JPH05232042A - Surface inspecting method and device thereof - Google Patents

Surface inspecting method and device thereof

Info

Publication number
JPH05232042A
JPH05232042A JP7216692A JP7216692A JPH05232042A JP H05232042 A JPH05232042 A JP H05232042A JP 7216692 A JP7216692 A JP 7216692A JP 7216692 A JP7216692 A JP 7216692A JP H05232042 A JPH05232042 A JP H05232042A
Authority
JP
Japan
Prior art keywords
excitation light
sample
intensity
foreign matter
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7216692A
Other languages
Japanese (ja)
Other versions
JP2803443B2 (en
Inventor
Hiroto Takesue
浩人 武末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7216692A priority Critical patent/JP2803443B2/en
Publication of JPH05232042A publication Critical patent/JPH05232042A/en
Application granted granted Critical
Publication of JP2803443B2 publication Critical patent/JP2803443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To inspect/determine a foreign matter remaining on the surface of a contact point relay with high sensitivity by radiating excitation light in a visible ultraviolet area to a relay contact point part, and measuring excitation light intensity and fluorescent intensity generated from a radiation area. CONSTITUTION:Excitation light 11 from a light source 1 is radiated to a relay contact point part. Fluorescent intensity of a relay contact point cleaned beforehand is evaluated as a reference. While monitoring (4) the fluorescent intensity and excitation light intensity at respective measurement points, a movable pulse stage 7 is scanned. When an organic foreign matter is adhered to the relay contact point part being an inspection object, its existence can be confirmed by detecting (6) fluorescence generated from the organic foreign matter due to excitation radiation. A relative quantity of residue is evaluated (8) by a value obtained by carrying out an operation on the fluorescent intensity and the excitation light intensity. When the organic foreign matter is already known, a determination (8) of the organic foreign matter is carried out by setting a value obtained by evaluating a correlation between a quantity (film thickness) of the molecular weight and the fluorescent intensity while using the excitation light intensity as a parameter, as a reference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接点リレー表面の清浄度
を検査する表面検査方法およびその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection method and apparatus for inspecting the cleanliness of a contact relay surface.

【0002】[0002]

【従来の技術】これまで接点リレーの清浄度の評価方法
は金属顕微鏡による表面観察が一般的であり、より詳細
な表面分析はEPMA等の機器分析によって行われてい
る。しかし表面に均一な薄膜等が存在するような場合、
落射照明による観察ではその認識能が不十分であるし、
機器分析は操作に熟練を要する。
2. Description of the Related Art Up to now, the evaluation method of the cleanliness of a contact relay has generally been a surface observation with a metal microscope, and a more detailed surface analysis has been carried out by an instrumental analysis such as EPMA. However, if there is a uniform thin film on the surface,
The observation by epi-illumination is not enough to recognize it,
Instrumental analysis requires skill in operation.

【0003】[0003]

【発明が解決しようとする課題】ところで、接点リレー
表面にはプレス工程等で使用される各種油類、人体由来
の有機物、保管時の汚染等の存在が予想されるため、有
機物の検出に対して有効な測定手法が望まれる。また、
その評価においては基板表面の有機汚染に関して十分に
定量性を有したデータが必要となる。有機物の検出に蛍
光を用いた例はこれまでにもあるが、従来の装置では励
起光強度を随時モニターを行っていないため各測定デー
タ間の比較を行うことの有意度が不十分であった。さら
に試料設置ステージの操作によって広範囲の蛍光分布測
定を行う際にも、光源のふらつき等により定量性が大き
く損なわれることがある。従来法により有機物汚染の程
度、最終的には製品の信頼性を決定する場合、定量評価
の信頼性に大きな問題があった。また、励起光照射光路
と同軸上で蛍光検出を行う場合、評価基板面の反射率お
よび平滑度が高いほど励起光反射によって生じる迷光が
増え、蛍光検出素子のS/N低下を招く。したがって鏡
面状の基板では蛍光の高感度検出が不可能となる。一
方、製品管理面からは生産ラインへの導入を図り易い簡
易型且つ高感度の検査装置が望まれる。本発明の目的
は、このような問題点に鑑み、接点リレー表面の清浄度
検査に有効な検査方法およびその装置を提供することに
ある。
By the way, since it is expected that various oils used in the pressing process, organic substances derived from the human body, contamination during storage, etc. are present on the surface of the contact relay, it is difficult to detect the organic substances. And effective measurement method is desired. Also,
In the evaluation, data with sufficient quantitativeness regarding organic contamination on the substrate surface is required. Although there have been examples of using fluorescence for the detection of organic substances, the significance of performing comparison between measurement data was insufficient because the excitation light intensity was not monitored as needed in the conventional device. .. Further, even when the fluorescence distribution is measured over a wide range by operating the sample setting stage, the quantitativeness may be greatly impaired due to the fluctuation of the light source. When the degree of organic contamination and finally the reliability of the product are determined by the conventional method, there is a big problem in the reliability of the quantitative evaluation. Further, when fluorescence is detected coaxially with the excitation light irradiation optical path, the higher the reflectance and the smoothness of the evaluation substrate surface, the more stray light generated by reflection of the excitation light increases, resulting in a decrease in S / N of the fluorescence detection element. Therefore, it becomes impossible to detect fluorescence with high sensitivity using a mirror-like substrate. On the other hand, from the viewpoint of product management, a simple and highly sensitive inspection device that is easy to introduce into the production line is desired. In view of such problems, an object of the present invention is to provide an inspection method and apparatus effective for inspecting the cleanliness of the contact relay surface.

【0004】[0004]

【課題を解決するための手段】本発明は、接点リレーの
表面の汚れを検査する方法において、リレー接点部分に
可視、紫外領域の励起光を照射し、該励起光強度および
該励起光の試料への照射領域より生じる蛍光強度を測定
することによりリレー接点表面に存在している異物の分
布状態およびその量を評価することを特徴とする表面検
査方法である。
The present invention provides a method for inspecting the surface of a contact relay for dirt, wherein the relay contact portion is irradiated with excitation light in the visible and ultraviolet regions, and the excitation light intensity and the sample of the excitation light are used. The surface inspection method is characterized in that the distribution state and the amount of the foreign matter existing on the relay contact surface are evaluated by measuring the fluorescence intensity generated from the irradiation region of the relay contact.

【0005】また、その方法を実施するための装置は、
可視、紫外領域の励起光を発する励起光源と、該励起光
源から発せられる励起光の強度モニタ用パワーメータ
と、試料を設置する試料設置用ステージと、前記励起光
の試料への照射領域から生じる特定波長の蛍光のみを透
過させる手段と、該透過光を検出するための光検出素子
とを備え、前記試料設置用ステージは、基板を上下、前
後および左右に移動させる手段を有することを特徴とす
る。ここで、本装置においては、さらに基板設置面に対
する励起光照射角を変化させる手段を備え、かつ光検出
素子が試料の励起光照射スポットに対し試料設置面鉛直
方向に配置されていることを好適とする。
An apparatus for performing the method is also
Excitation light source that emits excitation light in the visible and ultraviolet regions, a power meter for monitoring the intensity of the excitation light emitted from the excitation light source, a sample setting stage for setting a sample, and an irradiation region of the excitation light to the sample It is provided with means for transmitting only fluorescence of a specific wavelength and a photodetection element for detecting the transmitted light, and the sample setting stage has means for moving the substrate up and down, front and back and left and right. To do. Here, it is preferable that the present apparatus further comprises means for changing the excitation light irradiation angle with respect to the substrate installation surface, and that the photodetector is arranged in the vertical direction of the sample installation surface with respect to the excitation light irradiation spot of the sample. And

【0006】[0006]

【作用】上記の手段を備えた本発明においては、光を検
出する手法であるため、発光性の有機物残渣に対する検
出感度が極めて高く、励起光強度に対する蛍光強度を測
定することによって定量評価を行うことが可能である。
また、基板を上下、左右に移動させることにより有機異
物の分布状況を定量的に評価することができる。さらに
励起光投光軸と蛍光受光軸を異ならしめた場合は、試料
表面での励起光反射より生じる迷光の影響を除去するこ
とができる。
In the present invention having the above-mentioned means, since it is a method of detecting light, the detection sensitivity to the organic residue having a light emitting property is extremely high, and the quantitative evaluation is performed by measuring the fluorescence intensity with respect to the excitation light intensity. It is possible.
Further, the distribution of organic foreign matter can be quantitatively evaluated by moving the substrate vertically and horizontally. Furthermore, when the excitation light projection axis and the fluorescence reception axis are different, the effect of stray light caused by reflection of the excitation light on the sample surface can be eliminated.

【0007】[0007]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。 (1)図1は、蛍光検出素子6に光電子増倍管、励起光
の投光に励起光反射蛍光透過の波長特性を有するダイク
ロイックミラー9を使用した時の装置の構成図である。
図1において、検査装置は、光源1と、バンドパスフィ
ルタ2と、励起ビームスプリッタ3と、励起光強度モニ
タ用素子4と、励起光カットフィルタ5と、蛍光検出素
子6と、試料設置用可動パルスステージ7と、制御およ
びデータ処理装置8とからなっている。
Embodiments of the present invention will now be described in detail with reference to the drawings. (1) FIG. 1 is a configuration diagram of an apparatus when a photomultiplier tube is used as the fluorescence detection element 6 and a dichroic mirror 9 having wavelength characteristics of excitation light reflection fluorescence transmission for projection of excitation light is used.
In FIG. 1, the inspection apparatus includes a light source 1, a bandpass filter 2, an excitation beam splitter 3, an excitation light intensity monitor element 4, an excitation light cut filter 5, a fluorescence detection element 6, and a movable sample setting device. It comprises a pulse stage 7 and a control and data processing device 8.

【0008】光源1は、レーザ等の単色光である方がよ
いが、可視−紫外波長領域に強度を有するランプ光源を
波長選択したものであってもよい。励起光波長選択用バ
ンドパスフィルタ2は励起光源1の照射に際し、無蛍光
性の干渉フィルタを使用する。励起光カットフィルタ5
は励起光を除去し試料から生じる蛍光のみを選択するた
めのものであり、励起反射光に対して無蛍光性の干渉フ
ィルタを使用する。蛍光検出素子6は、干渉フィルタ5
により選択された光を検出するためのものであるが、こ
の検出素子6は、冷却光電子増倍管、冷却CCD等の暗
電流低減対策を施す。励起光強度モニタ用素子4により
励起光出力の変化を随時モニタすることで、励起光出力
のふらつき、さらには光源の劣化が検知され、定量評価
に際し不可欠なデータが得られる。この励起光出力の取
り込みを蛍光検出素子6による蛍光強度の取り込み、お
よび可動パルスステージ7のステップと同期・演算させ
ることにより、各測定領域での有機異物の相対量を高い
信頼性で評価することが可能となる。
The light source 1 is preferably a monochromatic light such as a laser, but may be a lamp light source having an intensity in the visible-ultraviolet wavelength range and having a wavelength selected. The excitation light wavelength selection bandpass filter 2 uses a non-fluorescent interference filter when irradiating the excitation light source 1. Excitation light cut filter 5
Is for removing the excitation light and selecting only the fluorescence generated from the sample, and uses a non-fluorescent interference filter for the excitation reflection light. The fluorescence detection element 6 is the interference filter 5
The detection element 6 is for detecting the light selected by, but the dark current reduction measures such as the cooling photomultiplier tube and the cooling CCD are taken. By constantly monitoring the change of the pumping light output by the pumping light intensity monitoring element 4, the fluctuation of the pumping light output and the deterioration of the light source are detected, and indispensable data can be obtained in the quantitative evaluation. Estimating the relative amount of organic foreign matter in each measurement region with high reliability by synchronizing the capture of this excitation light output with the capture of the fluorescence intensity by the fluorescence detection element 6 and the step of the movable pulse stage 7. Is possible.

【0009】(2)図2は前記(1)においてダイクロ
イックミラー9を使用しない場合の測定実施例である。
ダイクロイックミラー9に代わり、入射角調整ミラー1
2によって励起光は試料10に対し傾斜角度を有して照
射され、例えば45度の入射角で照射される。励起光1
1の照射によって試料から生じた蛍光は励起スポットに
対して試料設置面鉛直方向から蛍光検出素子6にて検出
を行う。試料表面での反射光が通過するようにバッフル
13を設置し、散乱光および該散乱光によって誘発され
る迷光を除去する。ミラー12はフレキシブルアームに
取り付けられており、これにより試料照射角を調整す
る。
(2) FIG. 2 shows a measurement example when the dichroic mirror 9 is not used in the above (1).
Incident angle adjusting mirror 1 instead of dichroic mirror 9
The excitation light is irradiated onto the sample 10 by 2 with an inclination angle, for example, at an incident angle of 45 degrees. Excitation light 1
The fluorescence generated from the sample by the irradiation of 1 is detected by the fluorescence detection element 6 with respect to the excitation spot from the vertical direction of the sample installation surface. The baffle 13 is installed so that the reflected light on the sample surface passes, and the scattered light and the stray light induced by the scattered light are removed. The mirror 12 is attached to a flexible arm, and the sample irradiation angle is adjusted by this.

【0010】次に、この実施例の動作を説明する。ま
ず、パルスステージ7にリレー10を設置する。次に、
励起および検出対象となる波長に適したバンドパスフィ
ルタ2および5を設置する。そして光源1からの励起光
11をリレー接点部分に対して照射する。事前に十分に
洗浄を行ったリレー接点の蛍光強度をリファレンスとし
て評価を行う。各測定ポイントでの蛍光強度および励起
光強度をモニタしながら、可動パルスステージ7を走査
させる。検査対象であるリレー接点部分に有機異物が付
着している場合、励起光照射によって有機異物から生じ
る蛍光を検出することによりその存在を確認できる。さ
らに蛍光強度と励起光強度を演算させた値により残渣の
相対量を評価する。有機異物種が既知である場合は、そ
の分子種の量(膜厚)と蛍光強度の相関を励起光強度を
パラメータとして評価したものを基準とすることにより
有機異物の定量を行う。図3は、本装置において測定さ
れたリレー接点部分の蛍光強度分布をモノクロ濃淡表示
した一例を示す説明図である。図中、マッピング図にお
いて、白い部分はリファレンスと同レベルの蛍光強度を
示し、濃くなるにしたがって蛍光強度が増大することを
示す。
Next, the operation of this embodiment will be described. First, the relay 10 is installed on the pulse stage 7. next,
Bandpass filters 2 and 5 suitable for the wavelengths to be excited and detected are installed. Then, the excitation light 11 from the light source 1 is applied to the relay contact portion. The fluorescent intensity of the relay contact, which has been thoroughly cleaned in advance, is used as a reference for evaluation. The movable pulse stage 7 is scanned while monitoring the fluorescence intensity and the excitation light intensity at each measurement point. When the organic foreign matter is attached to the relay contact portion to be inspected, its presence can be confirmed by detecting the fluorescence generated from the organic foreign matter due to the irradiation of the excitation light. Further, the relative amount of the residue is evaluated by the value obtained by calculating the fluorescence intensity and the excitation light intensity. When the species of organic foreign matter is known, the quantity of organic foreign matter is quantified by using the correlation between the amount (film thickness) of the molecular species and the fluorescence intensity evaluated with the excitation light intensity as a reference. FIG. 3 is an explanatory diagram showing an example in which the fluorescence intensity distribution of the relay contact portion measured by the present device is displayed in monochrome gray scale. In the figure, in the mapping diagram, the white portion shows the fluorescence intensity at the same level as the reference, and shows that the fluorescence intensity increases as it becomes darker.

【0011】[0011]

【発明の効果】以上説明したように、本発明の表面検査
方法および装置によれば、接点リレーの表面に残存して
いる異物を高感度に検査、定量することができる。
As described above, according to the surface inspection method and apparatus of the present invention, the foreign matter remaining on the surface of the contact relay can be inspected and quantified with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の一実施例に使用した光学系の構成図で
ある。
FIG. 2 is a configuration diagram of an optical system used in an embodiment of the present invention.

【図3】本発明による蛍光強度のマッピングの一実施例
を示す図である。
FIG. 3 is a diagram showing an example of mapping of fluorescence intensity according to the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 励起光バンドパスフィルタ 3 励起ビームスプリッタ 4 励起光強度モニタ用素子 5 励起光カットフィルタ 6 蛍光検出素子 7 試料設置用可動パルスステージ 8 制御およびデータ処理装置 9 ダイクロイックミラー 10 試料(接点リレー) 11 励起光 12 入射角調整ミラー 13 バッフル 1 Light Source 2 Excitation Light Bandpass Filter 3 Excitation Beam Splitter 4 Excitation Light Intensity Monitor Element 5 Excitation Light Cut Filter 6 Fluorescence Detection Element 7 Movable Pulse Stage for Sample Installation 8 Control and Data Processing Device 9 Dichroic Mirror 10 Sample (Contact Relay) 11 Excitation Light 12 Incident Angle Adjustment Mirror 13 Baffle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H05K 3/26 7511−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // H05K 3/26 7511-4E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 接点リレーの表面の汚れを検査する方法
において、リレー接点部分に可視、紫外領域の励起光を
照射し、該励起光強度および該励起光の試料への照射領
域より生じる蛍光強度を測定することによりリレー接点
表面に存在している異物の分布状態およびその量を評価
することを特徴とする表面検査方法。
1. A method for inspecting dirt on the surface of a contact relay, which comprises irradiating the relay contact portion with excitation light in the visible and ultraviolet regions, and the excitation light intensity and the fluorescence intensity generated from the irradiation region of the excitation light to a sample. A surface inspection method characterized by evaluating the distribution state and the amount of foreign matter existing on the relay contact surface by measuring.
【請求項2】 接点リレーの表面の汚れを検査する装置
において、可視、紫外領域の励起光を発する励起光源
と、該励起光源から発せられる励起光の強度モニタ用パ
ワーメータと、試料を設置する試料設置用ステージと、
前記励起光の試料への照射領域から生じる特定波長の蛍
光のみを透過させる手段と、該透過光を検出するための
光検出素子とを備え、前記試料設置用ステージは、基板
を上下、前後および左右に移動させる手段を有すること
を特徴とする表面検査装置。
2. An apparatus for inspecting dirt on the surface of a contact relay, wherein an excitation light source that emits excitation light in the visible and ultraviolet regions, a power meter for monitoring the intensity of the excitation light emitted from the excitation light source, and a sample are installed. A sample setting stage,
Means for transmitting only fluorescence of a specific wavelength generated from the irradiation region of the excitation light to the sample, and a photodetection element for detecting the transmitted light, the sample setting stage, the substrate up and down, front and back and A surface inspection apparatus having a means for moving to the left and right.
【請求項3】 基板設置面に対する励起光照射角を変化
させる手段を有し、かつ光検出素子は試料の励起光照射
スポットに対し試料設置面鉛直方向に配置されている請
求項2記載の表面検査装置。
3. The surface according to claim 2, further comprising means for changing the excitation light irradiation angle with respect to the substrate installation surface, and the photodetector is arranged in a direction perpendicular to the sample installation surface with respect to the excitation light irradiation spot of the sample. Inspection equipment.
JP7216692A 1992-02-24 1992-02-24 Surface inspection method and device Expired - Lifetime JP2803443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7216692A JP2803443B2 (en) 1992-02-24 1992-02-24 Surface inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7216692A JP2803443B2 (en) 1992-02-24 1992-02-24 Surface inspection method and device

Publications (2)

Publication Number Publication Date
JPH05232042A true JPH05232042A (en) 1993-09-07
JP2803443B2 JP2803443B2 (en) 1998-09-24

Family

ID=13481389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7216692A Expired - Lifetime JP2803443B2 (en) 1992-02-24 1992-02-24 Surface inspection method and device

Country Status (1)

Country Link
JP (1) JP2803443B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116150A (en) * 2000-10-11 2002-04-19 Menicon Co Ltd Method and apparatus for detecting dirt on eye lens
JP2002272745A (en) * 2001-03-14 2002-09-24 Hamamatsu Photonics Kk Breast cancer detector
JP2006113593A (en) 2004-10-18 2006-04-27 Leica Microsystems Cms Gmbh Scanning microscope
JP2008203138A (en) * 2007-02-21 2008-09-04 Canon Inc Fluorescence detection apparatus
JP2012247244A (en) * 2011-05-26 2012-12-13 Fujifilm Corp Fluorescence analysis device and fluorescence analysis method
JP2013160511A (en) * 2012-02-01 2013-08-19 Topcon Corp Light storage luminance measuring apparatus
JP2016080474A (en) * 2014-10-15 2016-05-16 東京エレクトロン株式会社 Droplet inspection device, droplet inspection method, program, and computer storage medium
WO2017168909A1 (en) * 2016-03-29 2017-10-05 東レエンジニアリング株式会社 Deposit amount measuring device
WO2018114719A3 (en) * 2016-12-23 2018-09-07 Newfrey Llc Joining method and joining device with a preparation step for the first and/or the second joining surfaces of the component and the joining element
CN113203719A (en) * 2021-06-04 2021-08-03 河南柴油机重工有限责任公司 Method for rapidly detecting surface cleanliness of crankshaft
CN114217095A (en) * 2022-02-21 2022-03-22 浙江大学杭州国际科创中心 Scanning probe microscope suitable for semiconductor defect location

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116150A (en) * 2000-10-11 2002-04-19 Menicon Co Ltd Method and apparatus for detecting dirt on eye lens
JP2002272745A (en) * 2001-03-14 2002-09-24 Hamamatsu Photonics Kk Breast cancer detector
JP2006113593A (en) 2004-10-18 2006-04-27 Leica Microsystems Cms Gmbh Scanning microscope
JP2008203138A (en) * 2007-02-21 2008-09-04 Canon Inc Fluorescence detection apparatus
US8658989B2 (en) 2011-05-26 2014-02-25 Fujifilm Corporation Fluorometric assay apparatus and fluorometric assay method
JP2012247244A (en) * 2011-05-26 2012-12-13 Fujifilm Corp Fluorescence analysis device and fluorescence analysis method
JP2013160511A (en) * 2012-02-01 2013-08-19 Topcon Corp Light storage luminance measuring apparatus
JP2016080474A (en) * 2014-10-15 2016-05-16 東京エレクトロン株式会社 Droplet inspection device, droplet inspection method, program, and computer storage medium
WO2017168909A1 (en) * 2016-03-29 2017-10-05 東レエンジニアリング株式会社 Deposit amount measuring device
WO2018114719A3 (en) * 2016-12-23 2018-09-07 Newfrey Llc Joining method and joining device with a preparation step for the first and/or the second joining surfaces of the component and the joining element
JP2020501910A (en) * 2016-12-23 2020-01-23 ニューフレイ リミテッド ライアビリティ カンパニー Joining method and joining device
CN113203719A (en) * 2021-06-04 2021-08-03 河南柴油机重工有限责任公司 Method for rapidly detecting surface cleanliness of crankshaft
CN114217095A (en) * 2022-02-21 2022-03-22 浙江大学杭州国际科创中心 Scanning probe microscope suitable for semiconductor defect location
CN114217095B (en) * 2022-02-21 2022-07-19 浙江大学杭州国际科创中心 Scanning probe microscope suitable for semiconductor defect location

Also Published As

Publication number Publication date
JP2803443B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
EP2609418B1 (en) Defect inspection and photoluminescence measurement system
US7006212B2 (en) Electrical circuit conductor inspection
CN111208064A (en) Rapid detection device and detection method for subsurface defects of optical element
US7502104B2 (en) Probe beam profile modulated optical reflectance system and methods
US7135683B2 (en) Infrared imaging for evaluation of corrosion test coupons
JP4092037B2 (en) Substance identification device
US5563417A (en) Process and apparatus for automatically characterising, optimising and checking a crack detection analysis method
JP2803443B2 (en) Surface inspection method and device
JPH10311771A (en) Oil detecting apparatus
EP0977029A1 (en) Pattern inspecting apparatus
US7175875B2 (en) Method and apparatus for plasma processing
US11835507B2 (en) Systems, subsystems and methods for measuring water characteristics in a water facility
JP2001007173A (en) Life time measuring device for minor carrier
CN111638226B (en) Detection method, image processor and detection system
JPH05118989A (en) Degrease evaluating method and evaluating device
JP3070140B2 (en) Inspection method and inspection device for surface condition
JPH06317528A (en) Method and device for judging freshness of egg
JPH0518901A (en) Wafer-surface inspecting apparatus
JPH04273145A (en) Measuring system for flux residue on cleaned printed board and device thereof
DK180934B1 (en) Objective cleaning control in a food manufacturing setting
JPH02183147A (en) Fine foreign matter inspecting device
JP3361777B2 (en) Mask inspection method and inspection apparatus
JP3607163B2 (en) Bottle inspection apparatus and bottle inspection method
JPH04343003A (en) Detecting apparatus of fluorescence of semiconductor/ mask
JPH02268254A (en) Apparatus for inspecting fluorescence characteristic