JP3707018B2 - Temperature sensor manufacturing method and temperature sensor - Google Patents

Temperature sensor manufacturing method and temperature sensor Download PDF

Info

Publication number
JP3707018B2
JP3707018B2 JP2002341432A JP2002341432A JP3707018B2 JP 3707018 B2 JP3707018 B2 JP 3707018B2 JP 2002341432 A JP2002341432 A JP 2002341432A JP 2002341432 A JP2002341432 A JP 2002341432A JP 3707018 B2 JP3707018 B2 JP 3707018B2
Authority
JP
Japan
Prior art keywords
press
flange
metal tube
end side
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002341432A
Other languages
Japanese (ja)
Other versions
JP2004177183A (en
Inventor
孝昭 長曽我部
雅樹 岩谷
雅彦 西
剛 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2002341432A priority Critical patent/JP3707018B2/en
Publication of JP2004177183A publication Critical patent/JP2004177183A/en
Application granted granted Critical
Publication of JP3707018B2 publication Critical patent/JP3707018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物などの半導体からなるサーミスタや金属抵抗体等を感温素子として備える温度センサ及びその製造方法に関する。更に詳しくは、自動車の排気ガス浄化装置の触媒コンバータ内部や排気管内等といった被測定流体(例えば排気ガス)が流通する流通路内に素子を配置し、被測定流体の温度検出を行う温度センサ及びその製造方法に関する。
【0002】
【従来の技術】
従来より、排気管(流通管)に装着され、排気ガス通路(流通路)内を流れる排気ガス(被測定流体)の温度を感温素子であるサーミスタ素子によって検出する温度センサ、いわゆる排気温センサが知られている。そして、この種の温度センサとして、金属キャップと外形が等しいシース部材を準備し、サーミスタ素子を収納した金属キャップの後端部とシース部材の先端部を突き合わせ溶接した上で、シース部材をフランジの内孔内に圧入固定させた構造の温度センサが知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−266609号公報(第6図、第7図)
【0004】
【発明が解決しようとする課題】
しかし、特許文献1に示す温度センサの製造方法のように、フランジとシース部材とを圧入固定する場合には、両者の芯出しが重要となるが、その芯出しは容易とは言えず、シースとフランジとの芯ずれを生ずることがある。また、特許文献1のように、内径が略同一のフランジの内孔に対して、外径が略同一のシース部材の後端側を挿入して圧入固定する場合、シース部材の挿入開始当初における摩擦抵抗が大きくなりがちで、その結果圧入荷重がばらつき、圧入荷重が過大となることがある。このように、圧入荷重が過大となると、フランジに対して薄肉部材であるシース部材が座屈する等の不具合を発生してしまう。
【0005】
一方、特許文献1に示す温度センサでは、上述したように、内径が略同一のフランジの内孔に対して、外径が略同一のシース部材の後端側を圧入固定させた構造を有している。そのために、フランジの内周面の全体にわたってシース部材の外周面が密着した状態となるため、感熱部(流通管内に配置される素子側の部位)からフランジへ熱が伝導し易い。感熱部からフランジへの熱伝導が容易になると、センサ自身の応答性の悪化、感熱部での温度測定精度の低下を招くことに繋がってしまう。
【0006】
本発明は、上述した従来の問題点を解決するものであり、フランジと金属チューブとを圧入するにあたって、両者の芯出しを精度良く行うことができると共に、圧入荷重のばらつきを抑制することができ、また感熱部からフランジへの熱伝導が低減可能な温度センサ及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
その解決手段は、内孔を有するフランジと、フランジの内孔内の圧入部に圧入固定されると共に、先端側が閉塞した軸線方向に延びる筒状の金属チューブと、金属チューブの内部に収納され、温度によって電気的特性が変化する素子とを備える温度センサの製造方法であって、フランジの内孔の先端側に位置する挿入側端部と圧入部との間に、該圧入部に向かうほど内径が小さくなる変径部を形成し、その後、フランジの内孔の挿入側端部より金属チューブの後端側を挿入して、該金属チューブを該フランジに圧入固定する温度センサである。
【0008】
本発明の温度センサの製造方法において注目すべきことは、金属チューブをフランジに圧入固定する圧入工程の前に、予めフランジの内孔の先端側に位置する挿入側端部と圧入部との間に、該圧入部に向かうほど内径が小さくなる変径部を形成しておくことである。そして、上記圧入工程において、フランジの内孔の挿入側端部より金属チューブの後端側を挿入することで、フランジの内孔内の変径部を通過させて圧入部に対し金属チューブを圧入固定させるのである。
【0009】
これにより、金属チューブをフランジの内孔内の圧入部に圧入固定するにあたって、金属チューブとフランジとの軸芯合わせを精度良く行うことができる。また、フランジの内孔内への金属チューブ挿入開始当初(換言すれば、変径部通過時)における摩擦抵抗を少なくすることができ、圧入荷重がばらついて過大な荷重になるのを有効に抑制することができる。したがって、金属チューブをフランジの内孔内の圧入部に圧入固定するにあたり、金属チューブとフランジとの芯ずれや、圧入荷重の過大による金属チューブの曲がりといった不具合の発生を抑えられた信頼性の高い温度センサを製造することができる。なお、フランジの内孔の挿入側端部より金属チューブの後端側を挿入するにあたっては、フランジを固定した状態で金属チューブの後端側を挿入してもよく、逆に金属チューブを固定した状態でその後端側に対してフランジを挿入してもよい。
【0010】
また、本発明によって製造される温度センサは、内径が一定の内孔を有するフランジに金属チューブを圧入固定させた従来の温度センサと比較し、内孔の軸線方向長さが等しい条件下において、上記変径部を有しているので圧入部先端からの感熱部(流通管内に配置される素子側の部位)の長さが長くなる。つまり、本発明によって製造される温度センサでは、フランジの変径部の内周面と金属チューブの外周面との間に空間が生じるので、圧入部先端からの感熱部の長さを長くすることができ、同感熱部からフランジへの熱伝導を低減することができる。これにより、センサ自身の応答性を従来に比して向上させることができ、温度測定精度の高い温度センサとすることができる。
【0011】
なお、フランジの内孔内における変径部の内周面は、前記内孔の中心軸線を含む断面形状としてみた場合に、テーパ形状、R形状、或いはそれらの組み合わせ等を挙げることができるが、上述した温度センサの製造方法では、前記変径部の内周面は、テーパ形状であると良い。
【0012】
これにより、フランジの内孔の挿入側端部より金属チューブの後端側を挿入したときに、金属チューブの後端に変径部の内周面が当接すると当該内周面のテーパ形状によるセンターリング効果で、金属チューブとフランジとの軸芯がより一致する方向に導かれる。それ故、金属チューブとフランジとの圧入固定を行うにあたり、金属チューブとフランジとの軸芯合わせをより精度良く行うことができる。このテーパ形状のフランジの軸線に対する角度(換言すれば、挿入側端部に向けての傾斜角度)は特に限定されないが、10〜30°、特に10〜25°、さらには10〜20°とすることが好ましい。なお、変径部の成形し易さの観点からも、変径部の内周面はテーパ形状であることが好ましい。
【0013】
さらに、上述した温度センサの製造方法であって、フランジは、軸線方向に延びる鞘部と、該鞘部の先端側に位置し、径方向外側に向かって突出する該鞘部よりも大径の突出部とを有し、圧入部は少なくとも鞘部内に位置しており、金属チューブをフランジに圧入固定した後に、圧入部を含む形態で鞘部と金属チューブを周方向にわたって溶接すると良い。
【0014】
本発明の温度センサの製造方法では、金属チューブとフランジとを圧入固定した後に、金属チューブとフランジとを溶接により一体に接合している。そのため、金属チューブの外周面とフランジの内孔の内周面(圧入部)との密着強度が向上すると共に、両者がより強固に固定されることになる。従って、自動車等の振動の激しい環境下に使用した場合にも耐久性に優れ、気密の信頼性に優れる温度センサを製造することができる。
【0015】
ところで、本発明の温度センサの製造方法によれば、上述したように金属チューブとフランジとを圧入固定した後に両者を溶接しているが、この溶接は、フランジの内で突出部の後端側に位置する鞘部に行うようにしている。つまり、温度センサは、排気管等に装着されて使用に供されるが、排気ガス通路内に金属体同士の溶接部が配置される場合、溶接部が高温環境下に晒されるために同溶接部が酸化してしまい、センサ自体の耐久性や排気ガス等の被測定流体に対する気密性を長期にわたって維持することができないことがある。
【0016】
そこで、本発明の温度センサの製造方法では、フランジの内で排気ガス通路等の被測定流体が流通する流通路内に臨む部分(具体的には突出部の先端側)ではなく、突出部の後端側に位置する鞘部に行うようにしているのである。これにより、本発明によって製造される温度センサは、被測定流体が流通する流通管(例えば排気管)に装着されても、溶接部自身が高温環境下に晒されないため、同溶接部での酸化の発生を抑えられ、センサ自身の耐久性や被測定流体の気密性を長期にわたって良好に維持することができる。なお、圧入部を含む形態で鞘部と金属チューブとを溶接する手法は特に限定されないが、レーザー溶接、プラズマ溶接、電子ビーム溶接、アルゴン溶接等を挙げることができる。
【0017】
さらに、上述した本発明の温度センサの製造方法であって、鞘部は、先端側に位置する先端側段部と該先端側段部よりも小さい外径を有する後端側段部とを備える二段形状をなし、圧入部は少なくとも後端側段部内に位置しており、圧入部を含む形態で鞘部の後端側段部と金属チューブを周方向にわたって溶接すると良い。
【0018】
本発明の温度センサの製造方法では、フランジの溶接部を、先端側段部とそれよりも小径の後端側段部の二段形状に形成し、圧入部を含む形態で鞘部の後端側段部と金属チューブとを溶接している。つまり、フランジに形成される鞘部の内で、金属チューブとの溶接に供される部分の肉厚を薄くした形状を採用している。これにより、金属チューブとフランジとの圧入固定後、圧入部を含む形態で鞘部と金属チューブとの溶接を良好に行え、両者の溶接強度を確保しつつ、鞘部ひいてはフランジの機械的強度についても確保することができる。尚、フランジにおいて、鞘部の後端側を先端側よりも小径に形成することは、後端側を先端側よりも大径に形成するのに比して加工の面から容易であり望ましい。
【0019】
さらに、上述した温度センサの製造方法であって、フランジの鞘部の後端側段部と金属チューブを周方向にわたって溶接した後、軸線方向後方に向かって延びる筒状の継手を、鞘部の先端側段部の外周面に周方向にわたって接合すると良い。このように、鞘部の後端側段部と金属チューブとの溶接後に、筒状の継手を先端側段部に接合することで、鞘部の後端側段部と金属チューブとの溶接部を、継手の内部に収納させることができる。これにより、本発明によって製造される温度センサは、継手が、金属チューブとフランジ(鞘部)との溶接部に塩水や水分が付着するのを保護する役割を果たし、同溶接部が水分等の影響で腐食されるのが抑えられる。
【0020】
ついで、他の解決手段は、内孔を有するフランジと、フランジの内孔内の圧入部に圧入固定されると共に、先端側が閉塞した軸線方向に延びる筒状の金属チューブと、金属チューブの内部に収納され、温度によって電気的特性が変化する素子とを備える温度センサであって、フランジの内孔の先端側に位置する挿入側端部と圧入部との間に、該圧入部に向かうほど内径が小さくなる変径部が形成され、フランジに金属チューブが圧入固定された状態において、変径部の内周面と金属チューブの外周面との間に空間が形成されている温度センサである。
【0021】
本発明の温度センサにおいて注目すべきことは、フランジの内孔の先端側に位置する挿入側端部と圧入部との間に、該圧入部に向かうほど内径が小さくなる変径部を形成することである。そして、フランジに金属チューブを圧入固定した状態において、変径部の内周面と金属チューブの外周面との間に空間を形成させるのである。
【0022】
これにより、本発明の温度センサでは、フランジの内孔内に上記変径部を形成したことにより、内径が一定の内孔を有するフランジに金属チューブを圧入固定させた従来の温度センサと比較し、内孔の軸線方向長さが等しい条件下において、圧入部先端からの感熱部の長さを長くすることができる。つまり、本発明の温度センサでは、フランジの変径部の内周面と金属チューブの外周面との間に空間を形成したので、圧入部先端からの感熱部の長さを長くすることができ、同感熱部からフランジへの熱伝導を低減することができる。これにより、センサ自身の応答性を従来に比して向上させることができ、温度測定精度の高い温度センサとすることができる。
【0023】
【発明の実施の形態】
(実施形態)
本発明の実施の形態である温度センサ1について、図面を参照しつつ説明する。図1は、本発明の温度センサ1の構造を示す部分破断断面図である。この温度センサ1は、サーミスタ素子2を感温素子として用いたものであり、同センサ1を自動車の排気管に装着することにより、サーミスタ素子2を排気ガスが流れる排気管内に配置させて、排気ガスの温度検出に使用するものである。
【0024】
軸線方向に延びる金属チューブ3は、鋼板の深絞り加工により先端側31が閉塞した筒状をなしており、この先端側31の内部にサーミスタ素子2が収納される。この金属チューブ3は、後述するようにステンレス合金から形成されている。そして、金属チューブ3の内部であってサーミスタ素子2の周囲には、セメント10が充填されており、これにより使用時の振動等によるサーミスタ素子2の揺動が防止される。金属チューブ3の後端側32は開放されており、この後端側32はフランジ4に圧入固定されている。
【0025】
このフランジ4は、ステンレス合金(具体的にはSUS310S)により形成されており、軸線方向に延びる鞘部42と、この鞘部42の先端側に位置し、径方向外側に向かって突出する突出部41と、軸線方向に貫通した内孔48とを有している。突出部41は、先端側に図示しない排気管の装着部のテーパ部に対応したテーパ形状を有する座面45を有する環状に形成されており、座面45が上記装着部のテーパ部に当接することで、排気ガスが排気管外部へ漏出するのを防止するようになっている。また、鞘部42は環状に形成される一方、先端側に位置する先端側段部44と先端側段部44よりも小さい外径を有する後端側段部43とを備える二段形状をなしている。
【0026】
フランジ4の内孔48には、少なくとも鞘部42の後端側段部43に対応する部分に圧入部46が形成されており、この圧入部46に金属チューブ3が圧入固定される。なお、本実施の形態では、圧入部46は、フランジの内孔48のうちで、鞘部42の後端側段部43に対応する部分に形成されると共に、先端側段部44の後方側の一部分に対応する部分にまで形成されている。さらに、図2に示す図1の主要拡大図に示すように、フランジ4の内孔48には、自身の先端側に位置する挿入側端部49と圧入部46との間に、圧入部46に向かうほど内径が小さくなる変径部47を形成している。この変径部47の内周面は、内孔48の中心軸線を含む断面形状としてみた場合に、テーパ形状に形成されている。なお、テーパ角度については、本実施の形態では15°とした。この変径部47の機能については、後述する。
【0027】
金属チューブ3は、自身の後端側32からフランジ4の内孔48の挿入側端部49より挿入されて、鞘部42の内側に位置する圧入部46に圧入固定されている。そして、金属チューブ3の外周面と、鞘部42の後端側段部43の内周面との重なり合う部分(即ち、圧入部46)を、周方向にわたってレーザー溶接している。このレーザー溶接がなされることにより、図1に示すように、鞘部42の後端側段部43と金属チューブ3とに跨る溶接部L1が形成され、金属チューブ3がフランジ4に対して強固に固定される。
【0028】
このように、金属チューブ3をフランジ4の鞘部42の圧入部46に圧入しつつ、鞘部42の後端側段部43に圧入部46を含む形態でレーザー溶接を行うことによって、フランジ4と金属チューブ3との溶接強度に優れると共に、フランジ4と金属チューブ3との密着強度に優れる温度センサ1とすることができる。したがって、自動車等の振動の激しい環境下において温度センサ1が強い振動を受けても、金属チューブ3自体が振れ難く、金属チューブ3の折損等を抑制することができる。また、排気ガスに対する気密の信頼性を向上させることができる。
【0029】
フランジ4の周囲には、六角ナット部51及びネジ部52を有するナット5が回動自在に嵌挿されている。温度センサ1は、排気管の装着部にフランジ4の突出部41の座面45を当接させ、ナット5により固定される。また、フランジ4の内で鞘部42の先端側段部44の径方向外側には、筒状の継手6が気密状態で接合されている。具体的には、鞘部42の先端側段部44の外周面に継手6の内周面が重なり合うように、同継手6を鞘部42の先端側段部44に圧入して、継手6と先端側段部44を周方向にわたってレーザー溶接している。このレーザー溶接がなされることにより、図1に示すように、鞘部42の先端側段部44と継手6とに跨る溶接部L2が形成される。
【0030】
金属チューブ3、フランジ4及び継手6の内部には、一対の金属芯線7を内包するシース部材8が配置される。金属チューブ3の内部においてシース部材8の先端側から突出する金属芯線7には、サーミスタ素子2がPt/Rh合金線9を介して接続される。この合金線9は、サーミスタ素子2と同時に焼成されるものである。合金線9及び金属芯線7は互いに抵抗溶接される。尚、シース部材8は、詳細は図示しないが、SUS310Sからなる金属製の外筒と、SUS310S等からなる導電性の一対の金属芯線7と、外筒と各金属芯線7の間を絶縁し、金属芯線7を保持する絶縁粉末とから構成される。
【0031】
継手6の内部にてシース部材8の後端側へ突き出す金属芯線7は、加締め端子11を介して一対の外部回路(例えば車両のECU等)接続用のリード線12が接続される。一対の金属芯線7及び一対の加締め端子11は、絶縁チューブ15により互いに絶縁される。リード線12は、ステンレス合金製の導線を絶縁性の被覆材にて被覆したものであり、継手6の後端側開口に備えられる耐熱ゴム製の補助リング13に挿通される。そして、補助リング13は、継手6の上から丸加締め或いは多角加締めされることにより、両者13、6が気密性を保ちながら互いに固定される。これにより、サーミスタ素子2が、金属チューブ3、フランジ4及び継手6を金属包囲部材として形成される閉空間に収容されることになる。そして、サーミスタ素子2の出力は、シース部材8の金属芯線7からリード線12により、図示しない外部回路に取り出され、排気ガスの温度が検出される。
【0032】
ここで、本実施の形態の温度センサ1では、外部からリード線12の内側の空隙を介して大気が継手6の内部に入り込むと、その大気は、継手6、金属チューブ3及びフランジ4の内部が閉空間に形成される関係上、金属チューブ3内にまで入り込むことになる。したがって、温度センサ1では、外部(リード線12の内部)から金属チューブ3内までの通気が確保されることになり、サーミスタ素子2を収納する金属チューブ3が酸化した場合にも、同金属チューブ3内の酸素濃度の低下が抑えられ、サーミスタ素子2の特性変化を抑制することができる。
【0033】
なお、この温度センサ1は1000℃にも達する高温環境下で使用されるため、各々の構成部材は十分な耐熱性を有している必要がある。そのため、金属チューブ3、フランジ4及び金属芯線7は、Feを主成分とし、C、Si、Mn、P、S、Ni及びCrを含有する耐熱合金であるSUS310Sにより形成されている。また、継手6は、SUS304に形成されている。
【0034】
ついで、上述した本実施形態の温度センサ1の製造方法について説明する。まず、SUS310Sの金属体に対して冷間鍛造又は/及び切削加工を施し、圧入部46及び変径部47を有する内孔48と、先端側段部44と後端側段部43とを有する二段形状をなす鞘部42と、この鞘部42の先端側に位置し、径方向外側に向かって突出する突出部41とを有するフランジ4を形成する(図2参照)。また、鋼板の深絞り加工により先端側31が閉塞した筒状をなす金属チューブ3を別途形成する。なお、本実施の形態では、底壁を含む金属チューブ3全体を、鋼板の深絞り加工によって形成している。
【0035】
そして、フランジ4の内孔48の挿入側端部49より金属チューブ3の後端側32を挿入して、内孔48の圧入部46(少なくとも後端側鞘部44の位置に対応する圧入部46)に対して金属チューブ3を圧入固定する。この圧入工程時において、本実施の形態では、金属チューブ3の後端に変径部47の内周面が当接すると当該内周面のテーパ形状によるセンターリング効果で、金属チューブ3とフランジ4との軸芯が一致する方向に導かれる。そのため、両者の芯ずれを抑制した形で、両者の圧入を行うことができる。また、上記変径部47を内孔48内に設けているので、フランジ4の内孔48内への金属チューブ3挿入開始当初(換言すれば、変径部47通過時)における摩擦抵抗を少なくすることができ、圧入荷重がばらつくのを抑制することができる。
【0036】
そして、金属チューブ3とフランジ4とを圧入した後、フランジ4の鞘部42の後端側段部43と金属チューブ3とを周方向にわたってレーザー溶接する。ついで、金属チューブ3内に所定量の未固化状態のセメント10を充填し、シース部材8の金属芯線7の先端部とサーミスタ素子2の電極とを接続した組立体を、サーミスタ素子2側から該金属チューブ3の内部に挿入する。その後、セメント10を固化させる。ついで、公知の手法により、加締め端子11を用いてシース部材8の金属芯線7の後端部とリード線12とを電気的に接続する。その後、筒状の継手6を、鞘部42の先端側段部44の径方向外側に圧入して、継手6と先端側段部44を周方向にわたってレーザー溶接する。そして、補助リング13やナット5等を適宜組み付ける。このようにして、温度センサ1が完成する。
【0037】
上述した製造方法により製造した温度センサ1では、図1に示すように、フランジ4の内孔48内に変径部47を形成したので、内径が一定の内孔を有するフランジに金属チューブを圧入固定させた従来の温度センサと比較し、内孔の軸線方向長さが等しい条件下において、圧入部46先端からの感熱部(流通管内に配置される素子側の部位)の長さを長くすることができる。つまり、温度センサ1では、図2に示すように、フランジ4の変径部47の内周面と金属チューブ3の外周面との間にリング状の空間Sが生じるで、圧入部46先端からの感熱部の長さを長くすることができ、同感熱部からフランジ4への熱伝導を低減することができる。これにより、センサ自身の応答性を従来に比して向上させることができ、温度測定精度の高い温度センサ1とすることができる。
【0038】
以上において、本発明を実施の形態に即して説明したが、本発明は上述した具体的な実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。例えば、本実施の形態の温度センサ1において、金属チューブ3のうちで、フランジ4の内孔48内の圧入部46に圧入固定される部分よりも先端側の肉厚を、圧入部46に固定される部分よりも薄くすることにより、温度センサの応答性をさらに向上させることもできる。
【0039】
また、本実施の形態の温度センサ1では、フランジ4に形成される変径部47を、挿入側端部49と連なるように内孔48の最先端側に形成したが、変径部47の形成位置はこれに限られず、挿入側端部49と圧入部46との間に形成されていればよい。例えば、略同一の内径を有すると共に、圧入部46の内径よりも大きい内径を有する座ぐり部を挿入側端部49に連なるように形成し、この座ぐり部の後端と圧入部48の先端とを連結するように、内周面がテーパ形状をなす変径部47を形成するようにしてもよい。さらに、本発明の温度センサは、排気温センサのみならず、被測定流体として水や油等の液体が流れる流通路に取り付けられる温度センサにも適用可能である。
【図面の簡単な説明】
【図1】サーミスタ素子を収納する金属チューブの後端側が、フランジの内孔の挿入側端部より挿入されて、圧入固定された状態の温度センサを示す部分破断断面図である。
【図2】図1に示す温度センサにおいて、金属チューブとフランジとの圧入固定された状態を示す拡大断面図である。
【符号の説明】
1・・・温度センサ、2・・・サーミスタ素子、3・・・金属チューブ、4・・・フランジ、41・・・突出部、42・・・鞘部、43・・・後端側段部、44・・・先端側段部、46・・・圧入部、47・・・変形部、48・・・内孔、49・・・挿入側端部、6・・・継手、L1、L2・・・溶接部、S・・・空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature sensor including a thermistor made of a semiconductor such as a metal oxide, a metal resistor, and the like as a temperature sensitive element, and a method for manufacturing the same. More specifically, a temperature sensor for detecting the temperature of the fluid to be measured by disposing an element in a flow passage through which the fluid to be measured (for example, exhaust gas) flows, such as in a catalytic converter or an exhaust pipe of an automobile exhaust gas purification device, It relates to the manufacturing method.
[0002]
[Prior art]
Conventionally, a temperature sensor that is attached to an exhaust pipe (flow pipe) and detects the temperature of exhaust gas (measuring fluid) flowing through the exhaust gas passage (flow passage) by a thermistor element that is a temperature sensing element, a so-called exhaust temperature sensor It has been known. As this type of temperature sensor, a sheath member having the same outer shape as the metal cap is prepared, the rear end portion of the metal cap housing the thermistor element and the distal end portion of the sheath member are butted and welded, and then the sheath member is attached to the flange. A temperature sensor having a structure that is press-fitted and fixed in an inner hole is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-266609 (FIGS. 6 and 7)
[0004]
[Problems to be solved by the invention]
However, when the flange and the sheath member are press-fitted and fixed as in the manufacturing method of the temperature sensor shown in Patent Document 1, the centering of both is important, but the centering is not easy. May cause misalignment between the flange and the flange. Further, as in Patent Document 1, when the rear end side of the sheath member having the substantially same outer diameter is inserted into the inner hole of the flange having the substantially same inner diameter and press-fitted and fixed, The frictional resistance tends to increase, and as a result, the press-fit load varies, and the press-fit load may be excessive. As described above, when the press-fitting load is excessive, problems such as buckling of the sheath member that is a thin member with respect to the flange occur.
[0005]
On the other hand, as described above, the temperature sensor shown in Patent Document 1 has a structure in which the rear end side of the sheath member having the substantially same outer diameter is press-fitted and fixed to the inner hole of the flange having the substantially same inner diameter. ing. For this reason, since the outer peripheral surface of the sheath member is in close contact with the entire inner peripheral surface of the flange, heat is easily conducted from the heat-sensitive portion (element side portion disposed in the flow pipe) to the flange. If the heat conduction from the heat sensitive part to the flange becomes easy, the responsiveness of the sensor itself is deteriorated and the temperature measurement accuracy in the heat sensitive part is reduced.
[0006]
The present invention solves the above-described conventional problems, and when press-fitting a flange and a metal tube, the centering of both can be accurately performed and variation in press-fit load can be suppressed. Another object of the present invention is to provide a temperature sensor capable of reducing heat conduction from the heat sensitive part to the flange and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The solution includes a flange having an inner hole, a press-fitted and fixed to a press-fit portion in the inner hole of the flange, and a cylindrical metal tube extending in the axial direction with the front end closed, and housed in the metal tube. A method of manufacturing a temperature sensor comprising an element whose electrical characteristics change according to temperature, wherein the inner diameter is closer to the press-fitting part between the insertion-side end part and the press-fitting part located on the tip side of the inner hole of the flange. Is a temperature sensor in which a diameter-changing portion is formed, and then the rear end side of the metal tube is inserted from the insertion side end portion of the inner hole of the flange, and the metal tube is press-fitted and fixed to the flange.
[0008]
What should be noted in the temperature sensor manufacturing method of the present invention is that before the press-fitting step of press-fitting and fixing the metal tube to the flange, the insertion-side end located between the front end side of the inner hole of the flange and the press-fitting portion are preliminarily provided. In addition, a diameter-changing portion is formed in which the inner diameter becomes smaller toward the press-fitting portion. In the press-fitting step, the metal tube is press-fitted into the press-fitting portion by inserting the rear end side of the metal tube from the insertion-side end portion of the inner hole of the flange so as to pass through the diameter-changing portion in the inner hole of the flange. It is fixed.
[0009]
Thereby, when press-fitting and fixing the metal tube to the press-fitting portion in the inner hole of the flange, the axial alignment of the metal tube and the flange can be accurately performed. In addition, the frictional resistance at the beginning of the insertion of the metal tube into the inner hole of the flange (in other words, when passing through the diameter-changed portion) can be reduced, and it is possible to effectively prevent the press-fit load from varying and becoming an excessive load. can do. Therefore, when press-fitting and fixing the metal tube to the press-fitting part in the inner hole of the flange, the occurrence of problems such as misalignment of the metal tube and the flange and bending of the metal tube due to excessive press-fitting load is suppressed. A temperature sensor can be manufactured. In addition, when inserting the rear end side of the metal tube from the insertion side end of the inner hole of the flange, the rear end side of the metal tube may be inserted with the flange fixed, and conversely, the metal tube is fixed. In the state, a flange may be inserted to the rear end side.
[0010]
In addition, the temperature sensor manufactured according to the present invention is compared with a conventional temperature sensor in which a metal tube is press-fitted and fixed to a flange having an inner hole with a constant inner diameter. Since the diameter changing portion is provided, the length of the heat sensitive portion (element side portion disposed in the flow pipe) from the tip of the press-fitting portion is increased. That is, in the temperature sensor manufactured according to the present invention, since a space is generated between the inner peripheral surface of the diameter-changing portion of the flange and the outer peripheral surface of the metal tube, the length of the heat-sensitive portion from the tip of the press-fit portion is increased. And heat conduction from the heat-sensitive part to the flange can be reduced. Thereby, the responsiveness of the sensor itself can be improved as compared with the conventional one, and a temperature sensor with high temperature measurement accuracy can be obtained.
[0011]
In addition, the inner peripheral surface of the diameter change portion in the inner hole of the flange can include a tapered shape, an R shape, or a combination thereof when viewed as a cross-sectional shape including the central axis of the inner hole. In the temperature sensor manufacturing method described above, the inner peripheral surface of the diameter-changing portion is preferably tapered.
[0012]
Thereby, when the rear end side of the metal tube is inserted from the insertion side end portion of the inner hole of the flange, if the inner peripheral surface of the diameter change portion comes into contact with the rear end of the metal tube, the inner peripheral surface is tapered. Due to the centering effect, the metal tube and the flange are guided in a direction in which the axial centers are more coincident with each other. Therefore, when performing press-fitting and fixing between the metal tube and the flange, the axial alignment of the metal tube and the flange can be performed with higher accuracy. The angle of the tapered flange with respect to the axis (in other words, the inclination angle toward the insertion side end) is not particularly limited, but is 10 to 30 °, particularly 10 to 25 °, and more preferably 10 to 20 °. It is preferable. In addition, it is preferable that the inner peripheral surface of a diameter-change part is a taper shape also from a viewpoint of the ease of shaping | molding a diameter-change part.
[0013]
Furthermore, in the method for manufacturing a temperature sensor described above, the flange has a sheath portion extending in the axial direction and a diameter larger than that of the sheath portion positioned on the distal end side of the sheath portion and projecting radially outward. It is good to weld a sheath part and a metal tube over a peripheral direction in the form containing a press fit part, after pressing and fixing a metal tube to a flange, having a projection part and being located in a sheath part at least.
[0014]
In the temperature sensor manufacturing method of the present invention, the metal tube and the flange are press-fitted and fixed, and then the metal tube and the flange are integrally joined by welding. Therefore, the adhesion strength between the outer peripheral surface of the metal tube and the inner peripheral surface (press-fit portion) of the inner hole of the flange is improved, and both are more firmly fixed. Accordingly, it is possible to manufacture a temperature sensor that is excellent in durability and excellent in airtight reliability even when used in an environment with intense vibration such as an automobile.
[0015]
By the way, according to the manufacturing method of the temperature sensor of the present invention, as described above, the metal tube and the flange are press-fitted and fixed, and then both are welded. To the sheath located in the. In other words, the temperature sensor is mounted on an exhaust pipe or the like for use, but when a welded part between metal bodies is arranged in the exhaust gas passage, the welded part is exposed to a high temperature environment, so that the welding is performed. As a result, the durability of the sensor itself and the airtightness of the measured fluid such as exhaust gas cannot be maintained for a long time.
[0016]
Therefore, in the temperature sensor manufacturing method of the present invention, the portion of the protruding portion is not the portion (specifically, the front end side of the protruding portion) facing the flow passage through which the fluid to be measured such as the exhaust gas passage flows in the flange. This is performed on the sheath located on the rear end side. As a result, the temperature sensor manufactured according to the present invention is not exposed to a high temperature environment even if it is attached to a flow pipe (for example, an exhaust pipe) through which the fluid to be measured flows. And the durability of the sensor itself and the airtightness of the fluid to be measured can be well maintained over a long period of time. In addition, the method of welding a sheath part and a metal tube in the form including a press-fit part is not particularly limited, and laser welding, plasma welding, electron beam welding, argon welding, and the like can be given.
[0017]
Furthermore, in the method for manufacturing the temperature sensor of the present invention described above, the sheath portion includes a front end side step portion located on the front end side and a rear end side step portion having an outer diameter smaller than that of the front end side step portion. A two-stage shape is formed, and the press-fitting part is located at least in the rear-end side step part, and the rear-end side step part of the sheath part and the metal tube may be welded in the circumferential direction in a form including the press-fitting part.
[0018]
In the temperature sensor manufacturing method of the present invention, the welded portion of the flange is formed in a two-stage shape including a front end side stepped portion and a rear end side stepped portion having a smaller diameter than that, and the rear end of the sheath portion is formed including a press-fit portion. The side step and the metal tube are welded. That is, the shape which made thin the thickness of the part used for welding with a metal tube within the sheath part formed in a flange is employ | adopted. Thereby, after press-fitting and fixing the metal tube and the flange, the sheath portion and the metal tube can be well welded in a form including the press-fit portion, and the mechanical strength of the sheath portion and the flange is secured while ensuring the welding strength of both. Can also be secured. In the flange, it is desirable to form the rear end side of the sheath portion with a smaller diameter than the front end side from the viewpoint of processing compared to forming the rear end side with a larger diameter than the front end side.
[0019]
Furthermore, in the method for manufacturing a temperature sensor described above, a tubular joint extending rearward in the axial direction is welded to the rear end side step portion of the sheath portion of the flange and the metal tube in the circumferential direction. It is good to join to the outer peripheral surface of a front end side step part over the circumferential direction. As described above, after welding the rear end side step portion of the sheath portion and the metal tube, the welded portion between the rear end step portion of the sheath portion and the metal tube is joined to the front end side step portion. Can be stored inside the joint. As a result, the temperature sensor manufactured according to the present invention plays a role in protecting the joint from adhering salt water and moisture to the welded portion between the metal tube and the flange (sheath portion). Corrosion due to influence is suppressed.
[0020]
Next, another solution includes a flange having an inner hole, a press-fitted portion fixed in a press-fitting portion in the inner hole of the flange, a cylindrical metal tube extending in the axial direction with the tip side closed, and an inside of the metal tube. A temperature sensor including an element that is housed and changes its electrical characteristics depending on temperature, and has an inner diameter that is closer to the press-fitting portion between the insertion-side end portion and the press-fitting portion located on the distal end side of the inner hole of the flange. Is a temperature sensor in which a space is formed between the inner circumferential surface of the diameter-changing portion and the outer circumferential surface of the metal tube in a state where the diameter-changing portion becomes smaller and the metal tube is press-fitted and fixed to the flange.
[0021]
What should be noted in the temperature sensor of the present invention is that a diameter-changing portion whose inner diameter becomes smaller toward the press-fit portion is formed between the insertion-side end portion and the press-fit portion located on the distal end side of the inner hole of the flange. That is. Then, in a state where the metal tube is press-fitted and fixed to the flange, a space is formed between the inner peripheral surface of the variable diameter portion and the outer peripheral surface of the metal tube.
[0022]
As a result, the temperature sensor according to the present invention is compared with a conventional temperature sensor in which a metal tube is press-fitted and fixed to a flange having an inner hole with a constant inner diameter by forming the above-mentioned variable diameter portion in the inner hole of the flange. The length of the heat sensitive portion from the tip of the press-fit portion can be increased under the condition that the axial length of the inner hole is equal. That is, in the temperature sensor of the present invention, since the space is formed between the inner peripheral surface of the diameter-changing portion of the flange and the outer peripheral surface of the metal tube, the length of the heat sensitive portion from the tip of the press-fit portion can be increased. The heat conduction from the heat-sensitive part to the flange can be reduced. Thereby, the responsiveness of the sensor itself can be improved as compared with the conventional one, and a temperature sensor with high temperature measurement accuracy can be obtained.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment)
A temperature sensor 1 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partially broken sectional view showing the structure of a temperature sensor 1 of the present invention. This temperature sensor 1 uses a thermistor element 2 as a temperature-sensitive element. By mounting the sensor 1 on an exhaust pipe of an automobile, the thermistor element 2 is disposed in an exhaust pipe through which exhaust gas flows, and the exhaust gas is exhausted. It is used for gas temperature detection.
[0024]
The metal tube 3 extending in the axial direction has a cylindrical shape with the distal end side 31 closed by deep drawing of a steel plate, and the thermistor element 2 is accommodated inside the distal end side 31. The metal tube 3 is formed of a stainless alloy as will be described later. The cement tube 10 is filled inside the metal tube 3 and around the thermistor element 2, thereby preventing the thermistor element 2 from swinging due to vibration during use. The rear end side 32 of the metal tube 3 is open, and the rear end side 32 is press-fitted and fixed to the flange 4.
[0025]
The flange 4 is formed of a stainless alloy (specifically, SUS310S), and has a sheath portion 42 that extends in the axial direction, and a projecting portion that is located on the distal end side of the sheath portion 42 and projects outward in the radial direction. 41 and an inner hole 48 penetrating in the axial direction. The projecting portion 41 is formed in an annular shape having a seat surface 45 having a tapered shape corresponding to a tapered portion of the exhaust pipe mounting portion (not shown) on the distal end side, and the seat surface 45 contacts the tapered portion of the mounting portion. Thus, the exhaust gas is prevented from leaking outside the exhaust pipe. The sheath portion 42 is formed in a ring shape, and has a two-stage shape including a front end side step portion 44 located on the front end side and a rear end side step portion 43 having an outer diameter smaller than that of the front end side step portion 44. ing.
[0026]
A press-fit portion 46 is formed in the inner hole 48 of the flange 4 at least in a portion corresponding to the rear end side step portion 43 of the sheath portion 42, and the metal tube 3 is press-fitted and fixed to the press-fit portion 46. In the present embodiment, the press-fit portion 46 is formed in a portion corresponding to the rear end side step portion 43 of the sheath portion 42 in the inner hole 48 of the flange, and on the rear side of the front end side step portion 44. It is formed to the part corresponding to a part of. Further, as shown in the main enlarged view of FIG. 1 shown in FIG. 2, the inner hole 48 of the flange 4 has a press-fit portion 46 between the insertion-side end portion 49 and the press-fit portion 46 located on the front end side thereof. A diameter-changing portion 47 whose inner diameter becomes smaller toward the center is formed. The inner peripheral surface of the diameter changing portion 47 is formed in a tapered shape when viewed as a cross-sectional shape including the central axis of the inner hole 48. The taper angle is 15 ° in the present embodiment. The function of this diameter changing portion 47 will be described later.
[0027]
The metal tube 3 is inserted from the rear end side 32 of the metal tube 3 through the insertion side end portion 49 of the inner hole 48 of the flange 4 and is press-fitted and fixed to the press-fit portion 46 located inside the sheath portion 42. And the part (namely, press-fit part 46) which the outer peripheral surface of the metal tube 3 and the inner peripheral surface of the rear-end side step part 43 of the sheath part 42 overlap is laser-welded over the circumferential direction. By performing this laser welding, as shown in FIG. 1, a welded portion L <b> 1 straddling the rear end side stepped portion 43 of the sheath portion 42 and the metal tube 3 is formed, and the metal tube 3 is strong against the flange 4. Fixed to.
[0028]
In this way, by performing laser welding in such a manner that the metal tube 3 is press-fit into the press-fit portion 46 of the sheath portion 42 of the flange 4 and the press-fit portion 46 is included in the rear end side step portion 43 of the sheath portion 42, the flange 4 The temperature sensor 1 is excellent in the welding strength between the metal tube 3 and the flange 4 and the adhesion strength between the metal tube 3. Therefore, even if the temperature sensor 1 is subjected to strong vibration in an environment where vibration is intense such as an automobile, the metal tube 3 itself is difficult to shake, and breakage of the metal tube 3 can be suppressed. In addition, the reliability of the airtightness with respect to the exhaust gas can be improved.
[0029]
A nut 5 having a hexagonal nut portion 51 and a screw portion 52 is rotatably fitted around the flange 4. In the temperature sensor 1, the seat surface 45 of the projecting portion 41 of the flange 4 is brought into contact with the mounting portion of the exhaust pipe, and is fixed by the nut 5. In addition, a tubular joint 6 is joined in an airtight state on the radially outer side of the front end side step portion 44 of the sheath portion 42 in the flange 4. Specifically, the joint 6 is press-fitted into the distal end side step portion 44 of the sheath portion 42 such that the inner peripheral surface of the joint 6 overlaps the outer peripheral surface of the distal end side step portion 44 of the sheath portion 42. The front end side step portion 44 is laser-welded over the circumferential direction. By performing this laser welding, as shown in FIG. 1, a welded portion L <b> 2 straddling the distal end side stepped portion 44 of the sheath portion 42 and the joint 6 is formed.
[0030]
A sheath member 8 that includes a pair of metal core wires 7 is disposed inside the metal tube 3, the flange 4, and the joint 6. The thermistor element 2 is connected via a Pt / Rh alloy wire 9 to a metal core wire 7 protruding from the distal end side of the sheath member 8 inside the metal tube 3. This alloy wire 9 is fired simultaneously with the thermistor element 2. The alloy wire 9 and the metal core wire 7 are resistance-welded to each other. Although not shown in detail, the sheath member 8 insulates between a metal outer tube made of SUS310S, a pair of conductive metal core wires 7 made of SUS310S, and the like, and between the outer tube and each metal core wire 7. And an insulating powder for holding the metal core wire 7.
[0031]
A lead wire 12 for connecting a pair of external circuits (e.g., an ECU of a vehicle) is connected to a metal core wire 7 protruding to the rear end side of the sheath member 8 inside the joint 6 via a crimping terminal 11. The pair of metal core wires 7 and the pair of crimp terminals 11 are insulated from each other by an insulating tube 15. The lead wire 12 is formed by coating a stainless alloy conductive wire with an insulating covering material, and is inserted into an auxiliary ring 13 made of heat-resistant rubber provided in the rear end side opening of the joint 6. And the auxiliary | assistant ring 13 is fixed mutually while maintaining both airtightness by carrying out the round crimping or the polygonal crimping from the top of the coupling 6. FIG. Thereby, the thermistor element 2 is accommodated in the closed space formed by using the metal tube 3, the flange 4 and the joint 6 as a metal surrounding member. The output of the thermistor element 2 is taken out from the metal core wire 7 of the sheath member 8 to the external circuit (not shown) through the lead wire 12, and the temperature of the exhaust gas is detected.
[0032]
Here, in the temperature sensor 1 of the present embodiment, when the atmosphere enters the inside of the joint 6 from the outside through the gap inside the lead wire 12, the atmosphere is inside the joint 6, the metal tube 3, and the flange 4. Is formed in the closed space, so that the metal tube 3 enters. Therefore, in the temperature sensor 1, ventilation from the outside (inside the lead wire 12) to the inside of the metal tube 3 is ensured, and even when the metal tube 3 containing the thermistor element 2 is oxidized, the metal tube 3 is suppressed, and the characteristic change of the thermistor element 2 can be suppressed.
[0033]
Since the temperature sensor 1 is used in a high temperature environment as high as 1000 ° C., each component member needs to have sufficient heat resistance. Therefore, the metal tube 3, the flange 4 and the metal core wire 7 are formed of SUS310S which is a heat-resistant alloy containing Fe as a main component and containing C, Si, Mn, P, S, Ni and Cr. The joint 6 is formed on SUS304.
[0034]
Next, a method for manufacturing the temperature sensor 1 of the above-described embodiment will be described. First, cold forging or / and cutting is performed on a metal body of SUS310S, and an inner hole 48 having a press-fit portion 46 and a diameter changing portion 47, a front end side step portion 44, and a rear end side step portion 43 are provided. A flange 4 having a two-stage sheath 42 and a protrusion 41 located on the distal end side of the sheath 42 and projecting radially outward is formed (see FIG. 2). Moreover, the cylindrical metal tube 3 which makes the front end side 31 obstruct | occluded by deep drawing of a steel plate is formed separately. In the present embodiment, the entire metal tube 3 including the bottom wall is formed by deep drawing of a steel plate.
[0035]
Then, the rear end side 32 of the metal tube 3 is inserted from the insertion side end portion 49 of the inner hole 48 of the flange 4, and the press-fit portion 46 (at least the press-fit portion corresponding to the position of the rear end side sheath portion 44). The metal tube 3 is press-fitted and fixed to 46). In this embodiment, when the inner peripheral surface of the diameter change portion 47 comes into contact with the rear end of the metal tube 3 in this press-fitting process, the metal tube 3 and the flange 4 are caused by the centering effect due to the tapered shape of the inner peripheral surface. Are guided in the direction in which the axial centers coincide with each other. Therefore, it is possible to perform press-fitting of both in a form that suppresses misalignment of both. Further, since the diameter change portion 47 is provided in the inner hole 48, the friction resistance at the beginning of the insertion of the metal tube 3 into the inner hole 48 of the flange 4 (in other words, when the diameter change portion 47 passes) is reduced. It is possible to suppress variation in the press-fit load.
[0036]
And after press-fitting the metal tube 3 and the flange 4, the rear end side step part 43 of the sheath part 42 of the flange 4 and the metal tube 3 are laser-welded over the circumferential direction. Next, an assembly in which a predetermined amount of unsolidified cement 10 is filled in the metal tube 3 and the tip of the metal core wire 7 of the sheath member 8 and the electrode of the thermistor element 2 are connected to each other from the thermistor element 2 side. Insert into the inside of the metal tube 3. Thereafter, the cement 10 is solidified. Next, the rear end portion of the metal core wire 7 of the sheath member 8 and the lead wire 12 are electrically connected using a crimping terminal 11 by a known method. Thereafter, the tubular joint 6 is press-fitted radially outward of the distal end side step portion 44 of the sheath portion 42, and the joint 6 and the distal end side step portion 44 are laser welded in the circumferential direction. Then, the auxiliary ring 13 and the nut 5 are assembled as appropriate. In this way, the temperature sensor 1 is completed.
[0037]
In the temperature sensor 1 manufactured by the above-described manufacturing method, as shown in FIG. 1, since the diameter changing portion 47 is formed in the inner hole 48 of the flange 4, a metal tube is press-fitted into the flange having an inner hole with a constant inner diameter. Compared with a conventional temperature sensor that is fixed, the length of the heat-sensitive portion (the element-side portion disposed in the flow pipe) from the tip of the press-fit portion 46 is increased under the condition that the axial length of the inner hole is equal. be able to. That is, in the temperature sensor 1, as shown in FIG. 2, a ring-shaped space S is generated between the inner peripheral surface of the diameter change portion 47 of the flange 4 and the outer peripheral surface of the metal tube 3. The length of the heat sensitive part can be increased, and heat conduction from the heat sensitive part to the flange 4 can be reduced. Thereby, the responsiveness of the sensor itself can be improved as compared with the conventional one, and the temperature sensor 1 with high temperature measurement accuracy can be obtained.
[0038]
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the specific embodiments described above, and can be applied with appropriate modifications without departing from the scope of the present invention. Needless to say. For example, in the temperature sensor 1 of the present embodiment, the thickness of the metal tube 3 on the tip side of the portion that is press-fitted and fixed to the press-fit portion 46 in the inner hole 48 of the flange 4 is fixed to the press-fit portion 46. The responsiveness of the temperature sensor can be further improved by making it thinner than the portion to be formed.
[0039]
Further, in the temperature sensor 1 of the present embodiment, the diameter changing portion 47 formed on the flange 4 is formed on the most distal side of the inner hole 48 so as to be continuous with the insertion side end portion 49. The formation position is not limited to this, and it may be formed between the insertion side end portion 49 and the press-fit portion 46. For example, a counterbore portion having substantially the same inner diameter and having an inner diameter larger than the inner diameter of the press-fit portion 46 is formed to be continuous with the insertion-side end portion 49, and the rear end of the counterbore portion and the tip end of the press-fit portion 48 are formed. The diameter changing portion 47 whose inner peripheral surface is tapered may be formed so as to connect the two. Furthermore, the temperature sensor of the present invention can be applied not only to an exhaust temperature sensor but also to a temperature sensor attached to a flow passage through which a liquid such as water or oil flows as a fluid to be measured.
[Brief description of the drawings]
FIG. 1 is a partially broken cross-sectional view showing a temperature sensor in a state where a rear end side of a metal tube that houses a thermistor element is inserted from an insertion side end of an inner hole of a flange and is press-fitted and fixed.
FIG. 2 is an enlarged cross-sectional view showing a state where the metal tube and the flange are press-fitted and fixed in the temperature sensor shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Temperature sensor, 2 ... Thermistor element, 3 ... Metal tube, 4 ... Flange, 41 ... Projection part, 42 ... Sheath part, 43 ... Rear end side step part , 44 ... tip side step part, 46 ... press-fitting part, 47 ... deformation part, 48 ... inner hole, 49 ... insertion side end part, 6 ... joint, L1, L2, ..Welding part, S ... space

Claims (5)

内孔を有するフランジと、前記フランジの前記内孔内の圧入部に圧入固定されると共に、先端側が閉塞した軸線方向に延びる筒状の金属チューブと、前記金属チューブの内部に収納され、温度によって電気的特性が変化する素子とを備える温度センサの製造方法であって、
前記フランジの内孔の先端側に位置する挿入側端部と前記圧入部との間に、該圧入部に向かうほど内径が小さくなる変径部を形成し、その後、前記フランジの前記内孔の前記挿入側端部より前記金属チューブの後端側を挿入して、該金属チューブを該フランジに圧入固定することを特徴とする温度センサの製造方法。
A flange having an inner hole, a cylindrical metal tube that is press-fitted and fixed to a press-fitting portion in the inner hole of the flange, and that extends in the axial direction with the front end closed, and is housed inside the metal tube, A method of manufacturing a temperature sensor comprising an element whose electrical characteristics change,
Between the insertion side end located on the distal end side of the inner hole of the flange and the press-fitting part, a diameter-changing part that decreases in inner diameter toward the press-fitting part is formed, and then the inner hole of the flange A method of manufacturing a temperature sensor, wherein the rear end side of the metal tube is inserted from the insertion side end portion, and the metal tube is press-fitted and fixed to the flange.
前記変径部の内周面は、テーパ形状である請求項1に記載の温度センサの製造方法。The method for manufacturing a temperature sensor according to claim 1, wherein an inner peripheral surface of the variable diameter portion has a tapered shape. 前記フランジは、前記軸線方向に延びる鞘部と、該鞘部の先端側に位置し、径方向外側に向かって突出する該鞘部よりも大径の突出部とを有し、前記圧入部は少なくとも前記鞘部内に位置しており、前記金属チューブを前記フランジに圧入固定した後に、前記圧入部を含む形態で前記鞘部と前記金属チューブを周方向にわたって溶接する請求項1または2に記載の温度センサの製造方法。The flange includes a sheath portion extending in the axial direction, and a projecting portion positioned on the distal end side of the sheath portion and projecting radially outward, and having a larger diameter than the sheath portion, The said sheath part and the said metal tube are welded over the circumferential direction in the form containing the said press-fit part, after being positioned in at least the said sheath part and press-fitting and fixing the said metal tube to the said flange. Manufacturing method of temperature sensor. 前記鞘部は、先端側に位置する先端側段部と該先端側段部よりも小さい外径を有する後端側段部とを備える二段形状をなし、前記圧入部は少なくとも前記後端側段部内に位置しており、前記圧入部を含む形態で前記鞘部の前記後端側段部と前記金属チューブを周方向にわたって溶接する請求項3に記載の温度センサの製造方法。The sheath part has a two-stage shape including a front end side step part located on the front end side and a rear end side step part having an outer diameter smaller than the front end side step part, and the press-fitting part is at least on the rear end side The manufacturing method of the temperature sensor of Claim 3 which is located in a step part and welds the said rear end side step part of the said sheath part and the said metal tube over the circumferential direction in the form containing the said press-fit part. 内孔を有するフランジと、前記フランジの前記内孔内の圧入部に圧入固定されると共に、先端側が閉塞した軸線方向に延びる筒状の金属チューブと、前記金属チューブの内部に収納され、温度によって電気的特性が変化する素子とを備える温度センサであって、
前記フランジの内孔の先端側に位置する挿入側端部と前記圧入部との間に、該圧入部に向かうほど内径が小さくなる変径部が形成され、前記フランジに前記金属チューブが圧入固定された状態において、前記変径部の内周面と前記金属チューブの外周面との間に空間が形成されていることを特徴とする温度センサ。
A flange having an inner hole, a cylindrical metal tube that is press-fitted and fixed to a press-fitting portion in the inner hole of the flange, and that extends in the axial direction with the front end closed, and is housed inside the metal tube, A temperature sensor comprising an element whose electrical characteristics change,
Between the insertion side end located on the distal end side of the inner hole of the flange and the press-fitting portion, a diameter-changing portion that decreases in diameter toward the press-fitting portion is formed, and the metal tube is press-fitted and fixed to the flange. In this state, a space is formed between the inner peripheral surface of the diameter change portion and the outer peripheral surface of the metal tube.
JP2002341432A 2002-11-25 2002-11-25 Temperature sensor manufacturing method and temperature sensor Expired - Fee Related JP3707018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341432A JP3707018B2 (en) 2002-11-25 2002-11-25 Temperature sensor manufacturing method and temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341432A JP3707018B2 (en) 2002-11-25 2002-11-25 Temperature sensor manufacturing method and temperature sensor

Publications (2)

Publication Number Publication Date
JP2004177183A JP2004177183A (en) 2004-06-24
JP3707018B2 true JP3707018B2 (en) 2005-10-19

Family

ID=32703796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341432A Expired - Fee Related JP3707018B2 (en) 2002-11-25 2002-11-25 Temperature sensor manufacturing method and temperature sensor

Country Status (1)

Country Link
JP (1) JP3707018B2 (en)

Also Published As

Publication number Publication date
JP2004177183A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US6997607B2 (en) Temperature sensor
US7581879B2 (en) Temperature sensor
JP2004317499A (en) Temperature sensor
EP2141471B1 (en) Temperature sensor
JP5155246B2 (en) Temperature sensor
JP4591533B2 (en) Temperature sensor
JP5198934B2 (en) Temperature sensor
JP2001056256A (en) Temperature sensor and manufacture thereof
JP3787569B2 (en) Temperature sensor
JP4061204B2 (en) Manufacturing method of temperature sensor
JP3826095B2 (en) Temperature sensor
JP4435602B2 (en) Temperature sensor
JP2009300237A (en) Temperature sensor and method of manufacturing the same
JP4829007B2 (en) Temperature sensor
JP3707018B2 (en) Temperature sensor manufacturing method and temperature sensor
JP4143450B2 (en) Manufacturing method of temperature sensor
JP4170740B2 (en) Temperature sensor manufacturing method and temperature sensor
JP4143449B2 (en) Temperature sensor
JP3826098B2 (en) Temperature sensor
JP3826099B2 (en) Temperature sensor
JP5123344B2 (en) Temperature sensor
JP2002350242A (en) Temperature sensor
JP2006126067A (en) Method for manufacturing temperature sensor
JP4350436B2 (en) Temperature sensor
JP2018112513A (en) Temperature sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent or registration of utility model

Ref document number: 3707018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees