JP4144486B2 - Sample concentration detection method, apparatus and program - Google Patents

Sample concentration detection method, apparatus and program Download PDF

Info

Publication number
JP4144486B2
JP4144486B2 JP2003321211A JP2003321211A JP4144486B2 JP 4144486 B2 JP4144486 B2 JP 4144486B2 JP 2003321211 A JP2003321211 A JP 2003321211A JP 2003321211 A JP2003321211 A JP 2003321211A JP 4144486 B2 JP4144486 B2 JP 4144486B2
Authority
JP
Japan
Prior art keywords
excitation light
fluorescence intensity
fluorescence
intensity
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003321211A
Other languages
Japanese (ja)
Other versions
JP2005090999A (en
Inventor
譲優 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003321211A priority Critical patent/JP4144486B2/en
Publication of JP2005090999A publication Critical patent/JP2005090999A/en
Application granted granted Critical
Publication of JP4144486B2 publication Critical patent/JP4144486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、試料濃度検出方法、装置およびプログラムに関し、特に試料雰囲気中のワーク表面に蛍光塗料を塗布し、この蛍光塗料面に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度を検出する試料濃度検出方法、装置およびプログラムに関する。   The present invention relates to a sample concentration detection method, apparatus, and program, and in particular, a fluorescent paint is applied to a work surface in a sample atmosphere, and fluorescence is generated by irradiating the fluorescent paint surface with excitation light to obtain the fluorescence intensity. The present invention relates to a sample concentration detection method, apparatus, and program for detecting the sample concentration on the workpiece surface.

励起光を照射した際、試料濃度に応じて消光、発光する蛍光塗料を利用し、ワーク表面の試料濃度を検出する装置および方法が提案されている。   There has been proposed an apparatus and a method for detecting a sample concentration on the surface of a workpiece by using a fluorescent paint that extinguishes and emits light according to the sample concentration when irradiated with excitation light.

特許文献1(特開平9−113450号公報)には、TPP(テトラ・ポリ・フィリン)を含むマトリクスポリマを塗布してなる検知材に、光を照射した状態で混合ガスを接触させ、TPPの色の変化を特定波長の透過光または反射光のスペクトル変化として測定してガス濃度を測定するガス濃度検知方法が開示されている。   In Patent Document 1 (Japanese Patent Application Laid-Open No. 9-113450), a mixed gas is brought into contact with a detection material formed by applying a matrix polymer containing TPP (tetra-polyphylline) in a state of irradiating light. A gas concentration detection method is disclosed in which a gas concentration is measured by measuring a color change as a spectral change of transmitted light or reflected light of a specific wavelength.

特許文献2(特表2002−529682号公報)および特許文献3(特表平9−506166号公報)には、酸素消光性を有する蛍光塗料を、光ファイバ端面に塗布して光ファイバ先端部の酸素濃度を計測可能とするガス濃度検知方法が開示されている。   In Patent Document 2 (Japanese Patent Publication No. 2002-529682) and Patent Document 3 (Japanese Patent Publication No. 9-506166), a fluorescent paint having an oxygen quenching property is applied to the end face of the optical fiber, and the tip of the optical fiber is applied. A gas concentration detection method capable of measuring the oxygen concentration is disclosed.

また、特許文献4(特開平6−34545号公報)には、励起光源と試料の間に励起光照射用光ファイバ束を配して、励起光の照射位置を変えたり、2次元的な面分析をする場合に光学系や試料の移動を不要にする光物性評価方法が開示されている。   Further, in Patent Document 4 (Japanese Patent Laid-Open No. 6-34545), an excitation light irradiation optical fiber bundle is arranged between the excitation light source and the sample to change the irradiation position of the excitation light, or a two-dimensional surface. An optical property evaluation method that eliminates the need to move an optical system or a sample in the case of analysis is disclosed.

特開平9−113450号公報JP-A-9-113450 特表2002−529682号公報Japanese translation of PCT publication No. 2002-529682 特表平9−506166号公報Japanese National Patent Publication No. 9-506166 特開平6−34545号公報JP-A-6-34545

しかし、このような蛍光塗料面に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することによりガス濃度を検出する方法においては、ガス濃度に依存しない要因による蛍光強度の変動が問題となる場合がある。蛍光強度の変動が生じると、その蛍光強度の変動が蛍光によるガス濃度の検出ノイズとなり、高精度な蛍光強度の取得の妨げとなる。このような蛍光強度変動要因としては、ガス濃度非依存の蛍光強度変動要因一般であるが、特に「励起光源の明暗変化」、「励起光の照射ムラ」、「蛍光塗料の膜厚ムラ」を挙げることができる。「励起光源の明暗変化」とは、励起光源を継続使用していると励起光源自体の明暗が変化する経時的変化によって、励起光のワーク表面への照射量が変化することである。「励起光の照射ムラ」とは、励起光を照射されたワーク表面の部位的な励起光の照射量の差が生じることをいい、ワークが平面形状でなく曲面形状であるなど表面形状や励起光源の照射角度等などに起因する場合が多い。「蛍光塗料の膜厚ムラ」とは、蛍光塗料膜がワーク表面に均一に塗布されていなく、蛍光塗料の膜厚によって部位的に蛍光強度が変化してしまうことをいう。   However, in the method of generating fluorescence by irradiating excitation light onto such a fluorescent paint surface and detecting the gas concentration by acquiring the fluorescence intensity, the fluorescence intensity fluctuates due to a factor independent of the gas concentration. May be a problem. When the fluorescence intensity fluctuates, the fluctuation of the fluorescence intensity becomes a gas concentration detection noise due to the fluorescence, which hinders the acquisition of highly accurate fluorescence intensity. As such fluorescence intensity fluctuation factors, the fluorescence intensity fluctuation factors that are independent of the gas concentration are generally used, but in particular, “brightness / darkness change of excitation light source”, “irradiation unevenness of excitation light”, “film thickness unevenness of fluorescent paint” Can be mentioned. “Brightness / darkness change of the excitation light source” means that the irradiation amount of the excitation light on the work surface changes due to a temporal change in which the brightness of the excitation light source itself changes when the excitation light source is continuously used. “Excitation light irradiation unevenness” refers to a difference in the amount of excitation light irradiated on the surface of the workpiece irradiated with the excitation light. It is often caused by the illumination angle of the light source. “Thickness unevenness of fluorescent paint” means that the fluorescent paint film is not uniformly applied to the surface of the workpiece, and the fluorescence intensity changes locally depending on the thickness of the fluorescent paint.

本発明は、上記課題等に鑑みてなされたものであり、試料濃度に依存しない蛍光強度変動要因による影響を防止し、より高精度にワーク表面の試料濃度を検出する試料濃度検出方法、装置およびプログラムの提供を目的とする。   The present invention has been made in view of the above-described problems, and the like, a sample concentration detection method, an apparatus, and a sample concentration detection method for detecting the sample concentration on the workpiece surface with higher accuracy while preventing the influence of the fluorescence intensity variation factor independent of the sample concentration. The purpose is to provide a program.

本発明の第1の発明は、試料雰囲気中のワーク表面上に塗布された蛍光塗料面上に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度を検出する試料濃度検出方法であって、励起光の照射により発生した蛍光の蛍光強度を取得する蛍光強度取得工程と、この蛍光強度を取得すると同時に、前記ワーク表面から試料濃度非依存による蛍光強度変動要因の影響を演算する変動要因演算工程と、この蛍光強度変動要因の影響に基づいて、前記蛍光強度を補正する補正工程と、補正後の蛍光強度に基づいて前記ワーク表面の試料濃度を判定する判定工程と、を有し、前記変動要因演算工程は、前記ワークの前記蛍光塗料面上に前記励起光を反射する励起光反射層を部分的に塗布する塗布工程と、前記励起光反射層により反射した励起光の励起光強度を取得する励起光強度取得工程と、この反射した励起光強度に基づいて、試料濃度非依存による蛍光強度変動要因の影響を演算する影響演算工程であって、励起光反射層の位置と反射した励起光の励起光強度の関係を整合する整合工程と、励起光反射層相互間を内挿補間してワーク表面全体の励起光を推定する推定工程と、この推定された励起光からワーク表面全体の理論蛍光強度を推定する理論強度演算工程と、この理論蛍光強度と前記蛍光強度とを比較する比較工程と、を有し、この比較結果に基づいて試料濃度非依存による蛍光強度変動要因の影響を演算する、工程と、を有することを特徴とする。   According to a first aspect of the present invention, fluorescence is generated by irradiating excitation light onto the surface of a fluorescent paint applied on the surface of a workpiece in a sample atmosphere, and the fluorescence intensity is acquired. A sample concentration detection method for detecting a sample concentration, a fluorescence intensity acquisition step for acquiring fluorescence intensity of fluorescence generated by irradiation of excitation light, and acquiring the fluorescence intensity, and at the same time, independent of the sample concentration from the workpiece surface A variation factor calculation step for calculating the influence of the fluorescence intensity variation factor, a correction step for correcting the fluorescence intensity based on the influence of the fluorescence intensity variation factor, and a sample concentration on the workpiece surface based on the corrected fluorescence intensity And the variation factor calculation step partially applies an excitation light reflecting layer that reflects the excitation light onto the fluorescent paint surface of the workpiece. , An excitation light intensity acquisition step for acquiring the excitation light intensity of the excitation light reflected by the excitation light reflection layer, and an effect of calculating the influence of the fluorescence intensity variation factor depending on the sample concentration based on the reflected excitation light intensity Computation process that matches the relationship between the position of the excitation light reflection layer and the excitation light intensity of the reflected excitation light, and interpolates between the excitation light reflection layers to estimate the excitation light on the entire workpiece surface An estimation step, a theoretical intensity calculation step for estimating the theoretical fluorescence intensity of the entire workpiece surface from the estimated excitation light, and a comparison step for comparing the theoretical fluorescence intensity with the fluorescence intensity. And a step of calculating the influence of the fluorescence intensity variation factor depending on the sample concentration based on the result.

本発明の第2の発明は、試料雰囲気中のワーク表面上に塗布された蛍光塗料面上に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度を検出する試料濃度検出装置であって、励起光を前記蛍光塗料面上へ照射することにより発生した蛍光の蛍光強度を取得する蛍光強度取得手段と、この蛍光強度を取得すると同時に、前記ワーク表面から試料濃度非依存による蛍光強度変動要因の影響を演算する変動要因演算手段と、この蛍光強度変動要因の影響に基づいて、前記蛍光強度を補正する補正手段と、補正後の蛍光強度に基づいて前記ワーク表面の試料濃度を判定する判定手段と、を有し、前記変動要因演算手段は、前記ワークの前記蛍光塗料面上に部分的に塗布された、前記励起光を反射する励起光反射層により反射した励起光の励起光強度を取得する励起光強度取得手段と、この反射した励起光強度に基づいて、試料濃度非依存による蛍光強度変動要因の影響を演算する影響演算手段であって、励起光反射層の位置と反射した励起光の励起光強度の関係を整合する整合手段と、励起光反射層相互間を内挿補間してワーク表面全体の励起光を推定する推定手段と、この推定された励起光からワーク表面全体の理論蛍光強度を推定する理論強度演算手段と、この理論蛍光強度と前記蛍光強度とを比較する比較手段と、を有し、この比較結果に基づいて試料濃度非依存による蛍光強度変動要因の影響を演算する手段と、を有することを特徴とする。   According to a second aspect of the present invention, fluorescence is generated by irradiating excitation light onto a fluorescent paint surface coated on a work surface in a sample atmosphere, and the fluorescence intensity is acquired to obtain the surface of the work surface. A sample concentration detection device for detecting a sample concentration, a fluorescence intensity acquisition means for acquiring fluorescence intensity of fluorescence generated by irradiating excitation light onto the fluorescent paint surface, and simultaneously acquiring the fluorescence intensity, Fluctuation factor calculation means for calculating the influence of the fluorescence intensity fluctuation factor independent of the sample concentration from the workpiece surface, correction means for correcting the fluorescence intensity based on the influence of the fluorescence intensity fluctuation factor, and the corrected fluorescence intensity Determination means for determining a sample concentration on the surface of the workpiece based on the variation factor calculation means, wherein the variation factor calculation means applies the excitation light partially applied on the fluorescent paint surface of the workpiece. The excitation light intensity acquisition means for acquiring the excitation light intensity of the excitation light reflected by the excitation light reflection layer to be emitted, and the influence of calculating the influence of the fluorescence intensity fluctuation factor depending on the sample concentration based on the reflected excitation light intensity Computation means that matches the relationship between the position of the excitation light reflection layer and the excitation light intensity of the reflected excitation light, and interpolates between the excitation light reflection layers to estimate the excitation light on the entire workpiece surface A comparison means for comparing the theoretical fluorescence intensity with the fluorescence intensity, and a comparison means for comparing the theoretical fluorescence intensity with the fluorescence intensity. And a means for calculating the influence of the fluorescence intensity variation factor depending on the sample concentration based on the result.

本発明の第3の発明は、試料雰囲気中のワーク表面上に塗布された蛍光塗料面上に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度をコンピュータによって検出する試料濃度検出プログラムであって、励起光の照射により発生した蛍光の蛍光強度を取得し、この蛍光強度を取得すると同時に、前記ワークの前記蛍光塗料面上に部分的に塗布された、前記励起光を反射する励起光反射層により反射した励起光の励起光強度を取得し、励起光反射層の位置と反射した励起光の励起光強度の関係を整合する整合し、励起光反射層相互間を内挿補間してワーク表面全体の励起光を推定し、この推定された励起光からワーク表面全体の理論蛍光強度を推定し、この理論蛍光強度と前記蛍光強度とを比較する比較し、この比較結果に基づいて試料濃度非依存による蛍光強度変動要因の影響を演算し、この蛍光強度変動要因の影響に基づいて、前記蛍光強度を補正し、補正後の蛍光強度に基づいて前記ワーク表面の試料濃度を判定することを特徴とする。   According to a third aspect of the present invention, fluorescence is generated by irradiating excitation light onto the surface of a fluorescent paint applied on the surface of the workpiece in the sample atmosphere, and the fluorescence intensity is acquired. A sample concentration detection program for detecting a sample concentration by a computer, acquiring fluorescence intensity of fluorescence generated by irradiation of excitation light, and acquiring the fluorescence intensity at the same time, partially on the fluorescent paint surface of the workpiece The excitation light intensity of the excitation light reflected by the applied excitation light reflection layer that reflects the excitation light is acquired, and matching is performed to match the relationship between the position of the excitation light reflection layer and the excitation light intensity of the reflected excitation light, The excitation light on the entire workpiece surface is estimated by interpolating between the excitation light reflecting layers, and the theoretical fluorescence intensity on the entire workpiece surface is estimated from the estimated excitation light. The theoretical fluorescence intensity and the fluorescence intensity are estimated. , And the influence of the fluorescence intensity fluctuation factor due to the sample concentration independence is calculated based on the comparison result, the fluorescence intensity is corrected based on the influence of the fluorescence intensity fluctuation factor, and the corrected fluorescence is calculated. The sample concentration on the workpiece surface is determined based on the strength.

本発明は、試料濃度に依存しない蛍光強度変動要因の影響を防止し、より高精度にワーク表面の試料濃度を検出する試料濃度検出方法、装置およびプログラムを提供できる。   The present invention can provide a sample concentration detection method, apparatus, and program for detecting the sample concentration on the workpiece surface with higher accuracy by preventing the influence of the fluorescence intensity fluctuation factor independent of the sample concentration.

以下、本発明の実施形態について図面に基づいて説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本実施形態では、ワーク(基板)として燃料電池のMEAに使用されるセパレータ板、検出の対象となる試料ガスとして酸素ガス、蛍光塗料としてルテニウム錯体塗料(酸素消光性)、励起光源として波長470nmの青色光を励起光として照射できる励起光源を用い、セパレータ板の表面の酸素ガス濃度分布を検出する。なお、このような状況下で発生する蛍光は約600nmである。また、光の強度として輝度値の強度を用いている。このような構成を用いて燃料電池電極に用いられるセパレータ板に燃料電池で用いられる酸素ガスがどのようにセパレータ板上で分布するのかを検出する。   In the present embodiment, a separator plate used in a MEA of a fuel cell as a workpiece (substrate), oxygen gas as a sample gas to be detected, ruthenium complex paint (oxygen quenching) as a fluorescent paint, and a wavelength of 470 nm as an excitation light source Using an excitation light source capable of emitting blue light as excitation light, the oxygen gas concentration distribution on the surface of the separator plate is detected. Note that the fluorescence generated under such circumstances is about 600 nm. Further, the intensity of the luminance value is used as the intensity of light. Using such a configuration, it is detected how oxygen gas used in the fuel cell is distributed on the separator plate used in the fuel cell electrode.

[実施形態1]
「装置の全体構成」
図1には実施形態1に係る酸素ガス濃度検出装置100の構成図が示される。表面ガス濃度の分布の検出対象となるセパレータ12を基板とする検知材10がある。検知材10は励起光および蛍光を通過できる透過窓を有したケース18内に設置されている。検知材10とこの透過窓の間は空間19を有しており、この空間19が検知材10の表面に拡散される酸素ガスを通じるガス流路19となる。検知材10に励起光を照射可能となるように励起光源20が設置される。検知材10で反射した励起光および発生した蛍光を2方向へ分割する光分割手段としてのハーフプリズム30が検知材10の正面に設置される。ハーフプリズム30で分割された光が進行する2方向のうち1方向には、励起光の波長(約470nm)の光線を選択して通過させる励起光波長通過手段としての励起光透過フィルタ40が備えられている。フィルタ40の背後にはフィルタ40を通過した励起光の輝度値を検知する励起光検知手段としての励起光用CCDカメラ50が備えられている。ハーフプリズム30で分割された光が進行する2方向のうち残りのもう1つの方向には、蛍光の波長(約600nm)の光線を選択して通過させる蛍光波長通過手段としての蛍光透過フィルタ60が備えられている。フィルタ60の背後にはフィルタ60を通過した蛍光の輝度値を検知する蛍光検知手段としての蛍光用CCDカメラ70が備えられている。CCDカメラ50およびCCDカメラ70は、コンピュータ80と電気通信接続されている。コンピュータ80は、それぞれのCCDカメラからのデータを取得し、その取得データに基づいて内部で演算し、画像出力手段に画像データを送信する演算手段である。コンピュータ80から受け取った画像データを出力する画像出力手段としてはディスプレイ90を有している。
[Embodiment 1]
"Overall configuration of the device"
FIG. 1 shows a configuration diagram of an oxygen gas concentration detection apparatus 100 according to the first embodiment. There is a detection material 10 that uses a separator 12 as a substrate to be detected as a distribution of surface gas concentration. The detection material 10 is installed in a case 18 having a transmission window through which excitation light and fluorescence can pass. A space 19 is provided between the detection material 10 and the transmission window, and the space 19 becomes a gas flow path 19 through which oxygen gas diffused on the surface of the detection material 10 is passed. An excitation light source 20 is installed so that the detection material 10 can be irradiated with excitation light. A half prism 30 as light splitting means for splitting the excitation light reflected by the detection material 10 and the generated fluorescence in two directions is installed in front of the detection material 10. In one of the two directions in which the light divided by the half prism 30 travels, an excitation light transmission filter 40 is provided as excitation light wavelength passing means for selectively passing a light beam having a wavelength of excitation light (about 470 nm). It has been. Behind the filter 40 is provided an excitation light CCD camera 50 as excitation light detection means for detecting the luminance value of the excitation light that has passed through the filter 40. In the remaining one of the two directions in which the light divided by the half prism 30 travels, a fluorescence transmission filter 60 as a fluorescence wavelength passing means for selectively passing a light beam having a fluorescence wavelength (about 600 nm) is provided. Is provided. Behind the filter 60 is provided a fluorescence CCD camera 70 as fluorescence detection means for detecting the luminance value of the fluorescence that has passed through the filter 60. The CCD camera 50 and the CCD camera 70 are connected in electrical communication with a computer 80. The computer 80 is a calculation unit that acquires data from each CCD camera, performs calculation inside based on the acquired data, and transmits the image data to the image output unit. A display 90 is provided as image output means for outputting image data received from the computer 80.

「検知材の構成」
図1Aには測定対象となる検知材10のハーフプリズム30側から見た上面図が示される。図1Bには図1Aの検知材10をX−Y面で切断した場合の断面図が示される。セパレータ12に蛍光塗料が全面に塗布され、蛍光塗料層14が形成されている。蛍光塗料層14上には、励起光を反射する励起光反射層16が部分的に塗布されている。励起光反射層は白色塗料等、励起光を反射できる一般的塗料でよい。
"Configuration of detection material"
FIG. 1A shows a top view of the detection material 10 to be measured as viewed from the half prism 30 side. FIG. 1B shows a cross-sectional view when the detection material 10 of FIG. 1A is cut along the XY plane. A fluorescent paint is applied to the entire surface of the separator 12 to form a fluorescent paint layer 14. On the fluorescent paint layer 14, an excitation light reflection layer 16 that reflects excitation light is partially applied. The excitation light reflecting layer may be a general paint that can reflect excitation light, such as a white paint.

部分的に励起光反射層16を塗布するとは、蛍光塗料層14面の全面ではないという態様を示し、励起光を反射させて励起光により蛍光輝度値変動要因の影響を演算し、補正できるデータを採取できる態様であればよい。例えば、縞状、マトリックス状、まだら状等、蛍光塗料層14に励起光反射層16を散在させて塗布することが挙げられる。実施形態においては、蛍光塗料層14上に直径1mm程度の円形状の多数の励起光反射層16を、等間隔に散在させて塗布して、この円形状の励起光反射層それぞれを励起光反射部領域としている(図1A)。塗布手段はスクリーン印刷手段等を用いて塗布するなど一般的な塗布手段であればよい。   The partial application of the excitation light reflecting layer 16 indicates that the surface of the fluorescent paint layer 14 is not the entire surface. Data that can be corrected by calculating the influence of the fluorescence luminance value variation factor by the excitation light by reflecting the excitation light. Any mode can be used as long as it can be collected. For example, the excitation light reflecting layer 16 is scattered and applied to the fluorescent paint layer 14 in a striped shape, a matrix shape, a mottled shape, or the like. In the embodiment, a large number of circular excitation light reflection layers 16 having a diameter of about 1 mm are coated on the fluorescent paint layer 14 at regular intervals, and each of the circular excitation light reflection layers is reflected by excitation light. This is a partial area (FIG. 1A). The application unit may be a general application unit such as a screen printing unit.

励起光反射部領域の数が多く、相互間の距離が短いほど後述の内挿補間による全箇所の励起光輝度値の演算制度が向上するので励起反射部の数が多く、相互間距離を短くする方が好適である。また、蛍光データの取得阻害を防止するためにも励起光反射部領域各々の面積は小さい方が好適である。   The greater the number of excitation light reflection regions and the shorter the distance between them, the better the excitation light luminance value calculation system by interpolation, which will be described later. Is preferred. Moreover, in order to prevent acquisition of fluorescence data, it is preferable that the area of each excitation light reflection region is small.

「コンピュータの内部構成」
図1Cにはコンピュータ80の内部構成を示すブロック図が示される。位置輝度演算手段81は、励起光用CCDカメラ50と電気通信接続され、CCDカメラ50から励起光の輝度値データを得る。また、位置輝度演算手段81は、位置記憶手段81Rと電気通信接続されている。位置記憶手段81Rには予め記憶されたCCDカメラ50の撮影箇所に対する励起光反射部領域の位置関係が予め記憶されている。位置輝度演算手段81は、位置記憶手段81Rから位置関係のデータを読み出し、反射励起光の輝度値データと位置関係から、検知材10のどの励起光反射部領域から反射されて来た励起光であるかという輝度値と位置関係を演算して整合させる。また、位置輝度演算手段81は、その演算結果を平均輝度演算手段82に送信する。平均輝度演算手段82は位置輝度演算手段81からのデータに基づき、励起光反射部領域各々の励起光の輝度値平均を演算する。また、平均輝度演算手段82は内挿補間演算手段83に励起光反射部領域各々の励起光の輝度値平均のデータを送信する。内挿補間演算手段83は平均輝度演算手段82からのデータに基づき、励起光反射部領域間の内挿補間を行い、CCDカメラ50で撮影した全箇所の励起光輝度値を演算する。内挿補間演算手段83は撮影した全箇所と励起光輝度値の関係データを理論輝度値演算手段84に送信する。理論輝度値演算手段84は、内挿補間演算手段83と、検定線記憶手段84Rと電気通信接続されている。検定線記憶手段84Rは励起光輝度と蛍光輝度との理論上の検定線が予め記憶されている。理論輝度値演算手段84は内挿補間演算手段83からの撮影した全箇所と励起光輝度値の関係をデータに基づいて、検定線記憶手段84Rから検定線を呼び出し、その検定線により全撮影箇所の理論上の理論蛍光輝度値を演算する。理論輝度値演算手段84は全撮影箇所の理論上の理論蛍光輝度値を比較補正演算手段85へ送信する。比較補正演算手段85は理論輝度値演算手段84と、蛍光用CCDカメラ70と、補正関係記憶手段85Rと電気通信接続されている。補正関係記憶手段85Rには理論蛍光輝度値と実際の蛍光輝度値とのずれに対して実際の蛍光輝度値をいくらに補正すべきかという補正関係が予め記憶されている。比較補正演算手段85はCCDカメラ70から実際の蛍光の輝度値データを得、理論輝度値演算手段84から送られた理論上の理論蛍光輝度値と比較する。その比較結果に基づいて、補正関係記憶手段85Rから実際の蛍光輝度値をいくらに補正すべきかという補正関係を読み出し、その補正関係に基づいて実際の蛍光輝度値データを補正する。その補正処理を行った後の蛍光輝度値データを濃度演算手段86へ送信する。濃度演算手段86は比較補正演算手段85と、蛍光輝度値と酸素ガス濃度の関係を記憶した輝度濃度記憶手段86Rと接続されている。濃度演算手段86は輝度濃度記憶手段86Rから蛍光輝度値と酸素ガス濃度の関係を読み出し、比較補正演算手段85からの補正した蛍光輝度値データに基づき、撮影箇所全体の酸素ガス濃度を演算し、その濃度に応じて色を分けた画像データをディスプレイ90へと送信する。なお、上記一連の処理は上記通常は1つのコンピュータ内でなされる。通常、演算手段はCPU(Central Processing Unit)、記憶手段はメモリなどを用いる。予め記憶手段に記憶されている検定線等の相関関係は当業者であれば容易に測定できるものである。
"Computer internal configuration"
FIG. 1C shows a block diagram showing the internal configuration of the computer 80. The position luminance calculation means 81 is electrically connected to the excitation light CCD camera 50 and obtains luminance value data of the excitation light from the CCD camera 50. Further, the position luminance calculation means 81 is connected in electrical communication with the position storage means 81R. The position storage unit 81R stores in advance the positional relationship of the excitation light reflecting portion region with respect to the photographing location of the CCD camera 50 stored in advance. The position luminance calculation means 81 reads the positional relation data from the position storage means 81R, and uses the excitation light reflected from which excitation light reflecting portion region of the detection material 10 based on the luminance value data and the positional relation of the reflected excitation light. The luminance value and the positional relationship are calculated and matched. Further, the position luminance calculation means 81 transmits the calculation result to the average luminance calculation means 82. Based on the data from the position luminance calculation means 81, the average luminance calculation means 82 calculates the average luminance value of the excitation light in each excitation light reflection area. Further, the average luminance calculation means 82 transmits the data of the average luminance value of the excitation light in each excitation light reflection area to the interpolation interpolation calculation means 83. Based on the data from the average luminance calculating means 82, the interpolation interpolation calculating means 83 performs the interpolation between the excitation light reflecting portion areas, and calculates the excitation light luminance values of all the locations photographed by the CCD camera 50. The interpolation / interpolation calculation means 83 transmits the relationship data between all the captured locations and the excitation light luminance value to the theoretical luminance value calculation means 84. The theoretical luminance value calculation means 84 is electrically connected to the interpolation interpolation calculation means 83 and the test line storage means 84R. The calibration line storage means 84R stores in advance a theoretical calibration line between the excitation light luminance and the fluorescence luminance. The theoretical luminance value calculation means 84 calls a verification line from the verification line storage means 84R based on the data on the relationship between the excitation light luminance values and all the positions photographed from the interpolation / interpolation calculation means 83, and uses the verification line to indicate all the imaging positions. Theoretical theoretical fluorescence brightness value is calculated. The theoretical luminance value calculation means 84 transmits the theoretical theoretical fluorescence luminance values of all photographing locations to the comparison correction calculation means 85. The comparison correction calculation means 85 is electrically connected to the theoretical luminance value calculation means 84, the fluorescent CCD camera 70, and the correction relationship storage means 85R. The correction relationship storage unit 85R stores in advance a correction relationship as to how much the actual fluorescence luminance value should be corrected with respect to the difference between the theoretical fluorescence luminance value and the actual fluorescence luminance value. The comparison correction calculation means 85 obtains actual fluorescence brightness value data from the CCD camera 70 and compares it with the theoretical theoretical fluorescence brightness value sent from the theoretical brightness value calculation means 84. Based on the comparison result, a correction relationship as to how much the actual fluorescence luminance value should be corrected is read from the correction relationship storage means 85R, and the actual fluorescence luminance value data is corrected based on the correction relationship. The fluorescence luminance value data after the correction processing is transmitted to the density calculation means 86. The concentration calculation means 86 is connected to the comparison correction calculation means 85 and the luminance concentration storage means 86R that stores the relationship between the fluorescence luminance value and the oxygen gas concentration. The concentration calculation unit 86 reads the relationship between the fluorescence luminance value and the oxygen gas concentration from the luminance concentration storage unit 86R, calculates the oxygen gas concentration of the entire photographing location based on the corrected fluorescence luminance value data from the comparison correction calculation unit 85, Image data in which colors are divided according to the density is transmitted to the display 90. The series of processes is usually performed in one computer. Usually, the arithmetic means uses a CPU (Central Processing Unit), and the storage means uses a memory. A person skilled in the art can easily measure the correlation such as the calibration line stored in the storage means in advance.

「酸素ガス濃度分布の検出方法」
図1Dに示されるフローチャートに基づいて、図1の酸素ガス濃度検出装置を用いた酸素ガス濃度分布の検出の方法について説明する。セパレータを基板12として、その上に蛍光塗料14に励起光反射層16を部分的に塗布した検知材10上に、ガス流路19を通じて酸素ガスを表面拡散させる(S10)。酸素ガスを拡散させると共に、励起光源20により、励起光を検知材10に照射して励起光反射部16で励起光を反射させる。励起光反射部16では、励起光は蛍光塗料の励起に用いられることなく、反射する。反射励起光は酸素濃度ガスに依存することがないので、反射励起光を検知することでガス濃度非依存の蛍光強度変動要因である励起光の照射ムラや励起光源の経時的な明暗変化の影響等を検知して、その影響を除去することが可能となる。また、励起光反射部16が塗布されておらず、蛍光塗料層14が表面に露出している箇所においては、励起光により蛍光を発生させる。酸素ガス濃度が濃い箇所においては酸素ガスにより蛍光が消光される。反射した励起光と発生した蛍光は混合し、これらが混合した混合光となる(S12)。混合光をハーフプリズム30によって、2方向に分離する(S14)。1方向は、励起光透過フィルタ40を通じる方向へ、残りの1方向は蛍光透過フィルタ60を通じる方向へと分離する。励起光透過フィルタ40を通じる方向へ進行する混合光を励起光透過フィルタ40を用い、励起光波長のみを選択して取り出す。取り出した反射励起光の画像輝度値を励起光用CCDカメラ50で取得する(S16)。反射励起光の画像輝度値はコンピュータ80によって処理する。
"Detection method of oxygen gas concentration distribution"
Based on the flowchart shown in FIG. 1D, a method of detecting the oxygen gas concentration distribution using the oxygen gas concentration detecting device of FIG. 1 will be described. A surface of oxygen gas is diffused through the gas flow path 19 on the detection material 10 in which the excitation light reflecting layer 16 is partially applied to the fluorescent paint 14 on the separator 12 as a substrate 12 (S10). While diffusing oxygen gas, the excitation light source 20 irradiates the detection material 10 with excitation light, and the excitation light reflection unit 16 reflects the excitation light. The excitation light reflecting unit 16 reflects the excitation light without being used for exciting the fluorescent paint. Since reflected excitation light does not depend on oxygen concentration gas, detection of reflected excitation light has the effect of uneven irradiation of excitation light, which is a cause of fluctuations in fluorescence intensity independent of gas concentration, and changes in brightness of the excitation light source over time. Etc. can be detected and the influence can be removed. Moreover, in the location where the excitation light reflection part 16 is not applied and the fluorescent paint layer 14 is exposed on the surface, fluorescence is generated by the excitation light. Fluorescence is quenched by oxygen gas at locations where the oxygen gas concentration is high. The reflected excitation light and the generated fluorescence are mixed to form mixed light (S12). The mixed light is separated into two directions by the half prism 30 (S14). One direction is separated into the direction through the excitation light transmission filter 40, and the remaining one direction is separated into the direction through the fluorescence transmission filter 60. Using the excitation light transmission filter 40, the mixed light traveling in the direction through the excitation light transmission filter 40 is selected and extracted only. The image brightness value of the extracted reflected excitation light is acquired by the excitation light CCD camera 50 (S16). The image brightness value of the reflected excitation light is processed by the computer 80.

すなわち、CCDカメラ50から励起光の輝度値データを得た位置輝度演算手段81は、励起光の輝度値データとCCDカメラ50の撮影箇所の位置関係から、検知材10のどの励起光反射部領域から反射されて来た励起光であるかを演算し、位置と輝度値の関係を整合させたデータP(Xn,Yn)を得る(S18)。次に平均輝度演算手段82は位置輝度演算手段81からの輝度データP(Xn,Yn)に基づき、励起光反射部領域各々の励起光の輝度値平均を演算し、励起光反射部領域各々の励起光の輝度値平均のデータA(Xn,Yn)を得る(S20)。これにより、さらに内挿補間演算手段83は平均輝度演算手段82からの輝度データA(Xn,Yn)に基づき、励起光反射部領域相互間の内挿補間を行い、CCDカメラ50で撮影した全箇所の励起光輝度値のデータE(Xn,Yn)を得る(S22)。ここで内挿補間の方法としては、例えば線形内挿、多項式補間、スプライン補間などを用いることができる。次に理論輝度値演算手段84により内挿補間演算手段83からの反射励起光輝度データE(Xn,Yn)と蛍光輝度との理論上の検定線により全撮影箇所の理論上の理論蛍光輝度値データC(Xn,Yn)を演算する(S24)。   That is, the position luminance calculation means 81 that has obtained the luminance value data of the excitation light from the CCD camera 50 determines which excitation light reflecting portion region of the detection material 10 based on the positional relationship between the luminance value data of the excitation light and the photographing location of the CCD camera 50. To obtain the data P (Xn, Yn) in which the relationship between the position and the luminance value is matched (S18). Next, based on the luminance data P (Xn, Yn) from the position luminance calculation unit 81, the average luminance calculation unit 82 calculates the average luminance value of the excitation light in each excitation light reflection unit region, and each excitation light reflection unit region Data A (Xn, Yn) of average brightness values of the excitation light is obtained (S20). Thereby, the interpolation interpolation calculating means 83 further interpolates between the excitation light reflecting areas based on the luminance data A (Xn, Yn) from the average luminance calculating means 82, and all the images taken by the CCD camera 50 are captured. Data E (Xn, Yn) of the excitation light luminance value at the location is obtained (S22). Here, as the interpolation method, for example, linear interpolation, polynomial interpolation, spline interpolation, or the like can be used. Next, the theoretical luminance value calculation means 84 calculates theoretical theoretical fluorescence luminance values of all the photographing locations by using a theoretical test line between the reflected excitation light luminance data E (Xn, Yn) from the interpolation interpolation calculation means 83 and the fluorescence luminance. Data C (Xn, Yn) is calculated (S24).

次に、蛍光透過フィルタ60を通じる方向へ進行する混合光を、蛍光透過フィルタ60を用い、蛍光波長のみを選択して取り出す。取り出した蛍光の画像輝度値を蛍光用CCDカメラ70で取得する(S26)。比較補正演算手段85はCCDカメラ70から実際の蛍光の輝度値データを得、理論輝度値演算手段84から送られた全撮影箇所の理論上の理論蛍光輝度値C(Xn,Yn)と比較し、その比較結果に基づいて実際の蛍光の輝度値データを補正し、その補正した蛍光輝度値データL(Xn,Yn)を得る(S28)。次に濃度演算手段86は比較補正演算手段85からの補正した蛍光輝度値データL(Xn,Yn)に基づき、撮影箇所全体の酸素ガス濃度データO(Xn,Yn)を演算し、その濃度に応じて色を分けた画像データをディスプレイ90へと送信する(S30)。ディスプレイ90には、酸素ガス濃度O(Xn,Yn)に応じて色を分けた画像データを出力させる。これによりセパレータ上の酸素ガス濃度の分布を精度良く色により可視化して認識できる(S32)。   Next, the mixed light traveling in the direction through the fluorescence transmission filter 60 is extracted by selecting only the fluorescence wavelength using the fluorescence transmission filter 60. The fluorescence image brightness value taken out is acquired by the fluorescence CCD camera 70 (S26). The comparison correction calculation means 85 obtains the actual fluorescence brightness value data from the CCD camera 70 and compares it with the theoretical theoretical fluorescence brightness value C (Xn, Yn) of all the photographing locations sent from the theoretical brightness value calculation means 84. Based on the comparison result, the actual fluorescence brightness value data is corrected, and the corrected fluorescence brightness value data L (Xn, Yn) is obtained (S28). Next, the concentration calculation means 86 calculates oxygen gas concentration data O (Xn, Yn) of the entire photographing location based on the corrected fluorescence luminance value data L (Xn, Yn) from the comparison correction calculation means 85, and calculates the concentration. In response to this, the image data divided in color is transmitted to the display 90 (S30). The display 90 outputs image data in which colors are divided according to the oxygen gas concentration O (Xn, Yn). As a result, the distribution of the oxygen gas concentration on the separator can be visualized and recognized with high accuracy (S32).

以上の方法により、励起光の照射ムラや励起光源の経時的な明暗変化の検出ノイズの影響を除去して正確にセパレータ上の酸素ガス濃度分布を測定できる。また、本方法では、ガス濃度に依存しない蛍光強度変動要因の検定補正を、ガス濃度検出時に同時に行うことができ、ガス濃度の検出前において、事前にこれら蛍光強度変動要因の検定補正を行う必要がない。よって工程数を削減できる。   By the above method, it is possible to accurately measure the oxygen gas concentration distribution on the separator by removing the influence of the irradiation unevenness of the excitation light and the detection noise of the change in brightness of the excitation light source over time. In addition, in this method, the calibration correction of the fluorescence intensity fluctuation factor independent of the gas concentration can be performed at the same time when the gas concentration is detected, and it is necessary to perform the calibration correction of these fluorescence intensity fluctuation factors in advance before the gas concentration detection. There is no. Therefore, the number of processes can be reduced.

[参考形態1]
「装置の全体構成」
図2には参考形態1に係る酸素ガス濃度検出装置200の構成図が示される。表面ガス濃度の分布の検出対象となるセパレータ12を基板とする検知材110がある。検知材110は励起光および蛍光を通過できる透過窓を有したケース18内に設置されている。検知材110とこの透過窓の間は空間19を有しており、この空間19が検知材110の表面に拡散される酸素ガスを通じるガス流路19となる。検知材110に励起光を照射可能となるように励起光源20が設置される。検知材110で発生した蛍光の波長(約600nm)の光線を選択して通過させる蛍光波長通過手段としての蛍光透過フィルタ60が検知材110の正面に備えられている。フィルタ60の背後にはフィルタ60を通過した蛍光の輝度値を検知する蛍光検知手段としての蛍光用CCDカメラ70が備えられている。CCDカメラ70は、コンピュータ180と電気通信接続されている。コンピュータ180は、CCDカメラ70からのデータを取得し、その取得データに基づいて内部で演算し、画像出力手段に画像データを送信する演算手段である。コンピュータ180から受け取った画像データを出力する画像出力手段としてはディスプレイ90を有している。
[Reference Form 1]
"Overall configuration of the device"
FIG. 2 shows a configuration diagram of an oxygen gas concentration detection apparatus 200 according to Reference Embodiment 1. There is a detection material 110 that uses a separator 12 as a substrate to be detected as a distribution of surface gas concentration. The detection material 110 is installed in a case 18 having a transmission window through which excitation light and fluorescence can pass. A space 19 is provided between the detection material 110 and the transmission window, and the space 19 becomes a gas flow path 19 through which oxygen gas diffused on the surface of the detection material 110 is passed. The excitation light source 20 is installed so that the detection material 110 can be irradiated with excitation light. A fluorescence transmission filter 60 is provided on the front surface of the detection material 110 as a fluorescence wavelength passing means for selectively passing the light having the fluorescence wavelength (about 600 nm) generated by the detection material 110. Behind the filter 60 is provided a fluorescence CCD camera 70 as fluorescence detection means for detecting the luminance value of the fluorescence that has passed through the filter 60. The CCD camera 70 is electrically connected to the computer 180. The computer 180 is a calculation unit that acquires data from the CCD camera 70, calculates the data based on the acquired data, and transmits the image data to the image output unit. A display 90 is provided as image output means for outputting image data received from the computer 180.

「検知材の構成」
図2Aには測定対象となる検知材110のカメラ70から見た上面図が示される。図2Bには図2Aの検知材110をX−Y面で切断した場合の断面図が示される。図1Aおよび図1Bの検知材10とは蛍光塗料層14上に形成されるのが励起光反射層16でなく、酸素不透過層116である点が主に相違する。すなわち、セパレータ12に蛍光塗料が全面に塗布され、蛍光塗料層14が形成されている。蛍光塗料層14上には、酸素ガスが蛍光反応層14と接触することを防止する酸素不透過層116が部分的に塗布されている。酸素不透過層116は600nm程度の蛍光を発しなく、蛍光反応層14と酸素ガスが接触できるのを防止できるものでよい。
"Configuration of detection material"
FIG. 2A shows a top view of the detection material 110 to be measured as viewed from the camera 70. FIG. 2B shows a cross-sectional view when the detection material 110 of FIG. 2A is cut along the XY plane. 1A and 1B is mainly different from the detection material 10 in that it is not the excitation light reflection layer 16 but the oxygen-impermeable layer 116 that is formed on the fluorescent paint layer 14. That is, the fluorescent paint is applied to the entire surface of the separator 12 to form the fluorescent paint layer 14. An oxygen-impermeable layer 116 that prevents oxygen gas from coming into contact with the fluorescent reaction layer 14 is partially coated on the fluorescent paint layer 14. The oxygen-impermeable layer 116 may not emit fluorescence of about 600 nm and can prevent the fluorescence reaction layer 14 and oxygen gas from coming into contact with each other.

部分的に酸素不透過層116を塗布するとは、蛍光塗料層14面の全面ではないという態様を示し、励起光を反射させて励起光により蛍光輝度値変動要因の影響を演算し、補正できるデータを採取できる態様であればよい。例えば、縞状、マトリックス状、まだら状等、蛍光塗料層14に酸素不透過層116を散在させて塗布することが挙げられる。参考形態においては、蛍光塗料層14上に直径1mm程度の円形状の多数の酸素不透過層116を、等間隔に散在させて塗布して、この円形状の励起光反射層それぞれを酸素不透過部領域としている(図2A)。塗布手段はスクリーン印刷手段等を用いて塗布するなど一般的な塗布手段であればよい。   The partial application of the oxygen-impermeable layer 116 indicates that the surface of the fluorescent paint layer 14 is not the entire surface. Data that can be corrected by reflecting the excitation light and calculating the influence of the fluorescence luminance value variation factor by the excitation light. Any mode can be used as long as it can be collected. For example, the oxygen-impermeable layer 116 may be scattered and applied to the fluorescent paint layer 14 in a striped shape, a matrix shape, or a mottled shape. In the reference embodiment, a large number of circular oxygen-impermeable layers 116 having a diameter of about 1 mm are coated on the fluorescent paint layer 14 at regular intervals, and each of the circular excitation light reflecting layers is impermeable to oxygen. This is a partial area (FIG. 2A). The application unit may be a general application unit such as a screen printing unit.

酸素不透過部領域の数が多く、相互間の距離が短いほど後述の内挿補間による全箇所の励起光輝度値の演算制度が向上するので酸素不透過部の数が多く、相互距離間を短くする方が好適である。また、蛍光データの取得阻害を防止するためにも酸素不透過部領域各々の面積は小さい方が好適である。   The greater the number of oxygen-impermeable regions and the shorter the distance between them, the better the calculation system of excitation light luminance values at all locations by interpolation, which will be described later. It is preferable to shorten it. Moreover, in order to prevent the acquisition inhibition of fluorescence data, it is preferable that the area of each oxygen-impermeable portion region is small.

「コンピュータの内部構成」
図2Cにはコンピュータ180の内部構成を示すブロック図が示される。位置輝度演算手段181は、蛍光用CCDカメラ70と電気通信接続され、CCDカメラ70から蛍光の輝度値データを得る。また、位置輝度演算手段181は、位置記憶手段181Rと電気通信接続されている。位置記憶手段181Rには予め記憶されたCCDカメラ50の撮影箇所に対する酸素不透過部領域の位置関係が予め記憶されている。位置輝度演算手段181は、位置記憶手段181Rから位置関係のデータを読み出し、酸素不透過部の輝度値データと位置関係から、検知材110のどの酸素不透過部領域から反射されて来た蛍光であるかという輝度値と位置関係を演算して整合させる。また、位置輝度演算手段181は、その演算結果を平均輝度演算手段182に送信する。平均輝度演算手段182は位置輝度演算手段181からのデータに基づき、酸素不透過部領域各々の蛍光の輝度値平均を演算する。また、平均輝度演算手段182は内挿補間演算手段183に酸素不透過部領域各々の蛍光の輝度値平均データを送信する。内挿補間演算手段183は平均輝度演算手段182からのデータに基づき、酸素不透過部領域間の内挿補間を行い、CCDカメラ70で撮影した全箇所の蛍光輝度値を演算する。内挿補間演算手段183は撮影した全箇所と蛍光輝度値の関係データを励起光演算手段187へ送信する。励起光演算手段187は、内挿補間演算手段183と、検定線記憶手段187Rと電気通信接続されている。検定線記憶手段187Rには酸素不透過部領域で得られた蛍光輝度と励起光輝度の関係が予め記憶されている。励起光演算手段187は内挿補間演算手段183からの撮影した全箇所と蛍光輝度値の関係データに基づいて、検定線記憶手段187Rから蛍光輝度と励起光輝度の検定線を呼び出し、その検定線により全撮影箇所の励起光輝度データを演算する。また、励起光演算手段187Rは、全撮影箇所の励起光輝度データを理論輝度値演算手段184に送信する。理論輝度値演算手段184は、励起光演算手段187と、検定線記憶手段184Rと電気通信接続されている。検定線記憶手段184Rは励起光輝度と蛍光輝度との理論上の検定線が予め記憶されている。理論輝度値演算手段184は励起光演算手段187からの撮影した全箇所と励起光輝度値の関係をデータに基づいて、検定線記憶手段184Rから検定線を呼び出し、その検定線により全撮影箇所の理論上の理論蛍光輝度値を演算する。理論輝度値演算手段184は全撮影箇所の理論上の理論蛍光輝度値を比較補正演算手段185へ送信する。比較補正演算手段185は理論輝度値演算手段184と、蛍光用CCDカメラ70と、補正関係記憶手段185Rと電気通信接続されている。補正関係記憶手段185Rには理論蛍光輝度値と実際の蛍光輝度値とのずれに対して実際の蛍光輝度値をいくらに補正すべきかという補正関係が予め記憶されている。比較補正演算手段185はCCDカメラ70から実際の蛍光の輝度値データを得、理論輝度値演算手段184から送られた理論上の理論蛍光輝度値と比較する。その比較結果に基づいて、補正関係記憶手段185Rから実際の蛍光輝度値をいくらに補正すべきかという補正関係を読み出し、その補正関係に基づいて実際の蛍光輝度値データを補正する。その補正処理を行った後の蛍光輝度値データを濃度演算手段186へ送信する。濃度演算手段186は比較補正演算手段185と、蛍光輝度値と酸素ガス濃度の関係を記憶した輝度濃度記憶手段186Rと接続されている。濃度演算手段186は輝度濃度記憶手段186Rから蛍光輝度値と酸素ガス濃度の関係を読み出し、比較補正演算手段185からの補正した蛍光輝度値データに基づき、撮影箇所全体の酸素ガス濃度を演算し、その濃度に応じて色を分けた画像データをディスプレイ90へと送信する。なお、上記一連の処理は上記通常は1つのコンピュータ内でなされる。通常、演算手段はCPU、記憶手段はメモリなどを用い、記憶手段はメモリなどを用いる。予め記憶手段に記憶されている検定線等の相関関係は当業者であれば容易に測定できるものであるのは実施形態1と同様である。
"Computer internal configuration"
FIG. 2C shows a block diagram showing the internal configuration of the computer 180. The position luminance calculation means 181 is electrically connected to the fluorescence CCD camera 70 to obtain fluorescence luminance value data from the CCD camera 70. Further, the position luminance calculation means 181 is connected in electrical communication with the position storage means 181R. The position storage unit 181R stores in advance the positional relationship of the oxygen-impermeable portion region with respect to the shooting location of the CCD camera 50 stored in advance. The position luminance calculation means 181 reads the positional relationship data from the position storage means 181R, and the fluorescence reflected from which oxygen impermeable portion region of the detection material 110 from the luminance value data and positional relationship of the oxygen impermeable portion. The luminance value and the positional relationship are calculated and matched. Further, the position luminance calculating unit 181 transmits the calculation result to the average luminance calculating unit 182. Based on the data from the position luminance calculation means 181, the average luminance calculation means 182 calculates the average value of the fluorescence luminance values of each oxygen-impermeable portion region. Further, the average luminance calculation means 182 transmits the fluorescence luminance value average data of each oxygen-impermeable portion area to the interpolation interpolation calculation means 183. Based on the data from the average luminance calculation means 182, the interpolation interpolation calculation means 183 performs interpolation between the oxygen-impermeable portion regions, and calculates the fluorescence luminance values at all locations photographed by the CCD camera 70. The interpolation / interpolation calculating means 183 transmits the relationship data between all the captured positions and the fluorescence luminance values to the excitation light calculating means 187. The excitation light calculation means 187 is electrically connected to the interpolation interpolation calculation means 183 and the test line storage means 187R. The calibration line storage unit 187R stores in advance the relationship between the fluorescence luminance and the excitation light luminance obtained in the oxygen-impermeable portion region. The excitation light calculation means 187 calls the fluorescence luminance and excitation light luminance calibration lines from the calibration line storage means 187R on the basis of the relationship data between all the photographed locations from the interpolation interpolation calculation means 183 and the fluorescence luminance values, and the calibration lines thereof. To calculate the excitation light luminance data of all photographing locations. In addition, the excitation light calculation unit 187R transmits excitation light luminance data of all photographing locations to the theoretical luminance value calculation unit 184. The theoretical luminance value calculation means 184 is electrically connected to the excitation light calculation means 187 and the test line storage means 184R. The calibration line storage means 184R stores in advance a theoretical calibration line between the excitation light luminance and the fluorescence luminance. The theoretical luminance value calculating means 184 calls a verification line from the verification line storage means 184R based on the data on the relationship between the excitation light luminance values and all the positions photographed from the excitation light calculating means 187, and uses the verification line for all the imaging positions. Theoretical theoretical fluorescence brightness value is calculated. The theoretical luminance value calculation means 184 transmits the theoretical theoretical fluorescence luminance values of all photographing locations to the comparison correction calculation means 185. The comparison correction calculation means 185 is electrically connected to the theoretical luminance value calculation means 184, the fluorescent CCD camera 70, and the correction relationship storage means 185R. The correction relationship storage unit 185R stores in advance a correction relationship as to how much the actual fluorescence luminance value should be corrected with respect to the difference between the theoretical fluorescence luminance value and the actual fluorescence luminance value. The comparison correction calculation means 185 obtains the actual fluorescence brightness value data from the CCD camera 70 and compares it with the theoretical theoretical fluorescence brightness value sent from the theoretical brightness value calculation means 184. Based on the comparison result, a correction relationship as to how much the actual fluorescence luminance value should be corrected is read from the correction relationship storage means 185R, and the actual fluorescence luminance value data is corrected based on the correction relationship. The fluorescence luminance value data after the correction processing is transmitted to the density calculation means 186. The concentration calculation means 186 is connected to the comparison correction calculation means 185 and the luminance concentration storage means 186R that stores the relationship between the fluorescence luminance value and the oxygen gas concentration. The concentration calculation unit 186 reads the relationship between the fluorescence luminance value and the oxygen gas concentration from the luminance concentration storage unit 186R, calculates the oxygen gas concentration of the entire imaging location based on the corrected fluorescence luminance value data from the comparison correction calculation unit 185, Image data in which colors are divided according to the density is transmitted to the display 90. The series of processes is usually performed in one computer. Usually, the calculation means uses a CPU, the storage means uses a memory, and the storage means uses a memory. Similar to the first embodiment, the correlation of the calibration line or the like stored in advance in the storage means can be easily measured by those skilled in the art.

「酸素ガス濃度分布の検出方法」
図2Dに示されるフローチャートに基づいて、図2の酸素ガス濃度検出装置を用いた酸素ガス濃度分布の検出の方法について説明する。セパレータを基板12として、その上に蛍光塗料14に酸素不透過部層116を部分的に塗布した検知材110上に、ガス流路19を通じて酸素ガスを表面拡散させる。酸素ガスを拡散させると共に、酸素不透過部領域116から発せられる蛍光を取得する。励起光源20により、励起光を検知材110に照射して、(S110)酸素不透過部層116下の蛍光塗料層14により、蛍光を発生させる(S112)。この部位で発生する蛍光は酸素不透過部層116によって酸素が介在しない状況で発生する蛍光であり、酸素ガス濃度に非依存である。よって、この部位で発生する蛍光を測定することにより励起光の照射ムラや励起光源の経時的な明暗変化の検出ノイズの影響を検知して、そのノイズを除去することが可能となる。酸素不透過部領域116の下層の蛍光塗料14で発生した蛍光を蛍光透過フィルタ60で蛍光波長のみを選択して取り出す。取り出した蛍光の画像輝度値を蛍光用CCDカメラ70で取得する(S114)。蛍光の画像輝度値はコンピュータ180によって処理する。
"Detection method of oxygen gas concentration distribution"
Based on the flowchart shown in FIG. 2D, a method of detecting the oxygen gas concentration distribution using the oxygen gas concentration detecting device of FIG. 2 will be described. Oxygen gas is surface-diffused through the gas flow path 19 on the detection material 110 in which the separator 12 is used as a substrate and the oxygen-impermeable portion layer 116 is partially applied to the fluorescent paint 14 thereon. While diffusing oxygen gas, fluorescence emitted from the oxygen-impermeable portion region 116 is acquired. The excitation light source 20 emits excitation light to the detection material 110 (S110), and fluorescence is generated by the fluorescent paint layer 14 under the oxygen-impermeable portion layer 116 (S112). The fluorescence generated at this site is generated in a state where oxygen is not interposed by the oxygen-impermeable portion layer 116, and is independent of the oxygen gas concentration. Therefore, by measuring the fluorescence generated at this site, it is possible to detect the influence of the detection noise of the uneven irradiation of the excitation light or the change in brightness of the excitation light source over time, and to remove the noise. Fluorescence generated in the fluorescent paint 14 below the oxygen impermeable portion region 116 is extracted by selecting only the fluorescence wavelength with the fluorescence transmission filter 60. The fluorescence image brightness value taken out is acquired by the fluorescence CCD camera 70 (S114). The image brightness value of the fluorescence is processed by the computer 180.

すなわち、CCDカメラ70から蛍光の輝度値データを得た位置輝度演算手段181は、蛍光の輝度値データとCCDカメラ70の撮影箇所との位置関係から、検知材10のどの酸素不透過部領域116を通じて発せられた蛍光であるかを演算し、位置と輝度値の関係を整合させたデータP(Xn,Yn)を得る(S116)。次に平均輝度演算手段182は位置輝度演算手段181からの輝度データP(Xn,Yn)に基づき、酸素不透過部領域各々の蛍光の輝度値平均を演算し、酸素不透過部領域各々の励起光の輝度値平均データA(Xn,Yn)を得る(S118)。これにより、さらに内挿補間演算手段183は平均輝度演算手段182からの輝度データA(Xn,Yn)に基づき、酸素不透過部領域相互間の内挿補間を行い、CCDカメラ70で撮影した全箇所の蛍光輝度値データM(Xn,Yn)を得る(S120)。次に励起光演算手段187により内挿補間演算手段183からの蛍光輝度データM(Xn,Yn)と励起光輝度との検定線により全撮影箇所の蛍光輝度値データE(Xn,Yn)を演算する(S122)。次に理論輝度値演算手段184により励起光演算手段187からの励起光輝度データE(Xn,Yn)と蛍光輝度との理論上の検定線により全撮影箇所の理論上の理論蛍光輝度値データC(Xn,Yn)を演算する(S124)。   That is, the position luminance calculation means 181 that has obtained the fluorescence luminance value data from the CCD camera 70 determines which oxygen-impermeable portion region 116 of the detection material 10 from the positional relationship between the fluorescence luminance value data and the photographing location of the CCD camera 70. The data P (Xn, Yn) in which the relationship between the position and the luminance value is matched is obtained (S116). Next, based on the luminance data P (Xn, Yn) from the position luminance calculation unit 181, the average luminance calculation unit 182 calculates the average luminance value of the fluorescence of each oxygen impermeable part region and excites each oxygen impermeable part region. The light intensity value average data A (Xn, Yn) is obtained (S118). Accordingly, the interpolation interpolation calculating means 183 further performs interpolation between the oxygen-impermeable portion regions based on the luminance data A (Xn, Yn) from the average luminance calculating means 182, and all of the images taken by the CCD camera 70. Fluorescence luminance value data M (Xn, Yn) of the location is obtained (S120). Next, the fluorescence intensity value data E (Xn, Yn) of all the photographing locations is calculated by the excitation light calculation means 187 by using the calibration line between the fluorescence brightness data M (Xn, Yn) from the interpolation interpolation calculation means 183 and the excitation light brightness. (S122). Next, the theoretical luminance value calculation means 184 uses the theoretical calibration line between the excitation light luminance data E (Xn, Yn) from the excitation light calculation means 187 and the fluorescent luminance, and the theoretical theoretical fluorescent luminance value data C for all photographing locations. (Xn, Yn) is calculated (S124).

次に酸素不透過部領域116以外から発せられる蛍光、すなわち、輝度が酸素濃度に依存している蛍光を蛍光透過フィルタ70を用い、蛍光波長のみを選択して取り出す。取り出した蛍光の画像輝度値を蛍光用CCDカメラ70で取得する(S126)。比較補正演算手段185はCCDカメラ70から実際の蛍光の輝度値データを得、理論輝度値演算手段184から送られた全撮影箇所の理論上の理論蛍光輝度値C(Xn,Yn)と比較する。その比較結果に基づいて、比較補正演算手段185は実際の蛍光の輝度値データを補正し、その補正した蛍光輝度値データL(Xn,Yn)を得る(S128)。次に濃度演算手段186は比較補正演算手段185からの補正した蛍光輝度値データL(Xn,Yn)に基づき、撮影箇所全体の酸素ガス濃度データO(Xn,Yn)を演算し、その濃度に応じて色を分けた画像データをディスプレイ90へと送信する(S130)。次に実施形態1と同様に、ディスプレイ90には、酸素ガス濃度O(Xn,Yn)に応じて色を分けた画像データを出力させる(S132)。   Next, the fluorescence emitted from other than the oxygen-impermeable portion region 116, that is, the fluorescence whose luminance depends on the oxygen concentration, is extracted by selecting only the fluorescence wavelength using the fluorescence transmission filter 70. The fluorescence image brightness value taken out is acquired by the fluorescence CCD camera 70 (S126). The comparison correction calculation unit 185 obtains actual fluorescence luminance value data from the CCD camera 70 and compares it with the theoretical theoretical fluorescence luminance value C (Xn, Yn) of all the photographing locations sent from the theoretical luminance value calculation unit 184. . Based on the comparison result, the comparison correction calculation means 185 corrects the actual fluorescence brightness value data, and obtains the corrected fluorescence brightness value data L (Xn, Yn) (S128). Next, the concentration calculation means 186 calculates oxygen gas concentration data O (Xn, Yn) of the entire photographing location based on the corrected fluorescence luminance value data L (Xn, Yn) from the comparison correction calculation means 185, and calculates the concentration. In response to this, the divided image data is transmitted to the display 90 (S130). Next, as in the first embodiment, the display 90 outputs image data in which colors are divided according to the oxygen gas concentration O (Xn, Yn) (S132).

以上によりセパレータ上の酸素ガス濃度の分布を精度良く色により可視化して認識できる。以上の方法により、実施形態1と同様に励起光の照射ムラや励起光源の経時的な明暗変化の検出ノイズの影響を除去して正確にセパレータ上の酸素ガス濃度分布を測定できる。また、本方法では、ガス濃度に依存しない蛍光強度変動要因の検定補正を、ガス濃度検出時に同時に行うことができ、ガス濃度の検出前において、事前にこれら蛍光強度変動要因の検定補正を行う必要がない。よって工程数を削減できる。さらに参考形態1においては、蛍光の画像輝度値を検知する蛍光検知手段(蛍光用CCDカメラ)のみで検定補正を行うことができ、励起光検知手段や光分割手段を検定補正に必要としない。   As described above, the distribution of the oxygen gas concentration on the separator can be visualized and recognized with high accuracy. By the above method, similarly to the first embodiment, it is possible to accurately measure the oxygen gas concentration distribution on the separator by removing the influence of the unevenness of excitation light irradiation and the detection noise of the change in brightness of the excitation light source over time. In addition, in this method, the calibration correction of the fluorescence intensity fluctuation factor independent of the gas concentration can be performed at the same time when the gas concentration is detected, and it is necessary to perform the calibration correction of these fluorescence intensity fluctuation factors in advance before the gas concentration detection. There is no. Therefore, the number of processes can be reduced. Furthermore, in the reference embodiment 1, the calibration correction can be performed only by the fluorescence detection means (fluorescence CCD camera) for detecting the fluorescence image luminance value, and the excitation light detection means and the light splitting means are not required for the calibration correction.

[参考形態2]
「装置の全体構成」
図3には参考形態2に係る酸素ガス濃度検出装置300の構成図が示される。基本的な構成は実施形態1と同様である。表面ガス濃度の分布の検出対象となるセパレータ12を基板とする検知材210がある。検知材210は励起光および蛍光を通過できる透過窓を有したケース18内に設置されている。検知材210とこの透過窓の間は空間19を有しており、この空間19が検知材210の表面に拡散される酸素ガスを通じるガス流路19となる。検知材210に励起光を照射可能となるように励起光源20が設置される。検知材210で反射した励起光および発生した蛍光を2方向へ分割する光分割手段としてのハーフプリズム30が検知材210の正面に設置される。ハーフプリズム30で分割された光が進行する2方向のうち1方向には、励起光の波長の光線を選択して通過させる励起光波長通過手段としての励起光透過フィルタ40が備えられている。フィルタ40の背後にはフィルタ40を通過した励起光の輝度値を検知する励起光検知手段としての励起光用CCDカメラ50が備えられている。ハーフプリズム30で分割された光が進行する2方向のうち残りのもう1つの方向には、蛍光の波長の光線を選択して通過させる蛍光波長通過手段としての蛍光透過フィルタ60が備えられている。フィルタ60の背後にはフィルタ60を通過した蛍光の輝度値を検知する蛍光検知手段としての蛍光用CCDカメラ70が備えられている。CCDカメラ50およびCCDカメラ70は、コンピュータ280と電気通信接続されている。コンピュータ280は、それぞれのCCDカメラからのデータを取得し、その取得データに基づいて内部で演算し、画像出力手段に画像データを送信する演算手段である。コンピュータ280から受け取った画像データを出力する画像出力手段としてはディスプレイ90を有している。
[Reference form 2]
"Overall configuration of the device"
FIG. 3 shows a configuration diagram of an oxygen gas concentration detection apparatus 300 according to Reference Embodiment 2. The basic configuration is the same as that of the first embodiment. There is a detection material 210 that uses a separator 12 as a substrate to be detected as a surface gas concentration distribution. The detection material 210 is installed in a case 18 having a transmission window through which excitation light and fluorescence can pass. A space 19 is provided between the detection material 210 and the transmission window, and the space 19 becomes a gas flow path 19 through which oxygen gas diffused on the surface of the detection material 210 is passed. The excitation light source 20 is installed so that the detection material 210 can be irradiated with excitation light. A half prism 30 as light splitting means for splitting the excitation light reflected by the detection material 210 and the generated fluorescence in two directions is installed in front of the detection material 210. In one of the two directions in which the light divided by the half prism 30 travels, an excitation light transmission filter 40 is provided as excitation light wavelength passing means for selectively passing a light beam having the wavelength of the excitation light. Behind the filter 40 is provided an excitation light CCD camera 50 as excitation light detection means for detecting the luminance value of the excitation light that has passed through the filter 40. A fluorescence transmission filter 60 as a fluorescence wavelength passing means for selectively passing a light beam having a fluorescence wavelength is provided in the remaining one of the two directions in which the light divided by the half prism 30 travels. . Behind the filter 60 is provided a fluorescence CCD camera 70 as fluorescence detection means for detecting the luminance value of the fluorescence that has passed through the filter 60. The CCD camera 50 and the CCD camera 70 are electrically connected to the computer 280. The computer 280 is a calculation unit that acquires data from each CCD camera, performs calculation inside based on the acquired data, and transmits the image data to the image output unit. A display 90 is provided as image output means for outputting image data received from the computer 280.

「検知材の構成」
図3Aには測定対象となる検知材210ののハーフプリズム30側から見た上面図が示される。図3Bには図3Aの検知材210をX−Y面で切断した場合の断面図が示される。セパレータ12に励起光を反射する励起光反射層16が部分的に塗布されている。塗布の態様は実施形態1と同様である。励起光反射層16上には蛍光塗料層14が塗布され、励起光反射層16は蛍光塗料層14に埋め込まれており、検知材210の表面は蛍光塗料層14で全面が覆われている。
"Configuration of detection material"
FIG. 3A shows a top view of the detection material 210 to be measured as viewed from the half prism 30 side. FIG. 3B shows a cross-sectional view when the detection material 210 of FIG. 3A is cut along the XY plane. An excitation light reflecting layer 16 that reflects excitation light is partially applied to the separator 12. The mode of application is the same as in the first embodiment. A fluorescent paint layer 14 is applied on the excitation light reflecting layer 16, the excitation light reflecting layer 16 is embedded in the fluorescent paint layer 14, and the entire surface of the detection material 210 is covered with the fluorescent paint layer 14.

励起光反射部領域16の数が多く、相互間の距離が短いほど後述の内挿補間による全箇所の励起光輝度値の演算制度が向上するので励起反射部の数が多く、相互間距離を短くする方が好適である等は実施形態1と同様である。   The greater the number of excitation light reflection regions 16 and the shorter the distance between them, the better the calculation system of excitation light luminance values at all locations by interpolation, which will be described later. It is the same as in the first embodiment that it is preferable to shorten it.

「コンピュータの内部構成」
図3Cにはコンピュータ280の内部構成を示すブロック図が示される。位置輝度演算手段281は、励起光用CCDカメラ50と電気通信接続され、CCDカメラ50から励起光の輝度値データを得る。また、位置輝度演算手段281は、位置記憶手段281Rと電気通信接続されている。位置記憶手段281Rには予め記憶されたCCDカメラ50の撮影箇所に対する励起光反射部領域の位置関係が予め記憶されている。位置輝度演算手段281は、位置記憶手段281Rから位置関係のデータを読み出し、反射励起光の輝度値データと位置関係から、検知材10のどの励起光反射部領域から反射されて来た励起光であるかという輝度値と位置関係を演算して整合させる。また、位置輝度演算手段281は、その演算結果を平均輝度演算手段282に送信する。平均輝度演算手段282は位置輝度演算手段281からの輝度値データに基づき、励起光反射部領域各々の励起光の輝度値平均を演算する。また、平均輝度演算手段282は内挿補間演算手段283に励起光反射部領域各々の励起光の輝度値平均のデータを送信する。内挿補間演算手段283は平均輝度演算手段282からのデータに基づき、励起光反射部領域間の内挿補間を行い、CCDカメラ50で撮影した全箇所の励起光輝度値を演算する。内挿補間演算手段283は撮影した全箇所と励起光輝度値の関係データを膜厚演算手段288に送信する。膜厚演算手段288は、内挿補間演算手段283と、検定線記憶手段288Rと電気通信接続されている。検定線記憶手段288Rは励起光輝度と蛍光輝度との理論上の検定線が予め記憶されている。膜厚演算手段288は内挿補間演算手段283からの撮影した全箇所と励起光輝度値の関係をデータに基づいて、検定線記憶手段288Rから検定線を呼び出し、その検定線により全撮影箇所の蛍光塗料膜厚を演算する。また、膜厚演算手段288は全撮影箇所の蛍光塗料膜厚のデータを理論輝度値演算手段284に送信する。理論輝度値演算手段284は、膜厚演算手段288と、検定線記憶手段284Rと電気通信接続されている。検定線記憶手段284Rは塗料膜厚と蛍光輝度との理論上の検定線が予め記憶されている。理論輝度値演算手段284は膜厚演算手段288からの膜厚データに基づいて、検定線記憶手段284Rから検定線を呼び出し、その検定線により全撮影箇所の理論上の理論蛍光輝度値を演算する。理論輝度値演算手段284は全撮影箇所の理論上の理論蛍光輝度値を比較補正演算手段285へ送信する。
"Computer internal configuration"
FIG. 3C is a block diagram showing the internal configuration of the computer 280. The position luminance calculation means 281 is electrically connected to the excitation light CCD camera 50 and obtains the luminance value data of the excitation light from the CCD camera 50. Further, the position luminance calculation means 281 is connected in electrical communication with the position storage means 281R. The position storage unit 281R stores in advance the positional relationship of the excitation light reflecting portion region with respect to the photographing location of the CCD camera 50 stored in advance. The position luminance calculation means 281 reads the positional relationship data from the position storage means 281R, and uses the excitation light reflected from which excitation light reflecting portion region of the detection material 10 based on the luminance value data of the reflected excitation light and the positional relationship. The luminance value and the positional relationship are calculated and matched. Further, the position luminance calculation means 281 transmits the calculation result to the average luminance calculation means 282. Based on the luminance value data from the position luminance calculating unit 281, the average luminance calculating unit 282 calculates the average luminance value of the excitation light in each excitation light reflecting part region. Further, the average luminance calculation means 282 transmits the average data of the luminance values of the excitation light in the excitation light reflection area to the interpolation interpolation calculation means 283. Based on the data from the average luminance calculation means 282, the interpolation interpolation calculation means 283 performs interpolation between the excitation light reflecting portion areas, and calculates the excitation light luminance values of all locations photographed by the CCD camera 50. The interpolation / interpolation calculating means 283 transmits the relationship data between all the photographed locations and the excitation light luminance value to the film thickness calculating means 288. The film thickness calculation means 288 is connected in electrical communication with the interpolation interpolation calculation means 283 and the test line storage means 288R. The calibration line storage means 288R stores in advance a theoretical calibration line between the excitation light luminance and the fluorescence luminance. The film thickness calculation means 288 calls a verification line from the verification line storage means 288R based on the data on the relationship between the excitation light luminance values and all the positions photographed from the interpolation / interpolation calculation means 283. Calculate fluorescent paint film thickness. Further, the film thickness calculating means 288 transmits the fluorescent paint film thickness data of all photographing locations to the theoretical luminance value calculating means 284. The theoretical luminance value calculation means 284 is electrically connected to the film thickness calculation means 288 and the test line storage means 284R. The test line storage means 284R stores in advance a theoretical test line between the paint film thickness and the fluorescence luminance. Based on the film thickness data from the film thickness calculation unit 288, the theoretical luminance value calculation unit 284 calls a verification line from the verification line storage unit 284R, and calculates the theoretical theoretical fluorescence luminance value of all photographing locations using the verification line. . The theoretical luminance value calculation means 284 transmits the theoretical theoretical fluorescence luminance values of all photographing locations to the comparison correction calculation means 285.

比較補正演算手段285は理論輝度値演算手段284と、蛍光用CCDカメラ70と、補正関係記憶手段285Rと電気通信接続されている。補正関係記憶手段285Rには理論蛍光輝度値と実際の蛍光輝度値とのずれに対して実際の蛍光輝度値をいくらに補正すべきかという補正関係が予め記憶されている。比較補正演算手段285はCCDカメラ70から実際の蛍光の輝度値データを得、理論輝度値演算手段284から送られた理論上の理論蛍光輝度値と比較する。その比較結果に基づいて、補正関係記憶手段285Rから実際の蛍光輝度値をいくらに補正すべきかという補正関係を読み出し、その補正関係に基づいて実際の蛍光輝度値データを補正する。その補正処理を行った後の蛍光輝度値データを濃度演算手段286へ送信する。濃度演算手段286は比較補正演算手段285と、蛍光輝度値と酸素ガス濃度の関係を記憶した輝度濃度記憶手段286Rと接続されている。濃度演算手段286は輝度濃度記憶手段286Rから蛍光輝度値と酸素ガス濃度の関係を読み出し、比較補正演算手段285からの補正した蛍光輝度値データに基づき、撮影箇所全体の酸素ガス濃度を演算し、その濃度に応じて色を分けた画像データをディスプレイ90へと送信する。なお、上記一連の処理は上記通常は1つのコンピュータ内でなされる。通常、演算手段はCPU、記憶手段はメモリなどを用いる。予め記憶手段に記憶されている検定線等の相関関係は当業者であれば容易に測定できるものである等は実施形態1と同様である。   The comparison correction calculation means 285 is electrically connected to the theoretical luminance value calculation means 284, the fluorescent CCD camera 70, and the correction relationship storage means 285R. The correction relationship storage unit 285R stores in advance a correction relationship as to how much the actual fluorescence luminance value should be corrected with respect to the difference between the theoretical fluorescence luminance value and the actual fluorescence luminance value. The comparison correction calculation unit 285 obtains actual fluorescence luminance value data from the CCD camera 70 and compares it with the theoretical theoretical fluorescence luminance value sent from the theoretical luminance value calculation unit 284. Based on the comparison result, the correction relationship as to how much the actual fluorescence luminance value should be corrected is read from the correction relationship storage means 285R, and the actual fluorescence luminance value data is corrected based on the correction relationship. The fluorescence luminance value data after the correction processing is transmitted to the density calculation means 286. The concentration calculation means 286 is connected to the comparison correction calculation means 285 and the luminance concentration storage means 286R that stores the relationship between the fluorescence luminance value and the oxygen gas concentration. The concentration calculation unit 286 reads the relationship between the fluorescence luminance value and the oxygen gas concentration from the luminance concentration storage unit 286R, calculates the oxygen gas concentration of the entire imaging location based on the corrected fluorescence luminance value data from the comparison correction calculation unit 285, Image data in which colors are divided according to the density is transmitted to the display 90. The series of processes is usually performed in one computer. Usually, a CPU is used as the calculation means and a memory is used as the storage means. The correlation such as the calibration line stored in advance in the storage means can be easily measured by those skilled in the art, and is the same as in the first embodiment.

「酸素ガス濃度分布の検出方法」
図3Dに示されるフローチャートに基づいて、図3の酸素ガス濃度検出装置を用いた酸素ガス濃度分布の検出の方法について説明する。セパレータを基板12として、その上に励起光反射層16を部分的に塗布し、蛍光塗料層14をその上に被覆させた検知材210上に、ガス流路19を通じて酸素ガスを表面拡散させる。酸素ガスを拡散させると共に、励起光源20により、励起光を検知材210に照射して(S210)、蛍光塗料層14を通じて、励起光反射部16で励起光を反射させる。蛍光塗料膜が厚いほど励起光反射部16に届く、励起光量は減衰し、また、励起光反射層16で反射した反射励起光も減衰する。よって、反射励起光の減衰と蛍光塗料膜厚14には相関関係があり、反射励起光を検知することでガス濃度非依存の蛍光強度変動要因である塗料膜厚のムラを検知して、その影響を除去することが可能となる。
"Detection method of oxygen gas concentration distribution"
Based on the flowchart shown in FIG. 3D, a method of detecting the oxygen gas concentration distribution using the oxygen gas concentration detecting device of FIG. 3 will be described. Using the separator 12 as a substrate, the excitation light reflecting layer 16 is partially applied thereon, and the oxygen gas is surface diffused through the gas flow path 19 on the detection material 210 on which the fluorescent paint layer 14 is coated. While diffusing oxygen gas, the excitation light source 20 irradiates the detection material 210 with excitation light (S210), and the excitation light reflection unit 16 reflects the excitation light through the fluorescent paint layer. The thicker the fluorescent paint film, the more the excitation light quantity that reaches the excitation light reflecting portion 16 is attenuated, and the reflected excitation light reflected by the excitation light reflecting layer 16 is also attenuated. Therefore, there is a correlation between the attenuation of the reflected excitation light and the fluorescent paint film thickness 14, and by detecting the reflected excitation light, the unevenness of the paint film thickness, which is a gas concentration-independent fluorescence intensity fluctuation factor, is detected. It becomes possible to remove the influence.

励起光を検知材210全体に照射して蛍光を発生させる。酸素ガス濃度が濃い箇所においては酸素ガスにより蛍光が消光される。励起光反射層16で反射した励起光と発生した蛍光は混合し、これらが混合した混合光となる(S212)。混合光をハーフプリズム30によって、2方向に分離する。1方向は、励起光透過フィルタ40を通じる方向へ、残りの1方向は蛍光透過フィルタ60を通じる方向へと分離する(S214)。励起光透過フィルタ40を通じる方向へ進行する混合光を励起光透過フィルタ40を用い、励起光波長のみを選択して取り出す。取り出した反射励起光の画像輝度値を励起光用CCDカメラ50で取得する(S216)。反射励起光の画像輝度値はコンピュータ280によって処理する。   The entire detection material 210 is irradiated with excitation light to generate fluorescence. Fluorescence is quenched by oxygen gas at locations where the oxygen gas concentration is high. The excitation light reflected by the excitation light reflecting layer 16 and the generated fluorescence are mixed to form mixed light (S212). The mixed light is separated in two directions by the half prism 30. One direction is separated into the direction through the excitation light transmission filter 40, and the remaining one direction is separated into the direction through the fluorescence transmission filter 60 (S214). Using the excitation light transmission filter 40, the mixed light traveling in the direction through the excitation light transmission filter 40 is selected and extracted only. The image brightness value of the extracted reflected excitation light is acquired by the excitation light CCD camera 50 (S216). The image brightness value of the reflected excitation light is processed by the computer 280.

すなわち、CCDカメラ50から励起光の輝度値データを得た位置輝度演算手段281は、励起光の輝度値データとCCDカメラ50の撮影箇所の位置関係から、検知材210のどの励起光反射部領域から反射されて来た励起光であるかを演算し、位置と輝度値の関係を整合させたデータP(Xn,Yn)を得る(S218)。次に平均輝度演算手段282は位置輝度演算手段281からの輝度データP(Xn,Yn)に基づき、励起光反射部領域各々の励起光の輝度値平均を演算し、励起光反射部領域各々の励起光の輝度値平均のデータA(Xn,Yn)を得る(S220)。これにより、さらに内挿補間演算手段283は平均輝度演算手段282からの輝度データA(Xn,Yn)に基づき、励起光反射部領域相互間の内挿補間を行い、CCDカメラ50で撮影した全箇所の励起光輝度値のデータE(Xn,Yn)を得る(S222)。   That is, the position luminance calculation means 281 that has obtained the luminance value data of the excitation light from the CCD camera 50 determines which excitation light reflecting portion region of the detection material 210 based on the positional relationship between the luminance value data of the excitation light and the photographing location of the CCD camera 50. Whether the excitation light is reflected from the light is calculated, and data P (Xn, Yn) in which the relationship between the position and the luminance value is matched is obtained (S218). Next, based on the luminance data P (Xn, Yn) from the position luminance calculation unit 281, the average luminance calculation unit 282 calculates the average luminance value of the excitation light in each excitation light reflection unit region, and each excitation light reflection unit region Data A (Xn, Yn) of average luminance values of the excitation light is obtained (S220). Thus, the interpolation interpolation calculating means 283 further performs interpolation between the excitation light reflecting portion regions based on the luminance data A (Xn, Yn) from the average luminance calculating means 282, and all the images taken by the CCD camera 50 are captured. Data E (Xn, Yn) of the excitation light luminance value at the location is obtained (S222).

次に膜厚演算手段288により内挿補間演算手段283からの反射励起光輝度データE(Xn,Yn)と蛍光塗料膜厚との理論上の検定線により全撮影箇所の蛍光塗料膜厚データD(Xn,Yn)を演算する(S224)。次に理論輝度値演算手段284により膜厚演算手段288からの膜厚データD(Xn,Yn)と蛍光輝度との理論上の検定線により全撮影箇所の理論上の理論蛍光輝度値データC(Xn,Yn)を演算する(S226)。   Next, the fluorescent paint film thickness data D of all the photographing locations is obtained by the film thickness calculating means 288 by the theoretical test line between the reflected excitation light luminance data E (Xn, Yn) from the interpolation interpolation calculating means 283 and the fluorescent paint film thickness. (Xn, Yn) is calculated (S224). Next, the theoretical luminance value calculation means 284 uses the theoretical calibration line between the film thickness data D (Xn, Yn) from the film thickness calculation means 288 and the fluorescent luminance, and theoretical theoretical fluorescent luminance value data C ( Xn, Yn) is calculated (S226).

次に、蛍光透過フィルタ60を通じる方向へ進行する混合光を蛍光透過フィルタ60を用い、蛍光波長のみを選択して取り出す。取り出した蛍光の画像輝度値を蛍光用CCDカメラ70で取得する(S228)。比較補正演算手段285はCCDカメラ70から実際の蛍光の輝度値データを得、理論輝度値演算手段284から送られた全撮影箇所の理論上の理論蛍光輝度値C(Xn,Yn)と比較し、その比較結果に基づいて実際の蛍光の輝度値データを補正し、その補正した蛍光輝度値データL(Xn,Yn)を得る(S230)。次に濃度演算手段286は比較補正演算手段285からの補正した蛍光輝度値データL(Xn,Yn)に基づき、撮影箇所全体の酸素ガス濃度データO(Xn,Yn)を演算し、その濃度に応じて色を分けた画像データをディスプレイ90へと送信する(S232)。ディスプレイ90には、酸素ガス濃度O(Xn,Yn)に応じて色を分けた画像データを出力させる(S234)。   Next, the mixed light traveling in the direction passing through the fluorescence transmission filter 60 is selected using the fluorescence transmission filter 60 and only the fluorescence wavelength is selected and extracted. The fluorescence image brightness value taken out is acquired by the fluorescence CCD camera 70 (S228). The comparison correction calculation means 285 obtains the actual fluorescence brightness value data from the CCD camera 70 and compares it with the theoretical theoretical fluorescence brightness value C (Xn, Yn) of all the photographing locations sent from the theoretical brightness value calculation means 284. Based on the comparison result, the actual fluorescence brightness value data is corrected, and the corrected fluorescence brightness value data L (Xn, Yn) is obtained (S230). Next, the concentration calculating means 286 calculates oxygen gas concentration data O (Xn, Yn) of the entire photographing location based on the corrected fluorescence luminance value data L (Xn, Yn) from the comparison correction calculating means 285, and calculates the concentration. In response to this, the image data divided in color is transmitted to the display 90 (S232). The display 90 outputs image data in which colors are divided according to the oxygen gas concentration O (Xn, Yn) (S234).

以上によりセパレータ上の酸素ガス濃度の分布を精度良く色により可視化して認識できる。以上の方法により、蛍光塗料の膜厚のムラを除去して正確にセパレータ上の酸素ガス濃度分布を測定できる。   As described above, the distribution of the oxygen gas concentration on the separator can be visualized and recognized with high accuracy. By the above method, it is possible to accurately measure the oxygen gas concentration distribution on the separator by removing the unevenness of the film thickness of the fluorescent paint.

[参考形態3]
参考形態3は、実施形態1または参考形態1と、参考形態2の装置を組み合わせる構成である。検知材は参考形態2の蛍光塗料層14の上に実施形態1の励起光反射層16または、参考形態1の酸素不透過部層116を部分的に塗布する。
[Reference form 3]
The reference form 3 is a configuration in which the apparatus of the first embodiment or the reference form 1 and the reference form 2 are combined. As the detection material, the excitation light reflecting layer 16 of Embodiment 1 or the oxygen-impermeable portion layer 116 of Reference Embodiment 1 is partially applied on the fluorescent paint layer 14 of Reference Embodiment 2.

参考形態3では、実施形態1および参考形態1の励起光の照射ムラや励起光源の経時的な明暗変化による蛍光強度変動要因の補正と、参考形態2の蛍光塗料の膜厚のムラによる蛍光強度変動要因の補正を同時に行うことができる。   In the reference form 3, the correction of the fluorescence intensity variation factor due to the unevenness of the excitation light irradiation of the first embodiment and the reference form 1 and the time-dependent brightness change of the excitation light source, and the fluorescence intensity due to the uneven film thickness of the fluorescent paint of the reference form 2 Variation factors can be corrected simultaneously.

[その他]
上記はガス濃度検出装置について実施形態を示したが同様のガス濃度検出方法およびガス濃度検出プログラムの提供も可能であり、当業者であれば上記実施形態に基づいて十分に実施することが可能である。
[Others]
Although the above describes the embodiment of the gas concentration detection device, it is possible to provide a similar gas concentration detection method and gas concentration detection program, and those skilled in the art can fully implement the embodiment based on the above embodiment. is there.

本発明は、試料濃度を検出する必要があるワーク全般に適用できる。試料濃度とはガス濃度に限られるものではなく、液体濃度、固体密度であっても適用できる場合がある。例えば、燃料電池の電極セルを流れるガス濃度の検出測定に適用できる。また、ワークの溶接の際のシールドガスのガス濃度の分布測定などにも適用できる。   The present invention can be applied to all workpieces that require detection of sample concentration. The sample concentration is not limited to the gas concentration, and may be applicable even with a liquid concentration or a solid density. For example, it can be applied to the detection measurement of the gas concentration flowing through the electrode cell of the fuel cell. It can also be applied to measurement of the distribution of the gas concentration of the shield gas during workpiece welding.

実施形態1のガス濃度検出装置の構成図である。It is a block diagram of the gas concentration detection apparatus of Embodiment 1. 実施形態1の検知材の上面図である。3 is a top view of the detection material of Embodiment 1. FIG. 実施形態1の検知材の断面図である。2 is a cross-sectional view of a detection material according to Embodiment 1. FIG. 実施形態1のコンピュータの内部構成を示すブロック図である。FIG. 2 is a block diagram illustrating an internal configuration of the computer according to the first embodiment. 実施形態1に係るガス濃度検出フローチャートである。3 is a gas concentration detection flowchart according to the first embodiment. 参考形態1のガス濃度検出装置の構成図である。It is a block diagram of the gas concentration detection apparatus of the reference form 1. 参考形態1の検知材の上面図である。It is a top view of the detection material of the reference form 1. 参考形態1の検知材の断面図である。It is sectional drawing of the detection material of the reference form 1. 参考形態1のコンピュータの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the computer of the reference form 1. 参考形態1に係るガス濃度検出フローチャートである。3 is a gas concentration detection flowchart according to Reference Embodiment 1. 参考形態2のガス濃度検出装置の構成図である。It is a block diagram of the gas concentration detection apparatus of the reference form 2. 参考形態2の検知材の上面図である。It is a top view of the detection material of the reference form 2. 参考形態2の検知材の断面図である。It is sectional drawing of the detection material of the reference form 2. 参考形態2のコンピュータの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the computer of the reference form 2. 参考形態2に係るガス濃度検出フローチャートである。It is a gas concentration detection flowchart which concerns on the reference form 2.

符号の説明Explanation of symbols

10,110,210 検知材、12 セパレータ、14 蛍光塗料層、16 励起光反射層、18 ケース、19 ガス流路(空間)、116 酸素不透過層、20 励起光源、30 ハーフプリズム、40,60 フィルタ、50,70 CCDカメラ、80,180,280 コンピュータ、90 ディスプレイ、100,200,300 ガス濃度検出装置。
10, 110, 210 Detection material, 12 Separator, 14 Fluorescent paint layer, 16 Excitation light reflection layer, 18 Case, 19 Gas flow path (space), 116 Oxygen impermeable layer, 20 Excitation light source, 30 Half prism, 40, 60 Filter, 50, 70 CCD camera, 80, 180, 280 Computer, 90 display, 100, 200, 300 Gas concentration detector.

Claims (3)

試料雰囲気中のワーク表面上に塗布された蛍光塗料面上に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度を検出する試料濃度検出方法であって、
励起光の照射により発生した蛍光の蛍光強度を取得する蛍光強度取得工程と、
この蛍光強度を取得すると同時に、前記ワーク表面から試料濃度非依存による蛍光強度変動要因の影響を演算する変動要因演算工程と、
この蛍光強度変動要因の影響に基づいて、前記蛍光強度を補正する補正工程と、
補正後の蛍光強度に基づいて前記ワーク表面の試料濃度を判定する判定工程と、
を有し、
前記変動要因演算工程は、
前記ワークの前記蛍光塗料面上に前記励起光を反射する励起光反射層を部分的に塗布する塗布工程と、
前記励起光反射層により反射した励起光の励起光強度を取得する励起光強度取得工程と、
この反射した励起光強度に基づいて、試料濃度非依存による蛍光強度変動要因の影響を演算する影響演算工程であって、励起光反射層の位置と反射した励起光の励起光強度の関係を整合する整合工程と、励起光反射層相互間を内挿補間してワーク表面全体の励起光を推定する推定工程と、この推定された励起光からワーク表面全体の理論蛍光強度を推定する理論強度演算工程と、この理論蛍光強度と前記蛍光強度とを比較する比較工程と、を有し、この比較結果に基づいて試料濃度非依存による蛍光強度変動要因の影響を演算する、工程と、
を有する方法。
A sample concentration detection method for detecting the sample concentration of the workpiece surface by generating fluorescence by irradiating excitation light onto the fluorescent paint surface coated on the workpiece surface in the sample atmosphere and acquiring the fluorescence intensity Because
A fluorescence intensity acquisition step of acquiring fluorescence intensity of fluorescence generated by irradiation of excitation light;
At the same time as acquiring this fluorescence intensity, a fluctuation factor calculation step for calculating the influence of the fluorescence intensity fluctuation factor depending on the sample concentration from the workpiece surface,
Based on the influence of this fluorescence intensity variation factor, a correction step of correcting the fluorescence intensity,
A determination step of determining the sample concentration of the workpiece surface based on the corrected fluorescence intensity;
Have
The variation factor calculation step includes:
An application step of partially applying an excitation light reflecting layer that reflects the excitation light on the fluorescent paint surface of the workpiece;
An excitation light intensity acquisition step of acquiring the excitation light intensity of the excitation light reflected by the excitation light reflection layer;
Based on the reflected excitation light intensity, this is an influence calculation process that calculates the influence of the fluorescence intensity variation factor depending on the sample concentration, and matches the relationship between the position of the excitation light reflection layer and the excitation light intensity of the reflected excitation light. A matching process, an estimation process for estimating the excitation light on the entire workpiece surface by interpolating between the excitation light reflecting layers, and a theoretical intensity calculation for estimating the theoretical fluorescence intensity on the entire workpiece surface from the estimated excitation light. A step of comparing the theoretical fluorescence intensity with the fluorescence intensity, and calculating the influence of the fluorescence intensity variation factor depending on the sample concentration based on the comparison result,
Having a method.
試料雰囲気中のワーク表面上に塗布された蛍光塗料面上に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度を検出する試料濃度検出装置であって、
励起光を前記蛍光塗料面上へ照射することにより発生した蛍光の蛍光強度を取得する蛍光強度取得手段と、
この蛍光強度を取得すると同時に、前記ワーク表面から試料濃度非依存による蛍光強度変動要因の影響を演算する変動要因演算手段と、
この蛍光強度変動要因の影響に基づいて、前記蛍光強度を補正する補正手段と、
補正後の蛍光強度に基づいて前記ワーク表面の試料濃度を判定する判定手段と、
を有し、
前記変動要因演算手段は、
前記ワークの前記蛍光塗料面上に部分的に塗布された、前記励起光を反射する励起光反射層により反射した励起光の励起光強度を取得する励起光強度取得手段と、
この反射した励起光強度に基づいて、試料濃度非依存による蛍光強度変動要因の影響を演算する影響演算手段であって、励起光反射層の位置と反射した励起光の励起光強度の関係を整合する整合手段と、励起光反射層相互間を内挿補間してワーク表面全体の励起光を推定する推定手段と、この推定された励起光からワーク表面全体の理論蛍光強度を推定する理論強度演算手段と、この理論蛍光強度と前記蛍光強度とを比較する比較手段と、を有し、この比較結果に基づいて試料濃度非依存による蛍光強度変動要因の影響を演算する、手段と、
を有する装置
A sample concentration detection device for detecting the sample concentration of the work surface by generating fluorescence by irradiating excitation light onto the fluorescent paint surface applied on the work surface in the sample atmosphere and acquiring the fluorescence intensity Because
Fluorescence intensity acquisition means for acquiring fluorescence intensity of fluorescence generated by irradiating the fluorescent paint surface with excitation light;
At the same time as obtaining this fluorescence intensity, a fluctuation factor calculation means for calculating the influence of the fluorescence intensity fluctuation factor depending on the sample concentration from the workpiece surface,
Correction means for correcting the fluorescence intensity based on the influence of the fluorescence intensity variation factor,
Determination means for determining the sample concentration on the workpiece surface based on the corrected fluorescence intensity;
Have
The variation factor calculation means includes:
Excitation light intensity acquisition means for acquiring the excitation light intensity of excitation light partially reflected on the fluorescent paint surface of the workpiece and reflected by the excitation light reflection layer that reflects the excitation light;
Based on this reflected excitation light intensity, it is an influence calculation means that calculates the influence of the fluorescence intensity fluctuation factor depending on the sample concentration, and matches the relationship between the position of the excitation light reflection layer and the excitation light intensity of the reflected excitation light. Matching means, estimation means for estimating excitation light on the entire workpiece surface by interpolating between the excitation light reflecting layers, and theoretical intensity calculation for estimating the theoretical fluorescence intensity on the entire workpiece surface from the estimated excitation light Means for comparing the theoretical fluorescence intensity with the fluorescence intensity, and calculating the influence of the fluorescence intensity variation factor depending on the sample concentration based on the comparison result;
Having a device .
試料雰囲気中のワーク表面上に塗布された蛍光塗料面上に励起光を照射することにより蛍光を発生させ、この蛍光強度を取得することにより、前記ワーク表面の試料濃度をコンピュータによって検出する試料濃度検出プログラムであって、
励起光の照射により発生した蛍光の蛍光強度を取得し、
この蛍光強度を取得すると同時に、前記ワークの前記蛍光塗料面上に部分的に塗布された、前記励起光を反射する励起光反射層により反射した励起光の励起光強度を取得し、
励起光反射層の位置と反射した励起光の励起光強度の関係を整合する整合し、
励起光反射層相互間を内挿補間してワーク表面全体の励起光を推定し、
この推定された励起光からワーク表面全体の理論蛍光強度を推定し、
この理論蛍光強度と前記蛍光強度とを比較する比較し、
この比較結果に基づいて試料濃度非依存による蛍光強度変動要因の影響を演算し、
この蛍光強度変動要因の影響に基づいて、前記蛍光強度を補正し、
補正後の蛍光強度に基づいて前記ワーク表面の試料濃度を判定するプログラム
Fluorescence is generated by irradiating excitation light onto the surface of the fluorescent paint applied on the work surface in the sample atmosphere, and the sample concentration on the work surface is detected by a computer by acquiring the fluorescence intensity. A detection program,
Acquire fluorescence intensity of fluorescence generated by irradiation of excitation light,
At the same time as acquiring this fluorescence intensity, the excitation light intensity of the excitation light reflected by the excitation light reflecting layer that is partially coated on the fluorescent paint surface of the workpiece and reflects the excitation light is acquired,
Match the relationship between the position of the excitation light reflecting layer and the excitation light intensity of the reflected excitation light,
Interpolate between the excitation light reflecting layers to estimate the excitation light on the entire workpiece surface,
The theoretical fluorescence intensity of the entire workpiece surface is estimated from this estimated excitation light,
Compare this theoretical fluorescence intensity with the fluorescence intensity,
Based on this comparison result, the influence of the fluorescence intensity fluctuation factor due to the sample concentration independence is calculated,
Based on the influence of this fluorescence intensity variation factor, the fluorescence intensity is corrected,
Program determining sample concentration of the workpiece surface based on the fluorescence intensity after the correction.
JP2003321211A 2003-09-12 2003-09-12 Sample concentration detection method, apparatus and program Expired - Fee Related JP4144486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321211A JP4144486B2 (en) 2003-09-12 2003-09-12 Sample concentration detection method, apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321211A JP4144486B2 (en) 2003-09-12 2003-09-12 Sample concentration detection method, apparatus and program

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008090539A Division JP4725593B2 (en) 2008-03-31 2008-03-31 Sample concentration detection method, apparatus and program
JP2008090540A Division JP4631922B2 (en) 2008-03-31 2008-03-31 Sample concentration detection method, apparatus and program

Publications (2)

Publication Number Publication Date
JP2005090999A JP2005090999A (en) 2005-04-07
JP4144486B2 true JP4144486B2 (en) 2008-09-03

Family

ID=34452962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321211A Expired - Fee Related JP4144486B2 (en) 2003-09-12 2003-09-12 Sample concentration detection method, apparatus and program

Country Status (1)

Country Link
JP (1) JP4144486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404402A1 (en) * 2017-05-11 2018-11-21 Rolls-Royce plc A method of determining the residual oxygen content in a shielded arc welding process using pressure sensitive paint

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762603B2 (en) * 2005-05-24 2011-08-31 トヨタ自動車株式会社 Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell
JP4826545B2 (en) * 2007-05-28 2011-11-30 トヨタ自動車株式会社 Porous material diffusion measuring apparatus and porous material diffusion measuring method
JP5888104B2 (en) * 2012-05-14 2016-03-16 株式会社島津製作所 Oxygen concentration measuring device
JP6287195B2 (en) * 2013-12-26 2018-03-07 東ソー株式会社 Fluorescence measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404402A1 (en) * 2017-05-11 2018-11-21 Rolls-Royce plc A method of determining the residual oxygen content in a shielded arc welding process using pressure sensitive paint

Also Published As

Publication number Publication date
JP2005090999A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4725593B2 (en) Sample concentration detection method, apparatus and program
JP4773155B2 (en) Method for inspecting pattern formed on substrate, and inspection apparatus for performing the same
US7969584B2 (en) Measuring method including measuring angle of concave portion and irradiating light over concave portion
JP4799268B2 (en) Unevenness inspection apparatus and unevenness inspection method
JP2007069217A (en) Method and apparatus for detecting spreading-state of releasing agent
US20160198985A1 (en) Attenuated total reflection spectroscopic analysis apparatus having device for measuring specimen contact area and method of operating the same
JP4144486B2 (en) Sample concentration detection method, apparatus and program
JP4631922B2 (en) Sample concentration detection method, apparatus and program
JP4901246B2 (en) Spectral luminance distribution estimation system and method
JPH05232042A (en) Surface inspecting method and device thereof
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
JP2007085850A (en) Deterioration factor detecting method and device of concrete
JP2008070172A (en) Spectrophotofluorometer and its correction method
JP7136064B2 (en) Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected
JP2006313143A (en) Irregularity inspection device and method thereof
US20020097405A1 (en) Apparatus and method for measuring trench depth
JP2006292668A (en) Surface inspection device and surface inspection method
JP4465676B2 (en) Edge detection method
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP2013108811A (en) Fuel cell oxygen concentration measuring apparatus
JP4995041B2 (en) Printed solder inspection method and printed solder inspection apparatus
JP2009222607A (en) Illumination control method of sample analyzer, and sample analyzer
JP7341849B2 (en) Optical measurement device and optical measurement method
EP1400802A1 (en) Method and arrangement for detecting and evaluating surface irregularities
JP2007232506A (en) Water amount measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R151 Written notification of patent or utility model registration

Ref document number: 4144486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees