JP4762603B2 - Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell - Google Patents

Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell Download PDF

Info

Publication number
JP4762603B2
JP4762603B2 JP2005151167A JP2005151167A JP4762603B2 JP 4762603 B2 JP4762603 B2 JP 4762603B2 JP 2005151167 A JP2005151167 A JP 2005151167A JP 2005151167 A JP2005151167 A JP 2005151167A JP 4762603 B2 JP4762603 B2 JP 4762603B2
Authority
JP
Japan
Prior art keywords
oxygen
fuel cell
measurement target
partial pressure
pressure distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005151167A
Other languages
Japanese (ja)
Other versions
JP2006331733A (en
Inventor
譲優 箱崎
慎矢 鎌田
圭介 浅井
大樹 永井
徳治 宮下
方也 三ツ石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor Corp
Original Assignee
Tohoku University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Motor Corp filed Critical Tohoku University NUC
Priority to JP2005151167A priority Critical patent/JP4762603B2/en
Publication of JP2006331733A publication Critical patent/JP2006331733A/en
Application granted granted Critical
Publication of JP4762603B2 publication Critical patent/JP4762603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池に関するものである。 The present invention relates to a polymer electrolyte fuel cell.

近年、種々の形式の燃料電池が開発され実用に供されており、例えば、自動車用として固体高分子型の燃料電池が採用されている。ところで、燃料電池は、その発電原理から、カソード側の空気がアノード側へと漏れ出すような現象が発生すると、必要な電力を得ることができなくなる。そこで、燃料電池のMEA(Membrane Electrode Assemblies:固体高分子膜と、白金等の貴金属微粒子を含む触媒を材料とする薄膜電極とを張り合わせた膜)の、アノード側の触媒層に、酸素消光性塗料を塗布した光ファイバーの先端部を複数埋め込み、各光ファイバを順次発光させて、酸素消光性塗料の発光強度(輝度)を測定することにより各光ファイバ先端部近傍の酸素量を検出する、燃料電池の検査手法が発明されている(例えば、特許文献1。)。   In recent years, various types of fuel cells have been developed and put into practical use. For example, polymer electrolyte fuel cells are used for automobiles. By the way, the fuel cell cannot obtain necessary electric power when a phenomenon that the air on the cathode side leaks to the anode side occurs due to the principle of power generation. Therefore, oxygen quenching paint is applied to the catalyst layer on the anode side of fuel cell MEA (Membrane Electrode Assemblies: a film in which a solid polymer film and a thin film electrode made of a catalyst containing precious metal particles such as platinum are laminated). A fuel cell that detects the amount of oxygen in the vicinity of the tip of each optical fiber by embedding a plurality of tip portions of the optical fiber coated with the optical fiber, sequentially emitting light from each optical fiber, and measuring the emission intensity (luminance) of the oxygen quenching paint The inspection method has been invented (for example, Patent Document 1).

特開2004−265667号公報(〔請求項1〕、〔図1〕)JP-A-2004-265667 ([Claim 1], [FIG. 1])

しかしながら、従来の固体高分子型燃料電池の検査手法は、MEAの複数点の酸素濃度をピンポイントで検出して、MEA全体の酸素濃度を予測するものであり、MEA全体の正確な酸素濃度を直接的に把握することは不可能であった。特に、固体高分子膜の分子構造が破損して孔が開くことにより、カソード側の空気がアノード側へと漏れ出す、いわゆるクロスリークが発生した場合、クロスリークの原因となる孔は極めて小さいものであることから、光ファイバーの端部が埋め込まれた場所とその孔とが一致しないかぎり、正確な酸素濃度の測定は困難となっていた。
又、酸素消光性塗料を用いた酸素濃度の測定を行うに際し、正確な測定結果を得るためには、燃料電池内部の温度や湿度等の環境下における経時変化が少なく、かつ、塗布対象物(従来例では、光ファイバーの端部)に安定した塗装膜を形成することが可能な、酸素消光性塗料膜の形成が必要不可欠となっていた。
又、酸素消光性塗料は一般に温度依存性を有していることから、燃料電池を実際に運転状態にある場合には、温度変化が酸素消光性塗料の発光強度に影響を与え、正確な酸素濃度の測定が極めて困難であるといった問題も包含していた。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、運転状態にある固体高分子型燃料電池の酸素分圧分布等を正確に把握し、固体高分子型燃料電池の発電効率と耐久性の向上に寄与することにある。
However, the conventional solid polymer fuel cell inspection method detects the oxygen concentration at multiple points of the MEA pinpoint and predicts the oxygen concentration of the entire MEA. It was impossible to grasp directly. In particular, when the molecular structure of the solid polymer membrane is broken and the holes are opened, the cathode side air leaks to the anode side, so-called cross leak occurs. Therefore, unless the location where the end of the optical fiber is embedded matches the hole, it is difficult to accurately measure the oxygen concentration.
In order to obtain an accurate measurement result when measuring the oxygen concentration using an oxygen quenching paint, there is little change over time in the environment such as the temperature and humidity inside the fuel cell, and an application target ( In the conventional example, the formation of an oxygen-quenching paint film capable of forming a stable coating film on the end portion of the optical fiber has been indispensable.
In addition, since the oxygen-quenching paint generally has temperature dependence, when the fuel cell is actually in operation, the temperature change affects the emission intensity of the oxygen-quenching paint. It also included the problem that the concentration measurement was extremely difficult.
The present invention has been made in view of the above problems, and the object of the present invention is to accurately grasp the oxygen partial pressure distribution and the like of a solid polymer fuel cell in an operating state, and This is to contribute to the improvement of power generation efficiency and durability.

上記課題を解決するための、本発明に係る固体高分子型燃料電池の酸素分圧分布等の計測方法は、固体高分子膜と薄膜電極とからなるMEAと、アノード側の薄膜電極の外側に隣接して設けられた水素ガスの供給路と、カソード側の薄膜電極の外側に隣接して設けられた空気の供給路とが、夫々、セパレータで密閉されており、該セパレータの一部若しくは全部が、セパレータとしての機械的性質を満足する透明な材料で構成され、アノード側セパレータの内側面と薄膜電極の外側面の一方、及び、カソード側セパレータの内側面と薄膜電極の外側面の一方に、酸素消光性塗料が塗布され、薄膜電極に負荷が接続されて運転状態にある、固体高分子型燃料電池に対し、酸素消光性塗料の励起波長の光をパルス照射し、測定対象部分の発光強度の減衰過程を、光の照射パルス周期よりも短い間隔で撮影し、単純に燃料電池の測定対象部分の温度のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、又は、単純に燃料電池の測定対象部分の酸素分圧分布のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、撮影された画像の発光強度を補正して、測定対象部分の酸素分圧分布又は温度分布を求めることを特徴とするものである。
本発明によれば、測定対象部分に酸素消光性塗料が塗布された燃料電池に対し、酸素消光性塗料の励起波長の光をパルス照射し、光の照射パルス周期よりも短い間隔で測定対象部分の発光強度を撮影することで、測定対象部分全体の酸素分圧分布等を、当該部分に塗布された酸素消光性塗料の発光強度の減衰率に基づき把握することが可能となる。しかも、燃料電池の測定対象部分が、測定対象部分自体に塗布された酸素消光性塗料の発光によって二次元的に視認されるので、測定対象部分の酸素分圧分布を、測定対象部分の面の全体にわたり直接的に把握することが可能となる。
In order to solve the above-described problems, a method for measuring the oxygen partial pressure distribution of a solid polymer fuel cell according to the present invention includes an MEA composed of a solid polymer film and a thin film electrode, and an anode side thin film electrode on the outside. The hydrogen gas supply path provided adjacent to the cathode and the air supply path provided adjacent to the outside of the cathode-side thin film electrode are each sealed with a separator, and a part or all of the separator is sealed. Is formed of a transparent material that satisfies the mechanical properties as a separator, and is provided on one of the inner surface of the anode-side separator and the outer surface of the thin-film electrode, and one of the inner surface of the cathode-side separator and the outer surface of the thin-film electrode. A solid polymer fuel cell that has been applied with an oxygen-quenching paint, connected to a thin-film electrode, and is in operation is pulsed with light having an excitation wavelength of the oxygen-quenching paint to emit light at the measurement target part. Strength The decay process, taken at intervals shorter than the irradiation pulse period of light, leave simply grasp beforehand the change in the luminance in the case of changing only the temperature of the measurement target portion of the fuel cell, this calibration data As a calibration data, use this as calibration data to grasp in advance the change in luminance when only the oxygen partial pressure distribution of the measurement target part of the fuel cell is changed. The emission intensity is corrected to obtain the oxygen partial pressure distribution or temperature distribution of the measurement target portion .
According to the present invention, a fuel cell having an oxygen quenching paint applied to a measurement target portion is pulsed with light having an excitation wavelength of the oxygen quenching paint, and the measurement target portion is spaced at an interval shorter than the light irradiation pulse cycle. By photographing the emission intensity, it is possible to grasp the oxygen partial pressure distribution or the like of the entire measurement target part based on the decay rate of the emission intensity of the oxygen quenching paint applied to the part. In addition, since the measurement target portion of the fuel cell is visually recognized two-dimensionally by the light emission of the oxygen quenching paint applied to the measurement target portion itself, the oxygen partial pressure distribution of the measurement target portion is measured on the surface of the measurement target portion. It becomes possible to grasp directly throughout.

なお、本発明によれば、測定対象部分全体(に塗布された酸素消光性塗料)の発光強度を、酸素消光性塗料の温度依存性を考慮して補正することにより、燃料電池が実際に運転状態にあるときの、測定対象部分全体の酸素分圧分布を正確に把握することが可能となる。又、酸素分圧分布に起因する発光強度の減衰率が正確に把握されることで、燃料電池が実際に運転状態にあるときの、測定対象部分全体の温度分布についても、発光強度の減衰率から正確に把握することが可能となる。 According to the present invention , the fuel cell is actually operated by correcting the emission intensity of the entire measurement target portion (oxygen-quenching paint applied thereto) in consideration of the temperature dependence of the oxygen-quenching paint. In this state, it is possible to accurately grasp the oxygen partial pressure distribution of the entire measurement target portion. In addition, by accurately grasping the decay rate of the emission intensity due to the oxygen partial pressure distribution, the decay rate of the emission intensity is also obtained for the temperature distribution of the entire measurement target part when the fuel cell is actually in operation. It becomes possible to grasp accurately from.

又、上記課題を解決するための、本発明に係る固体高分子型燃料電池の酸素分圧分布等の計測装置は、固体高分子膜と薄膜電極とからなるMEAと、アノード側の薄膜電極の外側に隣接して水素ガスの供給路が設けられ、カソード側の薄膜電極の外側に隣接して空気の供給路が設けられ、夫々、セパレータで密閉されており、該セパレータの一部若しくは全部が、セパレータとしての機械的性質を満足する透明な材料で構成され、アノード側セパレータの内側面と薄膜電極の外側面の一方、及び、カソード側セパレータの内側面と薄膜電極の外側面の一方に、酸素消光性塗料が塗布され、薄膜電極に負荷が接続されて運転状態での、前記酸素消光性塗料が塗布された部分が外部から視認可能に構成された固体高分子型燃料電池と、測定対象部分に酸素消光性塗料の励起波長の光をパルス照射する光照射手段と、測定対象部分の発光強度の減衰過程を、光の照射パルス周期よりも短い間隔で撮影する撮像手段と、単純に燃料電池の測定対象部分の温度のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、又は、単純に燃料電池の測定対象部分の酸素分圧分布のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、撮影された画像の発光強度を補正して、撮影された画像の発光強度を補正する補正手段とを備えることを特徴とするものである。
本発明によれば、測定対象部分に酸素消光性塗料が塗布されると共に当該部分が外部から視認可能に構成された燃料電池に対し、光照射手段から酸素消光性塗料の励起波長の光をパルス照射することにより、測定対象部分を発光させる。そして、撮像手段により測定対象部分の発光強度の減衰過程を、光の照射パルス周期よりも短い間隔で撮影することで、測定対象部分全体の酸素分圧分布等を、当該部分に塗布された酸素消光性塗料の発光強度の減衰率に基づき把握することが可能となる。しかも、燃料電池の測定対象部分が、測定対象部分自体に塗布された酸素消光性塗料の発光によって二次元的に視認されるので、測定対象部分の酸素分圧分布を、測定対象部分の面の全体にわたり直接的に把握することが可能となる。
Further, in order to solve the above-described problems, a measuring device for oxygen partial pressure distribution of a solid polymer fuel cell according to the present invention includes an MEA composed of a solid polymer film and a thin film electrode, and a thin film electrode on the anode side. A hydrogen gas supply path is provided adjacent to the outside, an air supply path is provided adjacent to the outside of the cathode-side thin film electrode, and each is sealed with a separator, and a part or all of the separator is , Composed of a transparent material that satisfies the mechanical properties as a separator, on one of the inner surface of the anode separator and the outer surface of the thin film electrode, and one of the inner surface of the cathode side separator and the outer surface of the thin film electrode, A polymer electrolyte fuel cell configured to be visible from the outside, in which an oxygen-quenching paint is applied, a load is connected to the thin film electrode, and the portion to which the oxygen-quenching paint is applied is measured, and an object to be measured Part A light irradiation means for pulse irradiation with light having an excitation wavelength of oxygen quenching paint, the decay process of the emission intensity of the measurement target portion and imaging means for imaging at shorter intervals than the irradiation pulse period of the light, simply a fuel cell The change in brightness when only the temperature of the measurement target part is changed is grasped in advance, and this is used as calibration data, or simply the oxygen partial pressure distribution of the measurement target part of the fuel cell is used. Correction means for grasping in advance the change in brightness when changing, using this as calibration data, correcting the emission intensity of the photographed image, and correcting the emission intensity of the photographed image; It is characterized by providing.
According to the present invention, light having an excitation wavelength of the oxygen quenching paint is pulsed from the light irradiation means to the fuel cell in which the part to be measured is coated with the oxygen quenching paint and the part is visible from the outside. By irradiating, the measurement target portion is caused to emit light. Then, by imaging the decay process of the emission intensity of the measurement target portion at an interval shorter than the light irradiation pulse cycle by the imaging means, the oxygen partial pressure distribution of the entire measurement target portion and the like are applied to the oxygen applied to the portion. It becomes possible to grasp based on the decay rate of the emission intensity of the quenching paint. In addition, since the measurement target portion of the fuel cell is visually recognized two-dimensionally by the light emission of the oxygen quenching paint applied to the measurement target portion itself, the oxygen partial pressure distribution of the measurement target portion is measured on the surface of the measurement target portion. It becomes possible to grasp directly throughout.

又、本発明において、補正手段により酸素消光性塗料の温度依存性を考慮して、撮影された画像の発光強度を補正することにより、燃料電池が実際に運転状態にあるときの、測定対象部分全体の酸素分圧分布を正確に把握することが可能となる。又、酸素分圧分布に起因する発光強度の減衰率が正確に把握されることで、燃料電池が実際に運転状態にあるときの、測定対象部分全体の温度分布についても、発光強度の減衰率から正確に把握することが可能となる。 Further, in the present invention, the portion to be measured when the fuel cell is actually in operation by correcting the emission intensity of the photographed image in consideration of the temperature dependence of the oxygen quenching paint by the correcting means. It is possible to accurately grasp the entire oxygen partial pressure distribution. In addition, by accurately grasping the decay rate of the emission intensity due to the oxygen partial pressure distribution, the decay rate of the emission intensity is also obtained for the temperature distribution of the entire measurement target part when the fuel cell is actually in operation. It becomes possible to grasp accurately from.

又、上記課題を解決するための、本発明に係る固体高分子型燃料電池の制御方法は、固体高分子型燃料電池の単セルの、アノード排気部又はカソード排気部の少なくとも一方に光ファイバの先端部を設置し、測定対象部分若しくは光ファイバ先端部の一方に酸素消光性塗料を塗布し、光ファイバを介して、測定対象部分に酸素消光性塗料の励起波長の光をパルス照射し、塗布された酸素消光性塗料の発光強度減衰過程を、光ファイバを介して光のパルス周期よりも短い間隔で計測して、運転状態における単セル毎の酸素分圧分布を把握し、その酸素分圧分布に基づき単セル単位で燃料ガス又は空気の少なくとも一方の流量を制御することを特徴とするものである。
本発明によれば、光ファイバの先端部近傍における酸素分圧分布等を、単セル単位で把握することができる。したがって、酸素分圧分布が低下した単セルの酸素流量を増大させる。一方、酸素分圧分布が増加した単セルの酸素流量を減少させることで、単セル単位で出力の安定化及び供給酸素量、燃料供給量の最適化を図ることが可能となる。なお、本発明をスタックに用いることとすれば、各単セルの運転状態を最適化することにより、スタック全体の出力の安定化及び供給酸素量の最適化を図ることが可能となる。
In addition, in order to solve the above problems, a control method for a polymer electrolyte fuel cell according to the present invention includes an optical fiber in at least one of an anode exhaust part and a cathode exhaust part of a single cell of a polymer electrolyte fuel cell . Install the tip, apply oxygen-quenching paint to one of the measurement target part or the tip of the optical fiber, apply the pulsed light of the excitation wavelength of the oxygen-quenching paint to the measurement target part via the optical fiber, and apply the emission intensity decay process of oxygen quenching coating, and measured at intervals shorter than the pulse period of the light through the optical fiber, to ascertain the oxygen partial pressure distribution of each unit cell in the operating state, the oxygen partial pressure The flow rate of at least one of fuel gas or air is controlled in units of single cells based on the distribution.
According to the present invention, the oxygen partial pressure distribution and the like in the vicinity of the tip of the optical fiber can be grasped in units of single cells. Therefore, the oxygen flow rate of the single cell having a reduced oxygen partial pressure distribution is increased. On the other hand, by reducing the oxygen flow rate of a single cell whose oxygen partial pressure distribution has increased, it is possible to stabilize the output and optimize the supply oxygen amount and the fuel supply amount for each single cell. If the present invention is used in a stack, it is possible to stabilize the output of the entire stack and optimize the amount of supplied oxygen by optimizing the operating state of each single cell.

さらに、本発明において、前記光ファイバ先端部を、各単セルのアノード排気部又はカソード排気部の少なくとも一方に設置することにより、イオン交換に実際に供した酸素量を、各単セルのアノード排気部又はカソード排気部の少なくとも一方の酸素量から、随時把握することができるので、燃料電池の出力の安定化及び供給酸素量の最適化を図ることが可能となる。 Furthermore, in the present invention, the tip of the optical fiber is installed in at least one of the anode exhaust part or the cathode exhaust part of each single cell, so that the amount of oxygen actually used for ion exchange is reduced to the anode exhaust part of each single cell. Since it can be ascertained at any time from the amount of oxygen in at least one of the gas exhaust section and the cathode exhaust section, it is possible to stabilize the output of the fuel cell and optimize the amount of supplied oxygen.

又、上記課題を解決するための、本発明に係る固体高分子型燃料電池の制御装置は、固体高分子型燃料電池の単セルの、アノード排気部又はカソード排気部の少なくとも一方に先端部が設置された光ファイバと、測定対象部分若しくは光ファイバ先端部の一方に塗布された酸素消光性塗料と、光ファイバを介して、測定対象部分に酸素消光性塗料の励起波長の光をパルス照射する光照射手段と、塗布された酸素消光性塗料の発光強度減衰過程を、光ファイバを介して光のパルス周期よりも短い間隔で計測する計測手段と、計測データから運転状態にある単セルの酸素分圧分布を把握する処理手段と、把握された単セルの酸素分圧分布に基づき単セル単位で燃料ガス又は空気の少なくとも一方の流量を制御する制御手段とを備えることを特徴とするものである。
本発明によれば、単セル毎の、酸素分圧分布等の測定対象部分の近傍に光ファイバの先端部が設置され、かつ、測定対象部分若しくは光ファイバ先端部の一方に酸素消光性塗料が塗布されていることから、光ファイバを介して、測定対象部分に光照射手段から酸素消光性塗料の励起波長の光をパルス照射することにより、塗布された酸素消光性塗料を発光させることができる。そして、計測手段により、塗布された酸素消光性塗料の発光強度減衰過程を、光ファイバを介して光のパルス周期よりも短い間隔で計測し、処理手段によって計測データから単セル毎の酸素分圧分布を、単セル単位で把握する。よって、イオン交換に実際に供した酸素量を、各単セルの測定対象部分の酸素量から、随時把握することができる。さらに、制御手段により、把握された単セル毎の酸素量に基づき、単セル毎に燃料ガス又は空気の少なくとも一方を制御する。その結果、単セル単位で出力の安定化及び供給酸素量の最適化を図ることが可能となる。なお、本発明をスタックに適用すれば、各単セルの運転状態を最適化することにより、スタック全体での出力の安定化及び供給酸素量の最適化を図ることが可能となる。
In order to solve the above problems, a control device for a polymer electrolyte fuel cell according to the present invention has a tip portion at least one of an anode exhaust portion and a cathode exhaust portion of a single cell of the polymer electrolyte fuel cell. Pulsed light with an excitation wavelength of the oxygen quenching paint is applied to the measurement target portion via the optical fiber installed, the oxygen quenching paint applied to one of the measurement target portion or the tip of the optical fiber, and the optical fiber. Light irradiation means, measuring means for measuring the emission intensity decay process of the applied oxygen quenching paint at intervals shorter than the pulse period of light through an optical fiber, and oxygen of a single cell in an operating state from the measurement data processing means for grasping the partial pressure distribution, and a controlling means for controlling at least one of the flow rate of the fuel gas or the air in a single cell basis based on the oxygen partial pressure distribution of the single cells that are grasped Is shall.
According to the present invention, the tip portion of the optical fiber is installed in the vicinity of the measurement target portion such as the oxygen partial pressure distribution for each single cell, and the oxygen quenching paint is provided on one of the measurement target portion or the optical fiber tip portion. Since it is applied, the applied oxygen-quenching paint can be caused to emit light by irradiating light of the excitation wavelength of the oxygen-quenching paint from the light irradiation means to the measurement target portion via the optical fiber. . The measuring means measures the emission intensity decay process of the applied oxygen-quenching paint at intervals shorter than the pulse period of light through the optical fiber, and the processing means measures the oxygen partial pressure for each single cell from the measurement data. The distribution is grasped in units of single cells. Therefore, the amount of oxygen actually used for ion exchange can be grasped as needed from the amount of oxygen in the measurement target portion of each single cell. Further, the control means controls at least one of fuel gas or air for each single cell based on the grasped oxygen amount for each single cell. As a result, it is possible to stabilize the output and optimize the amount of supplied oxygen in units of single cells. If the present invention is applied to a stack, it is possible to stabilize the output and optimize the amount of supplied oxygen by optimizing the operating state of each single cell.

又、本発明において、前記光ファイバ先端部は、各単セルのアノード排気部又はカソード排気部の少なくとも一方に設置されていることにより、イオン交換に実際に供した酸素量を、各単セルのアノード排気部又はカソード排気部の少なくとも一方の酸素量から、随時把握することができるので、燃料電池の出力の安定化及び供給酸素量の最適化を図ることが可能となる。 In the present invention, the optical fiber tip is installed in at least one of the anode exhaust part or the cathode exhaust part of each single cell, so that the amount of oxygen actually used for ion exchange can be reduced . Since it can be grasped at any time from the amount of oxygen in at least one of the anode exhaust portion and the cathode exhaust portion, it becomes possible to stabilize the output of the fuel cell and optimize the amount of supplied oxygen.

本発明はこのように構成したので、運転状態にある固体高分子型燃料電池の酸素分圧分布等を正確に把握し、固体高分子型燃料電池の発電効率と耐久性の向上に寄与することが可能となる。 Since the present invention is configured in this way, it accurately grasps the oxygen partial pressure distribution and the like of the solid polymer fuel cell in the operating state, and contributes to the improvement of power generation efficiency and durability of the solid polymer fuel cell. Is possible.

以下、本発明の実施の形態を添付図面に基づいて説明する。
本発明の第1の実施の形態に係る燃料電池の酸素分圧分布等の計測装置10は、図1に示されるように、測定対象部分に酸素消光性塗料が塗布されると共に当該部分が外部から視認可能に構成された燃料電池12と、測定対象部分に、酸素消光性塗料の励起波長の光をパルス照射する光照射手段である光源14と、測定対象部分の発光強度(輝度)の減衰過程を、光の照射パルス周期よりも短い間隔で撮影する撮像手段16とを備えている。又、光源14及び撮像手段16を制御し、かつ、燃料電池12の測定対象部分の酸素分圧分布及び温度分布を求める処理手段18を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the measurement device 10 for the oxygen partial pressure distribution of the fuel cell according to the first embodiment of the present invention has an oxygen quenching paint applied to a measurement target portion and the portion is externally attached. The fuel cell 12 configured to be visible from the light source, the light source 14 that is a light irradiation means for irradiating the measurement target portion with light having the excitation wavelength of the oxygen quenching paint, and the emission intensity (luminance) attenuation of the measurement target portion An image pickup means 16 for photographing the process at an interval shorter than the light irradiation pulse period is provided. In addition, a processing unit 18 that controls the light source 14 and the imaging unit 16 and obtains the oxygen partial pressure distribution and the temperature distribution of the measurement target portion of the fuel cell 12 is provided.

燃料電池12は、固体高分子型の燃料電池であり、図2に断面構造を示すように、固体高分子膜20と、白金等の貴金属微粒子を含む触媒を材料とする薄膜電極22、24とからなるMEAが構成されている。又、アノード側の薄膜電極22の外側に隣接して燃料である水素ガスHの供給路26が設けられ、カソード側の薄膜電極24の外側に隣接して空気Oの供給路28が設けられ、夫々、セパレータ30、32で密閉されている。
そして、セパレータ30、32の一部若しくは全部が、セパレータとしての機械的性質を満足する透明な材料、例えば、石英等で構成されている。したがって、測定対象部分であるアノード側セパレータ30の内側面30a、薄膜電極22の外側面22a、カソード側セパレータ32の内側面32a、薄膜電極24の外側面24aが、外部から視認可能となっている。さらに、アノード側セパレータ30の内側面30aと薄膜電極22の外側面22aの一方、及び、カソード側セパレータ32の内側面32aと薄膜電極24の外側面24aの一方には、酸素消光性塗料が塗布されている。なお、図2において符号34で示す部分は、電気モータ等の負荷を模式的に示したものである。
The fuel cell 12 is a solid polymer type fuel cell. As shown in FIG. 2, the fuel cell 12 has a solid polymer film 20 and thin film electrodes 22 and 24 made of a catalyst containing noble metal fine particles such as platinum. An MEA consisting of Further, a supply path 26 of hydrogen gas H 2 that is a fuel is provided adjacent to the outside of the thin film electrode 22 on the anode side, and a supply path 28 of air O 2 is provided adjacent to the outside of the thin film electrode 24 on the cathode side. These are sealed with separators 30 and 32, respectively.
A part or all of the separators 30 and 32 are made of a transparent material that satisfies the mechanical properties of the separator, such as quartz. Therefore, the inner side surface 30a of the anode-side separator 30, the outer side surface 22a of the thin-film electrode 22, the inner side surface 32a of the cathode-side separator 32, and the outer side surface 24a of the thin-film electrode 24, which are measurement target portions, are visible from the outside. . Further, an oxygen quenching paint is applied to one of the inner side surface 30a of the anode side separator 30 and the outer side surface 22a of the thin film electrode 22, and one of the inner side surface 32a of the cathode side separator 32 and the outer side surface 24a of the thin film electrode 24. Has been. In addition, the part shown with the code | symbol 34 in FIG. 2 shows typically loads, such as an electric motor.

光源14は、後述のごとく、紫外から青色の励起光に反応して発光する酸素消光性塗料の性質に合わせて、励起光源が用いられており、例えば、青色発光LED、UV発光LED、青色レーザ、UVレーザ、紫外線ランプ等が適している。又、撮像手段16には、CCDカメラ等が用られている。処理手段18は、パーソナルコンピュータ等の電子計算機が用いられ、光源14の発光間隔の制御、撮像手段16の撮影間隔の制御、撮影画像の記録及び画像処理、計測結果の出力等を行うものである。そして、その制御ロジックにおいて、後述のごとく、測定結果の補正を行う補正手段18aが構成されている。   As will be described later, an excitation light source is used as the light source 14 in accordance with the properties of an oxygen quenching paint that emits light in response to ultraviolet to blue excitation light. For example, a blue light emitting LED, a UV light emitting LED, and a blue laser are used. A UV laser, an ultraviolet lamp, etc. are suitable. The imaging means 16 is a CCD camera or the like. The processing means 18 uses an electronic computer such as a personal computer, and performs control of the light emission interval of the light source 14, control of the imaging interval of the imaging means 16, recording of recorded images and image processing, output of measurement results, and the like. . In the control logic, correction means 18a for correcting the measurement result is configured as will be described later.

ところで、燃料電池12の測定対象部分、すなわち、アノード側セパレータ30の内側面30aと薄膜電極22の外側面22aの一方、および、カソード側セパレータ32の内側面32aと薄膜電極24の外側面24aの一方に、酸素消光性塗料を塗布する手順は、測定対象部分の有機物除去工程と、測定対象部分の親水化処理工程と、親水化処理された測定対象部分の疎水化処理工程と、測定対象部分への酸素消光性塗料の塗布工程からなるものである。ただし、予め対象表面が親水化されている場合は、この親水化処理を省略することができる。   By the way, the measurement target portion of the fuel cell 12, that is, one of the inner side surface 30 a of the anode side separator 30 and the outer side surface 22 a of the thin film electrode 22, and the inner side surface 32 a of the cathode side separator 32 and the outer side surface 24 a of the thin film electrode 24. On the other hand, the procedure for applying the oxygen quenching paint includes the organic substance removing process of the measurement target part, the hydrophilization process of the measurement target part, the hydrophobization process of the measurement target part subjected to the hydrophilic treatment, and the measurement target part. It consists of an application process of oxygen-quenching coating material. However, when the target surface has been hydrophilicized in advance, this hydrophilic treatment can be omitted.

具体的には、測定対象物の有機物除去工程では、例えば、2−プロパノールに各セパレータ30、32、各薄膜電極22、24を浸漬させ、必要に応じ超音波洗浄を行うことにより、製造工程においてそれらの表面に付着する有機物を除去する。
続いて、親水化処理工程では、例えば、各セパレータ30、32、各薄膜電極22、24にオゾン処理や硝酸/過酸化水素水処理を行うことにより、それらの表面にOH基を一様に分布させる。
さらに、疎水化処理工程では、親水下処理が完了した各セパレータ30、32及び各薄膜電極22、24を、例えば、オクチルトリクロロシラン(octhl−trichlorosilane)やオクタデシルトリクロロシラン(octadecyl−trichlorosilane)のクロロホルム溶液等に浸漬することにより、それらの表面のOH基に、疎水基を結合させる。
Specifically, in the organic substance removing step of the measurement object, for example, the separators 30 and 32 and the thin film electrodes 22 and 24 are immersed in 2-propanol, and ultrasonic cleaning is performed as necessary. Remove organic matter adhering to those surfaces.
Subsequently, in the hydrophilization treatment step, for example, by performing ozone treatment or nitric acid / hydrogen peroxide solution treatment on the separators 30 and 32 and the thin film electrodes 22 and 24, OH groups are uniformly distributed on the surfaces thereof. Let
Further, in the hydrophobization treatment step, each of the separators 30 and 32 and the thin film electrodes 22 and 24 that have been subjected to the hydrophilic treatment is treated with, for example, a chloroform solution of octhl-trichlorosilane or octadecyl-trichlorosilane. Hydrophobic groups are bonded to the OH groups on their surfaces by immersing them in, for example.

そして、疎水化処理された各セパレータ30、32及び各薄膜電極22、24の表面に、酸素消光性塗料を塗布する。酸素消光性塗料の塗布は、スプレー、刷毛による塗布等、必要に応じた方法により行う。
なお、ここで用いられる酸素消光性塗料は、例えば、バインダにポリスチレン等の酸素透過性のある高分子材料を用いる。ポリスチレンバインダは、比較的酸素透過性が小さく、大気圧以上の圧力でも膜内酸素濃度は飽和しないものであるが、図4に示すように、大気圧前後の圧力での酸素透過性が最も良好であり、圧力が増大するに従い、酸素透過率μは低化する。従って、固体高分子型の燃料電池12の運転環境において、優れた酸素透過性を示すものである。又、ポリスチレンバインダは、それ自体、疎水性を有している。一方、バインダに混入される色素には、白金ポルフィリンやルテニウム等、紫外から青色の励起光に反応して発光し、なおかつ酸素消光性を有する材料が用いられる。このように、酸素消光性塗料が以上の物質によって構成されることで、燃料電池の運転環境下における温度、湿度等様々な要因から、一般に輝度の低下を来す消光性塗料の劣化を、可能な限り防ぐことが可能となる。
Then, an oxygen-quenching paint is applied to the surfaces of the separators 30 and 32 and the thin film electrodes 22 and 24 that have been subjected to hydrophobic treatment. The oxygen-quenching paint is applied by a method as required, such as spraying or brush application.
The oxygen-quenching paint used here uses, for example, a polymer material having oxygen permeability such as polystyrene as a binder. Polystyrene binder has relatively low oxygen permeability and does not saturate the oxygen concentration in the membrane even at pressures above atmospheric pressure, but has the best oxygen permeability at pressures around atmospheric pressure as shown in FIG. As the pressure increases, the oxygen permeability μ decreases. Therefore, it exhibits excellent oxygen permeability in the operating environment of the polymer electrolyte fuel cell 12. The polystyrene binder itself has hydrophobicity. On the other hand, as the pigment mixed in the binder, a material such as platinum porphyrin or ruthenium that emits light in response to ultraviolet to blue excitation light and has an oxygen quenching property is used. In this way, the oxygen quenching paint is composed of the above materials, so it is possible to degrade the quenching paint that generally causes a decrease in brightness due to various factors such as temperature and humidity in the operating environment of the fuel cell. It is possible to prevent as much as possible.

ここで、図3を参照しながら、図1に示す酸素分圧分布等の計測装置10によって燃料電池12の酸素分圧分布及び温度分布を求める手順を説明する。   Here, a procedure for obtaining the oxygen partial pressure distribution and the temperature distribution of the fuel cell 12 by the measuring device 10 such as the oxygen partial pressure distribution shown in FIG. 1 will be described with reference to FIG.

まず、燃料電池12のセパレータ30、32及び各薄膜電極22、24等の測定対象部分に対し、光源14から、図3(a)に示すように、酸素消光性塗料の励起波長の光を一定間隔(例えば、200マイクロ秒間隔(パルス周波数が5kHzの場合)。)でパルス照射する。又、燃料電池12の測定対象部分を、図3(c)に示すように、撮像手段16によって、光の照射パルス(図3(a))よりも短い間隔(例えば、10マイクロ秒間隔。)で三回撮影することで、図3(b)燃料電池12の測定対象部分の全体の発光強度の減衰過程を(二次元的に)得ることができる。このとき、一回の光のパルス照射の後、一回目に撮影された画像の発光強度を基準として、続く二回の画像の発光強度を比較することで、光源14の発光強度にばらつきが生じるような場合であっても、発光強度の減衰率を正確に得ることが可能である。なお、ここで得られる発光強度の減衰画像には、測定対象部分の酸素分圧分布に基づく発光強度の情報と、温度分布に基づく発光強度の情報との双方が含まれたものである。
なお、図示の例では、撮像手段16の撮影間隔は、光源14の発光の間に、一定間隔で三回行われているが、この撮影回数および撮影間隔は、光源14の発光間隔や、撮影によって得られる画像データの量とデータの解析精度との兼ね合いから、最適なものが選択される。
First, as shown in FIG. 3A, the light having the excitation wavelength of the oxygen-quenching paint is constant from the light source 14 to the measurement target portions such as the separators 30 and 32 and the thin film electrodes 22 and 24 of the fuel cell 12. Pulse irradiation is performed at intervals (for example, 200 microsecond intervals (when the pulse frequency is 5 kHz)). Further, as shown in FIG. 3C, the measurement target portion of the fuel cell 12 is shorter than the light irradiation pulse (FIG. 3A) by the imaging means 16 (for example, at intervals of 10 microseconds). 3 (b), it is possible to obtain (two-dimensionally) the attenuation process of the emission intensity of the entire measurement target portion of the fuel cell 12 in FIG. At this time, after one pulse of light irradiation, the light emission intensity of the light source 14 varies by comparing the light emission intensity of the next two images with reference to the light emission intensity of the first image taken. Even in such a case, it is possible to accurately obtain the decay rate of the emission intensity. Note that the emission intensity attenuation image obtained here includes both information on the emission intensity based on the oxygen partial pressure distribution of the measurement target portion and information on the emission intensity based on the temperature distribution.
In the illustrated example, the photographing interval of the imaging means 16 is performed three times at regular intervals during the light emission of the light source 14, but the number of photographing times and the photographing interval are the light emission interval of the light source 14 and the photographing interval. The optimum image data is selected based on the balance between the amount of image data obtained by the above and the data analysis accuracy.

さらに、処理手段18の補正手段18aは、酸素消光性塗料の温度依存性を考慮して、撮影された画像の発光強度を補正する。具体的には、燃料電池12の非運転状態において、単純に燃料電池の測定対象部分の温度のみを変化させた場合の輝度の変化(図5参照)を予め把握しておき、これを、酸素分圧分布を測定するために発光強度を補正する際の、キャリブレーションデータとして使用する。又、燃料電池12の非運転状態において、単純に燃料電池の測定対象部分の酸素分圧分布のみを変化させた場合の輝度の変化も予め把握しておき、これを、温度分布を測定するために発光強度を補正する際のキャリブレーションデータとして使用する。
以上により、燃料電池12の試験時のみならず、実際の運転時においても、測定対象部分の酸素分圧分布と、温度分布とを計測することができる。
Further, the correction unit 18a of the processing unit 18 corrects the emission intensity of the photographed image in consideration of the temperature dependence of the oxygen quenching paint. Specifically, in a non-operating state of the fuel cell 12, a change in luminance (see FIG. 5) when only the temperature of the measurement target portion of the fuel cell is simply changed is grasped in advance, and this is expressed as oxygen. It is used as calibration data when correcting the emission intensity to measure the partial pressure distribution. In addition, when the fuel cell 12 is not in operation, the brightness change when only the oxygen partial pressure distribution of the measurement target portion of the fuel cell is simply changed is previously grasped, and this is used to measure the temperature distribution. It is used as calibration data for correcting the emission intensity.
As described above, the oxygen partial pressure distribution and the temperature distribution in the measurement target portion can be measured not only during the test of the fuel cell 12 but also during actual operation.

上記構成をなす、本発明の第1の実施の形態によれば、次のような作用効果を得ることが可能となる。
まず、燃料電池の酸素分圧分布等の測定装置10を用いて、燃料電池の酸素分圧分布及び温度分布を測定する際に、測定対象部分であるアノード側セパレータ30の内側面30a又は薄膜電極22の外側面22aの一方、および、カソード側セパレータ32の内側面32a又は薄膜電極24の外側面24aの一方に酸素消光性塗料が塗布されると共に、当該部分が外部から視認可能に構成された燃料電池12に対し、光源14から酸素消光性塗料の励起波長の光をパルス照射(図3(a))することにより、測定対象部分を発光させる。そして、撮像手段16により測定対象部分の発光強度の減衰過程を、光の照射パルス周期よりも短い間隔で撮影することで(図3(c))、測定対象部分全体の酸素分圧分布等を、当該部分に塗布された酸素消光性塗料の発光強度の減衰率(図3(b))に基づき把握することが可能となる。しかも、燃料電池12の測定対象部分が、測定対象部分自体に塗布された酸素消光性塗料の発光によって二次元的に視認されるので、測定対象部分の酸素分圧分布を、測定対象部分の面の全体にわたり、直接的に把握することが可能となる。
According to the first embodiment of the present invention configured as described above, the following operational effects can be obtained.
First, when measuring the oxygen partial pressure distribution and the temperature distribution of the fuel cell using the measuring device 10 such as the oxygen partial pressure distribution of the fuel cell, the inner surface 30a or the thin film electrode of the anode-side separator 30 that is the measurement target portion The oxygen quenching paint is applied to one of the outer surface 22a of 22 and one of the inner surface 32a of the cathode side separator 32 or the outer surface 24a of the thin film electrode 24, and the portion is configured to be visible from the outside. By irradiating the fuel cell 12 with light having an excitation wavelength of the oxygen-quenching paint from the light source 14 (FIG. 3A), the measurement target portion is caused to emit light. Then, the imaging unit 16 captures the decay process of the emission intensity of the measurement target portion at an interval shorter than the light irradiation pulse cycle (FIG. 3C), thereby obtaining the oxygen partial pressure distribution and the like of the entire measurement target portion. Thus, it becomes possible to grasp based on the decay rate of the emission intensity of the oxygen-quenching paint applied to the part (FIG. 3B). Moreover, since the measurement target portion of the fuel cell 12 is visually recognized in two dimensions by the emission of the oxygen-quenching paint applied to the measurement target portion itself, the oxygen partial pressure distribution of the measurement target portion can be represented by the surface of the measurement target portion. It becomes possible to grasp directly throughout.

したがって、いわゆるクロスリークの変化が発生したような場合に、その発生原因となる孔は極めて小さいものであるが、本発明の第1の実施の形態のごとく、測定対象部分の酸素分圧分布を、測定対象部分の面の全体にわたり直接的に把握することで、燃料電池が運転状態にあるか否かを問わず燃料電池の状態を正確に把握し、燃料電池の発電効率と耐久性の向上に寄与することが可能となる。   Therefore, when a so-called cross leak change occurs, the hole that causes the occurrence is very small. However, as in the first embodiment of the present invention, the oxygen partial pressure distribution of the measurement target portion is reduced. By directly grasping the entire surface of the measurement target, it is possible to accurately grasp the state of the fuel cell regardless of whether the fuel cell is in operation or not, and improve the power generation efficiency and durability of the fuel cell. It becomes possible to contribute to.

しかも、ここで得られる発光強度の減衰率のデータには、測定対象部分の酸素分圧分布に基づく発光強度の情報と、温度分布に基づく発光強度の情報との双方が含まれたものであるが、補正手段18aにより、酸素消光性塗料の温度依存性を考慮して、撮像手段16で撮影された画像の発光強度を補正することにより、燃料電池12が実際に運転状態にあるときの、測定対象部分全体の酸素分圧分布を、正確に把握することが可能となる。又、酸素分圧分布に起因する発光強度の減衰率が正確に把握されることで、燃料電池が実際に運転状態にあるときの、測定対象部分全体の温度分布についても、発光強度の減衰率から正確に把握することが可能となる。   Moreover, the emission intensity attenuation data obtained here includes both emission intensity information based on the oxygen partial pressure distribution of the measurement target portion and emission intensity information based on the temperature distribution. However, the correction means 18a considers the temperature dependence of the oxygen quenching paint, and corrects the emission intensity of the image taken by the imaging means 16, so that the fuel cell 12 is actually in the operating state. It is possible to accurately grasp the oxygen partial pressure distribution of the entire measurement target portion. In addition, by accurately grasping the decay rate of the emission intensity due to the oxygen partial pressure distribution, the decay rate of the emission intensity is also obtained for the temperature distribution of the entire measurement target part when the fuel cell is actually in operation. It becomes possible to grasp accurately from.

又、燃料電池の酸素分圧分布等の計測装置10に用いられている燃料電池12は、その製造工程において、酸素分圧分布等の測定対象部分であるアノード側セパレータ30の内側面30a、薄膜電極22の外側面22a、カソード側セパレータ32の内側面32a、薄膜電極24の外側面24aから有機物を除去し、さらに、測定対象部分の親水化処理の後、親水化処理された測定対象部分を疎水化処理して、測定対象部分へと酸素消光性塗料を塗布することで、測定対象部分と酸素消光性塗料との接着性を向上させることができる。したがって、燃料電池内部の温度や湿度等の環境下においても、酸素消光性塗料の塗膜に、高い耐久性を与えることが可能となる。
さらに酸素消光性塗料は、バインダに酸素透過性及び疎水性を有する高分子材料が用いられ、色素に酸素消光性を有する色素が用いられていることから、バインダの酸素透過性機能によって、酸素消光性塗料に含まれる色素に酸素が供給されて、色素はその酸素消光性機能を確実に発揮するものとなる。又、バインダ自体にも疎水性を持たせることで、燃料電池内部の温度や湿度等の環境下においても、酸素消光性塗料の塗膜に高い耐久性を与えることが可能となる。
In addition, the fuel cell 12 used in the measuring device 10 for measuring the oxygen partial pressure distribution of the fuel cell, in the manufacturing process, includes an inner side surface 30a of the anode-side separator 30 that is a measurement target portion of the oxygen partial pressure distribution and the like, a thin film Organic substances are removed from the outer surface 22a of the electrode 22, the inner surface 32a of the cathode separator 32, and the outer surface 24a of the thin film electrode 24. Further, after the hydrophilization treatment of the measurement target portion, By applying the hydrophobic treatment and applying the oxygen-quenching paint to the measurement target portion, the adhesion between the measurement target portion and the oxygen-quenching paint can be improved. Therefore, even in an environment such as temperature and humidity inside the fuel cell, high durability can be imparted to the coating film of the oxygen quenching paint.
Furthermore, the oxygen-quenching paint uses a polymer material having oxygen permeability and hydrophobicity for the binder and a dye having oxygen quenching property for the dye. Oxygen is supplied to the dye contained in the water-soluble paint, and the dye reliably exhibits its oxygen quenching function. In addition, by imparting hydrophobicity to the binder itself, it is possible to impart high durability to the coating film of the oxygen quenching paint even in an environment such as temperature and humidity inside the fuel cell.

続いて、図6を参照しながら、本発明の第2の実施の形態の説明を行う。なお、第1の実施の形態と同一部分若しくは相当する部分については同一符号で示し、詳しい説明を省略する。
本発明の第2の実施の形態は、燃料電池の制御装置35を構成したものであり、単セル型の燃料電池が複数積層されたスタック型の燃料電池を制御することが可能となっている。具体的には、スタック36を構成する各単セル38、40、42,44、46の排気部38a、40a、42a、44a、46aに、光源14が発する励起波長のパルス光Lと、酸素消光性塗料の発光波長の光Lの何れも透過する光ファイバ48の先端部が配置されている。そして、光ファイバ48の各先端部48aには、酸素消光性塗料が塗布されている。ここで、各単セルの排気部38a、40a、42a、44a、46aには、アノード側の排気部とカソード側の排気部の双方が含まれ、アノード側の排気部とカソード側の排気部の何れにも、各々光ファイバ48の各先端部48aが配置されることが望ましい。
Subsequently, a second embodiment of the present invention will be described with reference to FIG. Note that the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
The second embodiment of the present invention constitutes a fuel cell control device 35, and can control a stack type fuel cell in which a plurality of single cell type fuel cells are stacked. . Specifically, the exhaust section 38a of each single cell 38,40,42,44,46 constituting the stack 36, 40a, 42a, 44a, to 46a, the pulse light L A of excitation wavelength light source 14 is emitted, oxygen tip of the optical fiber 48 to both the transmission of light L B of the emission wavelength of the quenching coating is disposed. An oxygen quenching paint is applied to each tip 48a of the optical fiber 48. Here, the exhaust portions 38a, 40a, 42a, 44a, 46a of each single cell include both an anode-side exhaust portion and a cathode-side exhaust portion, and an anode-side exhaust portion and a cathode-side exhaust portion. In any case, it is desirable that each tip portion 48a of the optical fiber 48 is disposed.

さらに、光ファイバ48は、分岐結合部50を介して、光源14のみならずアレイセンサ52にも接続されている。アレイセンサ52は、各単セル38、40、42、44、46の排気部38a、40a、42a、44a、46aに配置された、光ファイバ48の各先端部48aの、酸素消光性塗料の発光強度の減衰過程を把握するものである。
そして、処理制御手段54において、各単セルの排気部38a、40a、42a、44a、46aの酸素分圧を求めるものである。さらに、処理制御手段54から、各単セル38、40、42、44、46の、燃料及び空気の入口部38b、40b、42a、44b、46bに、空気(又は燃料ガス)の流量制御手段56(バルブ等)を設けたものである。なお、アレイセンサ52及び処理制御手段54によって、光ファイバ48の各先端部48aに塗布された酸素消光性塗料の発光強度減衰過程を、光のパルス周期よりも短い間隔で計測する計測手段と、計測データから単セルの酸素分圧分布を把握する処理手段とを構成している。
燃料及び空気の入口部38b、40b、42a、44b、46bに設けた空気(又は燃料ガス)の流量制御手段56は、処理制御手段54によって、各々独立して空気(又は燃料ガス)の制御が自在となっている。
Further, the optical fiber 48 is connected not only to the light source 14 but also to the array sensor 52 via the branch coupling unit 50. The array sensor 52 emits oxygen quenching paint at each tip 48a of the optical fiber 48 disposed in the exhaust portions 38a, 40a, 42a, 44a, 46a of the single cells 38, 40, 42, 44, 46. This is to grasp the decay process of intensity.
Then, the process control means 54 obtains the oxygen partial pressure of the exhaust parts 38a, 40a, 42a, 44a, 46a of each single cell. Furthermore, the flow control means 56 of air (or fuel gas) is supplied from the process control means 54 to the fuel and air inlet portions 38b, 40b, 42a, 44b, 46b of the single cells 38, 40, 42, 44, 46. (Valves etc.) are provided. The array sensor 52 and the processing control means 54 measure the emission intensity decay process of the oxygen quenching paint applied to each tip 48a of the optical fiber 48 at intervals shorter than the light pulse period; constitute a processing means for grasping the oxygen partial pressure distribution in single cells from the measurement data.
The flow control means 56 for the air (or fuel gas) provided in the fuel and air inlets 38b, 40b, 42a, 44b, 46b can be independently controlled by the process control means 54. It is free.

本発明の第2の実施の形態によれば、各単セル38、40、42、44、46毎の、酸素分圧分布等の測定対象部である排気部38a、40a、42a、44a、46aの近傍に光ファイバ48の先端部が設置され、かつ、光ファイバ先端部48aに酸素消光性塗料が塗布されている。そして、光ファイバ48を介して、光照射手段である光源14から酸素消光性塗料の励起波長の光Lをパルス照射することにより、光ファイバ48の先端部に塗布された酸素消光性塗料を発光させることができる。そして、計測手段52、54により、塗布された酸素消光性塗料の発光Lの発光強度減衰過程を、光ファイバ48及びアレイセンサ52を介して光源14から発せられた光のパルス周期よりも短い間隔で計測し、制御手段54によって計測データから単セル毎の酸素分圧分布を、各単セル38、40、42,44、46単位で把握する。よって、イオン交換に実際に供した酸素量を、各単セル38、40、42、44、46の、アノード排気部又はカソード排気部の少なくとも一方の酸素量から、随時把握することができる。特に、カソード排気部の酸素分圧からは、各単セル38、40、42、44、46又はスタック36のカソードガス(O)の流量又は圧力を求めることができ、アノード排気部の酸素分圧からは、各単セル38、40、42、44、46又はスタック36の状態を、常時把握することが可能となる(通常であれば、アノード排気部で酸素分圧はかなり低い。)。 According to the second embodiment of the present invention, the exhaust parts 38a, 40a, 42a, 44a, 46a, which are measurement target parts such as oxygen partial pressure distribution, for each single cell 38, 40, 42, 44, 46. The tip of the optical fiber 48 is installed in the vicinity, and an oxygen quenching paint is applied to the tip 48a of the optical fiber. Then, through the optical fiber 48, by the light L A having an excitation wavelength of oxygen quenching coating from the light source 14 is a light irradiation means for pulse irradiation, the oxygen quenching paint applied to the tip portion of the optical fiber 48 Can emit light. Then, the measuring means 52 and 54, the luminous intensity decay process of the light-emitting L B of the applied oxygen quenching coating, shorter than the pulse period of the light emitted from the light source 14 through the optical fiber 48 and array sensor 52 measured at intervals, the oxygen partial pressure distribution of each unit cell from the measurement data by the control means 54, grasped by the respective unit cells 38,40,42,44,46 units. Therefore, the amount of oxygen actually used for ion exchange can be grasped as needed from the amount of oxygen in at least one of the anode exhaust portion and the cathode exhaust portion of each single cell 38, 40, 42, 44, 46. In particular, the flow rate or pressure of the cathode gas (O 2 ) of each single cell 38, 40, 42, 44, 46 or stack 36 can be determined from the oxygen partial pressure in the cathode exhaust part, and the oxygen content in the anode exhaust part From the pressure, it is possible to always grasp the state of each single cell 38, 40, 42, 44, 46 or the stack 36 (normally, the oxygen partial pressure is considerably low in the anode exhaust part).

さらに、制御手段54により、把握された単セル毎の酸素量に基づき、燃料及び空気の入口部38b、40b、42a、44b、46bに設けた空気の流量制御手段56を制御することにより、各単セル毎に空気又は燃料ガスの少なくとも一方を制御することができる。その結果、単セル38、40、42、44、46単位で出力の安定化及び供給酸素量の最適化を図ることが可能となり、さらには、スタック36全体での出力の安定化及び供給酸素量の最適化を図ることが可能となる。   Further, the control means 54 controls the air flow rate control means 56 provided in the fuel and air inlet portions 38b, 40b, 42a, 44b, and 46b based on the grasped oxygen amount for each single cell, so that each At least one of air and fuel gas can be controlled for each single cell. As a result, it is possible to stabilize the output and optimize the supply oxygen amount in units of the single cells 38, 40, 42, 44, and 46, and further stabilize the output and supply oxygen amount in the entire stack 36. Can be optimized.

したがって、本発明の第2の実施の形態によれば、実用に供されるスタック型の燃料電池の運転状態を把握して、燃料電池の最適運転を行うことが可能となる。具体的には、各単セル38、40、42、44、46の中で、カソード排気部の酸素分圧の低下が認められた単セルに関しては、酸素流量を増大させ又は燃料流量を減少させ、カソード排気部の酸素分圧の増加が認められた単セルに関しては、酸素流量を減少させ又は燃料流量を増大させることにより、各単セル毎の出力の安定化が図られることとなる。また、供給酸素量の低減によるコンプレッサーの小型化により、燃料電池の制御装置35全体としての小型化、高効率化が可能となる。よって、スタック36の運転効率の向上を図ることが可能となる。   Therefore, according to the second embodiment of the present invention, it is possible to grasp the operating state of a stack type fuel cell that is put to practical use and perform the optimal operation of the fuel cell. Specifically, among the single cells 38, 40, 42, 44, 46, for the single cells in which a decrease in the oxygen partial pressure in the cathode exhaust part is recognized, the oxygen flow rate is increased or the fuel flow rate is decreased. As for the single cell in which an increase in the oxygen partial pressure in the cathode exhaust part is recognized, the output of each single cell can be stabilized by decreasing the oxygen flow rate or increasing the fuel flow rate. In addition, the size of the compressor can be reduced by reducing the amount of supplied oxygen, whereby the fuel cell control device 35 as a whole can be reduced in size and efficiency. Therefore, it is possible to improve the operation efficiency of the stack 36.

なお、本発明の第2の実施の形態では、光ファイバ48の先端部48aは酸素消光性塗料を塗布することによって、光ファイバ先端部48a周辺部の酸素分圧の測定を可能としている。しかしながら、各単セルの排気部38a、40a、42a、44a、46aに酸素消光性塗料を塗布し、光ファイバ48には光源14が発する励起波長のパルス光Lと、酸素消光性塗料の発光波長の光Lを透過させる機能のみを持たせることとしても、同様の作用効果を得ることが可能である。また、光ファイバ先端部48aによる測定対象部分を、排気部以外の燃料または空気の流通路に設けることとしても良い。 In the second embodiment of the present invention, the tip 48a of the optical fiber 48 is coated with an oxygen quenching paint so that the oxygen partial pressure around the tip 48a of the optical fiber can be measured. However, the exhaust section 38a, 40a, 42a, 44a, the oxygen quenching paint 46a is applied in each unit cell, a pulse light L A of excitation wavelength light source 14 is emitted to the optical fiber 48, light emission of oxygen quenching coating also possible to provide only a function of transmitting light L B having a wavelength, it is possible to obtain the same effect. Further, the measurement target portion by the optical fiber tip 48a may be provided in a fuel or air flow passage other than the exhaust portion.

又、詳しい説明は省略するが、本発明の第2の実施の形態においても、制御手段54は、第1の実施の形態と同様に、各単セルから得られた光ファイバ48の各先端部48aの、酸素消光性塗料の発光強度の減衰過程を、酸素消光性塗料の温度依存性を考慮して補正することが可能であり、第1の実施の形態と同様の作用効果を得ることが可能となる。
又、光ファイバ48の先端部48aに酸素消光性塗料を塗布する際にも、その塗布工程は、第1の実施の形態と同様に光ファイバ先端部48aの有機物除去工程と、光ファイバ先端部48aの親水化処理工程と、親水化処理された光ファイバ先端部48aの疎水化処理工程と、光ファイバ先端部48aへの酸素消光性塗料の塗布工程からなるものである。この塗布工程により、第1の実施の形態と同様の作用効果を得ることが可能となる。
又、酸素消光性塗料のバインダには、ポリスチレン等の酸素透過性のある高分子材料が用いられ、色素には、白金ポルフィリンやルテニウム等の紫外から青色の励起光に反応して発光する、酸素消光性を有する材料が用いられることによって、第1の実施の形態と同様の作用効果を得ることが可能となる。
さらには、本発明の第2の実施の形態における、カソード排気部の酸素分圧に基づく酸素流量の制御手法を、スタックを構成しない単セルにも適用することが可能である。
Although detailed description is omitted, also in the second embodiment of the present invention, the control means 54, as in the first embodiment, has each tip portion of the optical fiber 48 obtained from each single cell. It is possible to correct the decay process of the emission intensity of the oxygen quenching paint 48a in consideration of the temperature dependence of the oxygen quenching paint, and the same effect as the first embodiment can be obtained. It becomes possible.
Also, when the oxygen quenching paint is applied to the tip 48a of the optical fiber 48, the coating process is similar to the first embodiment in the organic substance removing step of the optical fiber tip 48a, and the optical fiber tip. 48a includes a hydrophilization treatment step, a hydrophobization treatment step of the hydrophilized optical fiber tip portion 48a, and an oxygen quenching paint application step to the optical fiber tip portion 48a. By this coating step, it is possible to obtain the same effects as those in the first embodiment.
In addition, a polymer material having oxygen permeability such as polystyrene is used for the binder of the oxygen quenching paint, and the dye emits oxygen in response to ultraviolet to blue excitation light such as platinum porphyrin or ruthenium. By using a material having a quenching property, it is possible to obtain the same function and effect as in the first embodiment.
Furthermore, the oxygen flow rate control method based on the oxygen partial pressure in the cathode exhaust section in the second embodiment of the present invention can be applied to a single cell that does not constitute a stack.

本発明の第1の実施の形態に係る、固体高分子型燃料電池の酸素分圧分布等の計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of measuring apparatuses, such as oxygen partial pressure distribution of the polymer electrolyte fuel cell based on the 1st Embodiment of this invention. 図1に示す固体高分子型燃料電池の酸素分圧分布等の計測装置の測定対象となる固体高分子型燃料電池の構造を、模式的に断面で示した図である。Measurement subject to polymer electrolyte fuel structure of the battery of a polymer electrolyte fuel cell of the oxygen partial pressure distribution and the like of the measuring apparatus shown in FIG. 1 is a diagram showing schematically in cross section. 図1に示す酸素分圧分布等の計測装置によって固体高分子型燃料電池の酸素分圧分布及び温度分布を求める手順を説明する図である。It is a figure explaining the procedure which calculates | requires oxygen partial pressure distribution and temperature distribution of a polymer electrolyte fuel cell with measuring apparatuses, such as oxygen partial pressure distribution shown in FIG. ポリスチレンバインダの酸素透過性と圧力との関係を示したグラフである。It is the graph which showed the relationship between the oxygen permeability of a polystyrene binder, and a pressure. 酸素消光性塗料の輝度と温度との関係を示すグラフである。It is a graph which shows the relationship between the brightness | luminance of an oxygen quenching coating material, and temperature. 本発明の第2の実施の形態に係る、固体高分子型燃料電池の制御装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the control apparatus of a polymer electrolyte fuel cell based on the 2nd Embodiment of this invention.

10:燃料電池の酸素分圧分布等の計測装置、12:燃料電池、14:光源、16:撮像手段、18:処理手段、18a:補正手段、20:固体高分子膜、22:アノード側薄膜電極、22a:外側面、24:カソード側薄膜電極、24a:外側面、26:水素ガスの供給路、28:酸素の供給路、30:アノード側セパレータ、30a:内側面、32:カソード側セパレータ、32a:内側面、35:燃料電池の制御装置、36:スタック、 38、40、42,44、46:単セル、 38a、40a、42a、44a、46a:排気部、 38b、40b、42a、44b、46b:入口部、48:光ファイバ、52:アレイセンサ、54:処理制御手段、56:流量制御手段   10: Measuring device for oxygen partial pressure distribution of fuel cell, 12: Fuel cell, 14: Light source, 16: Imaging means, 18: Processing means, 18a: Correction means, 20: Solid polymer film, 22: Anode-side thin film Electrode, 22a: outer surface, 24: cathode side thin film electrode, 24a: outer surface, 26: hydrogen gas supply path, 28: oxygen supply path, 30: anode side separator, 30a: inner side surface, 32: cathode side separator 32a: inner surface, 35: fuel cell control device, 36: stack, 38, 40, 42, 44, 46: single cell, 38a, 40a, 42a, 44a, 46a: exhaust part, 38b, 40b, 42a, 44b, 46b: inlet portion, 48: optical fiber, 52: array sensor, 54: processing control means, 56: flow rate control means

Claims (4)

固体高分子膜と薄膜電極とからなるMEAと、アノード側の薄膜電極の外側に隣接して設けられた水素ガスの供給路と、カソード側の薄膜電極の外側に隣接して設けられた空気の供給路とが、夫々、セパレータで密閉されており、該セパレータの一部若しくは全部が、セパレータとしての機械的性質を満足する透明な材料で構成され、アノード側セパレータの内側面と薄膜電極の外側面の一方、及び、カソード側セパレータの内側面と薄膜電極の外側面の一方に、酸素消光性塗料が塗布され、薄膜電極に負荷が接続されて運転状態にある、固体高分子型燃料電池に対し、酸素消光性塗料の励起波長の光をパルス照射し、測定対象部分の発光強度の減衰過程を、光の照射パルス周期よりも短い間隔で撮影し、
単純に燃料電池の測定対象部分の温度のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、又は、単純に燃料電池の測定対象部分の酸素分圧分布のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、撮影された画像の発光強度を補正して、測定対象部分の酸素分圧分布又は温度分布を求めることを特徴とする固体高分子型燃料電池の酸素分圧分布等の計測方法。
An MEA composed of a solid polymer film and a thin film electrode, a hydrogen gas supply path provided adjacent to the outside of the anode side thin film electrode, and an air provided adjacent to the outside of the cathode side thin film electrode Each of the supply paths is hermetically sealed with a separator, and a part or all of the separator is made of a transparent material that satisfies the mechanical properties as a separator. For a polymer electrolyte fuel cell in which an oxygen quenching paint is applied to one of the side surfaces and one of the inner side surface of the cathode separator and the outer side surface of the thin film electrode, and a load is connected to the thin film electrode. In contrast, the excitation light of the oxygen-quenching paint is pulsed, and the decay process of the emission intensity of the measurement target part is photographed at intervals shorter than the light irradiation pulse cycle .
The change in brightness when only the temperature of the measurement target part of the fuel cell is simply changed is grasped in advance, and this is used as calibration data, or simply the oxygen content of the measurement target part of the fuel cell. The change in luminance when only the pressure distribution is changed is grasped in advance, this is used as calibration data, the emission intensity of the photographed image is corrected, and the oxygen partial pressure distribution in the measurement target portion or A method for measuring an oxygen partial pressure distribution or the like of a polymer electrolyte fuel cell, characterized by obtaining a temperature distribution .
固体高分子膜と薄膜電極とからなるMEAと、アノード側の薄膜電極の外側に隣接して水素ガスの供給路が設けられ、カソード側の薄膜電極の外側に隣接して空気の供給路が設けられ、夫々、セパレータで密閉されており、該セパレータの一部若しくは全部が、セパレータとしての機械的性質を満足する透明な材料で構成され、アノード側セパレータの内側面と薄膜電極の外側面の一方、及び、カソード側セパレータの内側面と薄膜電極の外側面の一方に、酸素消光性塗料が塗布され、薄膜電極に負荷が接続されて運転状態での、前記酸素消光性塗料が塗布された部分が外部から視認可能に構成された固体高分子型燃料電池と、測定対象部分に酸素消光性塗料の励起波長の光をパルス照射する光照射手段と、測定対象部分の発光強度の減衰過程を、光の照射パルス周期よりも短い間隔で撮影する撮像手段と、
単純に燃料電池の測定対象部分の温度のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、又は、単純に燃料電池の測定対象部分の酸素分圧分布のみを変化させた場合の輝度の変化を予め把握しておき、これを、キャリブレーションデータとして使用し、撮影された画像の発光強度を補正して、撮影された画像の発光強度を補正する補正手段とを備えることを特徴とする固体高分子型燃料電池の酸素分圧分布等の計測装置。
An MEA composed of a solid polymer membrane and a thin film electrode, a hydrogen gas supply path is provided adjacent to the outside of the anode side thin film electrode, and an air supply path is provided adjacent to the cathode side of the thin film electrode Each of the separators is hermetically sealed, and a part or all of the separator is made of a transparent material that satisfies the mechanical properties of the separator, and is one of the inner surface of the anode-side separator and the outer surface of the thin-film electrode. And a portion where the oxygen quenching paint is applied to one of the inner side surface of the cathode separator and the outer side surface of the thin film electrode, and the load is connected to the thin film electrode and the oxygen quenching paint is applied in an operating state. There a solid polymer electrolyte fuel cell that is visibly configured externally, a light irradiation means for the light pulse irradiation of the excitation wavelength of the oxygen quenching paint measured portion, the attenuation over the emission intensity of the measuring target portion A imaging means for imaging at shorter intervals than the irradiation pulse period of light,
The change in brightness when only the temperature of the measurement target part of the fuel cell is simply changed is grasped in advance, and this is used as calibration data, or simply the oxygen content of the measurement target part of the fuel cell. The change in brightness when only the pressure distribution is changed is grasped in advance, and this is used as calibration data to correct the emission intensity of the photographed image and correct the emission intensity of the photographed image. And measuring means for measuring the oxygen partial pressure distribution of the polymer electrolyte fuel cell.
固体高分子型燃料電池の単セルの、アノード排気部又はカソード排気部の少なくとも一方に光ファイバの先端部を設置し、測定対象部分若しくは光ファイバ先端部の一方に酸素消光性塗料を塗布し、光ファイバを介して、測定対象部分に酸素消光性塗料の励起波長の光をパルス照射し、塗布された酸素消光性塗料の発光強度減衰過程を、光ファイバを介して光のパルス周期よりも短い間隔で計測して、運転状態における単セル毎の酸素分圧分布を把握し、その酸素分圧分布に基づき単セル単位で燃料ガス又は空気の少なくとも一方の流量を制御することを特徴とする固体高分子型燃料電池の制御方法。 The tip of the optical fiber is installed in at least one of the anode exhaust part or the cathode exhaust part of the single cell of the polymer electrolyte fuel cell, and the oxygen quenching paint is applied to one of the measurement target part or the optical fiber tip part, The measurement target part is pulsed with light having the excitation wavelength of the oxygen quenching paint through the optical fiber, and the emission intensity decay process of the applied oxygen quenching paint is shorter than the light pulse period through the optical fiber. It is measured at intervals, to determine the oxygen partial pressure distribution of each unit cell in the operating state, and controlling at least one of the flow rate of the fuel gas or the air in a single cell basis based on the oxygen partial pressure distribution solid Polymer fuel cell control method. 固体高分子型燃料電池の単セルの、アノード排気部又はカソード排気部の少なくとも一方に先端部が設置された光ファイバと、測定対象部分若しくは光ファイバ先端部の一方に塗布された酸素消光性塗料と、光ファイバを介して、測定対象部分に酸素消光性塗料の励起波長の光をパルス照射する光照射手段と、塗布された酸素消光性塗料の発光強度減衰過程を、光ファイバを介して光のパルス周期よりも短い間隔で計測する計測手段と、計測データから運転状態にある単セルの酸素分圧分布を把握する処理手段と、把握された単セルの酸素分圧分布に基づき単セル単位で燃料ガス又は空気の少なくとも一方の流量を制御する制御手段とを備えることを特徴とする固体高分子型燃料電池の制御装置。 An optical fiber having a tip disposed on at least one of an anode exhaust portion or a cathode exhaust portion of a single cell of a polymer electrolyte fuel cell, and an oxygen quenching paint applied to one of a measurement target portion or an optical fiber tip portion And light irradiation means for irradiating light of the excitation wavelength of the oxygen quenching paint to the measurement target portion via the optical fiber, and the light emission intensity decay process of the applied oxygen quenching paint through the optical fiber. the measurement means for measuring at intervals shorter than the pulse period, and processing means for grasping the oxygen partial pressure distribution of the single cells in the operation state from the measurement data, the single cell unit on the basis of the oxygen partial pressure distribution in the single cells that are grasped in a polymer electrolyte fuel cell of the control device, characterized in that it comprises a control means for controlling at least one of the flow rate of the fuel gas or air.
JP2005151167A 2005-05-24 2005-05-24 Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell Expired - Fee Related JP4762603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151167A JP4762603B2 (en) 2005-05-24 2005-05-24 Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151167A JP4762603B2 (en) 2005-05-24 2005-05-24 Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell

Publications (2)

Publication Number Publication Date
JP2006331733A JP2006331733A (en) 2006-12-07
JP4762603B2 true JP4762603B2 (en) 2011-08-31

Family

ID=37553220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151167A Expired - Fee Related JP4762603B2 (en) 2005-05-24 2005-05-24 Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP4762603B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581547B2 (en) * 2009-08-21 2014-09-03 国立大学法人山梨大学 Fuel cell and fuel cell reaction measuring device
JP5429306B2 (en) * 2009-12-16 2014-02-26 トヨタ自動車株式会社 Fuel cell control
JP5573776B2 (en) * 2011-05-31 2014-08-20 株式会社島津製作所 Oxygen concentration measuring device
JP5839575B2 (en) * 2012-04-06 2016-01-06 本田技研工業株式会社 Fuel cell internal oxygen concentration measuring device
JP5888104B2 (en) * 2012-05-14 2016-03-16 株式会社島津製作所 Oxygen concentration measuring device
JP6167552B2 (en) * 2013-02-19 2017-07-26 株式会社島津製作所 Oxygen concentration measuring apparatus and program used therefor
JP6225728B2 (en) * 2014-01-30 2017-11-08 株式会社島津製作所 Fuel cell and oxygen concentration measuring device using the same
JP2016090312A (en) * 2014-10-31 2016-05-23 株式会社島津製作所 Oxygen concentration measurement seal and fuel battery cell using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186046A (en) * 1990-08-20 1993-02-16 Board Of Regents Of The University Of Washington Surface pressure measurement by oxygen quenching of luminescence
GB0302489D0 (en) * 2003-02-04 2003-03-05 Bae Systems Plc Improvements relating to pressure sensitive paint
JP4144486B2 (en) * 2003-09-12 2008-09-03 トヨタ自動車株式会社 Sample concentration detection method, apparatus and program

Also Published As

Publication number Publication date
JP2006331733A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4762603B2 (en) Method and apparatus for measuring oxygen partial pressure distribution and the like of solid polymer fuel cell, and control method and apparatus for solid polymer fuel cell
JP5021183B2 (en) Protein immobilization membrane, immobilization method, and biosensor
TW200901937A (en) System and methods of chemistry patterning for a multiple well biosensor
JP2004530284A (en) A method and apparatus for performing a leakage inspection of an EL device.
TW202043733A (en) Water quality analysis system, sensor module, calibration machine and calibration method for water quality analysis system
CN106092994A (en) A kind of micro-array chip fluorescence detection method of great power LED
JP2015536487A (en) Resonant cavity tuning method for improved nonlinear crystal performance
CN108152348A (en) A kind of preparation method and application that can be used repeatedly the miniature software Ag/AgCl electrodes based on PDMS
JP2008008632A (en) Method for evaluating diffusibility of gas in porous member of water-containing state
US6740225B2 (en) Method for determining the amount of chlorine and bromine in water
US20170170434A1 (en) Method for manufacturing substrate, substrate, method for manufacturing organic electroluminescence device, and organic electroluminescence device
JP2005134218A (en) Pinhole detection method and pinhole detection device
JP2005195354A (en) Instrument and method for measuring oxygen concentration
CN106092854B (en) A kind of testing vapor transmission device and method of encapsulating material
JP5573776B2 (en) Oxygen concentration measuring device
JP2009144804A (en) High-pressure tank
US7077946B2 (en) High throughput multi-channel rotating disk or ring-disk electrode assembly and method
JP2005276729A (en) Performance test method of solid polymer fuel cell
JP2005181013A (en) Pinhole inspection device and pinhole inspection method of polymer membrane for fuel cell
US8944873B2 (en) Method of manufacturing organic light emitting diode arrays and system for eliminating defects in organic light emitting diode arrays
JP2003004635A (en) Fluorescence type oxygen analyzer
JP2016223941A (en) Gas diffusivity evaluation device
JP4092300B2 (en) Organic material property evaluation method and device
WO2001059441A1 (en) Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
JP6167552B2 (en) Oxygen concentration measuring apparatus and program used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees