JP4143450B2 - Manufacturing method of temperature sensor - Google Patents

Manufacturing method of temperature sensor Download PDF

Info

Publication number
JP4143450B2
JP4143450B2 JP2003076555A JP2003076555A JP4143450B2 JP 4143450 B2 JP4143450 B2 JP 4143450B2 JP 2003076555 A JP2003076555 A JP 2003076555A JP 2003076555 A JP2003076555 A JP 2003076555A JP 4143450 B2 JP4143450 B2 JP 4143450B2
Authority
JP
Japan
Prior art keywords
cylindrical
cylindrical portion
temperature sensor
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003076555A
Other languages
Japanese (ja)
Other versions
JP2004286491A (en
Inventor
剛 半沢
雅彦 西
雅樹 岩谷
孝昭 長曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003076555A priority Critical patent/JP4143450B2/en
Publication of JP2004286491A publication Critical patent/JP2004286491A/en
Application granted granted Critical
Publication of JP4143450B2 publication Critical patent/JP4143450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物などの半導体からなるサーミスタ焼結体や金属抵抗体等の感温部を有する感温素子を、有底筒状の金属チューブの内部に収納してなる温度センサに関する。詳細には、自動車の排気ガス浄化装置の触媒コンバータ内部や排気管内等といった被測定流体(例えば排気ガス)が流通する流通路内に感温素子を配置させて、被測定流体の温度検出を行う温度センサに関する。
【0002】
【従来の技術】
従来より、自動車の排気ガス浄化装置の触媒コンバータ内部や排気管内等といった排気ガス流路を流れる排気ガスの温度を、感温素子であるサーミスタ素子によって検出する温度センサ、いわゆる排気温センサが知られている。この種の温度センサとしては、サーミスタ素子を先端側が閉塞した有底筒状の金属チューブの中に収容したものがある。より具体的には、サーミスタ素子の電極線と接続される金属芯線をシースパイプ内に絶縁保持してなるシース部材を、フランジに溶接された一部材から形成される有底筒状の金属チューブ内に挿入しつつ、サーミスタ素子を金属チューブの先端側内部に配置させた構造の温度センサが知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−266609号公報(第1図、第2図)
【0004】
【発明が解決しようとする課題】
ところで、このような形態の温度センサを製造するにあたっては、サーミスタ素子が接続されたシース部材を有底筒状の金属チューブ内に挿入していき、シース部材を金属チューブに所定寸法挿入させることで、金属チューブ内におけるサーミスタ素子の位置決め(換言すれば、金属チューブの先端を基準にした軸線方向における位置決め)を行っている。しかし、サーミスタ素子が接続されたシース部材を細長い有底筒状の金属チューブ内に挿入する場合には、その挿入過程において、サーミスタ素子が金属チューブの内壁面等に当たることがある。すると、その衝撃によってシース部材の金属芯線やサーミスタ素子の電極線が曲がってしまう。
【0005】
このように上記挿入過程において金属芯線や電極線が曲がることがあると、有底筒状の金属チューブに対してシース部材を所定寸法挿入させてサーミスタ素子の位置決めを行っても、金属チューブ内におけるサーミスタ素子の狙い配置位置からずれて配置されてしまうことがある。そのために、従来の温度センサの製造方法では、同一品番の温度センサを量産した場合に、金属チューブ内のサーミスタ素子の配置位置がまちまちとなりがちで、温度検出の精度にばらつきを来たすおそれがあった。
【0006】
本発明は、上述した従来の問題点を解決するものであり、有底筒状の金属チューブ内にシース部材に接続されたサーミスタ素子等の感温素子を収納する構造の温度センサを製造するにあたって、製造容易であり、且つ感温素子を金属チューブ内の所定位置(狙い配置位置)に確実に配置させることができる温度センサの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
その解決手段は、先端側が閉塞した筒状の金属チューブと、温度によって電気的特性が変化する感温部とこれに設けられる一対の電極線とを有し、金属チューブの内部に収納される感温素子と、金属チューブの軸線方向に沿うように配置されると共に、感温素子の電極線と接続される一対の金属芯線をシースパイプの内部に絶縁保持してなるシース部材と、を備える温度センサの製造方法であって、金属チューブは、先端側が閉塞した有底筒状の第1筒状部と、両端が開口する筒状の第2筒状部とが軸線方向に隣接配置される形態で構成されるものとされており、
感温素子の電極線とシース部材の金属芯線とを互いに接合して感温素子組立体を作製する第1工程と、
第2筒状部の両端のいずれかの開口より感温素子組立体を挿入すると共に、第2筒状部の先端側から感温部の少なくとも一部を突き出させる形態で、第2筒状部の内部に位置するシース部材と当該第2筒状部とを固定して、感温素子組立体を第2筒状部に組み付ける第2工程と、
感温素子組立体が組み付けられた第2筒状部の先端部を、第1筒状部の後端部の内側または外側に位置させた形で重なり部を生ずるように配置し、重なり部に周方向にわたって溶接を行う第3工程と、
を備えることを特徴とする温度センサの製造方法である。
【0008】
本発明の温度センサの製造方法では、有底筒状の金属チューブを従来のように一部材で形成せずに、複数の部材(筒状部)にて形成している。そして、複数の部材の1つである第2筒状部の両端のいずれかの開口より、感温素子が接続されるシース部材を挿入し、第2筒状部の内部に位置するシース部材と当該第2筒状部とを固定する。このとき、第2筒状部の先端側から感温部の少なくとも一部を突き出せる形態で、第2筒状部とシース部材とを固定する。そして、先端側から感温部の少なくとも一部を突き出させた状態の第2筒状部に対して、有底筒状の第1筒状部を周方向にわたって溶接して、金属チューブ内に感温素子を収納させている。
【0009】
つまり、本発明の温度センサの製造方法によれば、第2筒状部に感温素子組立体を挿入する過程において、感温部が第2筒状部の内壁面に当たってシース部材の金属芯線や感温素子の電極線が曲がったとしても、第2筒状部の両端を開口させているので、同第2筒状部の先端側から感温部の少なくとも一部を確実に所定寸法(予定した寸法)だけ突き出させるように調整することができる。そして、先端側から感温部を所定寸法突き出させた状態の第2筒状部と有底筒状の第1筒状部とを同軸状に所定寸法(予定した寸法)だけ重ねて溶接すれば、有底筒状の金属チューブの狙い配置位置に感温素子を確実に配置させることができる。従って、金属チューブを複数の部材にて形成してなる本発明によれば、同一品番の温度センサを量産する場合にも、感温素子(感温部)を金属チューブ内の所定位置(狙い配置位置)に確実に配置させることができる。
【0010】
また、本発明の温度センサの製造方法では、シース部材(感温素子組立体)が固定された第2筒状部の先端部に第1筒状部の後端部の内側または外側に位置する形で重なり部を生ずるように配置して溶接するようにしているので、容易に有底筒状の金属チューブを形成することができる。よって、本発明によれば、感温素子(感温部)を金属チューブ内の狙い配置位置に配置させた温度センサを製造効率良く、且つ容易に製造することができる。
【0011】
感温素子としては、感温部としてサーミスタ焼結体を用い、このサーミスタ焼結体に電極線の一部を埋設させたサーミスタ素子や、温度によって抵抗値が変化する金属抵抗体をセラミック基板上に形成したものを感温部として用い、この金属抵抗体に電極線を接続した基板型素子等を挙げることができる。さらに、金属チューブを構成することになる第1筒状部及び第2筒状部は、十分な機械的強度及び耐熱性等を有する金属材料にて形成されていればその材質は特に限定されず、具体的にはステンレス合金やインコネル材によって形成することができる。
【0012】
感温素子組立体が組み付けられた第2筒状部の先端部を第1筒状部の後端部の内側または外側に位置する形で重なり部を生ずるように配置するにあたっては、両者を当接させる形態で重なり部を生ずるように配置しても良いし、両者が遊嵌状態で重なり部を生ずるように配置しても良い。また、この重なり部を周方向にわたって溶接するための溶接手法は特に限定されないが、具体的な手法として、レーザー溶接、プラズマ溶接、電子ビーム溶接、アルゴン溶接等を挙げることができる。なお、この中でもレーザー溶接が安価な手法でありながら、良好な溶接強度を得ることができることから最も好ましい。
【0013】
ついで、上記温度センサの製造方法であって、前記第2工程において、前記第2筒状部の先端側から前記感温素子の前記電極線と前記シース部材の前記金属芯線との接続部までを少なくとも突き出させるようにして、前記感温素子組立体を前記第2筒状部に組み付ける温度センサの製造方法とすると良い。
【0014】
第2筒状部に感温素子が接続されたシース部材を挿入する過程においては、上述したようにシース部材の金属芯線や感温素子の電極線が曲がることがあるが、この曲がりの程度によっては、金属芯線と電極線の接続部が切り離されたりするといった不具合を招く可能性がある。そのために、感温部の一部のみを第2筒状部の先端側から突き出す形態で、第2筒状部とシース部材とを固定したのでは、感温部を金属チューブの狙い配置位置に配置させることはできるものの、感温部からの電気的出力を、電極線及び金属芯線を介して出力することができないおそれがある。
【0015】
これに対して、本発明の温度センサの製造方法によれば、第2工程において、感温素子の電極線とシース部材の金属芯線との接続部までを少なくとも第2筒状部の先端側から突き出させた形態で、第2筒状部とシース部材とを組み付けるようにしている。これにより、シース部材(感温素子組立体)を第2筒状部に組み付けた後、第2筒状部の先端側にて、電極線と金属芯線との接続部の状態を確認することができる。従って、本発明によれば、感温素子(感温部)を金属チューブ内の狙い配置位置に配置させつつ、電気的な信頼性に優れた温度センサを、製造効率良く得ることができる。なお、本明細書において、「感温素子の電極線とシース部材の金属芯線との接続部」とは、該電極線と該金属芯線とが重なり合う(ラップする)部位を指すものである。
【0016】
なお、上記温度センサの製造方法では、第2工程において、上記接続部に留まらず、シース部材のシースパイプの先端から突き出た金属芯線までを第2筒状部の先端側から突き出させた形態で、第2筒状部とシース部材とを組み付けると良い。このようにすれば、シース部材(感温素子組立体)を第2筒状部に組み付けた後、第2筒状部の先端側にて、電極線と金属芯線との接続部の状態を確認する以外に、電極線同士、金属芯線同士が接触して短絡を生じていないかどうかを確認することができ、より電気的な信頼性に優れた温度センサを製造することができる。
【0017】
さらに、上記いずれかに記載の温度センサの製造方法であって、前記第2工程において、前記第2筒状部と前記シース部材との固定は、前記第2筒状部を前記シース部材の前記シースパイプの外周面に向けて加締めることにより行う温度センサの製造方法とすると良い。
【0018】
このように、第2筒状部とシース部材とを加締め固定することにより、両者を安価な手法により強固に固定することができる。なお、第2筒状部とシース部材とを加締め固定するにあたっては、第2筒状部の周方向において2点以上で加締めることが好ましい。第2筒状部内において、シース部材を安定して固定することができるからである。また、シースパイプの外側にて行われる第2筒状部の加締めにおいて、その加締め深さが第2筒状部の肉厚以上になると、加締めを行ったときに同第2筒状部が破損する(換言すれば、加締め割れを生ずる)おそれがある。そこで、この第2筒状部の破損を抑制するために、第2筒状部の肉厚をD(単位:mm)、シースパイプの外周面と第2筒状部の内周面との加締め前における隙間をS(単位:mm)としたときに、D≧Sの関係を満たすように調整されていることが好ましい。
【0019】
また、上記温度センサの製造方法において、前記第2筒状部の軸線方向における離間した少なくとも2箇所以上の位置において、前記第2筒状部を前記シース部材の前記シースパイプに向けて加締めるようにすると良い。
【0020】
このように、第2筒状部の軸線方向の離間した少なくとも2箇所以上の位置にて、第2筒状部とシース部材との加締め固定を行うことによって、第2筒状部に対するシース部材の固定をより安定して実現することができる。なお、この軸線方向の離間した位置での各加締めについても、第2筒状部の周方向において2点以上で加締めることが好ましい。
【0021】
さらに、上記いずれかに記載の温度センサの製造方法であって、前記第3工程において、前記第2筒状部の先端部と前記第1筒状部の後端部を遊嵌状態で前記重なり部が生ずるように配置し、前記重なり部において該第1筒状部及び該第2筒状部のうちで外側に位置する筒状部を内側に位置する筒状部に向けて周方向に加締めることで加締め部を形成して、前記加締め部に周方向の前記溶接を行うようにすると良い。
【0022】
第2筒状部の先端部と第1筒状部の後端部とを重なり部を生ずるように配置させるにあたっては、例えば第2筒状部の先端部外側に対して第1筒状部を圧入させれば実現することが可能である。ところで、この第3工程では、有底筒状の金属チューブ内の狙い位置に感温部を配置させるために、上述したように先端側から感温部を所定寸法突き出させた第2筒状部と有底筒状の第1筒状部とを所定寸法重ね合わせる必要がある。しかし、第1筒状部と第2筒状部とを上記圧入によって所定寸法重ねるには、両筒状部に対する径寸法の管理をかなり厳しく行う必要があると共に、圧入工程に手間がかかるため好ましい態様とは言い難い側面がある。
【0023】
これに対して、本発明の温度センサの製造方法では、まず、第2筒状部の先端部と第1筒状部の後端部を遊嵌状態で重なり部が生ずるように配置させるようにしている。このように両筒状部を遊嵌状態で重ね合わせるようにすることで、両筒状部を容易に所定寸法だけ重ねることができる。
【0024】
そして、第2筒状部の先端部と第1筒状部の後端部を遊嵌状態で重なり部が生ずるように配置した後、この重なり部において第1筒状部及び第2筒状部のうちで外側に位置する筒状部を内側に位置する筒状部に向けて周方向に加締めることで加締め部を形成するようにしている。このような加締め部を形成することにより、遊嵌状態に重ねられた両筒状部との間の隙間を減少させて密着性を高めることができる。そして、このように両筒状部の密着性が高まった状態にある周方向に形成された加締め部に対し周方向の溶接を行うことによって、第1筒状部と第2筒状部とを確実に溶接することができる。
【0025】
このように本発明によれば、上記加締め部を形成するようにしたので、第1筒状部及び第2筒状部に対する径寸法管理を極度に厳しく行わなくとも、両筒状部を所定寸法重ね合わせた後に確実に溶接することができ、ひいては温度センサの製造効率を高めることができる。なお、上記重なり部において第1筒状部及び第2筒状部のうちで外側に位置する筒状部を内側に位置する筒状部に向けて周方向に加締めるにあたっては、六角加締めや八角加締めといった多角加締めの方法で行っても良いし、丸加締め等の方法で行っても良い。
【0026】
さらに、上記いずれかに記載の温度センサの製造方法であって、前記第2筒状部の外径よりも小さい内径を有する小径部と、前記小径部よりも後端側に位置すると共に、前記第2筒状部の外径以上の内径を有する前記後端部と、前記小径部と前記後端部とを繋ぐ段部とを有する前記第1筒状部を、前記第3工程に先立って形成し、前記第3工程において、前記第2筒状部の先端が前記第1筒状部の前記段部に当接するように、且つ前記第1筒状部の前記後端部の内側に前記第2筒状部の先端部を位置させた形で前記重なり部を生ずるように、該第1筒状部と該第2筒状部とを組み付ける温度センサの製造方法とすると良い。
【0027】
本発明の温度センサでは、第1筒状部として、先端側から小径部、段部、後端部の順に形成された第1筒状部を用いるようにし、第2筒状部の外径よりも小さく内径を有する小径部と、第2筒状部の外径以上の内径を有する大径部と、それらを繋ぐ段部とを有するものを用いている。そして、この第1筒状部を第2筒状部に挿入するにあたって、第1筒状部の小径部の後端側に連結する段部の内面に第2筒状部の先端が当接するまで挿入を行い、第2筒状部に対する第1筒状部の軸線方向における位置決めを行うようにしている。
【0028】
それより、本発明の温度センサの製造方法では、第2筒状部の先端が第1筒状部の段部の内面に当接した時点で、所定寸法(予定した寸法)の重なり部が生ずるように第1筒状部の各寸法を予め調整しておくことにより、第2筒状部32の先端が第1筒状部31の段部38の内面に当接するように挿入を行うだけで、重なり部の重なり寸法を予定した値に設定することができる。その結果、感温部を第1筒状部の狙い位置により確実に配置させることが可能となる。なお、第1筒状部と第2筒状部の軸ズレを有効に防止するために、段部の内面はテーパ形状をなしていることが好ましい。
【0029】
また、上記いずれかに記載の温度センサの製造方法であって、前記第3工程において、前記第2筒状部の先端側から突き出た前記感温部の周囲を加熱処理によって絶縁性部材となるペースト状の絶縁性ペーストにて覆った上で、前記第1筒状部と前記第2筒状部とを前記重なり部を生ずるように配置させ、第3工程を経て得られた組立体に対して加熱処理を行って、前記感温部と前記第1筒状部との間に絶縁部材を介在させるようにすると良い。
【0030】
このようにして、第2筒状部の先端側から突き出た感温部の周囲であって、第1筒状部の内壁面との間に絶縁部材を介在させることにより、感温素子を振動から保護するができ、感温素子に熱を早く伝えて応答性を向上可能な温度センサを製造することができる。また、本発明の温度センサの製造方法によれば、第1工程の段階で感温素子組立体の感温部に絶縁性ペーストを被覆せずに、第2筒状部に感温素子組立体を組み付けた後に、その第2筒状部の先端側から突き出た感温部に絶縁性ペーストを被覆するようにしている。その結果、前記第2工程において、感温部を第2筒状部の先端側から所定寸法突き出させることが容易となり、温度センサの製造効率を高めることができる。
【0031】
【発明の実施の形態】
(実施形態)
本発明の実施の形態である温度センサ1について、図面を参照しつつ説明する。図1は、本発明の温度センサ1の構造を示す部分破断断面図である。また、図2は図1に示した温度センサ1の要部であるサーミスタ素子2近傍の拡大図である。この温度センサ1は、サーミスタ素子2を感温素子として用いたものであり、同温度センサ1を自動車の排気管に装着することにより、サーミスタ素子2を排気ガスが流れる排気管内に配置させて、排気ガスの温度検出に使用するものである。
【0032】
金属チューブ3は、先端側(図1における下側)が閉塞した有底筒状に形成されており、この先端側の内部にサーミスタ素子2を収納している。この金属チューブ3は、先端側が閉塞する一方で後端側が開口する有底筒状の第1筒状部31と、両端が開口する筒状の第2筒状部32とが、軸線方向に隣接配置される形態で構成されている。より具体的には、第2筒状部32の先端部の外周面を取り囲むように第1筒状部31が配置され、周方向にわたって形成される加締め部39によって加締め固定されると共に、その加締め部39に全周レーザー溶接されることによって一体化されている。なお、この第1筒状部31、第2筒状部32は、略同等の肉厚を有しており、後述するようにステンレス合金から形成されている。
【0033】
第1筒状部31は、サーミスタ素子2の感温部であるサーミスタ焼結体21を内部に収納している。なお、第1筒状部31のうちで第2筒状部32の先端部の外側面との間で重なり部37を生ずる部位(後端部36)よりも先端側には、第2筒状部32の外径よりも内径が小さく形成された小径部33が形成されている。また、第1筒状部31には、小径部33と後端部36とを繋ぐ段部38が形成されており、この段部38の内面に第2筒状部32の先端を当接させることで、第2筒状部32に対する第1筒状部31の軸線方向における位置決めを行っている。
【0034】
第1筒状部31の小径部33の内部には、感温部であるサーミスタ焼結体21の全体が収納される。そして、この小径部33の内部には、絶縁性部材であるセメント10が充填されている。より具体的には、サーミスタ焼結体21の外表面と第1筒状部31(詳細には小径部33)の内壁面との間にセメント10が介在するように、小径部33の内部にセメント10が充填されている。このようにセメント10が介在することで、振動等によるサーミスタ素子2の揺動が防止される。さらには、金属チューブ3(第1筒状部31)の受熱を、セメント10を介してサーミスタ焼結体21に効率良く伝熱することができ、温度検出の高速応答化を図ることができる。なお、本実施の形態に使用されるセメント10は、アルミナ粉末を主成分とする骨材と、Siを含むガラス成分とからなる。
【0035】
一方、第2筒状部32は、後端側がステンレス合金製のフランジ4の内側に挿通される形態で、同フランジ4に固定される。この第2筒状部32は、内部に後述するシース部材8の先端側を配置している。なお、第2筒状部32の軸線方向における離間した2箇所の位置(部位)には、自身の外側からシース部材8(詳細には、後述するシース部材8のシースパイプ9の外周面)に向けて加締めることによって形成された先端側加締め部34と、後端側加締め部35とが備えられている。この先端側加締め部34と後端側加締め部35によって、第2筒状部32とシース部材8とは固定(加締め固定)されている。
【0036】
フランジ4は、軸線方向に延びる鞘部42と、この鞘部42の先端側に位置し、径方向外側に向かって突出する突出部41とを有している。突出部41は、先端側に図示しない排気管の取付部のテーパ部に対応したテーパ形状を有する座面45を有する環状に形成されており、座面45が上記取付部のテーパ部に密着することで、排気ガスが排気管外部へ漏出するのを防止するようになっている。また、鞘部42は環状に形成される一方、先端側に位置する先端側段部44と先端側段部44よりも小さい外径を有する後端側段部43とを備える二段形状をなしている。
【0037】
第2筒状部32は、自身の先端側からフランジ4の後端側より挿入され、鞘部42の内側に圧入固定されている。そして、第2筒状部32の外周面と鞘部42の後端側段部43の内周面との重なり合う部分が、周方向にわたってレーザー溶接されている。
【0038】
フランジ4の周囲には、六角ナット部51及びネジ部52を有するナット5が回動自在に嵌挿されている。温度センサ1は、排気管の取付部にフランジ4の突出部41の座面45を当接させ、ナット5により固定される。また、フランジ4の内で鞘部42の先端側段部44の径方向外側には、筒状の継手6が気密状態で接合されている。具体的には、鞘部42の先端側段部44の外周面に継手6の内周面が重なり合うように、同継手6が鞘部42の先端側段部44に圧入され、継手6と先端側段部44とが周方向にわたってレーザー溶接されている。
【0039】
金属チューブ3における第2筒状部32、フランジ4及び継手6の内部には、一対の金属芯線7をシースパイプ9内に絶縁保持してなるシース部材8が配置される。シース部材8は、上述したように第2筒状部32に対して加締め固定されている。このシース部材8の先端側から突出する金属芯線7は、サーミスタ素子2を構成する一対のPt/Rh合金製の電極線22に互いに抵抗溶接されることで接続されている。なお、一対の電極線22は、自身の先端部が軸断面六角形状をなすサーミスタ焼結体21の内部に埋設されており、サーミスタ焼結体21と同時に焼成されて形成されている。また、シース部材8は、SUS310Sからなるシースパイプ9と、SUS310Sからなる導電性の一対の金属芯線7と、シースパイプ9と各金属芯線7の間に充填される絶縁粉末14(図4参照)とから形成され、金属芯線7が絶縁状態でシースパイプ9に保持された形態で構成されている。
【0040】
継手6の内部にてシース部材8の後端側へ突き出す金属芯線7は、加締め端子11を介して一対の外部回路(例えば車両のECU等)接続用のリード線12に接続されている。一対の金属芯線7及び一対の加締め端子11は、絶縁チューブ15により互いに絶縁される。リード線12は、ステンレス合金製の導線を絶縁性の被覆材にて被覆したものであり、継手6の後端側開口に備えられる耐熱ゴム製の補助リング13に挿通される。補助リング13は、継手6の上から丸加締め或いは多角加締めされることにより、両者13、6が気密性を保ちながら互いに固定される。そして、排気ガスの温度変化に応じたサーミスタ焼結体21からの電気的出力は、電極線22、シース部材8の金属芯線7、リード線12を介して図示しない外部回路(例えば、ECU)に取り出され、排気ガスの温度検出に用いられる。
【0041】
この排気ガスの温度を検出する温度センサ1は、最高温度で1000℃にも達する高温環境下で使用されるため、各々の構成部材は十分な耐熱性を有している必要がある。そのため、金属チューブ3を構成する第1筒状部31及び第2筒状部32、フランジ4、金属芯線7は、Feを主成分とし、C、Si、Mn、P、S、Ni及びCrを含有する耐熱合金であるSUS310Sにより形成されている。また、継手6は、SUS304に形成されている。
【0042】
温度センサ1は、以下のようにして製造される。まず、SUS310S製の鋼板に深絞り加工を行って、肉厚0.3mm、内径2.7mm、外径3.3mm、全長(軸線方向における寸法)54mmをなし、両端が開口した第2筒状部32と、肉厚0.3mm、全長(軸線方向における寸法)13mmをなす有底筒状の第1筒状部31とを形成する。なお、第1筒状部31については、内径2.6mm、外径3.2mmの小径部33と、内径3.4mm、外径4.0mmの後端部36と、小径部33と後端部36とを繋ぐテーパ形状を有する段部38とが形成されるように加工を施した。また、別途SUS310Sの金属体に対して冷間鍛造又は/及び切削加工を施して、第2筒状部32を圧入固定するための内孔と、先端側段部44と後端側段部43とを有する二段形状をなす鞘部42と、この鞘部42の先端側に位置し、径方向外側に向かって突出する突出部41とを有するフランジ4を形成する。
【0043】
そして、第1工程として、サーミスタ素子2の電極線22とシース部材8の金属芯線7とを所定寸法だけラップするように重ね合わせ、互いを抵抗溶接することによって、図3に示すようなシース部材8にサーミスタ素子2が接続された感温素子組立体Kを作製する(サーミスタ素子2の電極線22とシース部材8の金属芯線7とのラップした部位が、特許請求の範囲の「接続部」に相当)。図3は、感温素子組立体Kの外観図を示している。なお、シース部材8を構成するシースパイプ9の先端側の所定領域には、後工程において、第1筒状部31と第2筒状部32とを加締め固定した際に形成される加締め部39が自身の外周面に接触しないように、径方向内側に向かって窪む凹部81を形成している。また、このシースパイプ9は、上記凹部81を除く部分の肉厚が0.3mm、外径が2.5mmとなるように形成されている。ついで、第2筒状部32をフランジ4の内孔に圧入固定し、第2筒状部32の外周面と鞘部42の後端側段部43の内周面との重なり合う部分を、周方向にわたってレーザー溶接する。
【0044】
そして、第2工程として、フランジ4にレーザー溶接された第2筒状部32内に感温素子組立体Kを挿入する。このとき、感温素子組立体Kのサーミスタ素子2が配置される側から、第2筒状部32の後端側の開口への挿入を開始する。そして、第2筒状部32の先端側からサーミスタ素子2のサーミスタ焼結体21を所定寸法L1(図5参照)だけ突き出させ、サーミスタ焼結体21が所定寸法L1突き出た時点で、感温素子組立体Kの第2筒状部32への挿入を終了する。その後、第2筒状部32の先端側から突き出た状態にある電極線22と金属芯線7との接続部に異常がないかどうか、さらには電極線22同士、金属芯線7同士が接触していないかを確認する。この確認作業にて感温素子組立体Kに異常無しと判断されると、続いて第2筒状部32と感温素子組立体Kとを固定する作業を行う。
【0045】
第2筒状部32と感温素子組立体Kとの固定については、以下の手順により行う。まず、第2筒状部32のうちで、フランジ4よりも先端側に突き出た部位であって且つフランジ4の先端に近接した部位を、シース部材8のシースパイプ9の外周面に向けて加締める。この加締め工程は、図4(a)及び(b)に示すように、加締め型Bを用いて、第2筒状部32の外側から周方向において対向する2点を加締めるようにして行う。これにより、2つの後端側加締め部35を形成し、シース部材8(感温素子組立体K)と第2筒状部32とを加締め固定する。
【0046】
ついで、後端側加締め部35よりも軸線方向先端側に離間した部位であって且つ凹部81よりも後端側の部位を、シース部材8のシースパイプ9の外周面に向けて加締める。この加締め工程についても、上述した加締め型Bを用い、第2筒状部32の外側から周方向において対向する2点を加締めるようにした。これにより、2つの先端側加締め部34を形成し、上記後端側加締め部35と共にシース部材8(感温素子組立体K)と第2筒状部32とを加締め固定する。このようにして、第2筒状部32の先端側からサーミスタ焼結体21を所定寸法L1だけ突き出させた形態で、感温素子組立体Kと第2筒状部32とを一体的に組み付ける。感温素子組立体Kと第2筒状部32が一体的に組み付けられた組付体構造の部分破断断面図を、図5に示す。
【0047】
ここで、本実施の形態では、詳細は図示しないが、対向し合う2つの後端側加締め部35同士を第2筒状部32の軸線方向に直交する向きに結んだ仮想線と、対向し合う2つの先端側加締め部34同士を上記軸線方向に直交する向きに結んだ仮想線とが、第2筒状部32の軸線方向に沿ってみたときに直交する関係を満たすように、両加締め部34、35を形成している。このような直交関係を満たすように両加締め部34、35を形成することで、第2筒状部32内に配置されるシース部材8をより安定して保持することができる。なお、上記仮想線については、周方向における2点の加締め部をみたときに第2筒状部32の内周面とシースパイプ9の外周面とが点接触する場合、その点接触する箇所同士を第2筒状部32の軸線方向に直交する向きに結ぶことで導くことができる。一方、周方向における2点の加締め部をみたときに第2筒状部32の内周面とシースパイプ9の外周面とが面接触する場合には、その面接触する部分の中央部(中心)同士を第2筒状部32の軸線方向に直交する向きに結ぶことで上記仮想線を導くことができる。
【0048】
なお、本実施形態では、先端側加締め部34および後端側加締め部35の各加締め部を、軸線方向に沿った軸線長さが加締め幅よりも長い寸法を有するように形成している。具体的に、両加締め部34、35のそれぞれは、軸線長さL5を4.0mm、加締め幅Wを0.4mmとなるように形成した(図4参照)。このように各加締め部の軸線長さを加締め幅よりも長い寸法を有するように形成することで、第2筒状部32に対して細長いシース部材8を安定して固定することができる。
【0049】
ついで、感温素子組立体Kを組み付けた第2筒状部32に対して、第1筒状部31を組み付けてサーミスタ素子2を有底筒状の金属チューブ3の内部に収納させる第3工程を行う。まず、第2筒状部32の先端側から所定寸法L1だけ突き出たサーミスタ焼結体21の周囲を覆うように、セメント10となる絶縁性ペーストを塗布する。ついで、第2筒状部32の先端側から第1筒状部31を遊嵌状に且つ同軸状に挿入し、第1筒状部31の後端部36が第2筒状部32の先端部の外側面を取り囲むように、第2筒状部32に対して第1筒状部31を隣接配置させる。このとき、図6に示すように、第2筒状部32の先端部に遊嵌状態で所定寸法L2の重なり部37を生ずるように、且つサーミスタ素子2のサーミスタ焼結体21が絶縁性ペーストと共に第1筒状部31の小径部33に収納されるように、第1筒状部31を第2筒状部32に対して配置させる。
【0050】
ここで、本実施の形態では、第1筒状部31を第2筒状部32に挿入するにあたって、第1筒状部31の小径部33の後端側に連結する段部38の内面に第2筒状部32の先端が当接するまで挿入を行うことで、第2筒状部32に対する第1筒状部31の軸線方向における位置決めを行っている。つまり、本実施の形態では、第1筒状部31を第2筒状部32に遊嵌状且つ同軸状に挿入していき、第2筒状部32の先端が第1筒状部31の段部38の内面に当接した時点で、所定寸法L2の重なり部37が生ずるように、第1筒状部31の各寸法を予め調整しているのである。これにより、本実施の形態では、第1筒状部31の各寸法を適宜調整し、第2筒状部32の先端が第1筒状部31の段部38の内面に当接するように挿入を行うことで、第2筒状部32に対する第1筒状部31の軸線方向における重なり寸法(図6のL2に相当)を一義的に決めることができる。その結果、サーミスタ焼結体21を第1筒状部31の狙い位置に確実に配置させることが可能となる。
【0051】
ついで、第1筒状部31の後端部36と第2筒状部32の先端部の重なり部37であって、シース部材8のシースパイプ9に形成した凹部81を取り囲む部位において、外側に位置する第1筒状部31を内側に位置する第2筒状部32に向けて周方向に加締めて、加締め部39を形成する。このとき、加締め部39は、リードパイプ9の凹部81の表面に接触しないように形成する。なお、この加締めは、八方丸加締めにて行った。このようにして形成される加締め部39は、後述する全周レーザー溶接によるレーザー溶接部の形成部位にあたるが、この加締め部39を形成することで、第1筒状部31と第2筒状部32との間の隙間量を減少させることができ、溶接強度に優れる全周レーザー溶接を行うことができる。
【0052】
そして、図7に示すように、この重なり部37に形成された加締め部39に対して、レーザー光LBを照射して全周レーザー溶接を行い、第1筒状部31と第2筒状部32とに跨るレーザー溶接部を形成して、両筒状部31、32を一体化する。その後、両筒状部31、32を一体化した組立体を加熱処理することで、絶縁性ペーストを固化させてセメント10を得る。
【0053】
ついで、公知の手法により、加締め端子11を用いてシース部材8の金属芯線7の後端部とリード線12とを電気的に接続する。その後、筒状の継手6を、鞘部42の先端側段部44の径方向外側に圧入して、継手6と先端側段部44を周方向にわたってレーザー溶接する。そして、補助リング13やナット5等を適宜組み付ける。このようにして、温度センサ1の製造を完了する。
【0054】
このような温度センサ1の製造方法によれば、第2筒状部32に感温素子組立体Kを挿入する過程において、サーミスタ焼結体21が第2筒状部32の内壁面に当たってシース部材8の金属芯線9やサーミスタ素子2の電極線22が曲がったとしても、第2筒状部の両端を開口させているので、第2筒状部32の先端側からサーミスタ焼結体21を確実に予定した所定寸法L1だけ突き出させることができる。そして、上述した製造方法では、先端側からサーミスタ焼結体21を所定寸法L1突き出させた第2筒状部32と有底筒状の第1筒状部31とを同軸状に所定寸法L2だけ重ねて、両筒状部31、32を溶接により一体化することで、有底筒状の金属チューブ3の予定した位置(狙い配置位置)にサーミスタ素子2(サーミスタ焼結体21)を配置させた温度センサ1を得ることができる。従って、この温度センサ1の製造方法によれば、同一品番の温度センサを量産する場合にも、サーミスタ素子2(サーミスタ焼結体21)を金属チューブ3内の所定位置(狙い配置位置)に確実に配置させることができる。
【0055】
また、上述した温度センサ1の製造方法では、シース部材8(感温素子組立体K)が固定された第2筒状部32の先端部に第1筒状部31の後端部の内側が位置する形で重なり部37を生ずるように配置して溶接しているので、容易に有底筒状の金属チューブ3を形成することができる。よって、サーミスタ素子2(サーミスタ焼結体21)を金属チューブ3内の狙い配置位置に配置させた温度センサ1を製造効率良く、且つ容易に製造することができる。
【0056】
以上において、本発明を実施の形態に即して説明したが、本発明は上述した具体的な実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。例えば、感温素子組立体K(シース部材8)と第2筒状部31を加締め固定するにあたっては、第2筒状部32の外側から周方向において対向する2点を加締める形態に限らず、第2筒状部32の外周面から周方向に等間隔で3点を加締めるようにして、先端側加締め部34及び後端側加締め部35を形成し、両者を加締め固定しても良い。
【0057】
また、第1筒状部31と第2筒状部32の重なり部37における溶接は、レーザー溶接を周方向にわたって行っているが、溶接はレーザーに限らずプラズマ溶接でも良い。さらに、本実施の形態では、サーミスタ焼結体21を感温部としたサーミスタ素子2を感温素子として使用したが、温度によって抵抗値が変化する金属抵抗体をセラミック基板上に形成したものを感温部とし、この金属抵抗体に電極線を接続した基板型素子を感温素子として用いても良い。また、本実施の形態では、第2筒状部32の先端側からサーミスタ素子2の全体を突き出させるようにしたが、サーミスタ素子2を構成するサーミスタ焼結体21の少なくとも一部を所定寸法突き出させるようにして、温度センサを製造しても良い。
【0058】
また、感温部をなすサーミスタ焼結体21の形状は、軸断面において六角形状に限定されず、円形状や楕円形状であっても良い。さらに、本発明の温度センサ1は、排気温センサのみならず、被測定流体として水や油等の液体が流れる流通路に取り付けられる温度センサにも適用可能である。
【図面の簡単な説明】
【図1】第1筒状部と第2筒状部を軸線方向に隣接配置して構成された有底筒状の金属チューブ内に、感温素子であるサーミスタ素子を収納した温度センサの全体構造を示す部分破断断面図である。
【図2】図1に示す温度センサにおいて、要部であるサーミスタ素子2近傍の拡大図である。
【図3】サーミスタ素子とシース部材とを組み付けた感温素子組立体の外観図である。
【図4】第2筒状部をシース部材のシースパイプの外周面に向けて加締める工程を模式的に示す図である。
【図5】第2筒状部の先端側から所定寸法サーミスタ素子(サーミスタ焼結体)を突き出させた状態で、感温素子組立体と第2筒状部を一体的に組み付けた構造を示す部分破断断面図である。
【図6】感温素子組立体を組み付けた第2筒状部の先端部の外側に、第1筒状部の後端側を所定寸法重なるようにして遊嵌状に配置させた状態を示す図である。
【図7】レーザーを照射して第1筒状部と第2筒状部を全周レーザー溶接する状態を模式的に示す図である。
【符号の説明】
1・・・温度センサ、2・・・サーミスタ素子、21・・・サーミスタ焼結体、22・・・電極線、3・・・金属キャップ、31・・・第1筒状部、32・・・第2筒状部、33・・・小径部、34・・・先端側加締め部、35・・・後端側加締め部、36・・・後端部、37・・・重なり部、38・・・段部、39・・・加締め部、4・・・フランジ、6・・・継手、7・・・金属芯線、8・・・シース部材、9・・・シースパイプ、10・・・セメント、12・・・リード線、14・・・絶縁粉末、K・・・感温素子組立体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature sensor in which a temperature sensing element having a temperature sensing part such as a thermistor sintered body or a metal resistor made of a semiconductor such as a metal oxide is housed in a bottomed cylindrical metal tube. Specifically, the temperature of the fluid to be measured is detected by disposing a temperature sensing element in a flow path through which the fluid to be measured (for example, exhaust gas) flows, such as in a catalytic converter or an exhaust pipe of an automobile exhaust gas purification device. It relates to a temperature sensor.
[0002]
[Prior art]
Conventionally, a temperature sensor that detects the temperature of exhaust gas flowing through an exhaust gas passage such as the inside of a catalytic converter or an exhaust pipe of an exhaust gas purification device of an automobile by a thermistor element that is a temperature sensing element, a so-called exhaust temperature sensor is known. ing. As this type of temperature sensor, there is one in which the thermistor element is housed in a bottomed cylindrical metal tube whose front end is closed. More specifically, a sheath member formed by insulating and holding a metal core wire connected to the electrode wire of the thermistor element in a sheath pipe is formed in a bottomed cylindrical metal tube formed from one member welded to a flange. There is known a temperature sensor having a structure in which a thermistor element is disposed inside a distal end side of a metal tube while being inserted into a metal tube (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-266609 A (FIGS. 1 and 2)
[0004]
[Problems to be solved by the invention]
By the way, in manufacturing a temperature sensor of such a form, a sheath member to which a thermistor element is connected is inserted into a bottomed cylindrical metal tube, and the sheath member is inserted into the metal tube with a predetermined size. The thermistor element is positioned in the metal tube (in other words, positioning in the axial direction with reference to the tip of the metal tube). However, when the sheath member to which the thermistor element is connected is inserted into an elongated bottomed cylindrical metal tube, the thermistor element may hit the inner wall surface of the metal tube in the insertion process. As a result, the metal core wire of the sheath member and the electrode wire of the thermistor element are bent by the impact.
[0005]
As described above, if the metal core wire or the electrode wire is bent during the insertion process, even if the thermistor element is positioned by inserting the sheath member into the bottomed cylindrical metal tube with a predetermined dimension, In some cases, the thermistor element may be displaced from the target position. Therefore, in the conventional temperature sensor manufacturing method, when the temperature sensor of the same part number is mass-produced, the position of the thermistor element in the metal tube tends to vary, and there is a possibility that the temperature detection accuracy may vary. .
[0006]
The present invention solves the above-described conventional problems, and in manufacturing a temperature sensor having a structure in which a temperature sensitive element such as a thermistor element connected to a sheath member is housed in a bottomed cylindrical metal tube. It is an object of the present invention to provide a method of manufacturing a temperature sensor that is easy to manufacture and can reliably arrange a temperature sensitive element at a predetermined position (target position) in a metal tube.
[0007]
[Means for Solving the Problems]
The solution includes a cylindrical metal tube whose front end is closed, a temperature-sensitive part whose electrical characteristics change depending on temperature, and a pair of electrode wires provided therein, and is stored in the metal tube. A temperature provided with a temperature element and a sheath member that is arranged along the axial direction of the metal tube and that insulates and holds a pair of metal core wires connected to the electrode wires of the temperature sensing element inside the sheath pipe A method for manufacturing a sensor, in which a metal tube is configured such that a bottomed cylindrical first cylindrical portion whose front end side is closed and a cylindrical second cylindrical portion having both ends open are disposed adjacent to each other in the axial direction. It is supposed to consist of
A first step of joining the electrode wire of the temperature sensing element and the metal core wire of the sheath member together to produce a temperature sensing element assembly;
In the form in which the temperature sensing element assembly is inserted from one of the openings at both ends of the second cylindrical part, and at least a part of the temperature sensing part is protruded from the distal end side of the second cylindrical part. A second step of fixing the sheath member positioned inside the second tubular portion and assembling the temperature sensing element assembly to the second tubular portion;
The tip part of the second cylindrical part to which the temperature sensing element assembly is assembled is arranged so as to form an overlapping part in a form positioned inside or outside the rear end part of the first cylindrical part. A third step of welding over the circumferential direction;
A temperature sensor manufacturing method characterized by comprising:
[0008]
In the temperature sensor manufacturing method of the present invention, the bottomed cylindrical metal tube is not formed as a single member as in the prior art, but is formed with a plurality of members (cylindrical portions). Then, a sheath member to which the temperature-sensitive element is connected is inserted through an opening at either end of the second cylindrical portion which is one of the plurality of members, and the sheath member positioned inside the second cylindrical portion The second cylindrical part is fixed. At this time, the second tubular portion and the sheath member are fixed in a form in which at least a part of the temperature sensing portion can protrude from the distal end side of the second tubular portion. Then, the bottomed cylindrical first cylindrical part is welded in the circumferential direction to the second cylindrical part in a state in which at least a part of the temperature-sensitive part protrudes from the distal end side, and is sensed in the metal tube. The temperature element is stored.
[0009]
That is, according to the temperature sensor manufacturing method of the present invention, in the process of inserting the temperature sensing element assembly into the second cylindrical part, the temperature sensing part hits the inner wall surface of the second cylindrical part and the metal core wire of the sheath member or Even if the electrode wire of the temperature sensing element is bent, since both ends of the second cylindrical portion are opened, it is ensured that at least a part of the temperature sensing portion has a predetermined dimension (planned) from the tip side of the second cylindrical portion. Can be adjusted so as to protrude only by the dimension of If the second cylindrical portion and the bottomed cylindrical first cylindrical portion in a state in which the temperature sensitive portion is protruded from the tip side by a predetermined dimension are overlapped and welded by a predetermined dimension (planned dimension) coaxially. The temperature sensitive element can be reliably arranged at the target arrangement position of the bottomed cylindrical metal tube. Therefore, according to the present invention in which a metal tube is formed of a plurality of members, even when mass-producing temperature sensors of the same product number, the temperature sensing element (temperature sensing part) is placed at a predetermined position (targeted position) in the metal tube. Position).
[0010]
In the temperature sensor manufacturing method of the present invention, the distal end portion of the second cylindrical portion to which the sheath member (temperature-sensitive element assembly) is fixed is located inside or outside the rear end portion of the first cylindrical portion. Since it is arranged and welded so as to form an overlapping portion, a bottomed cylindrical metal tube can be easily formed. Therefore, according to the present invention, the temperature sensor in which the temperature sensing element (temperature sensing portion) is arranged at the target arrangement position in the metal tube can be produced with high production efficiency and easily.
[0011]
As the temperature sensing element, a thermistor sintered body is used as the temperature sensing part, and a thermistor element in which a part of the electrode wire is embedded in the thermistor sintered body or a metal resistor whose resistance value changes depending on the temperature is provided on the ceramic substrate. A substrate-type element in which an electrode wire is connected to this metal resistor can be used as the temperature sensitive part. Furthermore, the material of the first cylindrical portion and the second cylindrical portion constituting the metal tube is not particularly limited as long as the first cylindrical portion and the second cylindrical portion are formed of a metal material having sufficient mechanical strength and heat resistance. Specifically, it can be formed of a stainless alloy or an Inconel material.
[0012]
When arranging the tip of the second cylindrical part with the temperature sensing element assembly so as to be located inside or outside the rear end of the first cylindrical part so as to form an overlapping part, You may arrange | position so that an overlap part may be produced in the form to contact | abut, and you may arrange | position so that both may produce an overlap part in a loose fitting state. In addition, a welding technique for welding the overlapping portion in the circumferential direction is not particularly limited, and specific techniques include laser welding, plasma welding, electron beam welding, argon welding, and the like. Of these, laser welding is the most preferable because it can provide good welding strength while being an inexpensive method.
[0013]
Next, in the method for manufacturing the temperature sensor, in the second step, from the distal end side of the second cylindrical portion to a connection portion between the electrode wire of the temperature sensitive element and the metal core wire of the sheath member. It is preferable that the temperature sensing element assembly is assembled to the second cylindrical part so as to protrude at least.
[0014]
In the process of inserting the sheath member in which the temperature sensing element is connected to the second cylindrical portion, the metal core wire of the sheath member and the electrode wire of the temperature sensing element may be bent as described above, depending on the degree of this bending. May cause a problem such as disconnection of the connecting portion between the metal core wire and the electrode wire. Therefore, if the second cylindrical part and the sheath member are fixed in a form in which only a part of the temperature sensitive part protrudes from the distal end side of the second cylindrical part, the temperature sensitive part is at the target arrangement position of the metal tube. Although it can be arranged, there is a possibility that the electrical output from the temperature sensing unit cannot be output via the electrode wire and the metal core wire.
[0015]
On the other hand, according to the manufacturing method of the temperature sensor of the present invention, in the second step, the connection portion between the electrode wire of the temperature sensing element and the metal core wire of the sheath member is at least from the distal end side of the second tubular portion. The second tubular portion and the sheath member are assembled in a protruding form. Thereby, after assembling the sheath member (temperature sensing element assembly) to the second cylindrical portion, the state of the connection portion between the electrode wire and the metal core wire can be confirmed on the distal end side of the second cylindrical portion. it can. Therefore, according to the present invention, a temperature sensor excellent in electrical reliability can be obtained with high manufacturing efficiency while the temperature sensing element (temperature sensing portion) is arranged at the target arrangement position in the metal tube. In the present specification, the “connection portion between the electrode wire of the temperature sensitive element and the metal core wire of the sheath member” refers to a portion where the electrode wire and the metal core wire overlap (wrap).
[0016]
In the temperature sensor manufacturing method, in the second step, the metal core wire protruding from the distal end of the sheath pipe of the sheath member is protruded from the distal end side of the second cylindrical portion, not limited to the connection portion. The second tubular portion and the sheath member may be assembled. In this way, after the sheath member (temperature sensing element assembly) is assembled to the second cylindrical part, the state of the connection part between the electrode wire and the metal core wire is confirmed at the tip side of the second cylindrical part. In addition to this, it can be confirmed whether the electrode wires and the metal core wires are in contact with each other to cause a short circuit, and a temperature sensor with more excellent electrical reliability can be manufactured.
[0017]
Furthermore, in the method of manufacturing a temperature sensor according to any one of the above, in the second step, the second tubular portion and the sheath member are fixed by attaching the second tubular portion to the sheath member. A temperature sensor manufacturing method is preferably performed by caulking toward the outer peripheral surface of the sheath pipe.
[0018]
Thus, by caulking and fixing the second tubular portion and the sheath member, both can be firmly fixed by an inexpensive method. In addition, in crimping and fixing the second cylindrical portion and the sheath member, it is preferable to crimp at two or more points in the circumferential direction of the second cylindrical portion. This is because the sheath member can be stably fixed in the second cylindrical portion. Further, in the caulking of the second cylindrical portion performed outside the sheath pipe, when the caulking depth is equal to or greater than the thickness of the second cylindrical portion, the second cylindrical portion is subjected to caulking. The part may be damaged (in other words, caulking cracks may occur). Therefore, in order to suppress the damage of the second cylindrical portion, the thickness of the second cylindrical portion is D (unit: mm), and the addition of the outer peripheral surface of the sheath pipe and the inner peripheral surface of the second cylindrical portion is performed. When the clearance before tightening is S (unit: mm), it is preferably adjusted so as to satisfy the relationship of D ≧ S.
[0019]
In the temperature sensor manufacturing method, the second tubular portion is caulked toward the sheath pipe of the sheath member at at least two positions spaced apart in the axial direction of the second tubular portion. It is good to make it.
[0020]
Thus, the sheath member with respect to the second tubular portion is obtained by caulking and fixing the second tubular portion and the sheath member at at least two positions spaced apart in the axial direction of the second tubular portion. Can be more stably realized. In addition, it is preferable to caulk at two or more points in the circumferential direction of the second cylindrical portion for each caulking at positions separated in the axial direction.
[0021]
Furthermore, in the method of manufacturing a temperature sensor according to any one of the above, in the third step, the front end portion of the second tubular portion and the rear end portion of the first tubular portion are overlapped in a loosely fitted state. Of the first cylindrical portion and the second cylindrical portion in the overlapping portion, the cylindrical portion positioned outside is added in the circumferential direction toward the cylindrical portion positioned inside. It is good to form a crimp part by fastening and to perform the said welding of the circumferential direction to the said crimp part.
[0022]
In arranging the tip part of the second cylindrical part and the rear end part of the first cylindrical part so as to form an overlapping part, for example, the first cylindrical part is placed on the outer side of the tip part of the second cylindrical part. This can be achieved by press-fitting. By the way, in this 3rd process, in order to arrange | position a temperature sensing part in the aim position in a bottomed cylindrical metal tube, as mentioned above, the 2nd cylindrical part which made the temperature sensing part protrude the predetermined dimension from the front end side. And the bottomed cylindrical first cylindrical portion need to be overlapped with each other by a predetermined dimension. However, in order to overlap the first cylindrical portion and the second cylindrical portion by a predetermined size by the above press-fitting, it is necessary to manage the diametrical dimension for both the cylindrical portions fairly strictly, and it is preferable because the press-fitting process takes time. There are aspects that are hard to say.
[0023]
On the other hand, in the manufacturing method of the temperature sensor of the present invention, first, the front end portion of the second cylindrical portion and the rear end portion of the first cylindrical portion are arranged so as to be overlapped in a loosely fitted state. ing. Thus, by making both cylindrical parts overlap in a loose fitting state, both cylindrical parts can be easily overlapped by a predetermined dimension.
[0024]
And after arrange | positioning so that an overlap part may arise in the loose fit state in the front-end | tip part of a 2nd cylindrical part, and the rear-end part of a 1st cylindrical part, a 1st cylindrical part and a 2nd cylindrical part in this overlapping part Of these, the caulking portion is formed by caulking the cylindrical portion positioned on the outer side toward the cylindrical portion positioned on the inner side in the circumferential direction. By forming such a caulking portion, it is possible to reduce the gap between the two cylindrical portions that are overlapped in the loosely fitted state, thereby improving the adhesion. And by performing the welding in the circumferential direction on the caulking portion formed in the circumferential direction in such a state that the adhesion between both the cylindrical portions is increased in this way, the first cylindrical portion and the second cylindrical portion, Can be reliably welded.
[0025]
As described above, according to the present invention, since the caulking portion is formed, both the cylindrical portions are predetermined even if the dimensional management of the first cylindrical portion and the second cylindrical portion is not strictly performed. It is possible to reliably weld after the dimensions are overlapped, and as a result, the manufacturing efficiency of the temperature sensor can be increased. In addition, when caulking in the circumferential direction the tubular portion located on the outside of the first tubular portion and the second tubular portion in the overlapping portion toward the tubular portion located on the inside, hexagonal caulking or It may be performed by a polygonal caulking method such as octagonal caulking, or by a method such as round caulking.
[0026]
Furthermore, in the method for manufacturing a temperature sensor according to any one of the above, a small-diameter portion having an inner diameter smaller than an outer diameter of the second cylindrical portion, and a rear end side of the small-diameter portion, Prior to the third step, the first cylindrical portion including the rear end portion having an inner diameter equal to or larger than the outer diameter of the second cylindrical portion, and a step portion connecting the small diameter portion and the rear end portion. Forming, in the third step, the tip of the second cylindrical portion is in contact with the stepped portion of the first cylindrical portion, and inside the rear end portion of the first cylindrical portion. A manufacturing method of the temperature sensor in which the first cylindrical portion and the second cylindrical portion are assembled so that the overlapping portion is generated in a form in which the distal end portion of the second cylindrical portion is positioned.
[0027]
In the temperature sensor of the present invention, as the first cylindrical portion, the first cylindrical portion formed in the order of the small diameter portion, the step portion, and the rear end portion from the front end side is used, and from the outer diameter of the second cylindrical portion. A small-diameter portion having a small inner diameter, a large-diameter portion having an inner diameter equal to or larger than the outer diameter of the second cylindrical portion, and a step portion connecting them are used. And when inserting this 1st cylindrical part in a 2nd cylindrical part, until the front-end | tip of a 2nd cylindrical part contact | abuts to the inner surface of the step part connected with the rear end side of the small diameter part of a 1st cylindrical part Insertion is performed to position the first tubular portion in the axial direction relative to the second tubular portion.
[0028]
Accordingly, in the temperature sensor manufacturing method of the present invention, when the tip of the second cylindrical portion comes into contact with the inner surface of the step portion of the first cylindrical portion, an overlapping portion having a predetermined dimension (planned dimension) is generated. As described above, by adjusting the dimensions of the first cylindrical portion in advance, it is only necessary to insert the second cylindrical portion 32 so that the tip of the second cylindrical portion 32 contacts the inner surface of the step portion 38 of the first cylindrical portion 31. The overlapping dimension of the overlapping portion can be set to a predetermined value. As a result, it is possible to reliably arrange the temperature sensing part according to the aim position of the first cylindrical part. In order to effectively prevent the axial displacement between the first tubular portion and the second tubular portion, it is preferable that the inner surface of the step portion has a tapered shape.
[0029]
Moreover, it is a manufacturing method of the temperature sensor in any one of the said, Comprising: In the said 3rd process, the circumference | surroundings of the said temperature sensitive part protruded from the front end side of the said 2nd cylindrical part become an insulating member by heat processing After covering with a paste-like insulating paste, the first cylindrical part and the second cylindrical part are arranged so as to produce the overlapping part, and the assembly obtained through the third step It is preferable that an insulating member is interposed between the temperature sensitive part and the first cylindrical part by performing a heat treatment.
[0030]
In this manner, the temperature sensing element is vibrated by interposing the insulating member between the inner surface of the first cylindrical portion and the periphery of the temperature sensing portion protruding from the distal end side of the second cylindrical portion. Therefore, it is possible to manufacture a temperature sensor capable of improving the responsiveness by quickly transferring heat to the temperature sensitive element. Further, according to the method for manufacturing a temperature sensor of the present invention, the temperature sensing element assembly is not formed on the second cylindrical portion without covering the temperature sensing portion of the temperature sensing element assembly with the insulating paste in the first step. After assembling, the insulating paste is coated on the temperature sensitive part protruding from the tip side of the second cylindrical part. As a result, in the second step, it becomes easy to protrude the temperature sensing part by a predetermined dimension from the distal end side of the second cylindrical part, and the manufacturing efficiency of the temperature sensor can be increased.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment)
A temperature sensor 1 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partially broken sectional view showing the structure of a temperature sensor 1 of the present invention. FIG. 2 is an enlarged view of the vicinity of the thermistor element 2, which is a main part of the temperature sensor 1 shown in FIG. This temperature sensor 1 uses a thermistor element 2 as a temperature sensing element. By mounting the temperature sensor 1 on an exhaust pipe of an automobile, the thermistor element 2 is arranged in an exhaust pipe through which exhaust gas flows, It is used for exhaust gas temperature detection.
[0032]
The metal tube 3 is formed in a bottomed cylindrical shape with the distal end side (lower side in FIG. 1) closed, and the thermistor element 2 is accommodated inside the distal end side. In the metal tube 3, a bottomed cylindrical first cylindrical portion 31 that is closed at the front end side and opened at the rear end side, and a cylindrical second cylindrical portion 32 that is open at both ends are adjacent to each other in the axial direction. It is comprised by the form arrange | positioned. More specifically, the first cylindrical portion 31 is disposed so as to surround the outer peripheral surface of the distal end portion of the second cylindrical portion 32, and is fixed by crimping by a crimping portion 39 formed over the circumferential direction. The caulking portion 39 is integrated by laser welding all around. The first cylindrical portion 31 and the second cylindrical portion 32 have substantially the same thickness and are made of a stainless alloy as will be described later.
[0033]
The first cylindrical portion 31 accommodates therein a thermistor sintered body 21 that is a temperature sensitive portion of the thermistor element 2. It should be noted that, in the first cylindrical portion 31, the second cylindrical shape is located closer to the distal end side than the portion (rear end portion 36) where the overlapping portion 37 is formed with the outer surface of the distal end portion of the second cylindrical portion 32. A small diameter portion 33 having an inner diameter smaller than the outer diameter of the portion 32 is formed. Further, the first cylindrical portion 31 is formed with a step portion 38 that connects the small diameter portion 33 and the rear end portion 36, and the front end of the second cylindrical portion 32 is brought into contact with the inner surface of the step portion 38. Thus, the first tubular portion 31 is positioned with respect to the second tubular portion 32 in the axial direction.
[0034]
The entire thermistor sintered body 21 that is a temperature sensing portion is accommodated in the small diameter portion 33 of the first cylindrical portion 31. The small diameter portion 33 is filled with cement 10 that is an insulating member. More specifically, inside the small diameter portion 33 such that the cement 10 is interposed between the outer surface of the thermistor sintered body 21 and the inner wall surface of the first cylindrical portion 31 (specifically, the small diameter portion 33). Cement 10 is filled. By interposing the cement 10 in this way, the thermistor element 2 is prevented from swinging due to vibration or the like. Furthermore, the heat reception of the metal tube 3 (first cylindrical portion 31) can be efficiently transferred to the thermistor sintered body 21 via the cement 10, and a high-speed response of temperature detection can be achieved. In addition, the cement 10 used for this Embodiment consists of the aggregate which has an alumina powder as a main component, and the glass component containing Si.
[0035]
On the other hand, the 2nd cylindrical part 32 is fixed to the flange 4 in the form by which the rear end side is penetrated inside the flange 4 made of stainless steel. The second tubular portion 32 has a distal end side of a sheath member 8 described later disposed therein. In addition, at two positions (parts) separated in the axial direction of the second cylindrical portion 32, the sheath member 8 (specifically, the outer peripheral surface of the sheath pipe 9 of the sheath member 8 to be described later) is provided from the outside of itself. A front end side caulking portion 34 and a rear end side caulking portion 35 formed by caulking in the direction are provided. The second cylindrical portion 32 and the sheath member 8 are fixed (clamped and fixed) by the front end side caulking portion 34 and the rear end side caulking portion 35.
[0036]
The flange 4 includes a sheath portion 42 that extends in the axial direction, and a projecting portion 41 that is located on the distal end side of the sheath portion 42 and projects outward in the radial direction. The projecting portion 41 is formed in an annular shape having a seat surface 45 having a tapered shape corresponding to the tapered portion of the attachment portion of the exhaust pipe (not shown) on the distal end side, and the seat surface 45 is in close contact with the taper portion of the attachment portion. Thus, the exhaust gas is prevented from leaking outside the exhaust pipe. The sheath portion 42 is formed in a ring shape, and has a two-stage shape including a front end side step portion 44 located on the front end side and a rear end side step portion 43 having an outer diameter smaller than that of the front end side step portion 44. ing.
[0037]
The second cylindrical part 32 is inserted from the front end side of the second cylindrical part 32 from the rear end side of the flange 4 and is press-fitted and fixed inside the sheath part 42. And the part which the outer peripheral surface of the 2nd cylindrical part 32 and the inner peripheral surface of the rear-end side step part 43 of the sheath part 42 overlap is laser-welded over the circumferential direction.
[0038]
A nut 5 having a hexagonal nut portion 51 and a screw portion 52 is rotatably fitted around the flange 4. In the temperature sensor 1, the seat surface 45 of the projecting portion 41 of the flange 4 is brought into contact with the attachment portion of the exhaust pipe and is fixed by the nut 5. In addition, a tubular joint 6 is joined in an airtight state on the radially outer side of the front end side step portion 44 of the sheath portion 42 in the flange 4. Specifically, the joint 6 is press-fitted into the distal end side step portion 44 of the sheath portion 42 such that the inner peripheral surface of the joint 6 overlaps the outer peripheral surface of the distal end side step portion 44 of the sheath portion 42, and the joint 6 and the distal end The side step portion 44 is laser welded in the circumferential direction.
[0039]
Inside the second cylindrical portion 32, the flange 4, and the joint 6 in the metal tube 3, a sheath member 8 formed by insulatingly holding a pair of metal core wires 7 in the sheath pipe 9 is disposed. As described above, the sheath member 8 is caulked and fixed to the second cylindrical portion 32. The metal core wire 7 protruding from the distal end side of the sheath member 8 is connected to a pair of Pt / Rh alloy electrode wires 22 constituting the thermistor element 2 by resistance welding. Note that the pair of electrode wires 22 is embedded in the thermistor sintered body 21 whose tip end has a hexagonal cross section and is fired simultaneously with the thermistor sintered body 21. The sheath member 8 includes a sheath pipe 9 made of SUS310S, a pair of conductive metal core wires 7 made of SUS310S, and an insulating powder 14 filled between the sheath pipe 9 and each metal core wire 7 (see FIG. 4). And the metal core wire 7 is held in a sheath pipe 9 in an insulated state.
[0040]
A metal core wire 7 protruding toward the rear end side of the sheath member 8 inside the joint 6 is connected to a pair of lead wires 12 for connecting a pair of external circuits (for example, an ECU of a vehicle) via a crimping terminal 11. The pair of metal core wires 7 and the pair of crimp terminals 11 are insulated from each other by an insulating tube 15. The lead wire 12 is formed by coating a stainless alloy conductive wire with an insulating covering material, and is inserted into an auxiliary ring 13 made of heat-resistant rubber provided in the rear end side opening of the joint 6. The auxiliary ring 13 is fixed to each other while maintaining airtightness by circularly or polygonally crimping the auxiliary ring 13 from above. The electrical output from the thermistor sintered body 21 according to the temperature change of the exhaust gas is sent to an external circuit (for example, ECU) (not shown) via the electrode wire 22, the metal core wire 7 of the sheath member 8, and the lead wire 12. It is taken out and used for temperature detection of exhaust gas.
[0041]
Since the temperature sensor 1 for detecting the temperature of the exhaust gas is used in a high temperature environment where the maximum temperature reaches 1000 ° C., each component member needs to have sufficient heat resistance. Therefore, the 1st cylindrical part 31 and the 2nd cylindrical part 32 which comprise the metal tube 3, the flange 4, and the metal core wire 7 have Fe as a main component, C, Si, Mn, P, S, Ni, and Cr. It is formed of SUS310S which is a heat-resistant alloy containing. The joint 6 is formed on SUS304.
[0042]
The temperature sensor 1 is manufactured as follows. First, deep drawing was performed on a SUS310S steel plate to form a second cylindrical shape having a wall thickness of 0.3 mm, an inner diameter of 2.7 mm, an outer diameter of 3.3 mm, a total length (dimension in the axial direction) of 54 mm, and both ends opened. A portion 32 and a bottomed cylindrical first cylindrical portion 31 having a thickness of 0.3 mm and a total length (dimension in the axial direction) of 13 mm are formed. In addition, about the 1st cylindrical part 31, the small diameter part 33 with an internal diameter of 2.6 mm and an outer diameter of 3.2 mm, the rear end part 36 of an internal diameter of 3.4 mm and an outer diameter of 4.0 mm, the small diameter part 33, and a rear end It processed so that the step part 38 which has a taper shape which connects the part 36 may be formed. In addition, an internal hole for pressing and fixing the second cylindrical portion 32 by separately performing cold forging and / or cutting on a metal body of SUS310S, a front end side step portion 44 and a rear end side step portion 43. A flange 4 is formed having a two-stage sheath 42 having a protrusion and a protrusion 41 that is located on the distal end side of the sheath 42 and protrudes radially outward.
[0043]
Then, as a first step, the electrode member 22 of the thermistor element 2 and the metal core wire 7 of the sheath member 8 are overlapped so as to wrap each other by a predetermined dimension, and are resistance-welded to each other, whereby a sheath member as shown in FIG. 8 is manufactured. The temperature sensitive element assembly K in which the thermistor element 2 is connected to 8 is manufactured (the portion where the electrode wire 22 of the thermistor element 2 and the metal core wire 7 of the sheath member 8 are wrapped is the “connecting portion” in the claims) Equivalent). FIG. 3 shows an external view of the temperature sensing element assembly K. FIG. In the predetermined region on the distal end side of the sheath pipe 9 constituting the sheath member 8, caulking formed when the first cylindrical portion 31 and the second cylindrical portion 32 are caulked and fixed in a subsequent process. A concave portion 81 that is recessed inward in the radial direction is formed so that the portion 39 does not contact the outer peripheral surface of the portion 39. The sheath pipe 9 is formed so that the thickness of the portion excluding the recess 81 is 0.3 mm and the outer diameter is 2.5 mm. Next, the second cylindrical portion 32 is press-fitted and fixed in the inner hole of the flange 4, and the overlapping portion of the outer peripheral surface of the second cylindrical portion 32 and the inner peripheral surface of the rear end side step portion 43 of the sheath portion 42 is Laser welding across the direction.
[0044]
Then, as a second step, the temperature sensitive element assembly K is inserted into the second cylindrical portion 32 laser welded to the flange 4. At this time, insertion into the opening on the rear end side of the second cylindrical portion 32 is started from the side where the thermistor element 2 of the temperature sensitive element assembly K is disposed. Then, the thermistor sintered body 21 of the thermistor element 2 is protruded by a predetermined dimension L1 (see FIG. 5) from the distal end side of the second cylindrical portion 32, and when the thermistor sintered body 21 protrudes the predetermined dimension L1, the temperature sensitivity is increased. The insertion of the element assembly K into the second cylindrical portion 32 is finished. Thereafter, there is no abnormality in the connecting portion between the electrode wire 22 and the metal core wire 7 protruding from the distal end side of the second cylindrical portion 32, and the electrode wires 22 and the metal core wires 7 are in contact with each other. Check if there is any. If it is determined that there is no abnormality in the temperature sensing element assembly K in this confirmation work, the second cylindrical portion 32 and the temperature sensing element assembly K are subsequently fixed.
[0045]
The second cylindrical portion 32 and the temperature sensitive element assembly K are fixed by the following procedure. First, a portion of the second cylindrical portion 32 that protrudes toward the tip side of the flange 4 and close to the tip of the flange 4 is added toward the outer peripheral surface of the sheath pipe 9 of the sheath member 8. Tighten. In this caulking process, as shown in FIGS. 4A and 4B, the caulking die B is used to caulk two points facing each other in the circumferential direction from the outside of the second cylindrical portion 32. Do. Thereby, the two rear end side crimping parts 35 are formed, and the sheath member 8 (temperature sensing element assembly K) and the second cylindrical part 32 are crimped and fixed.
[0046]
Next, the portion that is separated from the rear end side caulking portion 35 toward the front end side in the axial direction and that is closer to the rear end side than the concave portion 81 is crimped toward the outer peripheral surface of the sheath pipe 9 of the sheath member 8. Also in this caulking step, the caulking die B described above was used, and the two points facing in the circumferential direction from the outside of the second cylindrical portion 32 were caulked. Thereby, the two front end side caulking portions 34 are formed, and the sheath member 8 (temperature sensing element assembly K) and the second cylindrical portion 32 are caulked and fixed together with the rear end side caulking portion 35. In this manner, the thermosensitive element assembly K and the second cylindrical portion 32 are integrally assembled in a form in which the thermistor sintered body 21 is protruded from the distal end side of the second cylindrical portion 32 by a predetermined dimension L1. . FIG. 5 shows a partially broken cross-sectional view of the assembly structure in which the temperature sensing element assembly K and the second cylindrical portion 32 are assembled together.
[0047]
Here, in the present embodiment, although not shown in detail, an imaginary line that connects two opposing rear end side crimping portions 35 to each other in a direction orthogonal to the axial direction of the second cylindrical portion 32, and the opposite An imaginary line that connects the two leading end side crimping portions 34 in a direction orthogonal to the axial direction satisfies a relationship orthogonal when viewed along the axial direction of the second cylindrical portion 32. Both caulking portions 34 and 35 are formed. By forming both the caulking portions 34 and 35 so as to satisfy such an orthogonal relationship, the sheath member 8 disposed in the second cylindrical portion 32 can be held more stably. In addition, about the said imaginary line, when the inner peripheral surface of the 2nd cylindrical part 32 and the outer peripheral surface of the sheath pipe 9 make point contact when seeing the caulking part of 2 points | pieces in the circumferential direction, the location where the point contact is carried out They can be guided by connecting them in a direction orthogonal to the axial direction of the second cylindrical portion 32. On the other hand, when the inner peripheral surface of the second cylindrical portion 32 and the outer peripheral surface of the sheath pipe 9 are in surface contact when the two caulking portions in the circumferential direction are viewed, the central portion of the surface contact portion ( The imaginary line can be guided by connecting the centers) in a direction perpendicular to the axial direction of the second cylindrical portion 32.
[0048]
In the present embodiment, the crimping portions of the front end side crimping portion 34 and the rear end side crimping portion 35 are formed so that the axial length along the axial direction is longer than the crimping width. ing. Specifically, each of the caulking portions 34 and 35 was formed such that the axial length L5 was 4.0 mm and the caulking width W was 0.4 mm (see FIG. 4). In this way, the elongated sheath member 8 can be stably fixed to the second tubular portion 32 by forming the axial length of each crimped portion so as to have a dimension longer than the crimped width. .
[0049]
Next, the third step of assembling the thermistor element 2 in the bottomed tubular metal tube 3 by assembling the first tubular portion 31 with respect to the second tubular portion 32 assembled with the temperature sensitive element assembly K. I do. First, the insulating paste used as the cement 10 is applied so that the circumference | surroundings of the thermistor sintered compact 21 protruded only the predetermined dimension L1 from the front end side of the 2nd cylindrical part 32 may be covered. Next, the first tubular portion 31 is inserted loosely and coaxially from the distal end side of the second tubular portion 32, and the rear end portion 36 of the first tubular portion 31 is the distal end of the second tubular portion 32. The first cylindrical part 31 is disposed adjacent to the second cylindrical part 32 so as to surround the outer surface of the part. At this time, as shown in FIG. 6, the thermistor sintered body 21 of the thermistor element 2 is an insulating paste so as to produce an overlapping portion 37 of a predetermined dimension L2 in a loosely fitted state at the distal end portion of the second cylindrical portion 32. At the same time, the first cylindrical portion 31 is arranged with respect to the second cylindrical portion 32 so as to be accommodated in the small diameter portion 33 of the first cylindrical portion 31.
[0050]
Here, in the present embodiment, when the first cylindrical portion 31 is inserted into the second cylindrical portion 32, the inner surface of the step portion 38 connected to the rear end side of the small diameter portion 33 of the first cylindrical portion 31 is formed. By inserting until the tip of the second cylindrical portion 32 comes into contact, the first cylindrical portion 31 is positioned in the axial direction with respect to the second cylindrical portion 32. In other words, in the present embodiment, the first cylindrical portion 31 is inserted into the second cylindrical portion 32 in a loose-fitting and coaxial manner, and the tip of the second cylindrical portion 32 is the first cylindrical portion 31. Each dimension of the 1st cylindrical part 31 is adjusted beforehand so that the overlapping part 37 of the predetermined dimension L2 may arise at the time of contact | abutting to the inner surface of the step part 38. FIG. Thereby, in this Embodiment, each dimension of the 1st cylindrical part 31 is adjusted suitably, and it inserts so that the front-end | tip of the 2nd cylindrical part 32 may contact | abut to the inner surface of the step part 38 of the 1st cylindrical part 31 By performing the above, the overlapping dimension (corresponding to L2 in FIG. 6) of the first tubular portion 31 with respect to the second tubular portion 32 can be uniquely determined. As a result, the thermistor sintered body 21 can be reliably disposed at the target position of the first cylindrical portion 31.
[0051]
Next, in the overlapping portion 37 between the rear end portion 36 of the first cylindrical portion 31 and the distal end portion of the second cylindrical portion 32, the portion surrounding the recess 81 formed in the sheath pipe 9 of the sheath member 8, The caulking portion 39 is formed by caulking the first cylindrical portion 31 positioned in the circumferential direction toward the second cylindrical portion 32 positioned inside. At this time, the caulking portion 39 is formed so as not to contact the surface of the concave portion 81 of the lead pipe 9. In addition, this caulking was performed by Happomaru caulking. The caulking portion 39 formed in this manner corresponds to a formation site of a laser welding portion by all-around laser welding described later. By forming the caulking portion 39, the first cylindrical portion 31 and the second cylinder are formed. It is possible to reduce the amount of the gap between the cylindrical portion 32 and perform all-around laser welding with excellent welding strength.
[0052]
And as shown in FIG. 7, with respect to the crimping part 39 formed in this overlap part 37, laser beam LB is irradiated and all-around laser welding is performed, and the 1st cylindrical part 31 and the 2nd cylindrical form A laser welding part straddling the part 32 is formed, and both the cylindrical parts 31 and 32 are integrated. Then, the assembly which united both the cylindrical parts 31 and 32 is heat-processed, an insulating paste is solidified, and the cement 10 is obtained.
[0053]
Next, the rear end portion of the metal core wire 7 of the sheath member 8 and the lead wire 12 are electrically connected using a crimping terminal 11 by a known method. Thereafter, the tubular joint 6 is press-fitted radially outward of the distal end side step portion 44 of the sheath portion 42, and the joint 6 and the distal end side step portion 44 are laser welded in the circumferential direction. Then, the auxiliary ring 13 and the nut 5 are assembled as appropriate. In this way, the manufacture of the temperature sensor 1 is completed.
[0054]
According to such a manufacturing method of the temperature sensor 1, the thermistor sintered body 21 hits the inner wall surface of the second cylindrical portion 32 in the process of inserting the temperature sensing element assembly K into the second cylindrical portion 32, and the sheath member. Even if the metal core wire 8 and the electrode wire 22 of the thermistor element 2 are bent, the both ends of the second cylindrical portion are opened, so that the thermistor sintered body 21 is securely attached from the front end side of the second cylindrical portion 32. It is possible to project a predetermined dimension L1. And in the manufacturing method mentioned above, the 2nd cylindrical part 32 which made the thermistor sintered compact 21 project the predetermined dimension L1 from the front end side, and the 1st cylindrical part 31 of a bottomed cylindrical shape are coaxially only the predetermined dimension L2. By overlapping and integrating the cylindrical portions 31 and 32 by welding, the thermistor element 2 (thermistor sintered body 21) is arranged at a predetermined position (target position) of the bottomed cylindrical metal tube 3. Temperature sensor 1 can be obtained. Therefore, according to the manufacturing method of the temperature sensor 1, the thermistor element 2 (thermistor sintered body 21) is surely placed at a predetermined position (target position) in the metal tube 3 even when the temperature sensor of the same product number is mass-produced. Can be arranged.
[0055]
Moreover, in the manufacturing method of the temperature sensor 1 mentioned above, the inner side of the rear-end part of the 1st cylindrical part 31 is on the front-end | tip part of the 2nd cylindrical part 32 to which the sheath member 8 (temperature sensing element assembly K) was fixed. Since it arrange | positions and welds so that the overlapping part 37 may be produced in the positioned form, the bottomed cylindrical metal tube 3 can be formed easily. Therefore, the temperature sensor 1 in which the thermistor element 2 (thermistor sintered body 21) is arranged at the target arrangement position in the metal tube 3 can be produced with high production efficiency and easily.
[0056]
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the specific embodiments described above, and can be applied with appropriate modifications without departing from the scope of the present invention. Needless to say. For example, in fixing the temperature sensing element assembly K (sheath member 8) and the second cylindrical portion 31 by crimping, the configuration is limited to the configuration in which two points facing each other in the circumferential direction from the outside of the second cylindrical portion 32 are crimped. First, the front end side caulking portion 34 and the rear end side caulking portion 35 are formed so as to be caulked at equal intervals in the circumferential direction from the outer peripheral surface of the second cylindrical portion 32, and both of them are caulked and fixed. You may do it.
[0057]
Further, the welding at the overlapping portion 37 between the first cylindrical portion 31 and the second cylindrical portion 32 is performed by laser welding in the circumferential direction, but the welding is not limited to laser, and may be plasma welding. Further, in the present embodiment, the thermistor element 2 having the thermistor sintered body 21 as the temperature sensing portion is used as the temperature sensing element. However, a metal resistor whose resistance value changes with temperature is formed on the ceramic substrate. A substrate type element in which an electrode wire is connected to the metal resistor may be used as the temperature sensing element. In the present embodiment, the entire thermistor element 2 is protruded from the distal end side of the second cylindrical portion 32. However, at least a part of the thermistor sintered body 21 constituting the thermistor element 2 is protruded by a predetermined dimension. In this manner, the temperature sensor may be manufactured.
[0058]
In addition, the shape of the thermistor sintered body 21 forming the temperature sensitive portion is not limited to a hexagonal shape in the axial section, and may be a circular shape or an elliptical shape. Furthermore, the temperature sensor 1 of the present invention can be applied not only to an exhaust temperature sensor but also to a temperature sensor attached to a flow passage through which a liquid such as water or oil flows as a fluid to be measured.
[Brief description of the drawings]
FIG. 1 shows an entire temperature sensor in which a thermistor element, which is a temperature sensitive element, is housed in a bottomed cylindrical metal tube formed by arranging a first cylindrical part and a second cylindrical part adjacent in the axial direction. It is a fragmentary sectional view which shows a structure.
2 is an enlarged view of the vicinity of the thermistor element 2 as a main part of the temperature sensor shown in FIG.
FIG. 3 is an external view of a temperature sensitive element assembly in which a thermistor element and a sheath member are assembled.
FIG. 4 is a diagram schematically showing a process of caulking a second cylindrical portion toward an outer peripheral surface of a sheath pipe of a sheath member.
FIG. 5 shows a structure in which a temperature sensitive element assembly and a second cylindrical part are integrally assembled in a state in which a thermistor element (thermistor sintered body) having a predetermined dimension is projected from the front end side of the second cylindrical part. It is a fragmentary sectional view.
FIG. 6 shows a state in which the rear end side of the first cylindrical part is arranged in a loose fit on the outside of the front end part of the second cylindrical part assembled with the temperature sensing element assembly. FIG.
FIG. 7 is a view schematically showing a state in which laser irradiation is performed and the first cylindrical portion and the second cylindrical portion are laser welded all around.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Temperature sensor, 2 ... Thermistor element, 21 ... Thermistor sintered body, 22 ... Electrode wire, 3 ... Metal cap, 31 ... 1st cylindrical part, 32 ... Second cylindrical part, 33 ... small diameter part, 34 ... tip side caulking part, 35 ... rear end side caulking part, 36 ... rear end part, 37 ... overlapping part, 38 ... Stepped part, 39 ... Caulking part, 4 ... Flange, 6 ... Joint, 7 ... Metal core wire, 8 ... Sheath member, 9 ... Sheath pipe, 10 ..Cement, 12 ... lead wire, 14 ... insulating powder, K ... temperature sensing element assembly.

Claims (7)

先端側が閉塞した筒状の金属チューブと、
温度によって電気的特性が変化する感温部とこれに設けられる一対の電極線とを有し、前記金属チューブの内部に収納される感温素子と、
前記金属チューブの軸線方向に沿うように配置されると共に、前記感温素子の前記電極線と接続される一対の金属芯線をシースパイプの内部に絶縁保持してなるシース部材と、
を備える温度センサの製造方法であって、
前記金属チューブは、先端側が閉塞した有底筒状の第1筒状部と、両端が開口する筒状の第2筒状部とが軸線方向に隣接配置される形態で構成されるものとされており、
前記感温素子の前記電極線と前記シース部材の前記金属芯線とを互いに接合して感温素子組立体を作製する第1工程と、
前記第2筒状部の両端のいずれかの開口より前記感温素子組立体を挿入すると共に、前記第2筒状部の先端側から前記感温部の少なくとも一部を突き出させる形態で、前記第2筒状部の内部に位置するシース部材と当該第2筒状部とを固定して、前記感温素子組立体を前記第2筒状部に組み付ける第2工程と、
前記感温素子組立体が組み付けられた前記第2筒状部の先端部を、前記第1筒状部の後端部の内側または外側に位置させた形で重なり部を生ずるように配置し、前記重なり部に周方向にわたって溶接を行う第3工程と、
を備えることを特徴とする温度センサの製造方法。
A cylindrical metal tube whose front end is closed;
A temperature-sensitive element whose electrical characteristics change according to temperature and a pair of electrode wires provided on the temperature-sensitive element; and a temperature-sensitive element housed inside the metal tube;
A sheath member that is arranged along the axial direction of the metal tube, and that holds a pair of metal core wires that are connected to the electrode wires of the temperature sensing element in a sheath pipe;
A method of manufacturing a temperature sensor comprising:
The metal tube is configured in such a manner that a bottomed cylindrical first cylindrical portion whose front end is closed and a cylindrical second cylindrical portion having both ends open are disposed adjacent to each other in the axial direction. And
A first step of joining the electrode wire of the temperature sensitive element and the metal core wire of the sheath member together to produce a temperature sensitive element assembly;
In the form of inserting the temperature sensing element assembly from one of the openings at both ends of the second cylindrical part and projecting at least a part of the temperature sensing part from the tip side of the second cylindrical part, A second step of fixing the sheath member located inside the second tubular portion and the second tubular portion and assembling the temperature sensing element assembly to the second tubular portion;
The tip of the second cylindrical part to which the temperature sensitive element assembly is assembled is arranged so as to form an overlapping part in a form positioned inside or outside the rear end of the first cylindrical part, A third step of welding the overlapping portion over the circumferential direction;
A method for manufacturing a temperature sensor, comprising:
請求項1に記載の温度センサの製造方法であって、
前記第2工程において、前記第2筒状部の先端側から前記感温素子の前記電極線と前記シース部材の前記金属芯線との接続部までを少なくとも突き出させるようにして、前記感温素子組立体を前記第2筒状部に組み付ける
温度センサの製造方法。
A temperature sensor manufacturing method according to claim 1,
In the second step, the temperature sensing element group is configured to protrude at least from the distal end side of the second cylindrical portion to a connection portion between the electrode wire of the temperature sensing element and the metal core wire of the sheath member. A method for manufacturing a temperature sensor, in which a solid is assembled to the second cylindrical portion.
請求項1または2に記載の温度センサの製造方法であって、
前記第2工程において、前記第2筒状部と前記シース部材との固定は、前記第2筒状部を前記シース部材の前記シースパイプの外周面に向けて加締めることにより行う
温度センサの製造方法。
A method for manufacturing a temperature sensor according to claim 1 or 2,
In the second step, the temperature sensor is manufactured by fixing the second tubular part and the sheath member by caulking the second tubular part toward the outer peripheral surface of the sheath pipe of the sheath member. Method.
請求項3に記載の温度センサの製造方法であって、
前記第2筒状部の軸線方向における離間した少なくとも2箇所以上の位置において、前記第2筒状部を前記シース部材の前記シースパイプの外周面に向けて加締める
温度センサの製造方法。
A temperature sensor manufacturing method according to claim 3,
A method for manufacturing a temperature sensor, wherein the second cylindrical portion is caulked toward the outer peripheral surface of the sheath pipe of the sheath member at at least two positions spaced apart in the axial direction of the second cylindrical portion.
請求項1〜請求項4のいずれか1項に記載の温度センサの製造方法であって、
前記第3工程において、前記第2筒状部の先端部と前記第1筒状部の後端部を遊嵌状態で前記重なり部が生ずるように配置し、前記重なり部において該第1筒状部及び該第2筒状部のうちで外側に位置する筒状部を内側に位置する筒状部に向けて周方向に加締めることで加締め部を形成して、前記加締め部に周方向の前記溶接を行う
温度センサの製造方法。
It is a manufacturing method of the temperature sensor given in any 1 paragraph of Claims 1-4,
In the third step, the front end portion of the second cylindrical portion and the rear end portion of the first cylindrical portion are arranged so that the overlapping portion is generated in a loosely fitted state, and the first cylindrical shape is formed in the overlapping portion. A caulking portion is formed by caulking the cylindrical portion located on the outer side of the first cylindrical portion and the second cylindrical portion toward the cylindrical portion located on the inner side in the circumferential direction. A method of manufacturing a temperature sensor for performing the welding in the direction.
請求項1〜請求項5のいずれか1項に記載の温度センサの製造方法であって、
前記第2筒状部の外径よりも小さい内径を有する小径部と、前記小径部よりも後端側に位置すると共に、前記第2筒状部の外径以上の内径を有する前記後端部と、前記小径部と前記後端部とを繋ぐ段部とを有する前記第1筒状部を、前記第3工程に先立って形成し、前記第3工程において、前記第2筒状部の先端が前記第1筒状部の前記段部に当接するように、且つ前記第1筒状部の前記後端部の内側に前記第2筒状部の先端部を位置させた形で前記重なり部を生ずるように、該第1筒状部と該第2筒状部とを組み付ける
温度センサの製造方法。
It is a manufacturing method of the temperature sensor given in any 1 paragraph of Claims 1-5,
A small-diameter portion having an inner diameter smaller than the outer diameter of the second cylindrical portion, and the rear-end portion positioned on the rear end side with respect to the small-diameter portion and having an inner diameter equal to or larger than the outer diameter of the second cylindrical portion. And forming the first cylindrical portion having a stepped portion connecting the small diameter portion and the rear end portion prior to the third step, and in the third step, the tip of the second cylindrical portion The overlapping portion in such a manner that the front end portion of the second tubular portion is positioned inside the rear end portion of the first tubular portion so as to contact the stepped portion of the first tubular portion. A method of manufacturing a temperature sensor in which the first cylindrical portion and the second cylindrical portion are assembled so as to cause
請求項1〜請求項6のいずれか1項に記載の温度センサの製造方法であって、
前記第3工程において、前記溶接はレーザー溶接である
温度センサの製造方法。
It is a manufacturing method of the temperature sensor given in any 1 paragraph of Claims 1-6,
In the third step, the method of manufacturing a temperature sensor, wherein the welding is laser welding.
JP2003076555A 2003-03-19 2003-03-19 Manufacturing method of temperature sensor Expired - Fee Related JP4143450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076555A JP4143450B2 (en) 2003-03-19 2003-03-19 Manufacturing method of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076555A JP4143450B2 (en) 2003-03-19 2003-03-19 Manufacturing method of temperature sensor

Publications (2)

Publication Number Publication Date
JP2004286491A JP2004286491A (en) 2004-10-14
JP4143450B2 true JP4143450B2 (en) 2008-09-03

Family

ID=33291572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076555A Expired - Fee Related JP4143450B2 (en) 2003-03-19 2003-03-19 Manufacturing method of temperature sensor

Country Status (1)

Country Link
JP (1) JP4143450B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541436B2 (en) 2008-11-27 2010-09-08 日本特殊陶業株式会社 Temperature sensor
JP5167191B2 (en) * 2009-04-24 2013-03-21 日本特殊陶業株式会社 Temperature sensor and method of manufacturing temperature sensor
CN102102914A (en) * 2011-01-30 2011-06-22 徐永其 Method for preventing scale forming in solar water heater sensor
DE102013112267A1 (en) * 2013-11-07 2015-05-07 Heraeus Deutschland GmbH & Co. KG Semiconductor module with a semiconductor device covering a cover mass
JP7044675B2 (en) * 2018-09-14 2022-03-30 日本特殊陶業株式会社 Manufacturing method of temperature sensor

Also Published As

Publication number Publication date
JP2004286491A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6997607B2 (en) Temperature sensor
JP2004317499A (en) Temperature sensor
JP5813599B2 (en) Sensor and manufacturing method thereof
JP4768432B2 (en) Temperature sensor manufacturing method and temperature sensor
JP5198934B2 (en) Temperature sensor
JP2014089176A (en) Temperature sensor
JP5129599B2 (en) Gas sensor and manufacturing method thereof
JP2001056256A (en) Temperature sensor and manufacture thereof
JP3787569B2 (en) Temperature sensor
JP4143450B2 (en) Manufacturing method of temperature sensor
JP4061204B2 (en) Manufacturing method of temperature sensor
JP4435602B2 (en) Temperature sensor
JP6530327B2 (en) Temperature sensor and method of manufacturing the same
JP3826095B2 (en) Temperature sensor
JP2009300237A (en) Temperature sensor and method of manufacturing the same
JP5167191B2 (en) Temperature sensor and method of manufacturing temperature sensor
JP4143449B2 (en) Temperature sensor
JP3826098B2 (en) Temperature sensor
JP5519590B2 (en) Temperature sensor manufacturing method and temperature sensor
JP5123344B2 (en) Temperature sensor
JP4310565B2 (en) Ceramic heater type glow plug and manufacturing method thereof
JP4059222B2 (en) Temperature sensor and method of manufacturing temperature sensor
JP4170740B2 (en) Temperature sensor manufacturing method and temperature sensor
JP3707018B2 (en) Temperature sensor manufacturing method and temperature sensor
JP2006126067A (en) Method for manufacturing temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4143450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees