JP4995041B2 - Printed solder inspection method and printed solder inspection apparatus - Google Patents

Printed solder inspection method and printed solder inspection apparatus Download PDF

Info

Publication number
JP4995041B2
JP4995041B2 JP2007284768A JP2007284768A JP4995041B2 JP 4995041 B2 JP4995041 B2 JP 4995041B2 JP 2007284768 A JP2007284768 A JP 2007284768A JP 2007284768 A JP2007284768 A JP 2007284768A JP 4995041 B2 JP4995041 B2 JP 4995041B2
Authority
JP
Japan
Prior art keywords
displacement
light
measurement
solder
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007284768A
Other languages
Japanese (ja)
Other versions
JP2009109450A (en
Inventor
利幸 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007284768A priority Critical patent/JP4995041B2/en
Publication of JP2009109450A publication Critical patent/JP2009109450A/en
Application granted granted Critical
Publication of JP4995041B2 publication Critical patent/JP4995041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、電子部品等を表面実装するためのプリント板上にクリーム状はんだが印刷されたときのはんだの形成状態を測定し、検査する印刷はんだ検査方法及びその装置に関する。特に、プリント板には、はんだが印刷される予定の箇所(以下、「はんだ箇所」と言う。)であって回路パターン(パッド)が顕わにされ、部品が取り付け可能なパッド部と、回路パターンの上に半透明なレジストが塗布されたレジスト部(はんだが印刷されない部分)があるが、この発明は、実際に印刷されたはんだの高さをパッド面(回路パターン面)からの高さとして測定できる技術に係る。   The present invention relates to a printed solder inspection method and apparatus for measuring and inspecting a solder formation state when cream-like solder is printed on a printed board for surface mounting electronic components and the like. In particular, a printed circuit board is a portion where solder is to be printed (hereinafter referred to as a “solder location”), a circuit pattern (pad) is revealed, and a pad portion on which a component can be attached, and a circuit There is a resist part (a part where solder is not printed) on which a semi-transparent resist is applied on the pattern. However, according to the present invention, the height of the actually printed solder is the height from the pad surface (circuit pattern surface). It relates to the technology that can be measured as.

従来、印刷はんだ検査装置としては、プリント板(以下、はんだが印刷されたプリント板を単に「基板」と言い、はんだが印刷されていないプリント板を「未印刷基板」と言う。)の表面をレーザ光等で照射し、基板の表面からの反射光を受光するセンサを有し、そのセンサにより測定(三角測量)した結果として得られた測定値、例えば、基板上の印刷されたはんだ箇所の変位(高さを含む)或いは輝度(基板から反射した光の量、受光量(光の強さ)を含む。)の測定値を基に、判定の基準となる基準データとを比較して判定している(特許文献1、2)。   Conventionally, as a printed solder inspection apparatus, the surface of a printed board (hereinafter, a printed board on which solder is printed is simply referred to as “substrate”, and a printed board on which solder is not printed is referred to as “unprinted board”). A sensor that irradiates with a laser beam or the like and receives reflected light from the surface of the substrate, and a measurement value obtained as a result of measurement (triangulation) by the sensor, for example, a printed solder spot on the substrate Judgment based on measurement values of displacement (including height) or luminance (including the amount of light reflected from the substrate and the amount of received light (intensity of light)) with reference data serving as a criterion for determination (Patent Documents 1 and 2).

特許文献1では、例えば図8に示すようなはんだ箇所の周辺の部分の平均高さを求めて、そのレジスト1a部分の平均高さを基準としてはんだ高さを測定している。特許文献1の技術では、はんだ箇所の周辺のレジスト1a部分の平均高さを求めるにあたっては、レジスト1a部分とはんだ箇所との間に隙間があるので、その部分を除いたレジスト1a部分の平均高さを求めて、これを基準としている。   In Patent Document 1, for example, an average height of a peripheral portion of a solder portion as shown in FIG. 8 is obtained, and the solder height is measured based on the average height of the resist 1a portion. In the technique of Patent Document 1, in obtaining the average height of the resist 1a portion around the solder location, there is a gap between the resist 1a portion and the solder location, and therefore the average height of the resist 1a portion excluding that portion. This is the basis for this.

ところで、最近は、はんだを印刷している分野からは、印刷されたはんだ量を正確に知りたい、そのために、はんだを印刷する箇所であるパッド1cの面からその上に実際に印刷されたはんだ高さを測定したいという要望が、多くなってきた。そうすると、特許文献1の技術では、そのまま適用できない。   By the way, recently, from the field of printing solder, it is desired to know the amount of solder printed accurately. For this reason, the solder actually printed on the surface of the pad 1c, which is the place where the solder is printed. There has been a growing demand for measuring height. Then, the technique of Patent Document 1 cannot be applied as it is.

そこで、特許文献2に示すように、予め未印刷基板で測定された各部の高さと、実際にはんだ1bが印刷された基板を測定して得られた各部の高さとから、パッド1cの面からのはんだ高さを測定する技術を提供されている。
そして特許文献2では、レジスト1a面を仲介して、次のようにして求める。
はんだ高さ=(レジスト1a面からのはんだ高さ)+(パッド1c面からのレジスト1a面高さ)=パッド1c面からのはんだ高さ
したがって、この場合、レジスト1a面の高さが測定されて利用されているが、計算上、最終的にうち消すのでレジスト1a面の絶対高さの影響を抑えて測定可能である。
Therefore, as shown in Patent Document 2, from the surface of the pad 1c, the height of each portion measured in advance on an unprinted substrate and the height of each portion obtained by measuring the substrate on which the solder 1b is actually printed are obtained. The technology of measuring the solder height is provided.
And in patent document 2, it calculates | requires as follows mediating the resist 1a surface.
Solder height = (solder height from resist 1a surface) + (resist 1a surface height from pad 1c surface) = solder height from pad 1c surface Therefore, in this case, the height of resist 1a surface is measured. However, since it is finally erased in the calculation, measurement can be performed while suppressing the influence of the absolute height of the resist 1a surface.

特開2002−228597号公報JP 2002-228597 A 特願2006−159702号Japanese Patent Application No. 2006-159702

ところで、レジスト1a面は塗布の仕方により、例えば、図9(A)のようにそのはんだ箇所との境の端部では、一様に塗布されない傾向がある。図9(A)は紙面の右から左へかけてレジスト1aが塗布された場合であり、右側のレジスト1a端部が薄く、左側のレジスト1a端部が厚く盛り上がっている。図9(C)は、理想的な塗布が行われた場合である。図9(B)では、レジスト1aの端部周辺の厚さ(高さ)の平均値(図9(B)の点線)が、はんだ箇所を挟んだレジスト1a面端部の右側と左側とで、異なる値を示すことが分かる。   By the way, depending on the application method, the resist 1a surface tends not to be applied uniformly, for example, at the end of the boundary with the soldered portion as shown in FIG. FIG. 9A shows a case where the resist 1a is applied from the right to the left of the paper surface, where the right resist 1a end is thin and the left resist 1a end is thick. FIG. 9C shows a case where an ideal application is performed. In FIG. 9B, the average value (the dotted line in FIG. 9B) of the thickness (height) around the edge of the resist 1a is the right side and the left side of the edge of the resist 1a surface sandwiching the solder location. It can be seen that the values are different.

各基板におけるレジスト1aの塗布の状態が一定して図9(C)のような形状を形成でき、かつ維持できれば良いが、基板によってこれが変動しやすいと、特許文献2でも誤差になりやすい。それは、特許文献2の場合は、未印刷基板で、予め上記式の「パッド1c面からのレジスト1a高さ」を測定し記憶しておいて、各はんだ箇所毎の測定の都度その記憶した値を求めるため、「パッド1c面からのレジスト1a高さ」は各基板において一定でなければならない。つまり、図9(B)のように安定しない場合は、レジスト1aの端部の高さが基板毎に変動すると誤差要因になりかねない。   It is sufficient that the application state of the resist 1a on each substrate is constant and the shape as shown in FIG. 9C can be formed and maintained. However, if this is likely to vary depending on the substrate, an error is likely to occur in Patent Document 2. In the case of Patent Document 2, the “resist 1a height from the pad 1c surface” of the above formula is measured and stored in advance on an unprinted substrate, and the stored value is measured for each solder location. Therefore, “the height of the resist 1a from the pad 1c surface” must be constant for each substrate. In other words, if it is not stable as shown in FIG. 9B, if the height of the edge of the resist 1a varies from one substrate to another, it may cause an error.

一方で、発明者は、半透明なレジスト1aの厚さを求められないかを調査・検討してみた。先ず、図7(A)のようにレジスト1aの面に斜めに光を入射させ、その正反射光を取り込んで、ある基準位置に対する(はんだが印刷された状態でも基準となるような位置が好ましい)変位L2を測定する。次に図7(B)に示すように垂直方向からレジスト1a面に光を入射させ、その入射光軸に対して対称に散乱する散乱反射光を取り込んで、ある基準位置に対する変位L1を測定する。このとき、散乱反射光には、レジスト1aを透過してレジスト1aの下部の銅箔等の回路パターン面(パッド面)で散乱反射する光と、レジスト1a表面で散乱反射する光の双方が含まれている可能性がある。これらの測定値、及びそれらの差δL=L2−L1をプロットすると図7(C)のようになる。なお、以下の説明において「位置」「基準位置」とは基板の上の高さ方向の位置を言う。   On the other hand, the inventor investigated and examined whether the thickness of the translucent resist 1a could be obtained. First, as shown in FIG. 7A, light is incident obliquely on the surface of the resist 1a, the specular reflection light is taken in, and a position relative to a certain reference position (a reference position even when the solder is printed) is preferable. ) Measure the displacement L2. Next, as shown in FIG. 7B, light is incident on the resist 1a surface from the vertical direction, and the scattered reflected light scattered symmetrically with respect to the incident optical axis is taken in, and the displacement L1 with respect to a certain reference position is measured. . At this time, the scattered reflected light includes both light that passes through the resist 1a and is scattered and reflected on the circuit pattern surface (pad surface) such as a copper foil below the resist 1a, and light that is scattered and reflected on the surface of the resist 1a. There is a possibility that When these measured values and the difference δL = L2−L1 are plotted, FIG. 7C is obtained. In the following description, “position” and “reference position” refer to the position in the height direction on the substrate.

したがって、差δL等とレジスト1aの厚さとの相関が、変位L2,変位L1が変動しても安定に得られれば、差δLに対応してレジスト1aの厚さが求められることが分かった。実際、変位L2が連続した滑らかな形状であれば、差δL等とレジスト1aの厚さとの相関のあるデータが得られた。それを模式的に示したのが図6である。上記のように相関が取れれば、差δLとレジスト1a厚さとの関係からパッド面の位置を求めるための補正値Ls(レジスト1aの厚さ相当)を経験的に求められる。それを表したのが図6(A)である。図6(B)は、測定して得られたδLを基に図6(A)を参照して得た補正値Lsを用いてパッド面1c(回路パターン面)の推定位置=L2―Lsを求めることを示す図である。したがって、レジスト1aの下にあるパッド面の位置が推定できるので、パッド面からのはんだの高さを測定できる。   Therefore, it was found that if the correlation between the difference δL and the like and the thickness of the resist 1a can be obtained stably even if the displacement L2 and the displacement L1 fluctuate, the thickness of the resist 1a can be obtained corresponding to the difference δL. In fact, if the displacement L2 is a continuous and smooth shape, data having a correlation between the difference δL and the thickness of the resist 1a was obtained. This is schematically shown in FIG. If the correlation is obtained as described above, a correction value Ls (corresponding to the thickness of the resist 1a) for obtaining the position of the pad surface can be obtained empirically from the relationship between the difference δL and the thickness of the resist 1a. This is shown in FIG. FIG. 6B shows the estimated position of the pad surface 1c (circuit pattern surface) = L2-Ls using the correction value Ls obtained with reference to FIG. 6A based on δL obtained by measurement. It is a figure which shows calculating | requiring. Therefore, since the position of the pad surface under the resist 1a can be estimated, the height of the solder from the pad surface can be measured.

本発明の目的は、パッドの回路パターンがレジスト面下にある場合のレジスト面の変位を正反射光と乱反射光のそれぞれで測定し、その両者の相関関係を基にレジスト下のパッド面の位置を推定し、その位置からのはんだ高さ(変位)を求める印刷はんだ検査装置を提供することにある。   The object of the present invention is to measure the displacement of the resist surface when the circuit pattern of the pad is below the resist surface with each of the regular reflection light and the irregular reflection light, and based on the correlation between the two, the position of the pad surface under the resist It is intended to provide a printed solder inspection apparatus that estimates the solder height (displacement) from the position.

上記目的を達成するために、請求項1に記載の発明は、プリント板の表面の測定点に垂直に光を照射し、該測定点からの散乱光を受けて第1の変位を測定するための第1のセンシング手段(OS1,D1,D2)と、前記同じ測定点を前記垂直に対し所定角度斜めの角度で照射し該測定点で正反射した反射光を測定して第2の変位を測定するための第2のセンシング手段(OS2,D3)とを含む変位センサ(2)を準備する段階と、前記変位センサで前記測定点を前記プリント板のレジスト面として前記第2の変位と第1の変位を測定し、それらの差と該レジストの厚さとの関係を表す関数値をメモリに記憶しておく初期段階と、表面のパッド面にはんだが印刷された被測定プリント板を受けて、該被測定プリント板のレジスト面及び該パッド面上のはんだ面を前記測定点として前記変位センサにより前記第1の変位と前記第2の変位を求める測定段階と、該測定段階で前記レジスト面で求められた該第1の変位と該第2の変位との差を基に前記メモリを参照して対応する関数値を求め、該第2の変位から前記関数値を減算して、前記パッド面の位置を求める基準位置算出段階と、前記測定段階で測定された前記はんだ面における第1の変位又は第2の変位によりはんだ面の変位を該パッド面の位置からの変位として求める変位算出段階とを備えた。   In order to achieve the above object, the invention described in claim 1 is directed to irradiating light perpendicularly to a measurement point on the surface of a printed board and receiving the scattered light from the measurement point to measure the first displacement. The first sensing means (OS1, D1, D2) and the same measurement point are irradiated at an angle oblique to the vertical by a predetermined angle, and the reflected light specularly reflected at the measurement point is measured to determine the second displacement. Preparing a displacement sensor (2) including second sensing means (OS2, D3) for measuring, and using the displacement sensor as the resist surface of the printed board, the second displacement and the second displacement. The initial stage of measuring the displacement of 1 and storing the function value representing the relationship between the difference and the thickness of the resist in the memory, and receiving the measurement printed board on which the solder is printed on the surface pad surface The resist surface of the printed board to be measured and the pattern A measurement step for obtaining the first displacement and the second displacement by the displacement sensor using the solder surface on the soldering surface as the measurement point, the first displacement obtained on the resist surface in the measurement step, and the A reference position calculating step of obtaining a corresponding function value by referring to the memory based on a difference from a second displacement, and subtracting the function value from the second displacement to obtain a position of the pad surface; A displacement calculating step of obtaining a displacement of the solder surface as a displacement from the position of the pad surface by the first displacement or the second displacement in the solder surface measured in the measuring step.

請求項2に記載の発明は、表面にはんだが印刷されたパッド面とレジスト面を有する被測定プリント板の該表面の測定点に垂直に光を照射し、該測定点からの散乱光を受ける第1のセンシング手段(OS1,D1,D2)と、前記同じ測定点を前記垂直に対し所定角度斜めの角度で照射し該測定点で正反射した反射光を受ける第2のセンシング手段(OS2,D3)とを含む変位センサ(2)と、前記第1のセンシング手段の出力から散乱光に基づく第1の変位、及び前記第2のセンシング手段の出力から正反射光に基づく第2の変位を算出するデータ処理部(3)と、該第1の変位又は該第2の変位により、該はんだ面の変位を求める測定部(7)とを備えたプリント板検査装置であって、予め、前記レジスト面における第2の変位と第1の変位との差と、前記レジストの厚さとの関係を表す関数値を記憶するメモリ(5)と、検査時に、前記被測定プリント板のレジスト面を前記測定点として前記変位センサにより前記第1の変位と前記第2の変位を求める基礎測定部(6)と、前記レジスト面で求められた該第1の変位と該第2の変位との差を基に前記メモリを参照して対応する関数値を求め、該第2の変位から前記関数値を減算して、前記パッド面の位置を求める基準位置算出部(6a)と、を備え、前記測定部は、前記レジスト面の位置からのはんだ面の変位を前記関数値で補正することにより、該はんだ面の変位を該パッド面の位置からの変位として求める構成とした。   The invention according to claim 2 irradiates light perpendicularly to a measurement point on the surface of the printed board to be measured having a pad surface on which solder is printed and a resist surface, and receives scattered light from the measurement point. First sensing means (OS1, D1, D2) and second sensing means (OS2, OS2) that receives the same measurement point at an oblique angle with respect to the vertical and receives reflected light that is regularly reflected at the measurement point D3), a first displacement based on scattered light from the output of the first sensing means, and a second displacement based on specularly reflected light from the output of the second sensing means. A printed circuit board inspection apparatus comprising a data processing unit (3) for calculating and a measurement unit (7) for obtaining displacement of the solder surface by the first displacement or the second displacement, Second displacement and first on the resist surface A memory (5) for storing a function value representing a relationship between the difference between the displacement and the thickness of the resist, and at the time of inspection, the first sensor by the displacement sensor with the resist surface of the measured printed board as the measurement point. A basic measurement unit (6) for obtaining a displacement and the second displacement, and a corresponding function with reference to the memory based on a difference between the first displacement and the second displacement obtained on the resist surface A reference position calculation unit (6a) for obtaining a value and subtracting the function value from the second displacement to obtain a position of the pad surface, wherein the measurement unit is soldered from the position of the resist surface. By correcting the displacement of the surface with the function value, the displacement of the solder surface is obtained as the displacement from the position of the pad surface.

請求項3に記載の発明は、プリント板の表面の測定点に垂直に光を照射し、該測定点からの散乱光を受ける第1のセンシング手段(OS1,D1,D2)と、前記同じ測定点を前記垂直に対し所定角度斜めの角度で照射し該測定点で正反射した反射光を受ける第2のセンシング手段(OS2,D3)とを含む変位センサ(2)と、前記第1のセンシング手段の出力から散乱光に基づく第1の変位、及び前記第2のセンシング手段の出力から正反射光に基づく第2の変位を算出するデータ処理部(3)と、予め、第2の変位と第1の変位との差と前記レジストの厚さとの関係を表す関数値を記憶するメモリ(5)と、表面のパッド面にはんだが印刷された被測定プリント板を受けて、該被測定プリント板のレジスト面を前記測定点として前記変位センサにより前記第1の変位と前記第2の変位を求める基礎測定部(6)と、該レジスト面で求められた該第1の変位と該第2の変位との差を基に前記メモリを参照して対応する関数値を求め、該第2の変位から前記関数値を減算して、前記パッド面の位置を求める基準位置算出部(6a)と、前記被測定プリント板の前記はんだ面を前記測定点として前記変位センサにより前記第1の変位又は前記第2の変位を求め、該はんだ面の変位を該パッド面の位置からの変位として求める測定部(7)と、を備えた。   The invention according to claim 3 is the same measurement as the first sensing means (OS1, D1, D2) that irradiates light perpendicularly to the measurement point on the surface of the printed board and receives scattered light from the measurement point. Displacement sensor (2) including second sensing means (OS2, D3) that receives reflected light that is reflected at a predetermined angle with respect to the vertical angle and is specularly reflected at the measurement point, and the first sensing A data processing unit (3) for calculating a first displacement based on scattered light from the output of the means and a second displacement based on specularly reflected light from the output of the second sensing means; A memory (5) for storing a function value representing a relationship between the difference between the first displacement and the thickness of the resist; and a measured printed board on which solder is printed on the pad surface of the surface. The change is made with the resist surface of the plate as the measurement point. The basic measurement unit (6) for obtaining the first displacement and the second displacement by a sensor, and the memory based on a difference between the first displacement and the second displacement obtained on the resist surface. A reference position calculation unit (6a) for obtaining a corresponding function value by reference and subtracting the function value from the second displacement to obtain the position of the pad surface; and the solder surface of the measured printed board And a measurement unit (7) for obtaining the first displacement or the second displacement by the displacement sensor as the measurement point and obtaining the displacement of the solder surface as a displacement from the position of the pad surface.

請求項4に記載の発明は、請求項2又は3に記載の発明において、前記第1のセンシング手段は、前記プリント板の測定点を垂直方向から照射する第1の光源(OS1)と、該第1の光源の第1の光軸に対して第1の角度θ1で形成される第1の散乱光路上に配置された第1の受光手段(D1)と、該第1の光軸に対して該第1の散乱光路と反対側に第2の角度θ2で形成される第2の散乱光路上に配置された第2の受光手段(D2)とを備え、前記第1の変位は、前記第1の受光手段の出力と前記第2の受光手段の出力との和を基に求められ、また、前記第2のセンシング手段は、該第1の光軸に対して斜めの角度θ3で前記測定点を照射する第2の光源(OS2)と、該測定点にて該第2の光源の第2の光軸に対して第3の角度2θ3で形成される正反射光路上に配置された第3の受光手段(D3)とを備え、前記第2の変位は、該第3の受光手段の出力から求められる構成とした。   The invention according to claim 4 is the invention according to claim 2 or 3, wherein the first sensing means includes a first light source (OS1) for irradiating a measurement point of the printed board from a vertical direction, A first light receiving means (D1) disposed on a first scattered light path formed at a first angle θ1 with respect to the first optical axis of the first light source, and the first optical axis; And a second light receiving means (D2) disposed on a second scattered light path formed at a second angle θ2 on the opposite side of the first scattered light path, wherein the first displacement is It is obtained based on the sum of the output of the first light receiving means and the output of the second light receiving means, and the second sensing means has the angle θ3 inclined with respect to the first optical axis. A second light source (OS2) that irradiates the measurement point and a third angle 2θ3 with respect to the second optical axis of the second light source at the measurement point A third light receiving means and (D3) which is arranged in the positive reflected light path that is, the second displacement, and the structure obtained from the output of the light receiving means of the third.

請求項5に記載の発明は、請求項4に記載の発明において、前記変位センサにおいて、前記第1の受光手段、前記第2の受光手段及び前記第3の受光手段のそれぞれは、所定長さの受光面を有し、該所定長さ方向における受光位置に応じて光変位情報を検出する位置検出器であって、前記第1の光軸、前記第2の光源の光軸、前記第1の散乱光路、前記第2の散乱光路及び正反射光路を含む平面内で、前記所定長さ方向を該平面に沿うように配置され、さらに前記第1の角度θ1、前記第2の角度θ2と前記第3の角度2θ3は同一になるよう構成され、かつ前記第1の受光手段が前記第1の散乱光路となす角度(α1)、第2の受光手段が前記第2の散乱光路となす角度(α2)及び第3の受光手段が前記正反射光路となす角度(α3)が同一になるように構成される。   According to a fifth aspect of the present invention, in the displacement sensor according to the fourth aspect, each of the first light receiving means, the second light receiving means, and the third light receiving means has a predetermined length. A position detector that detects light displacement information according to a light receiving position in the predetermined length direction, the first optical axis, the optical axis of the second light source, and the first light source. In the plane including the scattered light path, the second scattered light path, and the regular reflection light path, the predetermined length direction is arranged along the plane, and the first angle θ1, the second angle θ2, and The third angle 2θ3 is configured to be the same, and the angle (α1) formed by the first light receiving unit with the first scattered light path, and the angle formed by the second light receiving unit with the second scattered light path. The angle (α3) formed by (α2) and the third light receiving means with the regular reflection optical path is the same. So as configured.

請求項1、2又は3に記載の発明は、レジスト面で三角測量における正反射光による変位測定と、レジスト面で垂直から照射したときの互いに相反する方向への散乱反射光による変位測定とを行って、それらの測定値から、パッド面の位置を求め、はんだ面の高さ(変位)を正反射光もしくは散乱反射光を用いて測定し、はんだが印刷されたパッド面からのはんだ面の高さを求めることができる。
請求項5記載の発明は、正反射光、2つの散乱反射光の各受光感度を同じくして測定することができる。
The invention according to claim 1, 2 or 3 includes displacement measurement by regular reflection light in triangulation on the resist surface and displacement measurement by scattered reflected light in mutually opposite directions when irradiated from the vertical on the resist surface. The position of the pad surface is obtained from the measured values, the height (displacement) of the solder surface is measured using specular reflection light or scattered reflection light, and the solder surface from the pad surface on which the solder is printed is measured. The height can be determined.
The invention according to claim 5 can measure the light receiving sensitivities of specularly reflected light and two scattered reflected light in the same manner.

本発明に係る印刷はんだ検査装置の第1の実施形態を図を用いて説明する。図1は第1の実施形態の内、変位センサ及び測定部の機能構成を示す図であって、変位センサと被測定物間を相対的に走査して検査する形態の図である。図2は実施形態の内、検査部の機能構成を示す図である。図3は、図1の変位センサを構成する機能要素の配置を示す図である。図4は、各受光手段の位置関係を示し、各受光手段の感度を説明するための図である。図5は、第2の実施形態であって、変位センサ内で光源により光学的走査を行うタイプの実施形態を示す図である。   A printed solder inspection apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a functional configuration of a displacement sensor and a measurement unit in the first embodiment, and is a view of a form in which a displacement sensor and a measurement object are relatively scanned and inspected. FIG. 2 is a diagram illustrating a functional configuration of the inspection unit in the embodiment. FIG. 3 is a diagram showing an arrangement of functional elements constituting the displacement sensor of FIG. FIG. 4 is a diagram illustrating the positional relationship between the light receiving means and explaining the sensitivity of each light receiving means. FIG. 5 is a diagram showing an embodiment of a second embodiment in which optical scanning is performed by a light source in a displacement sensor.

[第1の実施形態の構成]
図1を用いて、変位センサ2を用いた変位測定を行う変位測定部100の機能構成について説明する。
[Configuration of First Embodiment]
A functional configuration of a displacement measuring unit 100 that performs displacement measurement using the displacement sensor 2 will be described with reference to FIG.

図1及び図3で変位センサ2は、一枚の板状の基板あるいは平板上の基台(以下、「基台」と言う。不図示)に、第1の光源OS1と、第1の受光手段D1と、第2の受光手段D2と、第2の光源OS2と、第3の受光手段D3と、を互いの位置関係を固定して、一体的に1筐体を成すように形成されている。第1の光源OS1は基板1の表面の測定点(対象位置)を垂直方向から第1光軸に沿って光(以下、光のビームであるが「光」と称する。)を照射する位置にある。第1の受光手段D1は測定点にて該第1の光軸に対して第1の角度θ1で形成される第1の散乱光路上に配置されている。第2の受光手段D2は、第1の光軸に対して第1の散乱光路と反対側に第2の角度θ2で形成される第2の散乱光路上に配置されている(以上が「第1のセンシング手段」)。光源OS2は、第1の光軸に対して斜めの角度θ3を成す第2の光軸の光で測定点を照射する。そして第3の受光手段D3は、測定点にて第2の光源の第2の光軸に対して第3の角度2θ3で形成される正反射光路上に配置されている(以上が、「第2のセンシング手段」)。   1 and 3, the displacement sensor 2 includes a first light source OS1 and a first light receiving unit on a single plate-like substrate or a base on a flat plate (hereinafter referred to as “base”, not shown). The means D1, the second light receiving means D2, the second light source OS2, and the third light receiving means D3 are formed so as to integrally form one housing with their positional relationships fixed. Yes. The first light source OS1 irradiates the measurement point (target position) on the surface of the substrate 1 with light (hereinafter referred to as “light” although it is a light beam) along the first optical axis from the vertical direction. is there. The first light receiving means D1 is disposed on a first scattered light path formed at a measurement point at a first angle θ1 with respect to the first optical axis. The second light receiving means D2 is arranged on the second scattered light path formed at the second angle θ2 on the opposite side of the first scattered light path with respect to the first optical axis (the above is the “first light beam”). 1 sensing means "). The light source OS2 irradiates the measurement point with the light of the second optical axis that forms an oblique angle θ3 with respect to the first optical axis. The third light receiving means D3 is disposed on a regular reflection optical path formed at a third angle 2θ3 with respect to the second optical axis of the second light source at the measurement point (the above is the “first 2 sensing means ").

また、第1の受光手段D1、第2の受光手段D2及び第3の受光手段D3のそれぞれは、所定長さの受光面を有し、該所定長さ方向における受光位置に応じて光変位情報を検出する位置検出器(PSD:Position Sensitive Detector)が用いられている。PSDは、長さ方向に光検出素子が配置され、その長さ方向の両端からの位置を示す情報としてそれらの各端部からその位置に応じた電気量である出力A、出力Bが出力されるとその変位情報は(A−B)/(A+B)で示される。また、変位情報の出力に併せて、第1の受光手段D1、第2の受光手段D2、及び第3の受光手段D3は、測定点からの反射光量を測定して光量情報を出力する。PSDは、測定点の変位により受光位置が変わり、その受光位置に応じた電気量を出力する素子、つまり変位を電気量に表して出力する素子である。PSDの代わりに、フォトダイオード・アレイやCCD等で直接、受光位置を変位位置として出力する構成としても良い。   Each of the first light receiving means D1, the second light receiving means D2, and the third light receiving means D3 has a light receiving surface with a predetermined length, and the optical displacement information according to the light receiving position in the predetermined length direction. A position detector (PSD: Position Sensitive Detector) is used. In the PSD, light detection elements are arranged in the length direction, and output A and output B, which are electric quantities corresponding to the position, are output from each end as information indicating positions from both ends in the length direction. Then, the displacement information is indicated by (A−B) / (A + B). In addition to the output of the displacement information, the first light receiving means D1, the second light receiving means D2, and the third light receiving means D3 measure the amount of reflected light from the measurement point and output the light amount information. The PSD is an element that changes the light receiving position according to the displacement of the measurement point and outputs an electric quantity corresponding to the light receiving position, that is, an element that outputs the displacement expressed in the electric quantity. Instead of the PSD, the light receiving position may be directly output as the displacement position by a photodiode array, a CCD, or the like.

図1に示す位置の変位センサ2は、図1の各光学素子の配列方向に直交する方向(紙面の奥行方向)に要素間の位置関係を保持したまま、基板1に対してセンサ全体を移動して走査することにより、基板1の広い範囲に亘ってその表面の変位を測定できる構造にされている。   The displacement sensor 2 at the position shown in FIG. 1 moves the entire sensor with respect to the substrate 1 while maintaining the positional relationship between the elements in the direction orthogonal to the arrangement direction of the optical elements in FIG. Thus, by scanning, the surface displacement of the substrate 1 can be measured over a wide range.

図1で、走査機構4は、モータ等の駆動源及びベルト等の駆動機構を有し、基板1、もしくは変位センサ2、或いはそれらの双方を相対的に移動させることにより、走査させる。図1において変位センサ2を、第1の受光手段D1等の各要素が配列された配列方向と直交する方向(図1の紙面に直交する奥行き方向)へ主走査させながら変位測定をさせ、1主走査を終了すると、次に配列方向(図1の紙面に平行な方向)に移動(副走査)して、位置を変えて主走査して変位測定を行う。この動作を繰り返すことにより、基板1の、所望範囲についての変位測定を行わせる。なお、走査方向は一例であり、他の方向であっても良い。   In FIG. 1, the scanning mechanism 4 has a driving source such as a motor and a driving mechanism such as a belt, and scans the substrate 1 or the displacement sensor 2 or both by relatively moving them. In FIG. 1, the displacement sensor 2 measures displacement while performing main scanning in a direction perpendicular to the arrangement direction in which the respective elements such as the first light receiving means D1 are arranged (depth direction perpendicular to the paper surface of FIG. 1). When the main scanning is completed, the displacement is measured by moving (sub-scanning) in the arrangement direction (direction parallel to the paper surface of FIG. 1), changing the position, and performing the main scanning. By repeating this operation, the displacement of the substrate 1 in the desired range is measured. Note that the scanning direction is an example, and other directions may be used.

補正用メモリ5は、多くの基板1を検査する前に、予めレジスト1aの厚さを求めるための補正値を記憶する。この補正値は、上記変位センサ2を用いて上記「解決しようとする課題」で開示したように、操作者は、検査しようとする基板1の代表的なものについて、レジスト1a面を第1のセンシング手段で散乱反射変位測定を行い、また、第2のセンシング手段でレジスト1a表面の変位を正反射変位測定で行って、それらの測定値の差δLと実際のレジスト1aの厚さとの関係を示す関数値Lsを求める。関数値Lsは、補正に利用されるので、以下、補正値Lsとして説明する。この取得した補正値Lsを取得して、差δLからそれに該当する補正値Lsが読み出せるように補正用メモリ5に記憶させる。これは、後記する基礎測定部6を使って、本実施形態でもできるし、外部でδLと補正値Lsを取得して、補正用メモリ5に記憶させても良い。ただし、前者の方が、この補正値Lsの取得と、検査のための測定と同じ変位センサ2を使用して行えるので信頼度が良い。   The correction memory 5 stores a correction value for obtaining the thickness of the resist 1a in advance before inspecting many substrates 1. As disclosed in the “problem to be solved” using the displacement sensor 2, the correction value is obtained when the operator places the first surface of the resist 1 a on the representative substrate 1 to be inspected. The scattering reflection displacement measurement is performed by the sensing means, and the displacement of the resist 1a surface is measured by the regular reflection displacement measurement by the second sensing means, and the relationship between the difference δL between the measured values and the actual thickness of the resist 1a A function value Ls shown is obtained. Since the function value Ls is used for correction, the function value Ls will be described below as the correction value Ls. The acquired correction value Ls is acquired and stored in the correction memory 5 so that the corresponding correction value Ls can be read from the difference δL. This can be done in the present embodiment using the basic measurement unit 6 described later, or δL and the correction value Ls may be acquired externally and stored in the correction memory 5. However, the former is more reliable because it can be obtained by using the same displacement sensor 2 as the acquisition of the correction value Ls and the measurement for inspection.

制御部12は、パネル等(不図示)からの指示により例えば、はんだが印刷されたプリント基板の所望測定範囲の指示を受け、その所望範囲についての走査指示を走査機構4へ送って上記のように走査させる。走査にあたっては、第1の光源OS1と第2の光源OS2が同一波長の光源を利用した場合は、基板(被測定物)1上の同一の走査位置(測定点)で第1の光源OS1と第2の光源OS2を交互に切り替える構成とする。異なる波長の光源を利用した場合は、必ずしも切り替える必要はなく、同時に出力させる構成としても良い。   In response to an instruction from a panel or the like (not shown), for example, the control unit 12 receives an instruction for a desired measurement range of a printed board on which solder is printed, and sends a scanning instruction for the desired range to the scanning mechanism 4 as described above. To scan. In scanning, when the first light source OS1 and the second light source OS2 use light sources having the same wavelength, the first light source OS1 and the first light source OS1 are scanned at the same scanning position (measurement point) on the substrate (object to be measured) 1. The second light source OS2 is alternately switched. When light sources having different wavelengths are used, it is not always necessary to switch them, and a configuration in which they are simultaneously output may be used.

また制御部12は、基礎測定部6に基礎測定を行わせてレジスト1aの厚さを求めさせて、パッド1cの位置を推定させる。また、測定部7に対してパッド1c位置からはんだ1b表面の高さを測定させる。詳細は後記する。   In addition, the control unit 12 causes the basic measurement unit 6 to perform basic measurement to obtain the thickness of the resist 1a and estimate the position of the pad 1c. Further, the height of the surface of the solder 1b is measured from the position of the pad 1c by the measurement unit 7. Details will be described later.

データ処理部3は、加算器3a、加算器3b、及び演算部3cを有し、各受光手段からの出力を基に測定点における変位(データ)を算出している。加算器3aは、第1の受光手段D1の出力A1と第2の受光手段D2の出力A2を受けてそれらを加算し、その結果Ax=A1+A2を出力する。加算器3bは、第1の受光手段D1の出力B1と第2の受光手段D2の出力B2を受けてそれらを加算し、その結果Bx=B1+B2を出力する。演算部3cは、それらを基に乱反射による変位情報である出力L1=(Ax−Bx)/(Ax+Bx)を求める。または/及び、演算部3cは、第3の受光手段D3からの出力を受けて正反射による変位情報である出力L2=(A3−B3)/(A3+B3)を求める。   The data processing unit 3 includes an adder 3a, an adder 3b, and a calculation unit 3c, and calculates the displacement (data) at the measurement point based on the output from each light receiving means. The adder 3a receives the output A1 of the first light receiving means D1 and the output A2 of the second light receiving means D2, adds them, and outputs Ax = A1 + A2. The adder 3b receives the output B1 of the first light receiving means D1 and the output B2 of the second light receiving means D2, adds them, and outputs Bx = B1 + B2. The computing unit 3c obtains an output L1 = (Ax−Bx) / (Ax + Bx), which is displacement information due to irregular reflection, based on them. Or / and the calculation unit 3c receives the output from the third light receiving means D3 and obtains the output L2 = (A3−B3) / (A3 + B3), which is displacement information by regular reflection.

このとき、演算部3cの出力L1及びL2は、次に説明するように基礎測定部6や測定部7からの指示により、利用される態様が異なる。   At this time, the output L1 and L2 of the calculating part 3c differ in the aspect utilized according to the instruction | indication from the basic measurement part 6 or the measurement part 7, as demonstrated below.

制御部12は、レジスト1aの厚さを測定するとき、つまり、パッド1c面の位置を推定するときは基礎測定を基礎測定部6に対して行わせ、はんだ1bの高さを測定するときは測定部7に行わせる。詳しくは下記(1)及び(2)で説明する。なお、はんだ1b面における測定か、レジスト1a面における測定かは、レジスト1a面とはんだ1b面で反射光量が異なるので、各受光手段からの光量情報に基づいて、反射量が大のときはレジスト1a面、少ないときははんだ1b面と判定して測定を切り替えられる。又、予め、設計に基づいて変位センサ位置を走査させるので、その設計情報に基づく位置情報からどちらの測定を行うかを判定することもできる。判定に応じてスイッチS1を基礎測定部6側、又は測定部7側に切り替える。   When measuring the thickness of the resist 1a, that is, when estimating the position of the pad 1c surface, the control unit 12 causes the basic measurement unit 6 to perform basic measurement, and when measuring the height of the solder 1b. Let the measurement part 7 perform. Details will be described in (1) and (2) below. Whether the measurement is on the solder 1b surface or the measurement on the resist 1a surface is different in the amount of reflected light between the resist 1a surface and the solder 1b surface. When it is less, it can be determined as the solder 1b surface and the measurement can be switched. In addition, since the displacement sensor position is scanned based on the design in advance, it is possible to determine which measurement is performed from the position information based on the design information. The switch S1 is switched to the basic measurement unit 6 side or the measurement unit 7 side according to the determination.

(1)基礎測定
基礎測定部6は、測定点がレジスト1aであるときの、演算部3cから、正反射に基づく測定値である上記の出力L2と、散乱反射光による測定値である上記の出力L1(以下、レジスト1a面における上記L1、L2をL1R、L2で示す。)とを受けて、それらの差δLを求めるそして、補正用メモリ5にアクセスして、図6(A)に示すようなデータからδLに該当する補正値Lsを求める。つまりレジスト1aの厚さ相当の値を求める。そして、この補正値Lsを測定部7へ送る。
(1) Basic measurement The basic measurement unit 6 receives the output L2 that is a measurement value based on regular reflection from the calculation unit 3c when the measurement point is the resist 1a and the measurement value obtained by scattered reflected light. In response to the output L1 R (hereinafter, L1 and L2 on the resist 1a surface are represented by L1 R and L2 R ), a difference δL between them is obtained. Then, the correction memory 5 is accessed and FIG. ), A correction value Ls corresponding to δL is obtained. That is, a value corresponding to the thickness of the resist 1a is obtained. Then, the correction value Ls is sent to the measurement unit 7.

(2)測定
測定部7は、レジスト1a面からはんだ1b面までの変位(高さ)L1、L2(以下、はんだ1b面における上記L1、L2をL1、L2で示す。)を測定する。そのとき、第1の受光手段D1、第2の受光手段D2及び第3の受光手段D3それぞれから光量情報を受けており、演算部3cからは出力L1と出力L2の内、散乱反射変位測定系(OS1―D1,D2系統)による光量と正反射変位測定系(OS2―D3系統)による光量の大きさを比較し、光量の大きい方の変位測定系で測定した変位情報(出力L1,出力L2のいずれか)を選択的に受領する。そして、測定部7は、受領した変位情報に基礎測定部6から受けた補正値Lsで補正して、パッド1c面からのはんだ1b面の高さ(変位)情報Lとして、L=L1+Ls、もしくはL=L2+Lsを図2の画像処理部8へ出力する。
上記の(1)基礎測定(2)測定は、同一位置(高さ)を基準として測定しているが、(2)の測定を(1)の基礎測定で求めた補正値Ls分だけ、下位の位置を基準として測定することにより、直接に高さ(変位)情報Lを得ることができる。
(2) Measurement unit 7, the resist displacement from 1a surface to solder 1b surface (height) L1 H, L2 H (hereinafter. Indicating the L1, L2 in the solder 1b face in L1 H, L2 H) taking measurement. At that time, light quantity information is received from each of the first light receiving means D1, the second light receiving means D2, and the third light receiving means D3, and the scattering reflection displacement of the output L1 H and the output L2 H from the calculation unit 3c. Displacement information (output L1 H ) measured by the displacement measurement system with the larger light quantity by comparing the light quantity by the measurement system (OS1-D1, D2 system) and the light quantity by the specular reflection displacement measurement system (OS2-D3 system). selectively receives either) of the output L2 H. Then, the measuring unit 7 corrects the received displacement information with the correction value Ls received from the basic measuring unit 6 and uses the height (displacement) information L of the solder 1b surface from the pad 1c surface as L = L1 H + Ls. Alternatively, L = L2 H + Ls is output to the image processing unit 8 in FIG.
The above (1) basic measurement (2) measurement is based on the same position (height), but the measurement of (2) is subordinate to the correction value Ls obtained by the basic measurement of (1). The height (displacement) information L can be obtained directly by measuring with reference to the position of.

なお、散乱反射変位測定系による光量と正反射変位測定系による光量のうち大きい方の出力L1又は出力L2を選択しているのは、例えば、基板1上の凸状のはんだ1bの形状があった場合に、第2の光源OS2の斜めの第2の光軸では該凸の側壁うちその光軸が当たる側の側壁は測定できるかもしれないが、その反対側の側壁からは正反射光を受光できない恐れがある。そのときは、第1及び第2の受光手段D1,D2の出力を基にした変位情報が使える。つまり、より光量の高い方の変位情報を利用して、より確かな変位情報を得るためである。なお、基板1上の形状が滑らかな平面であるときは、正反射変位測定系による測定で十分である。 Note that the larger output L1 H or output L2 H of the light amount by the scattering reflection displacement measurement system and the light amount by the regular reflection displacement measurement system is selected, for example, the shape of the convex solder 1b on the substrate 1 In the case of the second light source OS2, the side wall on the side where the optical axis hits may be measured with the oblique second optical axis of the second light source OS2, but it is specularly reflected from the opposite side wall. There is a possibility that light cannot be received. In that case, displacement information based on the outputs of the first and second light receiving means D1 and D2 can be used. That is, it is for obtaining more reliable displacement information by using the displacement information with the higher light quantity. When the shape on the substrate 1 is a smooth plane, measurement with a regular reflection displacement measurement system is sufficient.

さらに、上記のように(1)基礎測定、(2)測定なる順序で説明したが、測定の順序は必ずしもこれに限らない。例えば、レジスト1a面及びはんだ1b面の区別無く走査して、その走査位置毎に出力L1,L2を求めて記憶しておき、次に上記(1)示した演算処理をして補正値Lsだけを求める。次に上記(2)に示した演算処理により補正して、パッド1c面からのはんだ高さを求めるようにしても良い。   Furthermore, as described above, the order of (1) basic measurement and (2) measurement has been described, but the order of measurement is not necessarily limited thereto. For example, the resist 1a surface and the solder 1b surface are scanned without distinction, and outputs L1 and L2 are obtained and stored for each scanning position, and then the arithmetic processing shown in (1) above is performed to obtain only the correction value Ls. Ask for. Next, correction may be made by the arithmetic processing shown in (2) above to obtain the solder height from the pad 1c surface.

図2は、主に検査部200の機能構成を示す。その図2で画像処理部8は、制御部12から基板1のレイアウト情報(配置図)と走査して測定しているときの位置情報とを受け、測定部7からその位置情報における高さ(変位)Lを受けて、レイアウト上に変位に応じてはんだ1bの量的な形状を表す立体画像を形成することにより、画像として再現出力する。   FIG. 2 mainly shows a functional configuration of the inspection unit 200. In FIG. 2, the image processing unit 8 receives the layout information (arrangement drawing) of the substrate 1 from the control unit 12 and the position information when scanning and measuring, and receives the height (in the position information) from the measurement unit 7. In response to the displacement (L), a three-dimensional image representing the quantitative shape of the solder 1b is formed on the layout in accordance with the displacement, and is reproduced and output as an image.

例えば、画像処理部8は、測定部7の出力Lと、制御部12からの基板1の測定点(測定点の座標)とから測定したエリア(測定点の集合領域:例えば、プリント基板上に印刷されたクリームはんだ1b面)における面積(例えば、はんだ印刷された面積)や体積(例えば、はんだ量)を表す画像データを生成する。比較部9は、制御部12からそのエリアにおける、設計値等をレファレンス(面積や体積)として受けて、画像データとレファレンスとの差を演算し出力する。なお、画像データに変換することなく、その測定点において測定した変位(高さ:例えば、はんだ1bの高さ)とレファレンス(この場合は、例えば、測定点における設計上の高さ)との差を出力しても良い。上記では、はんだの面積や体積の例で説明したが、はんだの位置ズレ等の判定も可能である。   For example, the image processing unit 8 measures an area (measurement point collection area: for example, on a printed circuit board) measured from the output L of the measurement unit 7 and the measurement points (coordinates of measurement points) of the substrate 1 from the control unit 12. Image data representing the area (for example, the area on which the solder cream is printed) and the volume (for example, the amount of solder) in the printed cream solder 1b surface) is generated. The comparison unit 9 receives a design value or the like in the area from the control unit 12 as a reference (area or volume), and calculates and outputs a difference between the image data and the reference. The difference between the displacement (height: for example, the height of the solder 1b) measured at the measurement point and the reference (in this case, for example, the design height at the measurement point) without conversion into image data. May be output. In the above description, the example of the solder area and volume has been described. However, it is also possible to determine misalignment of the solder.

判定部10は、レファレンスに対応する許容値を制御部12から受けて、比較部9からの出力と比較し、比較部9の出力が、許容値内であれば合格とし、許容値外であれば不良(否)と判定する。   The determination unit 10 receives the allowable value corresponding to the reference from the control unit 12 and compares it with the output from the comparison unit 9. If the output of the comparison unit 9 is within the allowable value, the determination unit 10 passes, and if the output is outside the allowable value. If it is defective, it is determined as bad.

表示部11は、判定部10の判定結果を表示する。また、制御部12からレイアウト情報(例えば、プリント基板のはんだ箇所の配置図)を受けて表示し、レイアウトのどの位置におけるはんだ1bが不良(否)であり、合格であるかを識別可能に表示してもよい。また、それらと別に或いは併せて、画像処理部8で生成した画像データに基づく画像を表示させて、どの箇所のはんだ状態が不良であり、合格であるかを識別可能に表示させることもできる。   The display unit 11 displays the determination result of the determination unit 10. In addition, layout information (for example, a layout diagram of solder locations on a printed circuit board) is received from the control unit 12 and displayed so that it is possible to identify at which position in the layout the solder 1b is defective (or not) and passed. May be. Further, separately or in combination, an image based on the image data generated by the image processing unit 8 can be displayed so that it is possible to identify which part is in a defective soldering state and is acceptable.

上記の変位センサ2を用いて被測定物の表面形状を検査すると、単に頂点やフラット部分のならず傾斜部分の形状も含めて良否判定の検査ができる。   When the surface shape of the object to be measured is inspected using the displacement sensor 2 described above, it is possible to inspect whether or not it is acceptable, including not only the apex and the flat portion but also the shape of the inclined portion.

[変位センサの他の実施形態]
次に他の変位センサの実施形態について説明する。
[Other Embodiments of Displacement Sensor]
Next, another embodiment of the displacement sensor will be described.

図3で、第1の光源OS1は、例えば、レーザであって、基板1の面に対して垂直方向に光を照射する。つまり第1の光軸は被測定物1の面に垂直である。第2の光源OS2は、例えば、レーザであって、第1の光軸に対して図1の右方向から(左からでも良い)角度θ3で交叉するように光を照射する。この交叉する位置が測定しようとする基板1の測定点である。第1の光源OS1から測定点までの第1の照射光路、及び第2の光源OS2から測定点までの第2の照射光路のそれぞれには、図示しないが、各光源からの光を集光して平行光に変換するコリメータレンズ、更にその平行光を測定点へ集光させる集光レンズを備えても良い(つまり、この場合、測定点は、第1の光源OS1及び後記の第2の光源OS2のそれぞれからの光が集光される位置でもある。)。また、第1の光源OS1と第2の光源OS2とは、同一波長の場合は、同一光源から分岐して取り出した光であっても良い。   In FIG. 3, the first light source OS <b> 1 is, for example, a laser and irradiates light in a direction perpendicular to the surface of the substrate 1. That is, the first optical axis is perpendicular to the surface of the DUT 1. The second light source OS2 is, for example, a laser and emits light so as to cross the first optical axis at an angle θ3 from the right direction in FIG. 1 (or from the left). This crossing position is a measurement point of the substrate 1 to be measured. Although not shown, the light from each light source is condensed on each of the first irradiation light path from the first light source OS1 to the measurement point and the second irradiation light path from the second light source OS2 to the measurement point. A collimator lens that converts the light into parallel light, and a condensing lens that condenses the parallel light on the measurement point (that is, in this case, the measurement point is the first light source OS1 and the second light source described later). It is also the position where the light from each of OS2 is collected.) Further, when the first light source OS1 and the second light source OS2 have the same wavelength, they may be light extracted from the same light source.

図3で、第1の光源OS1,第1の受光手段D1及び第2の受光手段D2を用いた乱反射による変位測定系は、基板1の面が傾斜を有するときに有効であり、第2の光源OS2,及び第3の受光手段D3を用いた正反射による変位測定系は、基板1の面が平坦であるときに有効である。図3では、角度θ3は角度θ1或いは角度θ2より小さいが、角度θ1或いは角度θ2より大きくても良い。   In FIG. 3, the displacement measurement system by irregular reflection using the first light source OS1, the first light receiving means D1, and the second light receiving means D2 is effective when the surface of the substrate 1 has an inclination. The displacement measurement system by regular reflection using the light source OS2 and the third light receiving means D3 is effective when the surface of the substrate 1 is flat. In FIG. 3, the angle θ3 is smaller than the angle θ1 or the angle θ2, but may be larger than the angle θ1 or the angle θ2.

正反射光と散乱反射光の相互干渉を避けるため、第1の光源OS1,第1の受光手段D1及び第2の受光手段D2を用いた乱反射変位測定系の変位測定動作と、第2の光源OS2,及び第3の受光手段D3を用いた正反射変位測定系による変位測定動作とは、別々の波長で同時に行うか、或いは同一波長で交互にタイムシェアリングで行う。別々な波長で行う場合は、第1の受光手段D1及び第2の受光手段D2と、第3の受光手段D3とにそれぞれが受光する波長を通過させ、他の波長を遮る光学フィルターを挿入する必要がある。   In order to avoid mutual interference between specularly reflected light and scattered reflected light, the displacement measurement operation of the irregular reflection displacement measurement system using the first light source OS1, the first light receiving means D1, and the second light receiving means D2, and the second light source The displacement measurement operation by the regular reflection displacement measurement system using the OS2 and the third light receiving means D3 is performed simultaneously at different wavelengths or alternately by time sharing at the same wavelength. In the case of using different wavelengths, an optical filter that inserts wavelengths received by each of the first light receiving means D1, the second light receiving means D2, and the third light receiving means D3 and blocks other wavelengths is inserted. There is a need.

図3では、さらに、第1の受光手段D1と測定点との間の第1の乱反射光路、第2の受光手段D2と測定点との間の第2の乱反射光路、及び第3の受光手段D3と測定点との間の正反射光路のそれぞれには、測定点から各反射光を集光して平行光に変換するコリメータレンズと、更にその平行光を測定点へ集光して結像させる集光レンズとを備えた集光機能素子K1,K2、K3を備えている。ここでは「集光機能素子」と言う表現を用いているが、基本的には各反射光(ビーム)を集光して各受光手段へ結像させる機能であり、これと同一機能を単一のレンズ或いは複数のレンズで達成できることから、それら全体を表すための表現である。そして、図3のように、各集光機能素子K1,K2,K3のそれぞれが配置された光軸を中心として反射光を平行光に変換する位置までの距離をL1n、L2n、L3nとし、各受光手段へ集光させるまでの距離をL1m、L2m及びL3mとする。集光機能素子K1,K2、K3が平行光として維持している距離(集光機能素子の長さ)は、各受光素子の測定点に対する位置を決めるのに用いられる。   In FIG. 3, the first irregular reflection optical path between the first light receiving means D1 and the measurement point, the second irregular reflection optical path between the second light reception means D2 and the measurement point, and the third light reception means. In each of the regular reflection optical paths between D3 and the measurement point, a collimator lens that collects each reflected light from the measurement point and converts it into parallel light, and further collects the parallel light on the measurement point to form an image. Condensing functional elements K1, K2, and K3 including a condensing lens to be provided. Here, the expression “condensing functional element” is used, but it is basically a function that condenses each reflected light (beam) and forms an image on each light receiving means. This is an expression for representing all of them because it can be achieved with a lens or a plurality of lenses. As shown in FIG. 3, the distances to the positions where the reflected light is converted into parallel light around the optical axis where each of the condensing functional elements K1, K2, and K3 is arranged are L1n, L2n, and L3n. L1m, L2m, and L3m are distances until the light receiving means collects light. The distance (the length of the condensing functional element) maintained by the condensing functional elements K1, K2, and K3 as parallel light is used to determine the position of each light receiving element with respect to the measurement point.

また、第1の受光手段D1、第2の受光手段D2及び第3の受光手段D3のそれぞれは、上記したように所定長さの受光面を有し、該所定長さ方向における受光位置に応じて光変位情報を検出する位置検出器(PSD)が用いられている。そこで、第1の受光手段D1が第1の散乱光路となす角度α1、第2の受光手段が第2の散乱光路となす角度α2及び第3の受光手段が前記正反射光路となす角度α3とに設定される。これらの角度は、感度調整のために設定される。   Each of the first light receiving means D1, the second light receiving means D2, and the third light receiving means D3 has a light receiving surface having a predetermined length as described above, and corresponds to the light receiving position in the predetermined length direction. A position detector (PSD) that detects optical displacement information is used. Therefore, an angle α1 formed by the first light receiving unit D1 with the first scattered light path, an angle α2 formed by the second light receiving unit with the second scattered light path, and an angle α3 formed by the third light receiving unit with the specularly reflected light path, Set to These angles are set for sensitivity adjustment.

本実施形態では、上記第1の受光手段D1が第1の散乱光路となす角度α1がtan―1(L1n/L1m×tanθ1)、第2の受光手段D2が第2の散乱光路となす角度α2がtan―1(L2n/L2m×tanθ2)、及び第3の受光手段D3が正反射光路となす角度α3がtan―1(L3n/L3m×tan2θ3)になる配置にしていることにより、各受光手段は、その長さ方向における光をセンシングする感度がほぼ同じ感度、つまり受光手段の長さ方向(センシングする素子が配列されている方向)の感度の差を軽減して測定することができる。 In the present embodiment, the angle α1 formed by the first light receiving unit D1 with the first scattered light path is tan −1 (L1n / L1m × tan θ1), and the angle α2 formed by the second light receiving unit D2 with the second scattered light path. Tan −1 (L2n / L2m × tan θ2) and the angle α3 formed by the third light receiving means D3 with the regular reflection optical path is tan −1 (L3n / L3m × tan2θ3). Can be measured while reducing the difference in sensitivity in the length direction of the light receiving means (direction in which the sensing elements are arranged).

これらの基になる原理は、シャインプルークの原理(Scheimpflug Principle)と呼ばれ、ある像をレンズで被写体面へ写すとき、像の面とレンズの面と被写体の面の3つの面のそれぞれの延長線が同一点で交われば、像の面全体でピントが合うとされているものである。本実施形態では、図2に示すようにこの条件を利用して、3つの受光手段における感度を適切に合わせている。図4において、範囲Rが、被測定物1の測定可能な変位範囲を示し、受光手段D(各受光手段D1,D2,D3を代表する。)の長さ方向の面を示す。範囲Rの延長線(この場合は、光源からの光軸と同じ)と、集光機能素子K(各集光機能素子K1,K2,K3を代表する。)の面の延長線と、受光手段Dの面の延長線とが一点で交わるように、配置構成することにより、ピントの合った、つまり、受光手段の長さ方向において(いわば範囲R全体において)、適切な感度で変位測定ができる。   These underlying principles are called Scheimpflug Principles, and when an image is projected onto a subject surface with a lens, each of the three surfaces of the image surface, the lens surface and the subject surface is extended. If the lines meet at the same point, the entire surface of the image is said to be in focus. In the present embodiment, as shown in FIG. 2, the sensitivity of the three light receiving means is appropriately adjusted using this condition. In FIG. 4, a range R indicates a displacement range in which the DUT 1 can be measured, and indicates a surface in the length direction of the light receiving means D (representing each of the light receiving means D1, D2, and D3). An extension line of the range R (in this case, the same as the optical axis from the light source), an extension line of the surface of the condensing function element K (representing each condensing function element K1, K2, K3), and light receiving means Displacement can be measured with appropriate sensitivity in the length direction of the light receiving means (in other words, in the entire range R) by arranging and arranging so that the extended line of the surface of D intersects at one point. .

そして、上記式で、さらに、距離の比L1n/L1m、L2n/L2m及びL3n/L3mが同一値で、第1の角度θ1、第2の角度θ2及び第3の角度2θ3が同一値(θ)であることにより、範囲Rに対して角度α1、角度α2及び角度α3も同じ値(α)になり、受光手段間の感度の差も少なくして測定することができる。   In the above formula, the distance ratios L1n / L1m, L2n / L2m, and L3n / L3m have the same value, and the first angle θ1, the second angle θ2, and the third angle 2θ3 have the same value (θ). Therefore, the angle α1, the angle α2, and the angle α3 with respect to the range R also have the same value (α), and the difference in sensitivity between the light receiving means can be reduced for measurement.

なお、上記式で、距離の比L1n/L1m、L2n/L2m及びL3n/L3mが同一値であるか無いかに関わらず、第1の角度θ1、第2の角度θ2及び第3の角度2θ3を同一値(θ)とし、角度α1、角度α2及び角度α3も同一値(α)として配置することにより、受光手段内部ではピントの合うところと合わないところが出るが、受光手段間の感度のバラツキは抑えることができる。なお、本発明における距離や角度は、測定範囲におけるほぼセンターの値で説明している。   In the above formula, the first angle θ1, the second angle θ2, and the third angle 2θ3 are the same regardless of whether the distance ratios L1n / L1m, L2n / L2m, and L3n / L3m have the same value. If the angle α1, the angle α2, and the angle α3 are also set to the same value (α) by setting the value (θ), the in-focus portion and the out-of-focus portion are generated inside the light-receiving device, but the sensitivity variation between the light-receiving devices is suppressed. be able to. In addition, the distance and angle in the present invention are described by the value of the approximate center in the measurement range.

以上のように、変位センサ2は、対称な2つの方向の乱反射を利用した乱反射変位測定系を用いていること、その乱反射変位測定系と正反射変位測定系とで分かれており、互いの干渉の無い状態で測定できること、さらに、第1の角度θ1、第2の角度θ2及び第3の角度2θ3が同一値(θ)であるため、各変位計測を同じ感度にすることができるので、被測定物1の反射率に関係無く感度補正無しで、正反射の陰の部分も測定でき、乱反射変位測定系と正反射変位測定系とでの変位測定の差を軽減して、精度の高い測定ができる。   As described above, the displacement sensor 2 uses the irregular reflection displacement measurement system that uses two symmetrical symmetrical reflections, and is divided into the irregular reflection displacement measurement system and the regular reflection displacement measurement system. In addition, since the first angle θ1, the second angle θ2, and the third angle 2θ3 have the same value (θ), each displacement measurement can have the same sensitivity. Regardless of the reflectance of the measurement object 1, it is possible to measure the shaded part of specular reflection without sensitivity correction, reducing the difference in displacement measurement between the diffuse reflection displacement measurement system and the regular reflection displacement measurement system, and measuring with high accuracy. Can do.

[第2の実施形態]
第2の実施形態における変位センサ2aを図5に示す。図5(a)は変位センサ2aを上面から見た図で、図5(b)は側面から見た図で、いずれも各素子間の光路を示す図である。図5(c)は、図5(b)の矢視A及び矢視Bから見た光路でを示す図である。
[Second Embodiment]
A displacement sensor 2a in the second embodiment is shown in FIG. FIG. 5A is a view of the displacement sensor 2a viewed from the top, and FIG. 5B is a view of the displacement sensor 2a viewed from the side, both of which show the optical paths between the elements. FIG.5 (c) is a figure which shows the optical path seen from the arrow A and arrow B of FIG.5 (b).

第2の実施形態において、図1の第1の実施形態との構成上の主な違いは、第1の実施形態では、変位センサ2の全体を機構的に移動させて主走査を行っていたが、第2の実施形態における変位センサ2aでは、ポリゴンミラーPMの回転を利用して主走査を行う点である。副走査は、第1実施形態と同様、変位センサ2a又は基板1の何れか或いは双方を機構的に移動させることで行う。主走査、副走査の走査方向は第1の実施形態と同じである(異なっても良い)。したがって、図1の走査機構4は、第2の実施形態では副走査だけ担当する。同様に、図1の制御部12は、主走査については、直接に、変位センサ2aのポリゴンミラーPMを制御して主走査を行わせる。その他の構成は、次の説明にある以外、図1と同じである。   In the second embodiment, the main difference in configuration from the first embodiment in FIG. 1 is that in the first embodiment, the entire displacement sensor 2 is mechanically moved to perform main scanning. However, in the displacement sensor 2a in the second embodiment, the main scanning is performed using the rotation of the polygon mirror PM. Similar to the first embodiment, the sub-scan is performed by mechanically moving either the displacement sensor 2a or the substrate 1 or both. The scanning directions of main scanning and sub-scanning are the same as in the first embodiment (may be different). Therefore, the scanning mechanism 4 in FIG. 1 is in charge of only the sub-scanning in the second embodiment. Similarly, for the main scanning, the control unit 12 in FIG. 1 directly controls the polygon mirror PM of the displacement sensor 2a to perform the main scanning. Other configurations are the same as those in FIG. 1 except as described below.

図5を基に変位センサ2aの光学的構成について説明する。第1の受光手段D1、第2の受光手段D2、及び第3の受光手段D3は、第1の実施形態で説明したものと同じ構成で、同じ機能・動作をするが、主走査方向に対して主走査の距離だけ幅(図5(a)で紙面の上下方向、図5(b)では、紙面の奥行き方向)を持ってセンシングできる構成にされている。受光レンズK1aと結像レンズK1bの組み合わせ、受光レンズK2aと結像レンズK2bとの組み合わせ、及び、受光レンズK3aと結像レンズK3bの組み合わせは、それぞれ、第1の実施形態における集光機能素子K1、K2、K3を構成するものであり、機能動作も同じである。つまり受光レンズK1a、K2a、K3aで集光した光(反射光)を平行光にし、その平行光を受けた結像レンズK1b、K2b、K3bが各受光手段D1,D2、D3へ結像させる。これらも、各受光手段D1、D2、D3と同様に主走査方向に対して主走査の距離だけ幅(図5(a)で紙面の上下方向、図5(b)では、紙面の奥行き方向)を持って、受光、結像可能な構成にされている。   The optical configuration of the displacement sensor 2a will be described with reference to FIG. The first light receiving means D1, the second light receiving means D2, and the third light receiving means D3 have the same configuration and the same functions and operations as those described in the first embodiment, but with respect to the main scanning direction. Thus, the sensor can be sensed with a width corresponding to the distance of the main scanning (the vertical direction in FIG. 5A and the depth direction in FIG. 5B). The combination of the light receiving lens K1a and the imaging lens K1b, the combination of the light receiving lens K2a and the imaging lens K2b, and the combination of the light receiving lens K3a and the imaging lens K3b are each a condensing functional element K1 in the first embodiment. , K2, and K3, and the functional operations are also the same. That is, the light (reflected light) collected by the light receiving lenses K1a, K2a, and K3a is converted into parallel light, and the imaging lenses K1b, K2b, and K3b that receive the parallel light form images on the light receiving means D1, D2, and D3. Similarly to each of the light receiving means D1, D2, and D3, the width is the main scanning distance with respect to the main scanning direction (the vertical direction in FIG. 5A and the depth direction in FIG. 5B). It is configured to receive light and form an image.

図5(a)(b)において、レーザOSC1a、ハーフミラーOSC1b、ミラーOSC1c、ミラーOSC1d、ポリゴンミラーPM、ミラーOSC1e、fθレンズOSC1f、及びミラーOSC1gの全体が、第1実施形態の第1の光源OSC1に相当する。但し、主走査をポリゴンミラーPMで行う点で異なる。また、レーザOSC1a、ハーフミラーOSC1b、ミラーOSC2a、ミラーOSC1c、PM、ミラーOSC2b、及びfθレンズOSC2cの全体は、第1実施形態の第2の光源OSC2に相当する。図5(c)は、図5(b)の矢視A、Bから見た図で、光路方向が変換される様子を示す図である。   5A and 5B, the laser OSC1a, the half mirror OSC1b, the mirror OSC1c, the mirror OSC1d, the polygon mirror PM, the mirror OSC1e, the fθ lens OSC1f, and the mirror OSC1g as a whole are the first light source of the first embodiment. Corresponds to OSC1. However, it differs in that the main scanning is performed by the polygon mirror PM. The entire laser OSC1a, half mirror OSC1b, mirror OSC2a, mirror OSC1c, PM, mirror OSC2b, and fθ lens OSC2c correspond to the second light source OSC2 of the first embodiment. FIG.5 (c) is a figure seen from the arrow A and B of FIG.5 (b), and is a figure which shows a mode that an optical path direction is converted.

次に主として、光路及び主走査について説明する。レーザOSC1aから出力された光は、ハーフミラーOSC1bで一部が分岐されてミラーOSC1c及びミラーOSC1dで反射されてポリゴンミラーPMへ入力される。ポリゴンミラーPMへ入力された光は、ポリゴンミラーPMの回転(図5で右回転)により、ミラーOSC1eへ回転に応じた角度で出射される。ミラーOSC1eは受けた光を受けたときの角度に対して正反射した光路で折返し、fθレンズOSC1fへ送る。fθレンズOSC1fは、ポリゴンミラーPMの回転に応じた角度で入射される光を図5(c)に示すように、回転に応じて広がる角度の光路を一定の間隔で走査方向へ並列に並ぶ光路に変換して、その光路を通してミラーOSC1gへ送る。ミラーOSC1gは、受けた光を垂直方向から測定点へ照射させる。このとき、図5(b)では、ポリゴンミラーPMの回転に応じて、測定点は、紙面の手前から奥行き方向へ主走査されることになる。第1の受光手段D1及び第2の受光手段D2は、ミラーOSC1gからの照射に対する測定点からの散乱光を受けて変位を測定する。   Next, the optical path and main scanning will be mainly described. The light output from the laser OSC1a is partially branched by the half mirror OSC1b, reflected by the mirror OSC1c and the mirror OSC1d, and input to the polygon mirror PM. The light input to the polygon mirror PM is emitted to the mirror OSC1e at an angle corresponding to the rotation by the rotation of the polygon mirror PM (right rotation in FIG. 5). The mirror OSC1e turns back along the optical path specularly reflected with respect to the angle when the received light is received, and sends it to the fθ lens OSC1f. As shown in FIG. 5 (c), the fθ lens OSC1f is an optical path in which light incident at an angle according to the rotation of the polygon mirror PM is arranged in parallel in the scanning direction at a certain interval with an optical path having an angle that expands according to the rotation. And sent to the mirror OSC1g through the optical path. The mirror OSC1g irradiates the measurement point with the received light from the vertical direction. At this time, in FIG. 5B, the measurement point is main-scanned in the depth direction from the front of the paper according to the rotation of the polygon mirror PM. The first light receiving means D1 and the second light receiving means D2 receive the scattered light from the measurement point for the irradiation from the mirror OSC1g and measure the displacement.

一方、レーザOSC1aから出力された光の内、ハーフミラーOSC1bで分岐された残りの光は、ミラーOSC2aで反射されてポリゴンミラーPMへ入力される。ポリゴンミラーPMへ入力された光は、ポリゴンミラーPMの回転により、fθレンズOSC2cへ回転に応じた角度で出射される。fθレンズOSC2cは、fθレンズOSC1fと同様に、ポリゴンミラーPMの回転に応じた角度で入射される光を図5(c)に示すように、走査方向へ並列に一定の間隔で並ぶ光路を通して、かつ垂直に対して一定角度θ3を成す斜め上から測定点へ照射させる。このとき、図5(b)では、ポリゴンミラーPMの回転に応じて、測定点は、紙面の奥行きから手前へ主走査されることになる(ミラーOSC1gからの垂直な光による走査とは逆方向)。第3の受光手段D3は、fθレンズOSC2cからの照射に対する測定点からの正反射光を受けて変位測定する。   On the other hand, of the light output from the laser OSC1a, the remaining light branched by the half mirror OSC1b is reflected by the mirror OSC2a and input to the polygon mirror PM. The light input to the polygon mirror PM is emitted to the fθ lens OSC2c at an angle corresponding to the rotation by the rotation of the polygon mirror PM. Like the fθ lens OSC1f, the fθ lens OSC2c passes light incident at an angle corresponding to the rotation of the polygon mirror PM through an optical path arranged in parallel in the scanning direction at a constant interval, as shown in FIG. Further, the measurement point is irradiated from obliquely above at a certain angle θ3 with respect to the vertical. At this time, in FIG. 5B, according to the rotation of the polygon mirror PM, the measurement point is main-scanned from the depth of the paper to the front (opposite to the scanning by the vertical light from the mirror OSC1g). ). The third light receiving means D3 receives the specularly reflected light from the measurement point for the irradiation from the fθ lens OSC2c and measures the displacement.

上記のように、ミラーOSC1gからの出力光は上記の散乱反射測定系(第1のセンシング手段)の光源の役割を担い、fθレンズOSC2cからの出力光は上記の正反射測定系(第2のセンシング手段)の光源の役割を担う。しかし、両者の光は、照射する測定点は同じであるが、同一ポリゴンミラーPMを使用しているため走査方向が逆になる。言い換えれば、散乱反射測定系と正反射測定系とでは、同一の主走査において、同一測定点で走査時間と方向が異なることになる。しかし、これは測定の順序が異なるだけであり、同一測定点を双方で測定する点においては変わりはない。また、走査するときの時間差は短時間であり影響は少ない。また、走査方向が異なることによる照射位置誤差は許容範囲内に抑えることが可能である。   As described above, the output light from the mirror OSC1g plays the role of the light source of the scattering reflection measurement system (first sensing means), and the output light from the fθ lens OSC2c is the regular reflection measurement system (second It plays the role of the light source of the sensing means. However, although both light beams are irradiated at the same measurement point, the scanning directions are reversed because the same polygon mirror PM is used. In other words, the scattering reflection measurement system and the regular reflection measurement system have different scanning times and directions at the same measurement point in the same main scanning. However, this differs only in the order of measurement, and there is no change in that the same measurement point is measured by both. Also, the time difference when scanning is short and has little effect. Further, the irradiation position error due to the different scanning directions can be suppressed within an allowable range.

第2の実施形態では、散乱反射測定系と正反射測定系とを同時に実施すると、同一波長のレーザOSC1aを用いているためクロストークが生じ、誤差が生じる可能性がある。この場合は、例えば、図5(a)でポリゴンミラーPMの8角形の一辺をその軸中心から臨む角度をγとすると、ポリゴンミラーPMの0〜γ/2の回転の間に正反射測定系で測定し、ポリゴンミラーPMの残りのγ/2〜γの回転で、正散乱反射系で測定するように構成することにより、各辺毎に交互測定が行え、クロストークを防止することができる。そのためには、ポリゴンミラーPMへの入射角度、位置等を考慮して調整すれば実施できる(不図示)。   In the second embodiment, when the scattering reflection measurement system and the specular reflection measurement system are performed simultaneously, the laser OSC1a having the same wavelength is used, so that crosstalk occurs and an error may occur. In this case, for example, in FIG. 5A, if the angle at which one side of the octagon of the polygon mirror PM faces the axis center is γ, the regular reflection measurement system during the rotation of the polygon mirror PM from 0 to γ / 2. , And by measuring with a positive scattering reflection system with the remaining rotation of the polygon mirror PM by the remaining γ / 2 to γ, alternating measurement can be performed for each side, and crosstalk can be prevented. . For this purpose, adjustment can be performed by taking into consideration the incident angle and position on the polygon mirror PM (not shown).

第2実施形態の変位センサ2aを用いた印刷はんだ検査の仕方は、上記第1の実施形態と同様にして行える。また、上記[変位センサの他の実施形態]における形態は、第2の実施形態でも適用可能である。   The printed solder inspection method using the displacement sensor 2a of the second embodiment can be performed in the same manner as in the first embodiment. Moreover, the form in the above [other embodiments of the displacement sensor] is also applicable to the second embodiment.

以上のように、本発明においては、散乱反射変位測定系の光学系と正反射変位測定系の光学系を備えて、レジスト膜の厚さを推定できるので、レジスト下部のパッド面からのはんだ高さを求めることができる。   As described above, in the present invention, since the thickness of the resist film can be estimated by including the optical system of the scattering reflection displacement measurement system and the optical system of the specular reflection displacement measurement system, the solder height from the pad surface under the resist can be estimated. You can ask for it.

実施形態の内、変位センサ及び測定部の機能構成を示す図であって、変位センサと被測定物間を相対的に走査して検査する形態の図である。It is a figure which shows the function structure of a displacement sensor and a measurement part among embodiment, Comprising: It is a figure of the form which scans and inspects between a displacement sensor and a to-be-measured object relatively. 実施形態の内、検査部の機能構成を示す図である。It is a figure which shows the function structure of a test | inspection part among embodiment. 図1の変位センサを構成する機能要素の配置を示す図である。It is a figure which shows arrangement | positioning of the functional element which comprises the displacement sensor of FIG. 各受光手段の位置関係を示し、各受光手段の感度を説明するための図である。It is a figure which shows the positional relationship of each light-receiving means, and demonstrates the sensitivity of each light-receiving means. 第2の実施形態であって、変位センサ内で光源により光学的走査を行うタイプの実施形態を示す図である。It is a figure which is 2nd Embodiment, Comprising: The type of embodiment which performs an optical scan with a light source within a displacement sensor. 図7とともに、レジスト厚さを推定する技術を開示、説明するための図である。FIG. 8 is a view for explaining and explaining a technique for estimating a resist thickness together with FIG. 7. 図6とともに、レジスト厚さを推定する技術を開示、説明するための図である。FIG. 7 is a view for explaining and explaining a technique for estimating the resist thickness together with FIG. 6. レジスト厚さのバラツキとその影響を説明するための図である。It is a figure for demonstrating the variation in resist thickness, and its influence. 理想的なレジスト面を説明するための図である。It is a figure for demonstrating an ideal resist surface.

符号の説明Explanation of symbols

1 基板(プリント板)、 2,2a 変位センサ、 3 データ処理部、
3a,3b 加算器、 3c 演算部、 4 走査機構、 5 補正用メモリ、
6 基礎測定部、7 測定部、 8 画像処理部、 9 比較部、 10 判定部、
11 表示部、12 制御部、 100 変位測定部、200 検査部
D1 第1の受光手段、D2 第2の受光手段、D3 第3の受光手段、
K1,K2,K3 集光機能素子、
K1a,K2a,K3a 受光レンズ
K1b,K2b,K3b 結像レンズ
L1 演算部の出力(散乱反射による変位情報)
L2 演算部の出力(正反射による変位情報)
OSC1 第1の光源、 OSC2 第2の光源、
OS1a レーザ、 OSC1b ハーフミラー、
OSC1c,OSC1d,OSC1e、OSC1g ミラー
OSC2a,OSC2b ミラー
OSC1f,OSC2c fθレンズ
PM ポリゴンミラー
R 範囲
1 substrate (printed board), 2, 2a displacement sensor, 3 data processing unit,
3a, 3b adder, 3c calculation unit, 4 scanning mechanism, 5 correction memory,
6 basic measurement unit, 7 measurement unit, 8 image processing unit, 9 comparison unit, 10 determination unit,
DESCRIPTION OF SYMBOLS 11 Display part, 12 Control part, 100 Displacement measuring part, 200 Inspection part D1 1st light-receiving means, D2 2nd light-receiving means, D3 3rd light-receiving means,
K1, K2, K3 Condensing functional element,
K1a, K2a, K3a Light-receiving lens K1b, K2b, K3b Imaging lens L1 Output of calculation unit (displacement information due to scattered reflection)
Output of L2 calculation unit (displacement information by regular reflection)
OSC1 first light source, OSC2 second light source,
OS1a laser, OSC1b half mirror,
OSC1c, OSC1d, OSC1e, OSC1g Mirror OSC2a, OSC2b Mirror OSC1f, OSC2c fθ Lens PM Polygon Mirror R Range

Claims (5)

プリント板の表面の測定点に垂直に光を照射し、該測定点からの散乱光を受けて第1の変位を測定するための第1のセンシング手段(OS1,D1,D2)と、前記同じ測定点を前記垂直に対し所定角度斜めの角度で照射し該測定点で正反射した反射光を測定して第2の変位を測定するための第2のセンシング手段(OS2,D3)とを含む変位センサ(2)を準備する段階と、
前記変位センサで前記測定点を前記プリント板のレジスト面として前記第2の変位と第1の変位を測定し、それらの差と該レジストの厚さとの関係を表す関数値をメモリに記憶しておく初期段階と、
表面のパッド面にはんだが印刷された被測定プリント板を受けて、該被測定プリント板のレジスト面及び該パッド面上のはんだ面を前記測定点として前記変位センサにより前記第1の変位と前記第2の変位を求める測定段階と、
該測定段階で前記レジスト面で求められた該第1の変位と該第2の変位との差を基に前記メモリを参照して対応する関数値を求め、該第2の変位から前記関数値を減算して、前記パッド面の位置を求める基準位置算出段階と、
前記測定段階で測定された前記はんだ面における第1の変位又は第2の変位によりはんだ面の変位を該パッド面の位置からの変位として求める変位算出段階と、を備えたことを特徴とする印刷はんだ検査方法。
Same as the first sensing means (OS1, D1, D2) for irradiating light perpendicularly to the measurement point on the surface of the printed board and measuring the first displacement by receiving the scattered light from the measurement point A second sensing means (OS2, D3) for measuring a second displacement by irradiating the measurement point at a predetermined angle with respect to the vertical and measuring the reflected light regularly reflected at the measurement point; Preparing a displacement sensor (2);
The displacement sensor measures the second displacement and the first displacement using the measurement point as a resist surface of the printed board, and stores a function value representing the relationship between the difference and the resist thickness in a memory. And the initial stage
A printed circuit board with solder printed on the surface pad surface is received, and the first displacement and the above-mentioned displacement are detected by the displacement sensor using the resist surface of the printed circuit board to be measured and the solder surface on the pad surface as the measurement points. A measurement stage for determining a second displacement;
Based on the difference between the first displacement and the second displacement obtained on the resist surface in the measurement step, a corresponding function value is obtained by referring to the memory, and the function value is obtained from the second displacement. Subtracting the reference position calculating step for obtaining the position of the pad surface;
A displacement calculating step of obtaining a displacement of the solder surface as a displacement from the position of the pad surface by the first displacement or the second displacement in the solder surface measured in the measuring step. Solder inspection method.
表面にはんだが印刷されたパッド面とレジスト面を有する被測定プリント板の該表面の測定点に垂直に光を照射し、該測定点からの散乱光を受ける第1のセンシング手段(OS1,D1,D2)と、前記同じ測定点を前記垂直に対し所定角度斜めの角度で照射し該測定点で正反射した反射光を受ける第2のセンシング手段(OS2,D3)とを含む変位センサ(2)と、前記第1のセンシング手段の出力から散乱光に基づく第1の変位、及び前記第2のセンシング手段の出力から正反射光に基づく第2の変位を算出するデータ処理部(3)と、該第1の変位又は該第2の変位により、該はんだ面の変位を求める測定部(7)とを備えた印刷はんだ検査装置であって、
予め、前記レジスト面における第2の変位と第1の変位との差と、前記レジストの厚さとの関係を表す関数値を記憶するメモリ(5)と、
検査時に、前記被測定プリント板のレジスト面を前記測定点として前記変位センサにより前記第1の変位と前記第2の変位を求める基礎測定部(6)と、
前記レジスト面で求められた該第1の変位と該第2の変位との差を基に前記メモリを参照して対応する関数値を求め、該第2の変位から前記関数値を減算して、前記パッド面の位置を求める基準位置算出部(6a)と、を備え
前記測定部は、前記レジスト面の位置からのはんだ面の変位を前記関数値で補正することにより、該はんだ面の変位を該パッド面の位置からの変位として求めることを特徴とする印刷はんだ検査装置。
First sensing means (OS1, D1) that irradiates light perpendicularly to a measurement point on the surface of the measurement printed board having a pad surface on which solder is printed and a resist surface, and receives scattered light from the measurement point. , D2) and second sensing means (OS2, D3) that illuminate the same measurement point at an angle oblique to the vertical by a predetermined angle and receive reflected light regularly reflected at the measurement point (2). And a data processing unit (3) for calculating a first displacement based on scattered light from the output of the first sensing means and a second displacement based on specular reflection light from the output of the second sensing means; A printed solder inspection apparatus comprising a measuring unit (7) for obtaining a displacement of the solder surface by the first displacement or the second displacement,
A memory (5) for storing in advance a function value representing the relationship between the difference between the second displacement and the first displacement on the resist surface and the thickness of the resist;
A basic measurement unit (6) for obtaining the first displacement and the second displacement by the displacement sensor using the resist surface of the printed board to be measured as the measurement point at the time of inspection;
Based on the difference between the first displacement and the second displacement obtained on the resist surface, a corresponding function value is obtained by referring to the memory, and the function value is subtracted from the second displacement. A reference position calculation unit (6a) for determining the position of the pad surface, and the measurement unit corrects the displacement of the solder surface from the position of the resist surface with the function value to thereby displace the solder surface. Is obtained as a displacement from the position of the pad surface.
プリント板の表面の測定点に垂直に光を照射し、該測定点からの散乱光を受ける第1のセンシング手段(OS1,D1,D2)と、前記同じ測定点を前記垂直に対し所定角度斜めの角度で照射し該測定点で正反射した反射光を受ける第2のセンシング手段(OS2,D3)とを含む変位センサ(2)と、
前記第1のセンシング手段の出力から散乱光に基づく第1の変位、及び前記第2のセンシング手段の出力から正反射光に基づく第2の変位を算出するデータ処理部(3)と、
予め、第2の変位と第1の変位との差と前記レジストの厚さとの関係を表す関数値を記憶するメモリ(5)と、
表面のパッド面にはんだが印刷された被測定プリント板を受けて、該被測定プリント板のレジスト面を前記測定点として前記変位センサにより前記第1の変位と前記第2の変位を求める基礎測定部(6)と、
該レジスト面で求められた該第1の変位と該第2の変位との差を基に前記メモリを参照して対応する関数値を求め、該第2の変位から前記関数値を減算して、前記パッド面の位置を求める基準位置算出部(6a)と、
前記被測定プリント板の前記はんだ面を前記測定点として前記変位センサにより前記第1の変位又は前記第2の変位を求め、該はんだ面の変位を該パッド面の位置からの変位として求める測定部(7)と、を備えたことを特徴とする印刷はんだ検査装置。
First sensing means (OS1, D1, D2) that irradiates light perpendicularly to a measurement point on the surface of the printed board and receives scattered light from the measurement point, and the same measurement point is inclined at a predetermined angle with respect to the vertical. A displacement sensor (2) including second sensing means (OS2, D3) that receives the reflected light that is irradiated at an angle of
A data processing unit (3) for calculating a first displacement based on scattered light from the output of the first sensing means and a second displacement based on specularly reflected light from the output of the second sensing means;
A memory (5) for storing in advance a function value representing the relationship between the difference between the second displacement and the first displacement and the thickness of the resist;
A basic measurement is performed in which a measurement printed board having solder printed on the surface pad surface is received, and the first displacement and the second displacement are obtained by the displacement sensor using the resist surface of the measurement printed board as the measurement point. Part (6),
Based on the difference between the first displacement and the second displacement obtained on the resist surface, a corresponding function value is obtained by referring to the memory, and the function value is subtracted from the second displacement. A reference position calculation unit (6a) for determining the position of the pad surface;
A measurement unit that obtains the first displacement or the second displacement by the displacement sensor using the solder surface of the measurement printed board as the measurement point, and obtains the displacement of the solder surface as a displacement from the position of the pad surface. (7) and a printed solder inspection apparatus.
前記第1のセンシング手段は、前記プリント板の測定点を垂直方向から照射する第1の光源(OS1)と、該第1の光源の第1の光軸に対して第1の角度θ1で形成される第1の散乱光路上に配置された第1の受光手段(D1)と、該第1の光軸に対して該第1の散乱光路と反対側に第2の角度θ2で形成される第2の散乱光路上に配置された第2の受光手段(D2)とを備え、前記第1の変位は、前記第1の受光手段の出力と前記第2の受光手段の出力との和を基に求められ、また、
前記第2のセンシング手段は、該第1の光軸に対して斜めの角度θ3で前記測定点を照射する第2の光源(OS2)と、該測定点にて該第2の光源の第2の光軸に対して第3の角度2θ3で形成される正反射光路上に配置された第3の受光手段(D3)とを備え、前記第2の変位は、該第3の受光手段の出力から求められることを特徴とする請求項2又は3の印刷はんだ検査装置。
The first sensing means is formed at a first angle θ1 with respect to a first light source (OS1) that irradiates a measurement point of the printed board from a vertical direction and a first optical axis of the first light source. The first light receiving means (D1) disposed on the first scattered light path, and the second light beam is formed at a second angle θ2 on the opposite side of the first scattered light path with respect to the first optical axis. Second light receiving means (D2) disposed on the second scattered light path, and the first displacement is the sum of the output of the first light receiving means and the output of the second light receiving means. Sought after, and
The second sensing means includes a second light source (OS2) that irradiates the measurement point at an oblique angle θ3 with respect to the first optical axis, and a second light source of the second light source at the measurement point. And a third light receiving means (D3) disposed on a regular reflection optical path formed at a third angle 2θ3 with respect to the optical axis, and the second displacement is an output of the third light receiving means. The printed solder inspection apparatus according to claim 2, wherein the printed solder inspection apparatus is obtained from the following.
前記変位センサにおいて、前記第1の受光手段、前記第2の受光手段及び前記第3の受光手段のそれぞれは、所定長さの受光面を有し、該所定長さ方向における受光位置に応じて光変位情報を検出する位置検出器であって、前記第1の光軸、前記第2の光源の光軸、前記第1の散乱光路、前記第2の散乱光路及び正反射光路を含む平面内で、前記所定長さ方向を該平面に沿うように配置され、
さらに前記第1の角度θ1、前記第2の角度θ2と前記第3の角度2θ3は同一になるよう構成され、かつ前記第1の受光手段が前記第1の散乱光路となす角度(α1)、第2の受光手段が前記第2の散乱光路となす角度(α2)及び第3の受光手段が前記正反射光路となす角度(α3)が同一になるように構成されることを特徴とする請求項4記載の印刷はんだ検査装置。
In the displacement sensor, each of the first light receiving means, the second light receiving means, and the third light receiving means has a light receiving surface having a predetermined length, and is in accordance with a light receiving position in the predetermined length direction. A position detector for detecting optical displacement information, wherein the first optical axis, the optical axis of the second light source, the first scattered light path, the second scattered light path, and the regular reflection optical path are included in a plane. And the predetermined length direction is arranged along the plane,
Further, the first angle θ1, the second angle θ2, and the third angle 2θ3 are configured to be the same, and the angle (α1) that the first light receiving unit forms with the first scattered light path, The angle (α2) formed by the second light receiving unit with the second scattered light path and the angle (α3) formed by the third light receiving unit with the regular reflection light path are configured to be the same. Item 5. A printed solder inspection apparatus according to item 4.
JP2007284768A 2007-11-01 2007-11-01 Printed solder inspection method and printed solder inspection apparatus Expired - Fee Related JP4995041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284768A JP4995041B2 (en) 2007-11-01 2007-11-01 Printed solder inspection method and printed solder inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284768A JP4995041B2 (en) 2007-11-01 2007-11-01 Printed solder inspection method and printed solder inspection apparatus

Publications (2)

Publication Number Publication Date
JP2009109450A JP2009109450A (en) 2009-05-21
JP4995041B2 true JP4995041B2 (en) 2012-08-08

Family

ID=40778069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284768A Expired - Fee Related JP4995041B2 (en) 2007-11-01 2007-11-01 Printed solder inspection method and printed solder inspection apparatus

Country Status (1)

Country Link
JP (1) JP4995041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791860B (en) * 2018-06-29 2023-02-11 日商荏原製作所股份有限公司 Bump height measuring device, substrate processing device, bump height measuring method, and nonvolatile memory medium storing program for causing computer to execute method of controlling bump height measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198348A (en) * 1993-12-30 1995-08-01 Sony Corp Measurement device of surface shape
JPH0914935A (en) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd Measuring device for three-dimensional object
JP4137212B2 (en) * 1998-02-25 2008-08-20 Juki株式会社 Height measuring method and height measuring apparatus
JP2001153629A (en) * 1999-11-29 2001-06-08 Anritsu Corp Print solder measuring device
JP4275661B2 (en) * 2005-09-28 2009-06-10 アンリツ株式会社 Displacement measuring device
JP4864734B2 (en) * 2007-01-17 2012-02-01 アンリツ株式会社 Optical displacement sensor and displacement measuring apparatus using the same

Also Published As

Publication number Publication date
JP2009109450A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
EP2439486B1 (en) Image correlation displacement sensor
US7271919B2 (en) Confocal displacement sensor
US6111649A (en) Thickness measuring apparatus using light from slit
JPH11257917A (en) Reflection type optical sensor
JP4864734B2 (en) Optical displacement sensor and displacement measuring apparatus using the same
JP4275661B2 (en) Displacement measuring device
JP4793786B2 (en) pointing device
JP4995041B2 (en) Printed solder inspection method and printed solder inspection apparatus
JP2019100753A (en) Printed circuit board inspection device and printed circuit board inspection method
JP5337419B2 (en) Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor
JP5129689B2 (en) Printed solder inspection apparatus and printed solder inspection method
JP4545580B2 (en) In-plane displacement meter
JP5033587B2 (en) Printed solder inspection apparatus and printed solder inspection method
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JP5251218B2 (en) Measuring apparatus and measuring method
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
JP3848586B2 (en) Surface inspection device
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JP7470521B2 (en) Parameter acquisition device and parameter acquisition method
JPH04289409A (en) Substrate inspecting method
JP3967607B2 (en) Height measuring device
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus
JP4858842B2 (en) Shape measuring device
JP3728941B2 (en) Optical sensor
JP5509035B2 (en) Printed solder inspection apparatus and printed solder inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees