャート。 実施例に係る温度制御処理〔2〕のフローチャート。 実施例に係る温度制御処理〔3〕のフローチャート。
符号の説明
10:給湯システム
12:ソーラー集熱器
13:ソーラー熱交換器、13a:出口、13b:入口
20:蓄熱槽、20a:出口部
21:コントローラ
22:補助熱源機
23:リモコン
24:ミキシングユニット、24a:給水入口、24b:温水出口、24c:温水入口
25:湯張り経路
26:給水経路、26a:入口
27:注湯弁
28:減圧弁
30:ミキシングユニット給水経路
31:リリーフ弁
32:圧力開放経路、32a:一端、32b:他端
33:排水経路
34:排水弁
35:上部サーミスタ
36:下部サーミスタ
37:蓄熱槽熱交換器、37a:入口、37b:出口
38:循環往路
39:循環復路
40:循環ポンプ
42:温水経路
44:往路サーミスタ
45:復路サーミスタ
47:第2水量センサ
48:給水サーミスタ
50:温水サーミスタ
51:温水経路
52:バーナ熱交換器
53:加圧ポンプ
54:温水サーミスタ
55:ハイカットサーミスタ
56、57:バーナ
58:追炊き熱交換器
59:補給水弁
60:バーナ熱交換器
61:シスターン
62:シスターン入水経路
63:給湯栓経路
64:給湯栓
65:出湯サーミスタ
66:水位電極、66a:ハイレベルスイッチ、66b:ローレベルスイッチ
67:第1水量センサ
68:シスターン出水経路
69:暖房ポンプ
70:低温水経路
71:バーナ上流経路
72:暖房低温サーミスタ
73:高温水経路
74:暖房高温サーミスタ
75:暖房端末熱動弁
76:暖房端末機、76a:操作スイッチ、76b:熱交換器
77:追炊き経路
78:追炊き熱動弁
79:浴槽、79a:吸出口、79b:供給口
80:風呂循環経路
81:風呂水位センサ
82:風呂循環ポンプ
83:湯張り量センサ
84:風呂水流スイッチ
85:風呂サーミスタ
86:三方弁、86a:Aポート、86b:Bポート、86c:Cポート
87:低温水戻り経路
88:蓄熱槽経路、88a:熱交換部
89:低温戻りサーミスタ
90:床暖房熱動弁
91:床暖房機
93:バイパス熱動弁
94:低温サーミスタ
110:発電ユニット
112:改質器
114:燃料電池
116:熱交換器
117:熱媒温度センサ
118:熱交換器
119:熱媒冷却ファン
120:熱媒放熱器
121:水素ガス供給経路
122:熱媒三方弁、122a:入口、122b:出口、122c:出口
124:熱媒循環経路
125:リザーブタンク
126:燃焼ガス経路
127:熱媒ポンプ
128:循環経路、128a:循環復路、128b:循環往路
129:冷却経路
130:蓄熱槽
131:バーナ

Claims (5)

  1. 加熱された熱媒体を貯める蓄熱槽と、
    蓄熱槽から送り出された温水の温度を調整する給湯温度調整手段と、
    蓄熱槽内の温度を検出する蓄熱槽温度検出手段と
    給湯温度調整手段を制御するコントローラを備えており、
    蓄熱槽は、蓄熱槽の上部から加熱された熱媒体を受入れる第1タイプと、蓄熱槽の下部から加熱された熱媒体を受入れる第2タイプのなかから選択されており、
    コントローラは、蓄熱槽が第1タイプであるときの制御ロジックと、蓄熱槽が第2タイプであるときの制御ロジックと、選択された蓄熱槽のタイプを単位蓄熱量に対する蓄熱槽内温度の上昇幅に基づいて判別して制御ロジックを選択するロジックを記憶していることを特徴とする給湯システム。
  2. 加熱された熱媒体を貯める蓄熱槽と、
    蓄熱槽から送り出された温水の温度を調整する給湯温度調整手段と、
    蓄熱槽内の上部の温度を検出する蓄熱槽上部温度検出手段と、
    蓄熱槽内の下部の温度を検出する蓄熱槽下部温度検出手段と、
    給湯温度調整手段を制御するコントローラを備えており、
    蓄熱槽は、蓄熱槽の上部から加熱された熱媒体を受入れる第1タイプと、蓄熱槽の下部から加熱された熱媒体を受入れる第2タイプのなかから選択されており、
    コントローラは、蓄熱槽が第1タイプであるときの制御ロジックと、蓄熱槽が第2タイプであるときの制御ロジックと、選択された蓄熱層のタイプを蓄熱槽内の上下の温度差に基づいて判別して制御ロジックを選択するロジックを記憶していることを特徴とする給湯システム。
  3. 加熱された熱媒体を貯める蓄熱槽と、
    蓄熱槽から送り出された温水の温度を調整する給湯温度調整手段と、
    蓄熱槽内の温度を検出する蓄熱槽温度検出手段と、
    蓄熱槽に送込まれる熱媒体の温度を検出する入力温度検出手段と、
    給湯温度調整手段を制御するコントローラを備えており、
    蓄熱槽は、蓄熱槽の上部から加熱された熱媒体を受入れる第1タイプと、蓄熱槽の下部から加熱された熱媒体を受入れる第2タイプのなかから選択されており、
    コントローラは、蓄熱槽が第1タイプであるときの制御ロジックと、蓄熱槽が第2タイプであるときの制御ロジックと、選択された蓄熱層のタイプを蓄熱槽温度検出手段の検出温度と入力温度検出手段の検出温度の差に基づいて判別して制御ロジックを選択するロジックを記憶していることを特徴とする給湯システム。
  4. 加熱された熱媒体を貯める蓄熱槽と、
    蓄熱槽から送り出された温水の温度を調整する給湯温度調整手段と、
    蓄熱槽内から送り出された温水の温度を検出する出湯温度検出手段と、
    給湯温度調整手段を制御するコントローラを備えており、
    蓄熱槽は、蓄熱槽の上部から加熱された熱媒体を受入れる第1タイプと、蓄熱槽の下部から加熱された熱媒体を受入れる第2タイプのなかから選択されており、
    コントローラは、蓄熱槽が第1タイプであるときの制御ロジックと、蓄熱槽が第2タイプであるときの制御ロジックと、出湯温度検出手段の検出温度が所定時間以内に所定温度幅以上低下する事象を観測したとき以降は選択された蓄熱層のタイプを第1タイプであると判別し、その事象が観測されないうちは選択された蓄熱層のタイプを第2タイプであると判別して制御ロジックを選択するロジックを記憶していることを特徴とする給湯システム。
  5. 加熱された熱媒体を貯める蓄熱槽と、
    蓄熱槽から送り出された温水の温度を調整する給湯温度調整手段と、
    蓄熱槽内から送り出された温水の温度を検出する出湯温度検出手段と、
    給湯温度調整手段を制御するコントローラを備えており、
    蓄熱槽は、温水を貯めて温水を送り出すAタイプと、蓄熱槽に貯められた加熱媒体で水道水を加熱して温水を送り出すBタイプのなかから選択されており、
    コントローラは、蓄熱槽がAタイプであるときの制御ロジックと、蓄熱槽がBタイプであるときの制御ロジックと、出湯温度検出手段の検出温度が所定時間以内に所定温度幅以上低下する事象を観測したとき以降は選択された蓄熱層のタイプをAタイプであると判別し、その事象が観測されないうちは選択された蓄熱層のタイプをBタイプであると判別して制御ロジックを選択するロジックを記憶していることを特徴とする給湯システム。
JP2003324221A 2003-09-17 2003-09-17 給湯システム Expired - Fee Related JP4145758B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324221A JP4145758B2 (ja) 2003-09-17 2003-09-17 給湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324221A JP4145758B2 (ja) 2003-09-17 2003-09-17 給湯システム

Publications (2)

Publication Number Publication Date
JP2005090849A JP2005090849A (ja) 2005-04-07
JP4145758B2 true JP4145758B2 (ja) 2008-09-03

Family

ID=34455028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324221A Expired - Fee Related JP4145758B2 (ja) 2003-09-17 2003-09-17 給湯システム

Country Status (1)

Country Link
JP (1) JP4145758B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125591B2 (ja) * 1994-08-31 2001-01-22 松下電器産業株式会社 貯湯式給湯器
JP3714215B2 (ja) * 2001-09-18 2005-11-09 株式会社ノーリツ 給湯システム
JP2003111153A (ja) * 2001-09-28 2003-04-11 Toto Ltd 操作装置及び給湯装置

Also Published As

Publication number Publication date
JP2005090849A (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4327170B2 (ja) 貯湯式給湯システム
JP4295699B2 (ja) コージェネレーションシステム
JP4712608B2 (ja) 貯湯式給湯システム
JP4546273B2 (ja) 給湯システム
JP4488884B2 (ja) 給湯システム
JP4064940B2 (ja) 給湯システム
JP4359341B2 (ja) 給湯システム
JP4145758B2 (ja) 給湯システム
JP2008045841A (ja) 貯湯式給湯システムとコージェネレーションシステム
JP4095046B2 (ja) 給湯システム
JP4875948B2 (ja) 貯湯式給湯システムとコージェネレーションシステム
JP4875923B2 (ja) 貯湯式給湯システム
JP4518912B2 (ja) コージェネレーションシステム
JP4523809B2 (ja) 給湯装置
JP2008045843A (ja) 給湯暖房システム
JP4292115B2 (ja) 給湯システム
JP4077419B2 (ja) コージェネレーションシステム
JP4076939B2 (ja) 給湯システム
JP2005249340A (ja) 給湯システム
JP4440721B2 (ja) 給湯システム
JP4160066B2 (ja) コージェネレーションシステム
JP2004163008A (ja) コージェネレーションシステム
JP4223499B2 (ja) コージェネレーションシステム
JP4126282B2 (ja) 給湯装置
JP4359340B2 (ja) 給湯システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees