JP7044675B2 - Manufacturing method of temperature sensor - Google Patents

Manufacturing method of temperature sensor Download PDF

Info

Publication number
JP7044675B2
JP7044675B2 JP2018172050A JP2018172050A JP7044675B2 JP 7044675 B2 JP7044675 B2 JP 7044675B2 JP 2018172050 A JP2018172050 A JP 2018172050A JP 2018172050 A JP2018172050 A JP 2018172050A JP 7044675 B2 JP7044675 B2 JP 7044675B2
Authority
JP
Japan
Prior art keywords
temperature
sheath
temperature sensor
metal tube
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018172050A
Other languages
Japanese (ja)
Other versions
JP2020046181A (en
Inventor
大輔 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018172050A priority Critical patent/JP7044675B2/en
Publication of JP2020046181A publication Critical patent/JP2020046181A/en
Application granted granted Critical
Publication of JP7044675B2 publication Critical patent/JP7044675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、サーミスタ素子、Pt抵抗体素子、熱電対等の感温素子を備えた温度センサの製造方法に関する。 The present invention relates to a method for manufacturing a temperature sensor including a thermistor element, a Pt resistor element, a temperature sensitive element such as a thermoelectric pair.

自動車等の排気ガス等の温度を検出する温度センサとして、サーミスタやPt抵抗体等の温度によって抵抗値が変化する抵抗体を利用したものが知られている。
図5に示すように、このような温度センサは、例えばサーミスタ素子101とシース部材105とを溶接して感温カバー104の内部に収容し、さらに感温カバー104内の隙間にアルミナ等の絶縁部材107を充填して構成されている(特許文献1参照)。
ところで、感温カバー104内の隙間にペースト状の絶縁部材107を注入する際、気泡が混入すると、硬化後の絶縁部材107に空孔が生じてしまい、感温カバー104内にサーミスタ素子101を良好に保持できなくなる。
そこで、特許文献1には、絶縁部材107を注入した感温カバー104を含む中間形成体に回転運動を付与し、遠心力により脱泡することが記載されている。
As a temperature sensor that detects the temperature of exhaust gas of an automobile or the like, a thermometer, a Pt resistor, or the like that uses a resistor whose resistance value changes depending on the temperature is known.
As shown in FIG. 5, in such a temperature sensor, for example, the thermistor element 101 and the sheath member 105 are welded together and housed inside the temperature sensitive cover 104, and the gap in the temperature sensitive cover 104 is insulated with alumina or the like. It is configured by filling the member 107 (see Patent Document 1).
By the way, when the paste-like insulating member 107 is injected into the gap in the temperature-sensitive cover 104, if air bubbles are mixed in, holes are generated in the cured insulating member 107, and the thermistor element 101 is placed in the temperature-sensitive cover 104. It cannot be held well.
Therefore, Patent Document 1 describes that a rotational motion is applied to an intermediate forming body including a temperature-sensitive cover 104 in which an insulating member 107 is injected, and defoaming is performed by centrifugal force.

特開2008-286786号公報Japanese Unexamined Patent Publication No. 2008-286786

しかしながら、遠心力による脱泡を行うと、絶縁部材107の成分が比重に応じて分離してしまい、感温カバー104内の先後の位置によって絶縁部材107の硬度にバラツキが生じ、感温カバー104の先端側の絶縁部材107が脆くなって破損し易くなるという問題がある。
又、感温カバー104の後端側に比重の軽い水分が多くなり、乾燥時にこの水分が蒸発して気泡が生じやすくなる。
However, when defoaming is performed by centrifugal force, the components of the insulating member 107 are separated according to the specific gravity, and the hardness of the insulating member 107 varies depending on the position of the insulating member 107 in the temperature sensitive cover 104. There is a problem that the insulating member 107 on the tip end side becomes brittle and easily damaged.
In addition, a large amount of water having a light specific gravity increases on the rear end side of the temperature-sensitive cover 104, and this water evaporates during drying, and bubbles are likely to be generated.

従って、本発明は、感温素子と金属チューブとの間に配置される保持部材の空隙を低減すると共に、金属チューブ内の位置による保持部材の硬度のバラツキを抑制した温度センサの製造方法の提供を目的とする。 Therefore, the present invention provides a method for manufacturing a temperature sensor that reduces the voids of the holding member arranged between the temperature sensitive element and the metal tube and suppresses the variation in the hardness of the holding member depending on the position in the metal tube. With the goal.

上記課題を解決するため、本発明の温度センサの製造方法は、温度によって電気的特性が変化する感温部、及び該感温部から延びる一対の素子電極線を有する感温素子と、前記素子電極線、又は該素子電極線に接続されるシース芯線を絶縁材の間に内包するシース外管と、一端側が閉塞して軸線方向に延びる筒状をなし、少なくとも前記感温素子を収納する金属チューブと、前記感温素子と前記金属チューブとの間の空間に配置される保持部材と、を備えた温度センサの製造方法であって、予め、前記素子電極線、又は該素子電極線に接続されたシース芯線を、前記シース外管に挿通する挿通工程と、前記保持部材の材料粉末を、少なくとも前記感温素子と前記シース外管の間に配置し、前記金属チューブの内部空間よりも小さい外形寸法になるように前記材料粉末をプレスするプレス工程と、前記プレス工程でプレスされた前記材料粉末を前記感温素子及び前記シース外管ごと前記金属チューブの内部に収容する収容工程と、前記材料粉末を焼成して前記保持部材を形成する焼成工程と、を有することを特徴とする。 In order to solve the above problems, the method for manufacturing a temperature sensor of the present invention comprises a temperature-sensitive portion whose electrical characteristics change depending on the temperature, a temperature-sensitive element having a pair of element electrode wires extending from the temperature-sensitive portion, and the element. A metal having a sheath outer tube containing an electrode wire or a sheath core wire connected to the element electrode wire between insulating materials and a tubular shape having one end closed and extending in the axial direction, and at least accommodating the temperature-sensitive element. A method for manufacturing a temperature sensor including a tube and a holding member arranged in a space between the temperature-sensitive element and the metal tube, which is connected to the element electrode line or the element electrode line in advance. The insertion step of inserting the sheath core wire into the sheath outer tube and the material powder of the holding member are arranged at least between the temperature sensitive element and the sheath outer tube, and are smaller than the internal space of the metal tube. A pressing step of pressing the material powder so as to have external dimensions, a storage step of accommodating the material powder pressed in the pressing step together with the temperature-sensitive element and the sheath outer tube inside the metal tube, and the above-mentioned It is characterized by having a firing step of firing a material powder to form the holding member.

この温度センサの製造方法によれば、予め保持部材の材料粉末を感温素子とシース外管の間に配置してプレスし、材料粉末の隙間を低減してから、全体を金属チューブの内部に収容して焼成することで、焼成後の保持部材の空隙を低減できる。又、空隙を低減するための遠心分離が不要なため、金属チューブ内の位置による保持部材の硬度のバラツキを抑制し、保持部材の破損等を抑制できる。 According to the manufacturing method of this temperature sensor, the material powder of the holding member is placed between the temperature sensitive element and the outer tube of the sheath in advance and pressed to reduce the gap of the material powder, and then the whole is inside the metal tube. By accommodating and firing, the voids of the holding member after firing can be reduced. Further, since centrifugation is not required to reduce the voids, it is possible to suppress the variation in the hardness of the holding member depending on the position in the metal tube and suppress the damage of the holding member.

本発明の温度センサの製造方法において、前記収容工程にて、予め前記金属チューブの内面に前記材料粉末を含む泥漿又はペーストを塗着しておいてもよい。
この温度センサの製造方法によれば、材料粉末と金属チューブの内面との隙間を泥漿又はペーストが埋め、焼成後の保持部材の空隙をさらに低減できる。
In the method for manufacturing a temperature sensor of the present invention, a slurry or a paste containing the material powder may be previously coated on the inner surface of the metal tube in the accommodating step.
According to this method for manufacturing a temperature sensor, the gap between the material powder and the inner surface of the metal tube can be filled with slurry or paste, and the voids of the holding member after firing can be further reduced.

この発明によれば、感温素子と金属チューブとの間に配置される保持部材の空隙を低減すると共に、金属チューブ内の位置による保持部材の硬度のバラツキを抑制した温度センサが得られる。 According to the present invention, it is possible to obtain a temperature sensor that reduces the voids of the holding member arranged between the temperature sensitive element and the metal tube and suppresses the variation in the hardness of the holding member depending on the position in the metal tube.

本発明の実施形態に係る温度センサの製造方法によって製造された第1の温度センサを軸線方向に沿って破断した断面構造図である。It is sectional drawing which cut the 1st temperature sensor manufactured by the manufacturing method of the temperature sensor which concerns on embodiment of this invention, along the axial direction. 本発明の実施形態に係る温度センサの製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the temperature sensor which concerns on embodiment of this invention. プレス工程に用いるプレス型を示す斜視図である。It is a perspective view which shows the press die used in a press process. 本発明の実施形態に係る温度センサの製造方法によって製造された第1の温度センサを軸線方向に沿って破断した断面構造図である。It is sectional drawing which cut the 1st temperature sensor manufactured by the manufacturing method of the temperature sensor which concerns on embodiment of this invention, along the axial direction. 従来の温度センサの断面の部分拡大図である。It is a partially enlarged view of the cross section of the conventional temperature sensor.

以下、本発明の実施形態について説明する。
図1は、本発明の実施形態に係る温度センサの製造方法によって製造された、第1の温度センサ1の一部を軸線O方向に沿って破断した断面構造を示す。なお、第1の温度センサ1は、金属チューブ30の後端側からシース部材20が収納される態様である。
温度センサ1は、内燃機関の排気管の側壁の開口部(図示せず)に挿通して取付けられ、自動車の排気ガスの温度を検出する。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a cross-sectional structure in which a part of the first temperature sensor 1 manufactured by the method for manufacturing a temperature sensor according to the embodiment of the present invention is broken along the axis O direction. The first temperature sensor 1 is an embodiment in which the sheath member 20 is housed from the rear end side of the metal tube 30.
The temperature sensor 1 is inserted through and attached to an opening (not shown) on the side wall of the exhaust pipe of the internal combustion engine, and detects the temperature of the exhaust gas of the automobile.

温度センサ1は、サーミスタ素子(感温素子)10と、サーミスタ素子10に接続されるシース部材20と、サーミスタ素子10及びシース部材20を収容する有底筒状の金属部材(本実施形態では、SUS310Sを使用)30と、金属チューブ30の外周に嵌合される取付け部50と、取付け部50の外周に遊嵌されるナット部60と、取付け部50の後端側に取付けられる筒状金属製の外筒70と、外筒70の後端に取付けられてリード線24を外部に引き出す耐熱ゴム製の補助リング26とを備えている。
なお、本発明の温度センサ1において、金属チューブ30は軸線O方向に延びており、金属チューブ30の底部側を「先端」とし、金属チューブ30の開放端側を「後端」とする。
The temperature sensor 1 includes a thermistor element (temperature sensitive element) 10, a sheath member 20 connected to the thermistor element 10, and a bottomed tubular metal member containing the thermistor element 10 and the sheath member 20 (in this embodiment, the temperature sensor 1 is a bottomed tubular metal member. (Use SUS310S) 30, a mounting portion 50 fitted to the outer periphery of the metal tube 30, a nut portion 60 loosely fitted to the outer periphery of the mounting portion 50, and a tubular metal mounted on the rear end side of the mounting portion 50. It is provided with an outer cylinder 70 made of heat-resistant rubber and an auxiliary ring 26 made of heat-resistant rubber attached to the rear end of the outer cylinder 70 to pull out the lead wire 24 to the outside.
In the temperature sensor 1 of the present invention, the metal tube 30 extends in the O-axis direction, and the bottom side of the metal tube 30 is referred to as the “tip” and the open end side of the metal tube 30 is referred to as the “rear end”.

サーミスタ素子(感温素子)10は、温度を測定するためのサーミスタ焼結体(感温部)11と、サーミスタ焼結体11の一端(後端側)から延びる一対の素子電極線12とを有する。
サーミスタ焼結体11としては、(Sr,Y)(Al,Mn,Fe)Oをベース組成としたペロブスカイト型酸化物を用いることができるが、これに限定されない。
本実施形態では、サーミスタ焼結体11は、六角柱状であり、六角柱の柱軸方向を温度センサ1(金属チューブ30)の軸線O方向と垂直にし、六角形の外縁を形成する六つの面のうち、1つの面を先端向き面として金属チューブ30内に配置される。サーミスタ焼結体11は温度変化に応じて電気抵抗値が変化するので、その変化を一対の素子電極線12間の電圧変化として検知できる。感温部としては上記サーミスタの他、Pt等の抵抗体を用いることもできる。
The thermistor element (temperature sensitive element) 10 includes a thermistor sintered body (temperature sensitive portion) 11 for measuring temperature and a pair of element electrode wires 12 extending from one end (rear end side) of the thermistor sintered body 11. Have.
As the thermistor sintered body 11, a perovskite-type oxide having a base composition of (Sr, Y) (Al, Mn, Fe) O 3 can be used, but is not limited thereto.
In the present embodiment, the thermistor sintered body 11 is a hexagonal columnar, and the column axis direction of the hexagonal column is perpendicular to the axis O direction of the temperature sensor 1 (metal tube 30), and six surfaces forming a hexagonal outer edge. Of these, one surface is arranged in the metal tube 30 with the tip facing surface. Since the electric resistance value of the thermistor sintered body 11 changes according to the temperature change, the change can be detected as a voltage change between the pair of element electrode wires 12. In addition to the thermistor described above, a resistor such as Pt can also be used as the temperature sensitive portion.

シース部材20は、サーミスタ素子10の一対の素子電極線12に溶接部Jにてそれぞれ接続されるシース芯線21と、シース芯線21を収容する金属製のシース外管22とを有し、シース芯線21とシース外管22内面との間にSiOからなる絶縁材が充填されている。
通常、素子電極線12は高価なPt-Rh線等であるため、SUS等からなる安価なシース芯線21と接続することでコストダウンが図られている。
The sheath member 20 has a sheath core wire 21 connected to a pair of element electrode wires 12 of the thermista element 10 by a welded portion J, and a metal sheath outer tube 22 accommodating the sheath core wire 21. An insulating material made of SiO 2 is filled between 21 and the inner surface of the sheath outer tube 22.
Since the element electrode wire 12 is usually an expensive Pt-Rh wire or the like, cost reduction is achieved by connecting it to an inexpensive sheath core wire 21 made of SUS or the like.

取付け部50は、金属チューブ30を挿通するための中心孔が軸線O方向に開口する略円筒状をなし、温度センサ1の先端側から、大径の鍔部51、鍔部51よりも小径の筒状の鞘部52、鞘部52のうち先端側を構成する第1段部54、及び鞘部52のうち後端側を構成し第1段部54より小径の第2段部55がこの順に形成されている。鍔部51の先端面はテーパ状の座面53を有し、後述するナット部60を排気管に螺合する際、座面53が排気管の側壁の角部(図示せず)に押し付けられてシールを行うようになっている。
取付け部50は、金属チューブ30の後端部の外周に圧入され、第2段部55と金属チューブ30とを全周レーザ溶接して両者が固定されている。
又、第1段部54の外周に外筒70が圧入され、全周レーザ溶接によって両者が固定されている。外筒70は、シース部材20から引き出されたシース芯線21とリード線24との接続部分を収容して保持する。
The mounting portion 50 has a substantially cylindrical shape in which a central hole for inserting the metal tube 30 opens in the axis O direction, and has a diameter smaller than that of the large diameter flange portion 51 and the flange portion 51 from the tip side of the temperature sensor 1. The tubular sheath portion 52, the first step portion 54 constituting the tip side of the sheath portion 52, and the second step portion 55 constituting the rear end side of the sheath portion 52 and having a diameter smaller than that of the first stage portion 54 are the same. It is formed in order. The tip surface of the flange portion 51 has a tapered seat surface 53, and when the nut portion 60 described later is screwed into the exhaust pipe, the seat surface 53 is pressed against a corner portion (not shown) of the side wall of the exhaust pipe. It is designed to be sealed.
The mounting portion 50 is press-fitted to the outer periphery of the rear end portion of the metal tube 30, and the second stage portion 55 and the metal tube 30 are laser-welded all around to fix them.
Further, the outer cylinder 70 is press-fitted to the outer periphery of the first step portion 54, and both are fixed by laser welding all around. The outer cylinder 70 accommodates and holds a connecting portion between the sheath core wire 21 and the lead wire 24 drawn out from the sheath member 20.

ナット部60は、外筒70の外周よりやや大径の中心孔を軸線O方向に有し、先端側から、ネジ部62、ネジ部62より大径の六角ナット部61が形成されている。そして、取付け部50の鍔部51の後面にネジ部62の前面を当接させた状態で、ナット部60が取付け部50(外筒70)の外周に遊嵌し、軸線O方向に回動自在になっている。
そして、ネジ部62が排気管の所定のネジ穴と螺合することにより、温度センサ1が排気管の側壁に取付けられる。
The nut portion 60 has a central hole having a diameter slightly larger than the outer circumference of the outer cylinder 70 in the axis O direction, and a screw portion 62 and a hexagon nut portion 61 having a diameter larger than that of the screw portion 62 are formed from the tip side. Then, with the front surface of the screw portion 62 in contact with the rear surface of the flange portion 51 of the mounting portion 50, the nut portion 60 is loosely fitted to the outer periphery of the mounting portion 50 (outer cylinder 70) and rotates in the axis O direction. It is free.
Then, the temperature sensor 1 is attached to the side wall of the exhaust pipe by screwing the screw portion 62 into a predetermined screw hole of the exhaust pipe.

シース部材20のシース外管22の後端からは2本のシース芯線21が引き出され、各シース芯線21の終端が加締め端子23に接続され、加締め端子23はリード線24に接続されている。なお、各シース芯線21及び加締め端子23はそれぞれ絶縁チューブ25で絶縁されている。
そして、各リード線24は、外筒70の後端内側に嵌合された補助リング26のリード線挿通孔を通って外部に引き出され、図示しないコネクタを介して外部回路と接続されている。
又、金属チューブ30の内面と、サーミスタ素子10及びシース部材20との隙間には、アルミナ、シリカ等のセメント(保持部材)40が充填されており、サーミスタ素子10及びシース部材20を保持してその振動を抑制している。セメント40としては、熱伝導率が高く、高耐熱、高絶縁性の材料を用いてもよい。
Two sheath core wires 21 are pulled out from the rear end of the sheath outer tube 22 of the sheath member 20, the end of each sheath core wire 21 is connected to the crimping terminal 23, and the crimping terminal 23 is connected to the lead wire 24. There is. The sheath core wire 21 and the crimping terminal 23 are each insulated by an insulating tube 25.
Each lead wire 24 is pulled out to the outside through a lead wire insertion hole of an auxiliary ring 26 fitted inside the rear end of the outer cylinder 70, and is connected to an external circuit via a connector (not shown).
Further, the gap between the inner surface of the metal tube 30 and the thermistor element 10 and the sheath member 20 is filled with cement (holding member) 40 such as alumina and silica to hold the thermistor element 10 and the sheath member 20. The vibration is suppressed. As the cement 40, a material having high thermal conductivity, high heat resistance, and high insulating properties may be used.

次に、図2、図3を参照し、本発明の実施形態に係る温度センサの製造方法について説明する。図2は温度センサの製造方法を示す工程図、図3はプレス工程に用いるプレス型91,92を示す斜視図である。
まず、予め、サーミスタ素子10の素子電極線12にシース芯線21を溶接部Jにて接続し、シース芯線21をシース外管22に挿通する(図2(a):挿通工程)。
次に、保持部材の材料粉末40xを、プレス型91,92内の少なくともサーミスタ素子10とシース外管22の間に配置し、金属チューブ30の内部空間よりも小さい外形寸法になるように材料粉末40xをプレスする(図2(b)、(c):プレス工程)。
Next, a method for manufacturing a temperature sensor according to an embodiment of the present invention will be described with reference to FIGS. 2 and 3. FIG. 2 is a process diagram showing a manufacturing method of a temperature sensor, and FIG. 3 is a perspective view showing press molds 91 and 92 used in the pressing process.
First, the sheath core wire 21 is connected to the element electrode wire 12 of the thermistor element 10 at the welded portion J in advance, and the sheath core wire 21 is inserted into the sheath outer tube 22 (FIG. 2A: insertion step).
Next, the material powder 40x of the holding member is placed between at least the thermistor element 10 and the sheath outer tube 22 in the press molds 91 and 92, and the material powder has an outer dimension smaller than the internal space of the metal tube 30. 40x is pressed (FIGS. 2 (b) and 2 (c): pressing process).

ここで、図3に示すように、プレス型91,92はそれぞれ上型と下型であり、プレス型91,92でサーミスタ素子10とシース外管22の前端とを上下から挟んで内包するようになっている。又、プレス型91,92の先端側には材料粉末40xを装入するための導入口90hが開口している。そして、導入口90hから材料粉末40xを装入した後、適宜導入口90hを閉塞し、プレス型91,92を外側から加圧(例えば静水圧加圧)して材料粉末40xをプレスする。
プレス型91,92としては、ゴム型、金属型等を用いることができる。
Here, as shown in FIG. 3, the press dies 91 and 92 are an upper die and a lower die, respectively, and the thermistor element 10 and the front end of the sheath outer tube 22 are sandwiched and included in the press dies 91 and 92 from above and below. It has become. Further, an introduction port 90h for charging the material powder 40x is opened on the tip side of the press molds 91 and 92. Then, after charging the material powder 40x from the introduction port 90h, the introduction port 90h is appropriately closed, and the press molds 91 and 92 are pressed from the outside (for example, hydrostatic pressure is applied) to press the material powder 40x.
As the press dies 91 and 92, rubber dies, metal dies and the like can be used.

そして、プレス工程でプレスされた材料粉末40xをサーミスタ素子10及びシース外管22ごと金属チューブ30の内部に収容する(図3(d):収容工程)。
ここで、本実施形態では、予め金属チューブ30の内面に材料粉末を含む泥漿又はペースト40bを塗着してある。なお、泥漿又はペースト40bは、保持部材の構成材料(アルミナ粉等)からなる骨材と、バインダー(水、溶剤等)とを含む。
次に、材料粉末40xを焼成して保持部材40を形成する(図3(e):焼成工程)。この後、各種部材を組み付けて温度センサ1が完成する。
Then, the material powder 40x pressed in the pressing process is accommodated inside the metal tube 30 together with the thermistor element 10 and the sheath outer tube 22 (FIG. 3 (d): accommodating step).
Here, in the present embodiment, the slurry or paste 40b containing the material powder is previously coated on the inner surface of the metal tube 30. The slurry or paste 40b contains an aggregate made of a constituent material (alumina powder or the like) of a holding member and a binder (water, solvent or the like).
Next, the material powder 40x is fired to form the holding member 40 (FIG. 3 (e): firing step). After that, various members are assembled to complete the temperature sensor 1.

このように、予め保持部材の材料粉末40xをサーミスタ素子10とシース外管22の間に配置してプレスし、材料粉末40xの隙間を低減してから、全体を金属チューブ30の内部に収容して焼成することで、焼成後の保持部材40の空隙を低減できる。又、空隙を低減するための遠心分離が不要なため、金属チューブ30内の位置による保持部材40の硬度のバラツキを抑制し、保持部材40の破損等を抑制できる。
又、本実施形態では、予め金属チューブ30の内面に材料粉末を含む泥漿又はペースト40bを塗着した後、プレスされた材料粉末40xをサーミスタ素子10及びシース外管22ごと金属チューブ30の内部に収容するので、材料粉末40xと金属チューブ30の内面との隙間を泥漿又はペースト40bが埋め、焼成後の保持部材40の空隙をさらに低減できる。
In this way, the material powder 40x of the holding member is previously arranged between the thermistor element 10 and the sheath outer tube 22 and pressed to reduce the gap of the material powder 40x, and then the whole is housed inside the metal tube 30. By firing, the voids in the holding member 40 after firing can be reduced. Further, since centrifugation is not required to reduce the voids, it is possible to suppress the variation in the hardness of the holding member 40 depending on the position in the metal tube 30, and to suppress the damage of the holding member 40 and the like.
Further, in the present embodiment, after the slurry or paste 40b containing the material powder is previously coated on the inner surface of the metal tube 30, the pressed material powder 40x is placed inside the metal tube 30 together with the thermista element 10 and the sheath outer tube 22. Since it is accommodated, the gap between the material powder 40x and the inner surface of the metal tube 30 can be filled with the slurry or the paste 40b, and the voids of the holding member 40 after firing can be further reduced.

次に、図4を参照し、本発明の実施形態に係る温度センサの製造方法によって製造された、第2の温度センサ1Bについて説明する。図4は、温度センサ1Bを軸線O方向に沿って破断した断面構造を示す。
なお、温度センサ1Bは、感温素子10Bが熱電対であり、又、感温素子10Bからの一対の熱電対素線(素子電極線)12Bが、シース芯線21を用いずに直接シース外管22内に挿通されること以外は第1の温度センサ1と同一であるので、温度センサ1と同一な部分に同一符号を付して説明を省略する。
Next, with reference to FIG. 4, a second temperature sensor 1B manufactured by the method for manufacturing a temperature sensor according to the embodiment of the present invention will be described. FIG. 4 shows a cross-sectional structure in which the temperature sensor 1B is broken along the axis O direction.
In the temperature sensor 1B, the temperature-sensitive element 10B is a thermocouple, and the pair of thermocouple strands (element electrode wires) 12B from the temperature-sensitive element 10B are directly sheathed without using the sheath core wire 21. Since it is the same as the first temperature sensor 1 except that it is inserted into the inside of 22, the same parts as those of the temperature sensor 1 are designated by the same reference numerals and the description thereof will be omitted.

温度センサ1Bにおいては、感温素子(熱電対)10Bは、温度を測定するための測温接点(感温部)11Bと、測温接点11Bから後端側に延びる一対の熱電対素線(素子電極線)12Bと、を有する。
熱電対素線12Bは、互いに異なる金属で形成されている。本実施形態では、一方の熱電対素線12Bがニッケル、クロム及びシリコンを含む合金からなり、他方の熱電対素線12Bがニッケル及びシリコンを含む合金からなる。
そして、各熱電対素線12Bの先端を互いに溶接等で接合して測温接点11Bが形成されている。測温接点11Bと基準接点との間の温度差に応じて熱起電力が生じるので、一対の熱電対素線12B間の電圧として検知できる。
In the temperature sensor 1B, the temperature sensitive element (thermocouple) 10B includes a temperature measuring contact (temperature sensing unit) 11B for measuring the temperature and a pair of thermocouple strands extending from the temperature measuring contact 11B to the rear end side (the thermocouple). The element electrode wire) 12B and the like.
The thermocouple strands 12B are made of different metals. In this embodiment, one thermocouple wire 12B is made of an alloy containing nickel, chromium and silicon, and the other thermocouple wire 12B is made of an alloy containing nickel and silicon.
Then, the tips of the thermocouple strands 12B are joined to each other by welding or the like to form a temperature measuring contact 11B. Since a thermoelectromotive force is generated according to the temperature difference between the temperature measuring contact 11B and the reference contact, it can be detected as a voltage between the pair of thermocouple strands 12B.

各熱電対素線12Bは、シース芯線21を用いずに直接シース外管22内に挿通されている。シース外管22と各熱電対素線12Bとの間には、例えばSiOからなる絶縁材が充填されている。
そして、シース外管22の後端側に露出した各熱電対素線12Bが、それぞれ溶接により対応する補償導線27の先端を剥いた撚線27fに溶接部Jにて接続されている。各補償導線27は、それぞれ絶縁チューブ25で絶縁されていると共に、外筒70の後端内側に嵌合された耐熱ゴム製のグロメット26の挿通孔を通って外部に引き出されている。
Each thermocouple wire 12B is directly inserted into the sheath outer tube 22 without using the sheath core wire 21. An insulating material made of, for example, SiO 2 is filled between the sheath outer tube 22 and each thermocouple wire 12B.
Each of the thermocouple strands 12B exposed on the rear end side of the sheath outer tube 22 is connected to the stranded wire 27f from which the tip of the corresponding compensating lead wire 27 is stripped by welding by a welded portion J. Each of the compensating conductors 27 is insulated by an insulating tube 25, and is led out to the outside through an insertion hole of a heat-resistant rubber grommet 26 fitted inside the rear end of the outer cylinder 70.

温度センサ1Bの製造においても、予め保持部材の材料粉末40x(図2参照)を熱電対10Bとシース外管22の間に配置してプレスしてから、全体を金属チューブ30の内部に収容して焼成することで、焼成後の保持部材40の空隙を低減できる。又、空隙を低減するための遠心分離が不要なため、金属チューブ30内の位置による保持部材40の硬度のバラツキを抑制し、保持部材40の破損等を抑制できる。 Also in the manufacture of the temperature sensor 1B, the material powder 40x (see FIG. 2) of the holding member is placed between the thermocouple 10B and the sheath outer tube 22 in advance and pressed, and then the whole is housed inside the metal tube 30. By firing, the voids in the holding member 40 after firing can be reduced. Further, since centrifugation is not required to reduce the voids, it is possible to suppress the variation in the hardness of the holding member 40 depending on the position in the metal tube 30, and to suppress the damage of the holding member 40 and the like.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。例えば、
サーミスタ焼結体の全体形状は特に限定されず、例えば四角柱であってもよい。
It goes without saying that the present invention is not limited to the above embodiments and extends to various modifications and equivalents included in the idea and scope of the present invention. for example,
The overall shape of the thermistor sintered body is not particularly limited, and may be, for example, a quadrangular prism.

1、1B 温度センサ
10,10B 感温素子
11,11B 感温部
12,12B 素子電極線
21 シース芯線
22 シース外管
30 金属チューブ
40 保持部材
40x 保持部材の材料粉末
40b 材料粉末を含む泥漿又はペースト
O 軸線
1,1B Temperature sensor 10,10B Temperature sensitive element 11,11B Temperature sensitive part 12,12B Element electrode wire 21 Sheath core wire 22 Sheath outer tube 30 Metal tube 40 Holding member 40x Holding member material powder 40b Slurry or paste containing material powder O axis

Claims (2)

温度によって電気的特性が変化する感温部、及び該感温部から延びる一対の素子電極線を有する感温素子と、
前記素子電極線、又は該素子電極線に接続されるシース芯線を絶縁材の間に内包するシース外管と、
一端側が閉塞して軸線方向に延びる筒状をなし、少なくとも前記感温素子を収納する金属チューブと、
前記感温素子と前記金属チューブとの間の空間に配置される保持部材と、を備えた温度センサの製造方法であって、
予め、前記素子電極線、又は該素子電極線に接続されたシース芯線を、前記シース外管に挿通する挿通工程と、
前記保持部材の材料粉末を、少なくとも前記感温素子と前記シース外管の間に配置し、前記金属チューブの内部空間よりも小さい外形寸法になるように前記材料粉末をプレスするプレス工程と、
前記プレス工程でプレスされた前記材料粉末を前記感温素子及び前記シース外管ごと前記金属チューブの内部に収容する収容工程と、
前記材料粉末を焼成して前記保持部材を形成する焼成工程と、を有することを特徴とする温度センサの製造方法。
A temperature-sensitive part whose electrical characteristics change depending on the temperature, and a temperature-sensitive element having a pair of element electrode wires extending from the temperature-sensitive part.
A sheath outer tube containing the element electrode wire or a sheath core wire connected to the element electrode wire between insulating materials, and a sheath outer tube.
A metal tube that has a cylindrical shape with one end closed and extends in the axial direction, and at least accommodates the temperature-sensitive element.
A method for manufacturing a temperature sensor including a holding member arranged in a space between the temperature sensing element and the metal tube.
The insertion step of inserting the element electrode wire or the sheath core wire connected to the element electrode wire into the sheath outer tube in advance.
A pressing step in which the material powder of the holding member is placed at least between the temperature sensing element and the sheath outer tube, and the material powder is pressed so as to have an outer dimension smaller than the internal space of the metal tube.
A storage step of accommodating the material powder pressed in the press step together with the temperature-sensitive element and the sheath outer tube inside the metal tube, and a storage step.
A method for manufacturing a temperature sensor, which comprises a firing step of firing the material powder to form the holding member.
前記収容工程にて、予め前記金属チューブの内面に前記材料粉末を含む泥漿又はペーストを塗着しておくことを特徴とする請求項1に記載の温度センサの製造方法。 The method for manufacturing a temperature sensor according to claim 1, wherein in the accommodating step, a slurry or a paste containing the material powder is previously coated on the inner surface of the metal tube.
JP2018172050A 2018-09-14 2018-09-14 Manufacturing method of temperature sensor Active JP7044675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018172050A JP7044675B2 (en) 2018-09-14 2018-09-14 Manufacturing method of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172050A JP7044675B2 (en) 2018-09-14 2018-09-14 Manufacturing method of temperature sensor

Publications (2)

Publication Number Publication Date
JP2020046181A JP2020046181A (en) 2020-03-26
JP7044675B2 true JP7044675B2 (en) 2022-03-30

Family

ID=69901241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172050A Active JP7044675B2 (en) 2018-09-14 2018-09-14 Manufacturing method of temperature sensor

Country Status (1)

Country Link
JP (1) JP7044675B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286491A (en) 2003-03-19 2004-10-14 Ngk Spark Plug Co Ltd Manufacturing method of temperature sensor
US20070258506A1 (en) 2006-05-02 2007-11-08 Schwagerman William H Temperature sensors and methods of manufacture thereof
JP2008256471A (en) 2007-04-03 2008-10-23 Denso Corp Manufacturing method of temperature sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038926A (en) * 2009-08-12 2011-02-24 Ngk Spark Plug Co Ltd Temperature sensor
JP5310679B2 (en) * 2010-09-02 2013-10-09 株式会社デンソー Temperature sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286491A (en) 2003-03-19 2004-10-14 Ngk Spark Plug Co Ltd Manufacturing method of temperature sensor
US20070258506A1 (en) 2006-05-02 2007-11-08 Schwagerman William H Temperature sensors and methods of manufacture thereof
JP2008256471A (en) 2007-04-03 2008-10-23 Denso Corp Manufacturing method of temperature sensor

Also Published As

Publication number Publication date
JP2020046181A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
KR101113532B1 (en) Temperature sensor for a resistance thermometer, in particular for use in the exhaust gas system of combustion engines
JP6608088B1 (en) Temperature sensor
JP2004317499A (en) Temperature sensor
JP5198934B2 (en) Temperature sensor
JP2009294203A (en) Temperature sensor
US11131587B2 (en) Temperature sensor with heat transfer element and fabrication method
US20090168842A1 (en) Temperature sensor and method of producing the same
CN102265128A (en) Temperature sensor, manufacturing process and corresponding method of assembly
EP2075557A2 (en) Temperature sensor and method of producing the same
JP2007240341A (en) Temperature sensor
JP7044675B2 (en) Manufacturing method of temperature sensor
JP4829007B2 (en) Temperature sensor
JP2018036188A (en) Temperature sensor
CN112840190A (en) Temperature sensor and method for assembling such a temperature sensor
US2973495A (en) Temperature measuring device
JP2002107233A (en) Thermocouple device
JP5656513B2 (en) Glow plug for use in internal combustion engines
JP4059222B2 (en) Temperature sensor and method of manufacturing temperature sensor
JP5576350B2 (en) Temperature sensor
JP6576766B2 (en) Temperature sensor
JP2020016633A (en) Temperature sensor
CN110715751A (en) Temperature sensor
JP5123344B2 (en) Temperature sensor
JP2018112513A (en) Temperature sensor
JP2017223556A (en) Temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220317

R150 Certificate of patent or registration of utility model

Ref document number: 7044675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350