JP2003004635A - Fluorescence type oxygen analyzer - Google Patents

Fluorescence type oxygen analyzer

Info

Publication number
JP2003004635A
JP2003004635A JP2001228689A JP2001228689A JP2003004635A JP 2003004635 A JP2003004635 A JP 2003004635A JP 2001228689 A JP2001228689 A JP 2001228689A JP 2001228689 A JP2001228689 A JP 2001228689A JP 2003004635 A JP2003004635 A JP 2003004635A
Authority
JP
Japan
Prior art keywords
light
fluorescent
oxygen
fluorescence
fluorescent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001228689A
Other languages
Japanese (ja)
Inventor
Mutsuro Okino
睦郎 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001228689A priority Critical patent/JP2003004635A/en
Publication of JP2003004635A publication Critical patent/JP2003004635A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen analyzer which can be automatically calibrated in a use environment and has high stability and reliability for a long time. SOLUTION: The fluorescence type oxygen analyzer has a transparent substrate or optical fiber where a light-shielding layer having oxygen transmission properties and a fluorescent layer are layered, a light-emitting element, an optical filter for selectively separating the fluorescence generated from the fluorescent layer, a light-receiving element, an amplifier and a signal processing part. In the oxygen analyzer, regions to be illuminated by the light-emitting element are set mutually independently within the same measurement environment to the fluorescent layer on the substrate or optical fiber. A fluorescence signal obtained by illuminating a specific region among the regions with the light for only a short time is made a reference value, and a fluorescence signal obtained by illuminating a part other than the specified region with the light is made a measured value. The measured value is corrected by a relative value to the reference value. An oxygen concentration is displayed accordingly.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、光を利用して気体
または液体中の酸素濃度を測定する蛍光式酸素濃度計の
補正方法に関する。 【0002】 【従来の技術】従来、気体中または液体中の酸素測定を
行なう代表的な方法としてクラーク型酸素電極法がよく
知られている。この方法による装置の基本構成はカソー
ド、アノード、電解液および酸素透過性膜からなってお
り、その原理は前記膜を透過してきた酸素が、カソード
表面に達して電気化学的に還元され、このとき流れる電
流が酸素分圧に比例するため電流値から酸素濃度を測定
することができるのである。なお、電気化学的な還元法
としては外部電源による定電位電解と外部電源を用いな
い電池反応の2種類があるが、前者はポーロラグラフィ
ック法、後者はガルバニ電池式と呼ばれている。 【0003】クラーク型酸素電極法は簡便で、ポータブ
ル型には適しているが、酸素を電気化学的に処理し消費
してしまうため、カソード表面に酸素透過性膜を通して
酸素を供給し続けなければならず被測定液を常に撹拌し
ておく必要がある。また、液体電解質を用いているため
膜および電解液の交換が必要で、較正せずに長期の使用
に耐えられないこと、膜表面の汚れや生物の付着による
測定誤差が増大するなどの欠点がありリモートセンシン
グ用のセンサとしては不向きであった。 【0004】これに対し最近、蛍光発光の酸素による消
光作用を利用した蛍光式酸素濃度計が出現している。こ
れは多環芳香族や芳香族炭化水素を有する蛍光物質に光
を照射すると蛍光を発するが、この蛍光は酸素分子が存
在すると、励起された蛍光分子が反応して一時的に複合
体を形成し、酸素分子と蛍光分子の衝突確率に比例して
消光現象が生じることを利用している。ここで無酸素状
態および有酸素状態での蛍光の発光強度をIおよびI
とすると、発光強度比(I/I)は酸素濃度(分圧)
に対して直線的比例関係にある。したがって、この相対
的発光強度を測定することによって酸素濃度を求めるこ
とができる。 【0005】蛍光式酸素濃度計の主要部であるセンサ部
(従来例)の具体的構成を図3に示す。1は遮光層、2
は蛍光層でいずれも酸素透過性を有する。3はガラスま
たは透明なプラスチック板であるが光ファイバーが使わ
れる場合もある。4は光学的フィルター、5はフォトダ
イオードなどの受光素子、6cはLEDなどの発光素
子、25は励起光、26は蛍光である。発光素子6によ
る励起光25は蛍光層2の内部に固定化された蛍光物質
を励起して蛍光26を生じさせるが、この光は元の励起
光より波長が長く、光学的フィルターにより選別したあ
と受光素子5により電気信号に変換される。変換された
電気信号は増幅器、および信号処理部を経て酸素濃度を
表示するデータとして出力される。 【0006】このように蛍光発光を利用した蛍光式酸素
濃度計はクラーク型酸素電極法のような電解液を使用し
ておらず、電解液の交換・補充が不要でメンテナンス性
に優れており、また基本的に酸素を消費しない方法であ
るため、静止液体中でも測定でき撹拌の必要がない。ま
た汚れなどの付着に対しても測定値はほとんど変動せ
ず、取扱も簡便である。しかし、蛍光強度の経時的変化
があり時間とともに蛍光強度が減少し精度に影響する。
これは蛍光物質が長時間、光照射を受けたため色素退色
が起こる耐光性劣化の現象と考えられている。 【0007】 【発明が解決しようとする課題】上記のように、クラー
ク型酸素電極法による装置や現用の蛍光式酸素濃度計で
は長期に使用した場合センサ部の特性変化や劣化によ
り、測定値が変動するという耐久性の問題があった。こ
れらの装置を調査用や研究用のために短時間使用する場
合は、酸素濃度(分圧)が20.9%と安定している空
気中で、測定開始前に較正するだけで十分である。しか
し、多数の地点で定期的に溶存酸素を測定する必要のあ
るリモートセンシング用途では、センサが液中に設置さ
れており気中較正は困難で、長期安定性のある酸素濃度
計が要望されていた。本発明は上記問題点を解消し、長
期にわたって安定性、信頼性の高い酸素濃度計を提供す
ることを目的とする。 【0008】 【課題を解決するための手段】本発明の酸素濃度計は上
記目的を達成するために、酸素透過性を有する遮光層と
蛍光層を積層した透明な基板または光ファイバーと、発
光素子と、前記蛍光層から発する蛍光を選択的に分離す
る光学的フィルターと、受光素子と、増幅器および信号
処理部を有する蛍光式酸素濃度計において、前記基板ま
たは光ファイバー上の蛍光層に、前記発光素子によって
光照射される領域を相互に独立して設け、そのうちの特
定の領域を短時間だけ光照射して得られる蛍光信号を基
準値とし、前記特定された以外の部分を光照射して得ら
れる蛍光信号を測定値として、該測定値を前記基準値と
の相対値で補正して、酸素濃度を表示したものである。 【0009】 【発明の実施の形態】図1は本発明の主要部であるセン
サの模式図である。本構造は以下に説明するように従来
実施例の図3の構造に、較正チャネルを同一測定環境内
に追加した形状になっている。1は遮光層、2は蛍光層
でいずれも酸素透過性を有する。3は透明なガラス板ま
たはプラスチック板で表面に上記の遮光層1および蛍光
層2を積層しているが、光ファイバーを用いる場合は遮
光層1および蛍光層2をコーティングした光ファィバー
を独立に測定用および校正用として併設する。4は光学
的フイルタ、5は受光素子(フォトダイオード)であ
る。6a、6bはそれぞれ測定チャネル、校正チャネル
の発光素子(LED)で、図1に示すように矢印実線で
囲まれた励起光20および励起光22を発光し、ガラス
板3を通して蛍光層2上の相互に干渉しない領域に照射
し、矢印点線で囲まれた蛍光21および蛍光23を発生
させている。なお、発光素子6a、6bは時間的にずら
して駆動されており、蛍光21と23も同様に時間的に
識別可能な信号として、同一の受光素子5より取り出す
ことができる。本センサを気体または液体の被測定環境
中に置いた場合、酸素は遮光層1および蛍光層2を通し
て出入りし、蛍光層中に固定された蛍光物質から生ずる
蛍光の強度を増減させる。 【0010】図2に本センサを駆動する電子回路の系統
図を示す。11は発光素子6a、6bの発光制御回路で
サンプリングまたは連続駆動される。12は受光素子
(フォトダイオード)、13は増幅器、14はA/D変
換回路、15は演算処理部、16は表示部またはデータ
伝送部である。 【0011】発光素子6a、6bはそれぞれ励起光2
0,22を蛍光層上異なる領域に照射しており、測定チ
ャネルの蛍光21と較正チャネルの蛍光23は近接した
場所で互いに独立したものとなっている。蛍光21と蛍
光23はそれぞれ独立の受光素子で受けてもよいが、本
実施例では、発光制御回路11で発光素子6a、6bの
発光タイミングを制御している結果、同一の受光素子で
これらの信号を受けて増幅器13、A/D変換回路14
を経て演算処理部15に出力される。演算処理部15に
は、あらかじめ無酸素状態における蛍光21と蛍光23
の強度I01とI02、および蛍光強度比(I/I)
対酸素濃度特性値(検量線)を演算データとして記憶さ
せておき、被測定環境において測定された蛍光強度I
からI01/Iを計算し、これと検量線データから酸
素濃度を求めることができる。 【0012】なお、蛍光強度Iは温度によって変化する
量であるから上記演算データは温度関数として扱い、測
定の際には別途温度データをとって、補正をしたI01
を用いなければならない。 【0013】較正は、空気中で動作させることが可能な
場合は手動で気中較正する。リモートセンシングのよう
な用途では長時間被測定環境中に設置されるため、空気
中に取り出して気中較正をすることができない。この場
合には測定の準備段階で空気中で較正チャネルの発光素
子6bを短時間動作させて蛍光出力Iを求め、次に、
測定チャネルの発光素子6aによる蛍光出力Iを測定
し、I/I=Nを求めておく。Nは測定チャネルと
較正チャネルの空気中較正時の初期蛍光強度比率であ
る。較正は例えば1日に1回5秒間較正チャネルを動作
させて行なう。この時の較正チャネルの蛍光出力をi
とし、測定チャネルの蛍光出力をiとすればi/i
=nは一定時間経過後の蛍光強度比率で、n/Nは蛍
光強度比率の初期値からの変化で、長時間光照射を受け
たための色素退色などによる蛍光強度の低下率を表して
いる。したがって、補正は、測定チャネルの蛍光強度I
にN/nを掛けた値を新しくIとして、上記したよ
うにI01/Iを計算し、これと検量線データから正
しい酸素濃度を求めることができる。 【0014】以上説明したように、通常、較正は酸素濃
度が既知の環境、たとえば無酸素状態や空気中でおこな
われる。しかし、このような環境が得られない用途では
本実施例のように蛍光層上に測定チャネル領域とは別に
近接した場所に独立した較正領域を設け、色素退色など
の影響を受けないような短時間動作で原状を保持し、こ
れによる蛍光強度を基準値として次第に蛍光強度の低下
する測定チャネルの出力との相対値で自動補正してい
る。 【0015】 【発明の効果】本発明は測定チャネルとは別に較正チャ
ネルを同一測定環境内の近接した場所に設け、短時間動
作で色素退色などの理由による感度劣化を自動補正し
て,長期間にわたって安定な酸素濃度計を実現してい
る。なお、 較正チャネル領域を測定チャネル領域に近
接させて設けているのは、酸素濃度や温度などの正常な
変化を共通に受けて排除する効果があり、相対値で補正
するのも受信器感度や発光感度など機器の品質上の影響
を免れるためである。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a correction method for a fluorescent oximeter that measures oxygen concentration in a gas or liquid using light. Heretofore, the Clark-type oxygen electrode method has been well known as a typical method for measuring oxygen in a gas or a liquid. The basic structure of the device according to this method consists of a cathode, an anode, an electrolyte and an oxygen-permeable membrane. The principle is that oxygen permeating the membrane reaches the cathode surface and is electrochemically reduced. Since the flowing current is proportional to the oxygen partial pressure, the oxygen concentration can be measured from the current value. There are two types of electrochemical reduction methods: constant potential electrolysis with an external power supply and a battery reaction without using an external power supply. The former is called a polarographic method, and the latter is called a galvanic cell method. [0003] The Clark-type oxygen electrode method is simple and suitable for a portable type. However, since oxygen is electrochemically treated and consumed, it is necessary to supply oxygen through the oxygen-permeable membrane to the cathode surface. In addition, the liquid to be measured must be constantly stirred. In addition, the use of a liquid electrolyte requires replacement of the membrane and the electrolyte, which means that it cannot withstand long-term use without calibration, and that measurement errors due to contamination of the membrane surface and the attachment of organisms increase. It was not suitable as a sensor for remote sensing. On the other hand, recently, a fluorescent oximeter utilizing the quenching action of fluorescent light by oxygen has appeared. This emits fluorescent light when illuminating a fluorescent substance containing polycyclic aromatics or aromatic hydrocarbons, and this fluorescent light reacts with the excited fluorescent molecules in the presence of oxygen molecules to temporarily form a complex. However, it utilizes the fact that the quenching phenomenon occurs in proportion to the collision probability between oxygen molecules and fluorescent molecules. Here, the emission intensities of the fluorescence in the anoxic state and the aerobic state are represented by I 0 and I
Then, the emission intensity ratio (I 0 / I) is the oxygen concentration (partial pressure)
Is linearly proportional to Therefore, the oxygen concentration can be determined by measuring the relative emission intensity. FIG. 3 shows a specific configuration of a sensor section (conventional example) which is a main section of a fluorescent oximeter. 1 is a light shielding layer, 2
Is a fluorescent layer and has oxygen permeability. Reference numeral 3 denotes a glass or transparent plastic plate, but an optical fiber may be used in some cases. 4 is an optical filter, 5 is a light receiving element such as a photodiode, 6c is a light emitting element such as an LED, 25 is excitation light, and 26 is fluorescence. Excitation light 25 from the light emitting element 6 excites a fluorescent substance fixed inside the fluorescent layer 2 to generate fluorescence 26. This light has a longer wavelength than the original excitation light, and is filtered by an optical filter. The light is converted into an electric signal by the light receiving element 5. The converted electric signal is output as data indicating the oxygen concentration via an amplifier and a signal processing unit. As described above, the fluorescent oximeter utilizing fluorescence emission does not use an electrolytic solution as in the Clark-type oxygen electrode method, and does not require replacement or replenishment of the electrolytic solution, and is excellent in maintainability. In addition, since the method basically does not consume oxygen, it can be measured even in a stationary liquid and does not require stirring. Also, the measurement value hardly fluctuates even with the attachment of dirt and the like, and the handling is simple. However, the fluorescence intensity changes with time, and the fluorescence intensity decreases with time, affecting accuracy.
This is considered to be a phenomenon of deterioration in light resistance in which dye fading occurs when the fluorescent substance is irradiated with light for a long time. [0007] As described above, in a device using the Clark-type oxygen electrode method or an existing fluorescent oximeter, when measured for a long period of time, the measured value may change due to a change or deterioration in the characteristics of the sensor. There was a problem of durability that fluctuated. When these devices are used for a short period of time for research or research, it is sufficient to calibrate before the start of measurement in air in which the oxygen concentration (partial pressure) is stable at 20.9%. . However, in remote sensing applications where it is necessary to periodically measure dissolved oxygen at many points, the sensor is installed in the liquid, calibration in the air is difficult, and a long-term stable oxygen concentration meter is required. Was. An object of the present invention is to solve the above-mentioned problems and to provide an oxygen concentration meter having high stability and reliability over a long period of time. [0008] In order to achieve the above object, an oxygen concentration meter of the present invention comprises a transparent substrate or optical fiber in which a light shielding layer having an oxygen permeability and a fluorescent layer are laminated, a light emitting element, An optical filter for selectively separating fluorescence emitted from the fluorescent layer, a light-receiving element, and a fluorescent oximeter having an amplifier and a signal processing unit, wherein the fluorescent layer on the substrate or the optical fiber includes: Areas to be irradiated with light are provided independently of each other, and a fluorescence signal obtained by irradiating a specific area of the specific area only for a short time is used as a reference value, and a fluorescence obtained by irradiating a part other than the specified area is irradiated with light. The signal is a measured value, and the measured value is corrected by a relative value with respect to the reference value to display the oxygen concentration. FIG. 1 is a schematic view of a sensor which is a main part of the present invention. As described below, this structure has a configuration in which a calibration channel is added to the structure of FIG. 3 of the conventional embodiment in the same measurement environment. 1 is a light shielding layer, and 2 is a fluorescent layer, both of which have oxygen permeability. Reference numeral 3 denotes a transparent glass plate or plastic plate on which the light-shielding layer 1 and the fluorescent layer 2 are laminated. When an optical fiber is used, the optical fiber coated with the light-shielding layer 1 and the fluorescent layer 2 can be independently measured. And for calibration. Reference numeral 4 denotes an optical filter, and reference numeral 5 denotes a light receiving element (photodiode). Reference numerals 6a and 6b denote light-emitting elements (LEDs) of a measurement channel and a calibration channel, respectively, which emit excitation light 20 and excitation light 22 surrounded by solid arrows as shown in FIG. Irradiation is performed on regions that do not interfere with each other to generate fluorescent light 21 and fluorescent light 23 surrounded by an arrow dotted line. Note that the light emitting elements 6a and 6b are driven with a time lag, and the fluorescent lights 21 and 23 can be similarly extracted from the same light receiving element 5 as signals that can be temporally identified. When the sensor is placed in a gas or liquid measurement environment, oxygen enters and exits through the light-shielding layer 1 and the fluorescent layer 2 to increase or decrease the intensity of fluorescence generated from the fluorescent substance fixed in the fluorescent layer. FIG. 2 shows a system diagram of an electronic circuit for driving the present sensor. Reference numeral 11 denotes a light emission control circuit for the light emitting elements 6a and 6b, which is sampled or continuously driven. 12 is a light receiving element (photodiode), 13 is an amplifier, 14 is an A / D conversion circuit, 15 is an arithmetic processing unit, and 16 is a display unit or a data transmission unit. The light emitting elements 6a and 6b respectively emit the excitation light 2
0 and 22 are radiated to different regions on the fluorescent layer, and the fluorescent light 21 of the measurement channel and the fluorescent light 23 of the calibration channel are independent of each other in a close place. Although the fluorescent light 21 and the fluorescent light 23 may be received by independent light receiving elements, in the present embodiment, the light emission control circuit 11 controls the light emission timing of the light emitting elements 6a and 6b. Receiving signal, amplifier 13, A / D conversion circuit 14
Is output to the arithmetic processing unit 15 through The arithmetic processing unit 15 includes the fluorescent light 21 and the fluorescent light 23 in an anoxic state in advance.
Intensity I 01 and I 02 , and fluorescence intensity ratio (I 0 / I)
The oxygen concentration characteristic value (calibration curve) is stored as operation data, and the fluorescence intensity I 1 measured in the measurement environment is measured.
I 01 / I 1 is calculated from the above, and the oxygen concentration can be obtained from this and the calibration curve data. [0012] Incidentally, the fluorescence intensity I treated as the calculation data is a function of temperature because it is an amount that varies with temperature, taking separate temperature data in the measurement, I 01 in which the correction
Must be used. The calibration is performed manually in the air when it can be operated in the air. In applications such as remote sensing, since the sensor is installed in the environment to be measured for a long time, it cannot be taken out into the air and calibrated in the air. Is operated briefly the light emitting element 6b calibration channel in air in preparation for measurement in this case to seek a fluorescent output I 2, then,
The light output I 1 by the light emitting element 6a of the measurement channel is measured, previously obtained the I 1 / I 2 = N. N is an initial fluorescence intensity ratio of the measurement channel and the calibration channel at the time of calibration in air. The calibration is performed, for example, by operating the calibration channel once a day for 5 seconds. The fluorescence output of the calibration channel at this time is i 1
And if the fluorescence output of the measurement channel is i 2 , i 1 / i
2 = n is the fluorescence intensity ratio after a lapse of a certain time, and n / N is a change from the initial value of the fluorescence intensity ratio, and represents a decrease rate of the fluorescence intensity due to dye fading due to long-time light irradiation. . Therefore, the correction is based on the fluorescence intensity I of the measurement channel.
The value obtained by multiplying the N / n to 1 as the new I 1, the I 01 / I 1 as described above was calculated, it is possible to determine the correct oxygen concentration from which the calibration curve data. As described above, calibration is usually performed in an environment where the oxygen concentration is known, for example, in anoxic condition or in air. However, in an application where such an environment cannot be obtained, an independent calibration area is provided on the fluorescent layer in an adjacent place separately from the measurement channel area as in the present embodiment, and a short-circuiting area which is not affected by dye fading or the like is provided. The original state is maintained by the time operation, and the correction is automatically performed with the relative value to the output of the measurement channel in which the fluorescence intensity gradually decreases with the fluorescence intensity as a reference value. According to the present invention, a calibration channel is provided separately from a measurement channel at a close place in the same measurement environment, and sensitivity deterioration due to dye fading or the like is automatically corrected in a short time operation, and a long-term operation is performed. To realize a stable oxygen concentration meter. Providing the calibration channel region close to the measurement channel region has the effect of eliminating and receiving normal changes such as oxygen concentration and temperature in common. This is to avoid the influence on the quality of the device such as the light emission sensitivity.

【図面の簡単な説明】 【図1】本発明の主要部であるセンサの模式図である。 【図2】本発明のセンサを駆動する電子回路の系統図で
ある。 【図3】従来実施例である蛍光式酸素濃度計のセンサ部
の構成図である。 【符号の説明】 1:遮光層 2:蛍光層 3:透明なガラス板またはプラスチック板 4:光学的フイルタ 5:受光素子 6a:測定チャネルの発光素子 6b:較正チャネルの発光素子 6c:従来実施例の蛍光式酸素濃度計の発光素子 11:発光制御回路 12:受光素子 13:増幅器 14:A/D変換回路 15:演算処理部 16:表示部またはデータ伝送部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a sensor as a main part of the present invention. FIG. 2 is a system diagram of an electronic circuit for driving the sensor of the present invention. FIG. 3 is a configuration diagram of a sensor unit of a fluorescent oximeter according to a conventional example. DESCRIPTION OF SYMBOLS 1: Shielding layer 2: Fluorescent layer 3: Transparent glass or plastic plate 4: Optical filter 5: Light receiving element 6a: Light emitting element 6b of measurement channel: Light emitting element 6c of calibration channel: Conventional example Element 11: emission control circuit 12: light receiving element 13: amplifier 14: A / D conversion circuit 15: arithmetic processing unit 16: display unit or data transmission unit

Claims (1)

【特許請求の範囲】 【請求項1】酸素透過性を有する遮光層と蛍光層を積層
した透明な基板または光ファイバーと、発光素子と、前
記蛍光層から発する蛍光を選択的に分離する光学的フィ
ルターと、受光素子と、増幅器および信号処理部を有す
る蛍光式酸素濃度計において、前記基板または光ファイ
バー上の蛍光層に、前記発光素子によって光照射される
領域を同一の測定環境内に相互に独立して設け、そのう
ちの特定の領域を短時間だけ光照射して得られる蛍光信
号を基準値とし、前記特定された以外の部分を光照射し
て得られる蛍光信号を測定値として、該測定値を前記基
準値との相対値で補正して、酸素濃度を表示したことを
特徴とする蛍光式酸素濃度計。
Claims: 1. An optical filter for selectively separating a transparent substrate or an optical fiber in which a light-shielding layer having oxygen permeability and a fluorescent layer are laminated, a light-emitting element, and fluorescent light emitted from the fluorescent layer. And a light receiving element, a fluorescent oximeter having an amplifier and a signal processing unit, wherein a region irradiated by the light emitting element on the fluorescent layer on the substrate or the optical fiber is mutually independent in the same measurement environment. The fluorescence signal obtained by irradiating a specific area of the light for a short time as a reference value, and the fluorescence signal obtained by irradiating a portion other than the specified area as a measurement value is used as a measurement value. A fluorescent oximeter, wherein the oxygen concentration is displayed by correcting with a relative value to the reference value.
JP2001228689A 2001-06-25 2001-06-25 Fluorescence type oxygen analyzer Pending JP2003004635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228689A JP2003004635A (en) 2001-06-25 2001-06-25 Fluorescence type oxygen analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001228689A JP2003004635A (en) 2001-06-25 2001-06-25 Fluorescence type oxygen analyzer

Publications (1)

Publication Number Publication Date
JP2003004635A true JP2003004635A (en) 2003-01-08

Family

ID=19061158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228689A Pending JP2003004635A (en) 2001-06-25 2001-06-25 Fluorescence type oxygen analyzer

Country Status (1)

Country Link
JP (1) JP2003004635A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098202A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Method, apparatus and program for correcting fluorescence image
JP2009236902A (en) * 2008-03-05 2009-10-15 Japan Agengy For Marine-Earth Science & Technology Observation apparatus
WO2012144522A1 (en) * 2011-04-21 2012-10-26 オリンパスメディカルシステムズ株式会社 Optical measuring system, optical measuring apparatus, calibration member, and calibration method
JP2015141852A (en) * 2014-01-30 2015-08-03 株式会社島津製作所 Fuel battery cell and oxygen concentration measurement device using the same
WO2015143229A1 (en) * 2014-03-20 2015-09-24 Entegris-Jetalon Solutions, Inc. System and method for detection and signaling of component end-of-life in a dissolved oxygen sensor
CN105683739A (en) * 2013-11-01 2016-06-15 恩特葛瑞斯-捷特隆解决方案公司 Dissolved oxygen sensor
CN111413285A (en) * 2020-05-08 2020-07-14 中南大学 Method for correcting oxygen detection error in glass bottle based on environmental compensation model

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098202A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Method, apparatus and program for correcting fluorescence image
JP2009236902A (en) * 2008-03-05 2009-10-15 Japan Agengy For Marine-Earth Science & Technology Observation apparatus
WO2012144522A1 (en) * 2011-04-21 2012-10-26 オリンパスメディカルシステムズ株式会社 Optical measuring system, optical measuring apparatus, calibration member, and calibration method
JP5276228B2 (en) * 2011-04-21 2013-08-28 オリンパスメディカルシステムズ株式会社 Optical measurement system, optical measurement apparatus, calibration member, and calibration method
US8558164B2 (en) 2011-04-21 2013-10-15 Olympus Medical Systems Corp. Optical measurement system, optical measurement apparatus, calibration member, and calibration method
US9541539B2 (en) 2013-11-01 2017-01-10 Entegris, Inc. Dissolved oxygen sensor
CN105683739A (en) * 2013-11-01 2016-06-15 恩特葛瑞斯-捷特隆解决方案公司 Dissolved oxygen sensor
JP2015141852A (en) * 2014-01-30 2015-08-03 株式会社島津製作所 Fuel battery cell and oxygen concentration measurement device using the same
CN106068454A (en) * 2014-03-20 2016-11-02 恩特葛瑞斯-捷特隆解决方案公司 The detection terminating for the assembly life-span in dissolved oxygen sensor and the system and method for signaling
KR20160135714A (en) * 2014-03-20 2016-11-28 인테그리스 - 제탈론 솔루션즈, 인크. System and method for detection and signaling of component end-of-life in a dissolved oxygen sensor
WO2015143229A1 (en) * 2014-03-20 2015-09-24 Entegris-Jetalon Solutions, Inc. System and method for detection and signaling of component end-of-life in a dissolved oxygen sensor
JP2017508974A (en) * 2014-03-20 2017-03-30 インテグリス−ジェタロン・ソリューションズ・インコーポレイテッド System and method for end-of-life detection and signal generation of dissolved oxygen sensor components
US10107755B2 (en) 2014-03-20 2018-10-23 Entegris, Inc. System and method for dectection and signaling of component end-of-life in a dissolved oxygen sensor
KR102165606B1 (en) 2014-03-20 2020-10-14 인테그리스 - 제탈론 솔루션즈, 인크. System and method for detection and signaling of component end-of-life in a dissolved oxygen sensor
CN111413285A (en) * 2020-05-08 2020-07-14 中南大学 Method for correcting oxygen detection error in glass bottle based on environmental compensation model
CN111413285B (en) * 2020-05-08 2021-04-20 中南大学 Method for correcting oxygen detection error in glass bottle based on environmental compensation model

Similar Documents

Publication Publication Date Title
McDonagh et al. Phase fluorometric dissolved oxygen sensor
CA2521395A1 (en) Photoelectrochemical determination of chemical oxygen demand
AU2009276832A1 (en) Systems and methods for optical measurement of analyte concentration
JP4420849B2 (en) Water quality sensor
EP2635624B1 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
CN207081660U (en) A kind of dissolved oxygen measuring device based on binary channels phase lock amplifying technology
CN110542667A (en) Portable rapid water quality detector and water quality detection method
CN111678899A (en) Fluorescence method dissolved oxygen sensor
KR101526217B1 (en) On-Line Smart DO Analyzer
JP2003004635A (en) Fluorescence type oxygen analyzer
KR101484521B1 (en) Luminescent-Based Dissolved Oxygen Sensor
CN201974383U (en) Pulse optical source fibre oxygen detector
JP2005195354A (en) Instrument and method for measuring oxygen concentration
CN111537448A (en) Adjustable range double-light-source water quality COD (chemical oxygen demand) detection sensor
CN210720145U (en) Portable quick water quality testing appearance
JP2009519441A (en) Method and apparatus for measuring fluorescence of a sample and use thereof
Walker et al. Measurement of oxygen and chlorophyll fluorescence
JP2003149152A (en) Oxygen concentration measuring device and method for manufacturing the same
CN213580647U (en) Adjustable range double-light-source water quality COD (chemical oxygen demand) detection sensor
CN111965127A (en) Multi-parameter water quality detector
CN112147101A (en) Portable water quality analyzer and method for soluble organic matters and nitrate nitrogen
CN110849858A (en) Dissolved oxygen sensitive film light sensing device and fluorescence efficiency detection system
Mitchell Luminescence based measurement of dissolved oxygen in natural waters
JPS62228145A (en) Ultraviolet type organic substance measuring apparatus
JPS63233370A (en) Measuring apparatus of whole organic carbon in water