JP4138046B2 - 位相シフトマスクのシフタの位相差測定方法およびそれに用いるマスク - Google Patents

位相シフトマスクのシフタの位相差測定方法およびそれに用いるマスク Download PDF

Info

Publication number
JP4138046B2
JP4138046B2 JP17866897A JP17866897A JP4138046B2 JP 4138046 B2 JP4138046 B2 JP 4138046B2 JP 17866897 A JP17866897 A JP 17866897A JP 17866897 A JP17866897 A JP 17866897A JP 4138046 B2 JP4138046 B2 JP 4138046B2
Authority
JP
Japan
Prior art keywords
pattern
mask
phase difference
phase shift
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17866897A
Other languages
English (en)
Other versions
JPH1083068A (ja
Inventor
耕治 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH1083068A publication Critical patent/JPH1083068A/ja
Application granted granted Critical
Publication of JP4138046B2 publication Critical patent/JP4138046B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、位相シフトマスクの位相シフト材料を通過した光の位相差、位相差変化、位相差誤差の測定に係り、特に位相シフト材料における位相差を決定するための効果的で安価な方法に関する。
【0002】
【従来の技術】
現在、ほとんどの半導体集積回路は、例えばフォトリソグラフィ等の光加工技術を使用して形成される。光加工技術は、典型的に、例えば紫外線(UV)光等の光を半導体ウエハ上に堆積されたレジスト材料と呼ばれる感光材料の層上にマスクを通して照射する技術を使用する。マスクは一般的に、半導体ウエハ上に堆積された感光性の層に転写される回路パターンを定めるように構成されたハーフトーン等の光遮断あるいは光減衰材料の層を有する光透過性基板を含んでいる。このマスクは、レジストで被覆された半導体ウエハに転写されるネガあるいはポジのいずれかのパターンを形成する。
【0003】
ネガレジストが使用された場合、マスクを通過する投影された露光光によって、レジスト層の露光された領域が重合化および架橋反応を起こす。それに続く現像プロセスによって、レジスト層の露光されない領域は現像液によって半導体ウエハから洗い落とされ、マスクパターンの逆、すなわちネガの画像に対応するレジスト材料の転写されたパターンが残される。ネガレジストの代りにポジレジストが使用されることもある。ポジレジストが使用されるとき、マスクを通過する照射光によって、レジスト層の露光された部分が現像液に溶解可能になり、それによって、露光されたレジスト層は現像プロセスによって洗い落とされ、マスクパターンに直接対応するレジスト材料の転写されたパターンが残される。いずれの場合においても、半導体基板上に残っているレジスト材料は、所望された半導体装置を形成するための後工程、例えばエッチングおよび不純物注入を受ける露光された半導体材料のパターンを決定するのに役立つ。
【0004】
サブミクロン領域での回路パターンの形成は、典型的に基板の素子の大規模集積(LSI)化および超大規模集積(VLSI)化に関連し、一般的にそれらに対応するパターン解像性が露光プロセスにおいて得られる必要がある。パターン解像性の問題に対する幾つかの解決策には、解像性を増加させるために、例えば短波長の紫外領域の光等の、光の開口数(NA)値が高く、波長の短い光を使用することがある。しかしながら、この解決策には焦点深度の劣化の問題がある。投影されたパターンの焦点深度は、レジスト材料を通したマスクのパターン転写を高精度に実現するために重要である。典型的に、照射光は、比較的厚いレジスト材料を通過することが要求され、マスクパターンがレジスト材料に転写されることは非常に重要である。さらに、焦点深度が増加すると、最良の焦点位置から露光ツールがわずかにずれるという悪影響、すなわち、焦点ずれのパターン解像性に与える影響を最小にすることができる。最も高精度な光露光装置でさえ、最良の焦点位置からのサブミクロンレベルの誤差が生じないことを保証することはできない。
【0005】
最近、従来の焦点深度に対して著しく解像性を増加させる位相シフトマスク技術が開発されてきている。位相シフトマスク(PSM)は、180°(一般的にπで表される)の位相シフト機能を有する露光光を透過させることができる選択的に配置されたマスクパターン材料を使用することによって通常のフォトリソグラフマスクとは異なる。フォトリソグラフィにPSMを取入れるというアイディアは、1980年代初期に最初に提唱された。この技術によって、従来のフォトリソグラフィの限界が延命され、0.25μm以下の微細寸法を有する回路パターンの製造が可能となった。PMSとはマスクパターン上に作成された位相シフタによって180°の位相差を生じ、光の干渉作用によってマスクを透過する光強度のコントラストを著しく増加させるマスクである。結果的に、従来マスク (従来マスクとは、例えばクロム等の不透明材料だけをマスク材料として使用する)と比較して、より高い解像性および大きい焦点深度が得られる。都合のよいことに、PSMを使用する技術は、通常のステッパ光学装置およびレジスト技術を使用して実施することができる。
【0006】
PSMの出現以来、多数のPSM技術が開発されてきた。これらの中には、レベンソン型(Levenson)、補助パターン型(subresolution )、リム型(rim )、およびハーフトーン型(Halftone)位相シフト技術が含まれている。例えば、本明細書において全体的に参照されているC.Harper氏等による参照文献“Electronic Material & Processes Handbook”(2d ed., §10.4, pp. 10.33-10.39 (1994))でなされている。これらの技術の中で、ハーフトーン型位相シフトマスクは最もデバイスパターンへの適用範囲が広い。ハーフトーンPSMでは、マスクパターン材料の従来の不透明な層、すなわちクロム層の代りに、180°の位相シフトとわずかな透過性を有するハーフトーンの吸収体を使用する。本来は、ハーフトーンPSMでは透過率制御層と位相制御層の2積層よりなる。ところが、最近、光の透過率および位相シフトの両方を制御する2つの機能を実行するために開発された単一層材料の使用によってハーフトーンPSMの利点が拡大された。そのような単一層のハーフトーン材料は、本明細書において全体的に参照されているIto 氏等による参照文献“Optimization of Optical Properties for Single-layer Halftone Masks”(SPIE, Vol.2197, p.99 (January 1994) )に記載されているようにSiNx 等から構成されている。その組成比は、ハーフトーン材料成膜中に窒素の流量を変化させることによって制御され、ハーフトーン材料の組成比によって、光の減衰量および位相シフト特性が決定される。
【0007】
ハーフトーンPSMは、高い解像性を有して実際の装置のパターンを適用するための最も有効な技術の一つであるとされる。それは、例えば本明細書において全体的に参照文献とされているK.Hashimoto 氏等による参照文献“The Application of Deep UV Phase-Shifted Single-layer Halftone Reticles to 256Mbit Dynamic Random Access Memory Cell Patterns ”(Jpn.J. Appl.Phys., Vol.33, pp.6823-6830 (1994))でなされている。しかしながら、0.25μm以下の寸法のパターンが精度良く確実に生成されるようにするために、より大きい解像性を提供する新しい技術が要求される。さらに、ハーフトーンPSMによってはイメージショートニング効果に関連した問題を除去することはできない。
【0008】
イメージショートニングとは、マスクによって投影されたパターンの解像性能を減少させる現象の1つである。例えば、DRAMのパターンにおいて記憶ノード等の細長い穴のパターンでは、わずかな焦点ずれによって結果的にそのウエハ上に投影された穴の長辺方向の長さが実質的に短縮する。このパターン長の短縮は、特に例えば±0.5μm程度の焦点ずれ状態において生じ、画像強度および像コントラストは、細長い穴の端部に向かうにつれて著しく減少する。
【0009】
イメージショートニング効果を悪化させるPSMの別の特徴は、位相差エラーあるいは位相差変化である。PSMの理想的な位相シフト量が180°であることは良く知られている。理想的な状態からの位相の変化は、半導体ウエハ上に投影されたパターンの解像性能にとって重要である。位相差エラーは、PSMが最適な180°以外の位相差で光をシフトするときに生じる。位相差エラーがわずかであっても、解像性能に非常に大きい影響を与える。ハーフトーンPSMにおいて満足なリソグラフィ特性を達成するために、位相差変化は、ハーフトーン膜上で理想的な180°の位相シフトの±3°以内に制御されなければならないことがわかった。位相差エラーは、ハーフトーンPSM材料の測定された特性に数学的に基づいて論理的に決定される。例えば、材料の屈折率は、スペクトログラフで測定することができる。所定のハーフトーン材料の屈折値nは、数学的にnと表され、下記の(1)式で与えられる。
【0010】
【数1】
Figure 0004138046
【0011】
この(1)式において、nは実数部分の成分であり、kは材料の透過率に関する虚数成分である。材料によって生じた位相シフトφは、下記の(2)式の関係に基づいて決定される。
【0012】
【数2】
Figure 0004138046
【0013】
この(2)式において、λは使用された光の波長である。しかしながら、この方法は不正確であり、採用することはできない。その理由は、ハーフトーン材料は典型的にアモルファスであり、nおよびk成分の分布は可変だからである。従って、位相の値は、ハーフトーン材料の領域全体にわたって一様ではなく、すなわち、位相の値は、ハーフトーン材料にわたって変化する。数学的モデルでは、位相が材料全体にわたって一様であると仮定しているので、間接的な方法を使用すると、ハーフトーン材料の使用によって生じた結果的な位相差を正確に決定することはできない。
【0014】
【発明が解決しようとする課題】
従って、位相差誤差が許容可能なパラメータ以内に収まるかどうかを決定するために所定のハーフトーン膜の位相差誤差を直接測定するように技術が開発されてきた。これら開発されたツールの幾つかは、干渉計、分光エリプソメータ、分光計、および直接的空中測定による測定を含んでいる。しかしながら、これらのツールは非常に高価であり、また、これらの方法によって測定された値はハーフトーン膜のn、kの値は膜厚方向に分布を持つために、値が正確なものであるとは考えない。
【0015】
それ故に、ハーフトーンPSMにおける位相差変化を測定するための、コスト的に廉価で能率的でかつ正確な手段が必要とされている。
従って、本発明は、既知の測定技術の問題点を克服する位相シフト材料における位相差の測定方法を提供する。
【0016】
特に、本発明は、明白で容易に測定できるイメージショートニング効果を受け易い予め定められたパターンおよび露光を使用して不透明のマスクに従って露光されたパターンと位相シフトマスクに従って露光されたパターンとの最良の焦点位置のシフトに関する比較に基づいて位相差変化を決定し、それによって、不透明材料を使用したパターンおよび位相シフト材料を使用したパターンの両方によって露光されたパターンの最良の焦点位置を正確に決定する。最良の焦点位置は、露光された転写パターンが最大の縦の長さを有する位置である。
【0017】
それ故に、本発明の目的は、既知の位相差変化測定方法および装置よりも廉価であり、より能率的でより正確な位相シフト材料の位相差変化を測定する方法を提供することである。
【0018】
本発明の別の目的は、不透明なマスクおよびハーフトーンマスクの関連した最良の焦点位置を決定するためにイメージショートニング効果を利用し、位相シフトマスクを使用したパターンによって露光されたパターンと不透明マスクを使用したパターンによって露光されたパターンとの間の比較における最良の焦点位置の差を使用して位相差変化を決定し、それによって、高価で不正確な従来技術による方法の必要を排除することである。
【0019】
本発明のさらに別の目的は、位相シフト材料の位相差変化を測定する方法を提供することであり、そこにおいて、位相シフト材料は、不透明材料のためのマスクとして使用され、それによって、露光されたパターンにおけるコントラストを改良し、不透明材料に関連したパターンおよび位相シフト材料に関連したパターンの両方に対する最良の焦点位置の測定をより正確なものにする。最良の焦点位置の決定がより正確にされると、それに従って位相差変化の測定もより正確なものになる。
【0020】
本発明のさらに別の目的は、特に明白なイメージショートニング効果を有するパターンを使用し、それによって、より正確な最良の焦点位置の決定およびより正確な位相差変化の測定を容易にする。先端部において非常に小さい鋭角を有する菱形のパターンは、本発明の利点を達成するのに特に適していることがわかった。さらに、菱形パターンの長辺の長さに対する菱形パターンの短辺の長さの割合は、10:1乃至20:1の範囲内にあるのが最適であることがわかっている。
【0021】
本発明のさらに別の目的は、異なるパターンを使用する変更された方法を提供することである。例えば、本発明の方法は、位相シフト材料および不透明材料の上に別々に形成されたパターンと、不透明材料のためのマスクとして位相シフトマスクを使用して形成されたパターンと共に使用される。
【0022】
本発明のさらに別の目的は、許容可能な位相シフト膜の安定性のための詳細を決定するために、露光時間および露光時間に関する位相の変化を使用して位相シフト材料の安定性を決定する方法を提供することである。
【0023】
【課題を解決するための手段】
上述およびその他の目的およびそれらに付随する利点は本発明によって達成される。本発明は、位相シフト材料における位相差変化を測定するための改良された方法を提供し、この方法は、第1の不透明材料のパターンおよび第2の位相シフト材料のパターンを有しているマスクを光透過性の基板上に形成し、マスクを通して感光性材料上に光を透過させることによって感光性材料を露光し、露光された感光性材料を現像し、第1のパターンに基づいて感光材料を露光することによって生成された第1のパターンの最良の焦点位置を決定し、第2のパターンに基づいて感光性材料を露光することによって生成された第2のパターンの最良の焦点位置を決定し、第1のパターンの最良の焦点位置と第2のパターンの最良の焦点位置とを比較して第1のパターンの最良の焦点位置からの第2のパターンの最良の焦点位置のシフト量を決定し、第1のパターンと第2のパターンとの間の最良の焦点位置のシフト量の比較に基づいて位相シフト材料の位相差を決定する。
【0024】
【発明の実施の形態】
以下、図面を参照して本発明を実施の形態により説明する。なお、図面の全図に渡って同一部分には同一符号を付して説明を行う。
前述したように、イメージショートニングは、マスクによって投影されたパターン解像性の減少に関係する。イメージショートニングは、典型的に、例えば細長い穴等の細長いパターンの端部における像の強度およびコントラストの減少によって生じる。イメージショートニングはまた、露光の焦点がずれることによっても生じる。マスクにおいて位相シフト材料を使用するとき、位相差エラーあるいは位相差変化、すなわち、理想的な180°の状態からの位相差の変化もまた、イメージショートニングに影響する。位相差変化による影響は、投影されたパターンの解像性能にとって重要である。理想的な状態からわずかに位相が変化することによって、解像性能において非常に大きな変化の原因となる。ハーフトーンPSMにおいて許容可能なフォトリソグラフィの性能を達成するために、位相差変化は、180°の理想的な位相シフトの±3°以内に制御されなければならない。
【0025】
不透明材料によって投影されたパターンの最良の焦点位置に関して、位相差エラーと、PSMで生成されたパターンの最良の焦点位置におけるシフトとの間に関係があることもわかっている。最良の焦点位置は、特定のマスクによって投影されたパターンが最大である位置、すなわち、パターンの縦の長さが最大である位置を示す。焦点がずれている場合、典型的にイメージショートニングが生じる。不透明体、すなわち、クロム(Cr)あるいはクロム・オン・ガラス(COG)、マスク等によって生成された転写されたパターンの縦の長さの焦点位置で解像性を調べることで最良の焦点位置を決定することができる。例えば、SVGL Micrascan 2 step-and-scan system 等のステッパ光源を使用して形成されたパターンは、種々のレベルの焦点のずれに対応する感光性材料中にある範囲の露光されたパターンを提供する。
【0026】
図1を参照すると、不透明マスクを使用して形成された本発明による転写パターンの概略図が示されている。図2は図1のパターン(4つのパターンのうちの1つを抽出)形状の焦点位置依存性を示しており、最良の焦点位置のパターン20は中央に位置しており、一方、種々のレベルの焦点ずれパターンは最良の焦点位置のパターン20の両側に示されている。負方向(−)の焦点ずれは最良の焦点位置の左側に示されており、正方向 (+)の焦点ずれは最良の焦点位置の右側に示されている。図2に示されるように、焦点がずれた位置ではイメージショートニングを示している。
【0027】
本発明によれば、不透明なハーフトーンPSM、すなわちハーフトーン等の材料から構成されたマスクが感光性材料を露光するために使用される。各マスクによって生成された転写パターンの最良の焦点位置は、露光されたパターンの縦の長さを測定することによって決定される。上述のように、最も縦の長さが長い時の焦点位置は最良の焦点位置を示す。一度、不透明マスク部分を通して露光することによって生成された転写パターンの最良の焦点位置が決定されると、例えば光学ステッパ等の焦点ずれの変化のレベルも測定可能となる。その後、ハーフトーンマスクによって生成された転写パターンの最良の焦点位置が、その転写パターンの縦の長さに基づいて決定される。それに続いて、ハーフトーンマスクに対応する転写パターンの最良の焦点が、不透明マスクによって生成されたパターンの焦点ずれと比較され、それによって、ハーフトーンマスクによって生成された転写パターンの最良の焦点位置が不透明マスクを使用して得られた最良の焦点位置に対してどこに位置されるのかを決定する。ハーフトーンマスクの位相差が180°である場合、不透明マスクおよびハーフトーンマスクの最良の焦点位置は同じでなければならず、すなわち、不透明マスクによって生成されたパターンに対する最大長は、ハーフトーンマスクによって生成されたパターンの最大長とほぼ同じになる。また、位相差が180°でない場合においても、ハーフトーンマスクに対応する転写パターンのイメージショートニングが観察される。
【0028】
その後、ハーフトーンマスクによって生成された転写パターンの短縮されたパターンの最大の長さは、不透明マスクに基づいた転写パターンの焦点ずれと比較され、それによって、不透明マスクに基づいた転写パターンの焦点ずれにおいて、ハーフトーンマスクに基づいた転写パターンの最良の焦点位置がどこに位置しているのかを決定する。不透明マスクによって生成されたパターンの最良の焦点位置とハーフトーンマスクによって生成されたパターンの最良の焦点位置との間の差は曲線で表すことができ、図2に示されているように不透明なマスクによって生成された画像の最良の焦点位置からのシフトとして表される。なお、図2において、20は不透明マスクによって生成されたパターンの連続した焦点位置依存性を示しており、30はハーフトーンマスクによって生成されたパターンの連続した焦点位置依存性を示しており、50は不透明マスクによって生成されたパターンの最良の焦点位置とハーフトーンマスクによって生成されたパターンの最良の焦点位置との間のずれ量を示している。
【0029】
図3は不透明マスクおよびハーフトーンマスクに対する菱形のパターンのイメージショートニングを示す概略図である。図3を簡単に参照すると、2つの転写パターンの組1、2が示されている。パターンの組1は、図1に示された不透明マスクによる転写パターンに対応する。パターンの組2は、ハーフトーンマスクを使用して得られた転写パターンに対応する。不透明マスクによるパターンの組1の最良の焦点位置20およびハーフトーンマスクによるパターンの組2の最良の焦点位置30も示されている。パターンの組1、2のイメージショートニングは、共通の基準軸上で曲線で表され、それによって、図2に示されているようにハーフトーンマスクによって行われたハーフトーン膜の180°からの位相差が決定される。
【0030】
図2を参照すると、ハーフトーンマスクによって生成されたパターンの最良の焦点位置のシフト50は、不透明マスクによって生成されたパターンの最良の焦点位置に関して示されている。上述のように、それぞれの転写パターンの最良の焦点位置は、パターンの最大の長さに対応する。ここで、転写パターンの長さは、焦点位置20および30を示す曲線の高さに対応している。不透明マスクによる転写パターンの最良の焦点位置と、ハーフトーンマスクによる転写パターンの最良の焦点位置との差50の量は、ハーフトーンマスクのハーフトーン膜の180°からの位相差φに直接関係している。不透明マスクおよびハーフトーンマスクによって生成されたパターンの連続した焦点ずれは、図2の水平軸として示されている。それ故に、イメージショートニングは、不透明マスクによって生成されたパターンの最良の焦点位置を、不透明マスクの転写パターンの焦点ずれの上に投影されたハーフトーンマスクによって生成されたパターンの最良の焦点位置と比較することによって、ハーフトーン膜の180°からの位相差φを決定するために使用される。位相シフト材料の位相差を決定するための基本的なプロセスは図4に示されている。
【0031】
すなわち、まず、ハーフトーンPSM上に不透明材料及びハーフトーン材料からなる菱形パターンが形成される。次に、上記マスクを用いて露光し、感光性材料にパターンを転写する。このとき、露光はショット毎に焦点を変化させ、ウエハ上にパターンを転写する。次に、菱形パターンの有する焦点依存性から不透明マスクパターンの最良の焦点位置を決定する。続いて、同様にハーフトーンマスクパターンの最良の焦点位置を決定する。次に両マスクパターンの最良の焦点位置を比較し、最良の焦点位置のシフト量を決定する。さらに、このシフト量を複数の既知の位相値に対するシミュレーションデータに対するシフト量と比較する。そして、この比較結果に基づいて、ハーフトーンパターンのシフト量に基づくハーフトーンパターンの位相差を決定する。
【0032】
好ましい実施形態として、本発明による位相差を測定するために使用されたパターンの形状が細長い菱形である場合を説明した。この菱形10は、図5に示されているように、その端部において非常に小さい鋭角を有している。鋭角、すなわち鋭い端部を有することによって、増強されたより顕著なイメージショートニングが与えられ、それによって、不透明マスクおよびハーフトーンマスクのそれぞれを介して生成されたパターンの最良の焦点位置をより正確に決定することができる。菱形の狭い先端部は、露光状態に非常に敏感であり、それ故に、焦点ずれにも影響を受け易い。理想的には、その横幅Wの10乃至20倍大きい縦の長さLを有する菱形は、最良の焦点位置を正確に決定できるように端部において十分な鋭さを与えることがわかっている。しかしながら、最良の焦点を決定するための許容可能な識別および正確度を提供する任意の比率が使用されることができる。また、ハーフトーンの位相差を決定するために正確に測定可能な十分なイメージショートニングを示す任意の形状のパターンを使用してもよく、本発明は菱形に限定されないことが理解される。例えば、細長いくさび形あるいは別の細長い菱形のパターン、あるいは最良焦点位置をモニタする他の手段も使用することができる。
【0033】
ウエハ上に転写されたパターンの最良の焦点位置を決定するために使用可能な装置がある。そのようなシステムの1つは、米国カリフォルニア州、ベルモントのNikon Precision 社によって開発された自動レーザ走査技術(LSA)であり、その開示が本明細書において全体的に参照文献とされているSuwa氏等による参照文献“Automatic Laser Scanning Focus Detection Method Using Printed Focus Pattern ”(SPIE, Vol.2440, pp.712-720 (1995) )において詳細に説明されている。LSA技術において、整列センサを使用して光学的ステップおよび反復式露光システムを介して最良の焦点が決定される。LSA走査ビームは、HeNeレーザである。焦点が変えられる異なる位置においてウエハ上に画像を転写することによって、どこが最良の焦点位置であるかを決定することができ、また、正方向(ポジ)および負方向(ネガ)の焦点ずれの変化も知ることができる。
【0034】
最良の焦点位置を決定するための別の方法は、走査型電子顕微鏡(SEM)を使用して直接測定を行うことである。最良の焦点位置は、転写パターンを測定し、どの転写パターンが最大の縦の長さを有しているかを判定することによって決定する。縦の長さが最大である位置が最良の焦点位置である。全ての転写パターンは、検査された全ての露光および焦点ずれの範囲に対して同じ寸法であるマスクパターンによって測定されることに注意すべきである。多数の最良の焦点位置を決定するための方法および装置が当業者によって知られており、これらの方法および装置は問題なく使用できる。従って、LSAおよびSEM技術の記述は説明のためだけのものであり、本発明の技術的範囲を制限するものではない。しかしながら、LSAは、従来のSEM技術に対してその正確さおよびコストのために現在では好ましいとされている。SEM技術はまた、LSAと比較すると、転写パターンの最良の焦点位置を決定するのに著しく長い時間を必要とする。
【0035】
本発明に従って位相差を決定するために使用されるマスクを形成するために多数の変更された方法が存在することは理解される。結果として作られるマスクは、例えば、ハーフトーンPSM、レベンソン(Levenson)PSM等の種々の従来のマスクである。従って、本発明において使用するための異なるマスク製造技術を示す以下の説明は、説明だけを意図しており、技術的範囲を何等制限するものではない。
【0036】
図6(a)〜(e)は、感光性基板上に菱形のパターンを形成するために使用された例示的なマスク製造技術の工程を示しており、特に、ハーフトーンPSM処理を表している。この製造技術は、理解を容易にするために断面図で示されている。
【0037】
まず、(a)に示すように、例えばクロム等の不透明材料62が、例えば二酸化けい素等の光透過性の基板60上でパターン化される。光透過性の基板60上で不透明材料62をパターン化する技術は、レジスト(図示されていない)および湿式クロムエッチング、反応性イオンエッチング(RIE)等の使用を含んでいる。
【0038】
次に、(b)に示すように、例えば、SiNx 等のハーフトーン膜64が、不透明膜(不透明材料)62および露光された基板60を含むパターン全体の上に堆積される。ハーフトーン膜64は、一般的に既知のスパッタリング技術によって堆積される。なお、ハーフトーン膜64を構成するハーフトーン材料して、SiNx の他に、Si化合物、Cr化合物、Al化合物、Ti化合物、MoSi化合物、およびこれらの混合物が使用可能である。
【0039】
次に、(c)に示すように、レジスト層66が、ハーフトーン膜64上でパターン化され、それによって上述の菱形のパターンが形成される。レジスト層66は、例えば、中間紫外線(MUV)レジストあるいは電子ビーム(EB)レジストの通常のレーザ堆積を使用して堆積される。
【0040】
次に、(d)に示すように、ハーフトーン膜64が、例えば反応性イオンエッチング(RIE)あるいは化学的ドライエッチング(CDE)を使用してレジスト層66に従ってエッチングされる。その際に、レジスト層も除去される。
【0041】
最終的に、(e)に示すように、パターン化されたハーフトーン膜64をマスクとして使用して、露光されたクロム膜62がエッチングされ、それによってクロム膜62にパターンが形成される。結果として、マスクは、ハーフトーン膜のパターン化された部分70および不透明膜のパターン化された部分68を具備している。マスクを形成するためにこの技術を使用することができる。
【0042】
図7(a)〜(d)は、通常のパターン形成技術を使用して、クロムあるいはCOGからなる菱形のパターンを形成するために使用された例示的なマスク製造技術の工程を示している。
【0043】
まず、(a)に示すように、例えばクロム等の不透明材料62が、例えば二酸化ケイ素等の光透過性の基板60上でパターン化される。光透過性基板60上で不透明材料62をパターン化する技術は、例えば、レジストの使用(図示せず)および湿式クロムエッチング、およびRIE等の使用を含んでいる。
【0044】
その後、(b)に示すように、ハーフトーン膜64が、クロム膜62および光透過性基板60を含むマスク全体にわたって例えばスパッタリングすることによって堆積される。
【0045】
次に、(c)に示すように、ハーフトーン膜に対するレジストパターン66が、ハーフトーン膜64上に堆積される。レジストはまた、先にパターン化された不透明材料が次のステップで露光されることを確実にする。
【0046】
次に、(d)に示すように、ハーフトーンのエッチングを使用して、ハーフトーン膜64が、レジスト層66のパターンに従ってパターン化され、それによって、ハーフトーンの菱形のパターン70が形成される。
【0047】
上述のように、クロムの最初の堆積は、菱形のパターン68を含んでいた。図6に示された技術を使用すると、初期の段階でより決定的なクロムマスクを提供し、一方で、ハーフトーンのエッチングだけのためにレジストを使用する。従って、不透明マスクの菱形のパターンはより正確になり、本発明による位相差の測定をより正確なものにするのに役立つ。
【0048】
再び前記図2を参照すると、不透明マスクでマスクされた感光性材料の露光された領域の転写パターンに対応する最良の焦点位置20と、不透明マスクに関してハーフトーンでマスクされた領域に対応する転写パターンの最良の焦点の、すなわち、縦の長さが最大の位置30との間のシフト50が示されている。上述のように、ハーフトーンマスクを使用した転写パターンの焦点位置依存性と不透明マスクを使用した転写パターンの焦点位置依存性を共通の基準軸上で曲線で表すことによって、結果的に、両者の最良の焦点位置の差を調べることができる。不透明マスクを使用したパターンの最良の焦点位置と、ハーフトーンマスクを使用したパターンの最良の焦点位置との間のシフト50は、ハーフトーンマスクを通した露光による理想的な180°の場合からの位相差ずれに関連している。従って、直接、最良の焦点位置を比較することによって位相差が測定できる。
【0049】
本発明の別の実施形態によれば、使用されるハーフトーン膜の安定性を監視することができる。ハーフトーン膜の安定性は、ハーフトーンマスクを通して感光性材料を露光するために使用された光の露光時間に関連していることが知られている。感光時間が増加すると、ハーフトーン膜に対応する転写パターンの最良の焦点位置は、不透明マスクに対応する転写パターンの最良の焦点位置からますます外れてシフトする。この現象は図8に示されている。例えば、SiNハーフトーンマスクの場合において、最適な光学パラメータ(n,k)を満たすために、比率は、Si:N=3:0.01である。しかしながら、Si:Nの安定した比率は3:4である。従って、過剰な量のSiは、露光エネルギの作用によってO2 と結合し、それによって透過率が増加され、それによって位相差のシフトが生じる。本発明を使用することによって、このシフトを容易に監視する方法が提供される。
【0050】
以上、本発明はその特定の実施形態に関連して説明されてきたが、多数の変更および修正が当業者に明らかであることは明白である。従って、本発明の好ましい実施形態は、本明細書に説明されているように、その内容の説明を意図するものであり、技術的範囲を制限するものではなく、種々の変更が本発明の意図および技術的範囲から逸脱せずに行われる。
【0051】
【発明の効果】
以上説明したようにこの発明によれば、既知の位相差測定方法および装置よりも廉価であり、より能率的でより正確な位相シフト材料の位相差量を測定する方法を提供することができる。
【図面の簡単な説明】
【図1】菱形のパターンのイメージショートニングを説明するためのの概略図。
【図2】不透明マスクによって形成された転写パターンと位相シフト材料のマスクによって形成された転写パターンとの間の最良の焦点位置のシフトを示す特性図。
【図3】不透明マスクおよびハーフトーンマスクに対する菱形のパターンのイメージショートニングを説明するための概略図。
【図4】本発明の実施形態による位相差を測定する工程を示すフローチャート図。
【図5】本発明の方法で使用される菱形のパターンの概略図。
【図6】感光性基板上に菱形のパターンを形成するために使用された例示的なマスク製造技術の工程図。
【図7】感光性基板上に菱形のパターンを形成するために使用される他のマスク製造技術の工程図。
【図8】露光時間が増加する際の位相シフト材料の位相差の変化を示す特性図。
【符号の説明】
1、2…転写パターンの組
10…菱形、
20…不透明マスクによって生成されたパターンの連続した焦点位置、
30…ハーフトーンマスクによって生成されたパターンの連続した焦点位置、
50…不透明マスクによって生成されたパターンの最良の焦点位置とハーフトーンマスクによって生成されたパターンの最良の焦点位置との間のずれ量、
60…光透過性の基板、
62…不透明材料、
64…ハーフトーン膜、
66…レジスト層、
68…不透明膜のパターン化された部分、
70…ハーフトーン膜のパターン化された部分。

Claims (23)

  1. 位相シフト材料による位相差を測定する方法において、
    不透明材料で構成され且つフォーカスモニタの対象となる第1のパターンと前記位相シフト材料で構成され且つフォーカスモニタの対象となる第2のパターンとを有するマスクを光透過性の基板上に形成し、
    前記マスクを通して感光性材料上に光を透過させることによって前記感光性材料を露光し、
    露光された前記感光性材料を現像し、
    前記第1のパターンに基づいて前記感光性材料を露光することによって生成された第1のパターンの不透明材料マスクの最良の焦点位置を決定し、
    前記第2のパターンに基づいて前記感光性材料を露光することによって生成された第2のパターンの位相シフト材料マスクの最良の焦点位置を決定し、
    前記不透明材料マスクの最良の焦点位置と前記位相シフト材料マスクの最良の焦点位置とを比較して前記不透明材料マスクの最良の焦点位置からの前記位相シフト材料マスクの最良の焦点位置のシフト量を決定し、
    前記不透明材料マスクの最良の焦点位置からの前記位相シフト材料マスクの最良の焦点位置の前記シフト量に基づいて前記位相シフト材料によって生じた位相差を決定することを特徴とする位相差測定方法。
  2. 前記第1および第2のパターンが菱形であることを特徴とする請求項1に記載の位相差測定方法。
  3. 前記菱形の長辺の長さが短辺の長さの10乃至20倍の範囲の大きさを有していることを特徴とする請求項2に記載の位相差測定方法。
  4. 前記不透明材料がクロムで構成されていることを特徴とする請求項1に記載の位相差測定方法。
  5. 前記位相シフト材料が、Si化合物、Cr化合物、Al化合物、Ti化合物、MoSi化合物、およびこれらの混合物で構成されていることを特徴とする請求項1に記載の位相差測定方法。
  6. 前記不透明材料マスクの最良の焦点位置は前記第1のパターンが最大の長辺の長さを有する位置であり、前記位相シフト材料マスクの最良の焦点位置は前記第2のパターンが最大の長辺の長さを有する位置であることを特徴とする請求項1に記載の位相差測定方法。
  7. 前記光透過性基板上の予め定められた部分に前記不透明材料を堆積し、
    基板および堆積された不透明材料の上に前記位相シフト材料を堆積し、
    前記位相シフト材料の上にレジスト材料を前記第1および第2のパターンに対応するパターンに形成し、
    前記レジストのパターンに従って前記位相シフト材料をエッチングし、
    前記レジスト材料を除去し、
    前記不透明材料の上に設けられ、前記第1のパターンに対応する前記レジストのパターンの一部分に従って前記不透明材料をエッチングすることによって前記マスクを形成するようにしたことを特徴とする請求項1に記載の位相差測定方法。
  8. 前記第1および第2のパターンが菱形であることを特徴とする請求項7に記載の位相差測定方法。
  9. 前記菱形の長辺の長さが短辺の長さの10乃至20倍の範囲の大きさを有していることを特徴とする請求項8に記載の位相差測定方法。
  10. 前記不透明材料がクロムで構成されていることを特徴とする請求項7に記載の位相差測定方法。
  11. 前記位相シフト材料が、Si化合物、Cr化合物、Al化合物、Ti化合物、MoSi化合物、およびこれらの混合物で構成されていることを特徴とする請求項7に記載の位相差測定方法。
  12. 前記不透明材料マスクの最良の焦点位置は前記第1のパターンが最大の長辺の長さを有する位置であり、前記位相シフト材料マスクの最良の焦点位置は前記第2のパターンが最大の長辺の長さを有する位置であることを特徴とする請求項7に記載の位相差測定方法。
  13. 前記光透過性基板上に不透明材料を堆積した後に前記第1のパターンに対応するパターンを形成し、
    前記基板および前記不透明材料の上に前記位相シフト材料を堆積し、
    前記位相シフト材料の上に前記第2のパターンに対応するパターンでレジスト材料のパターンを形成し、かつ前記レジスト材料は前記不透明材料によって形成された前記第1のパターンの上の領域には形成されず、
    前記位相シフト材料をエッチングし、
    前記レジスト材料を除去することによって前記マスクを形成するようにしたことを特徴とする請求項1に記載の位相差測定方法。
  14. 前記第1および第2のパターンが菱形であることを特徴とする請求項13に記載の位相差測定方法。
  15. 前記菱形の長辺の長さが短辺の長さの10乃至20倍の範囲の大きさを有していることを特徴とする請求項14に記載の位相差測定方法。
  16. 前記不透明材料がクロムで構成されていることを特徴とする請求項13に記載の位相差測定方法。
  17. 前記位相シフト材料が、Si化合物、Cr化合物、Al化合物、Ti化合物、MoSi化合物、およびこれらの混合物で構成されていることを特徴とする請求項13に記載の位相差測定方法。
  18. 前記不透明材料マスクの最良の焦点位置は前記第1のパターンが最大の長辺の長さを有する位置であり、前記位相シフト材料マスクの最良の焦点位置は前記第2のパターンが最大の長辺の長さを有する位置であることを特徴とする請求項13に記載の位相差測定方法。
  19. 不透明材料で構成され且つフォーカスモニタの対象となる第1のパターンと、
    位相シフト材料で構成され且つフォーカスモニタの対象となる第2のパターンとを具備し、
    前記第1および第2のパターンはほぼ同一の形状を有し、そのパターンの形状はその最上部および底部において鋭角を有する菱形であることを特徴とする位相シフト材料における位相差の測定に使用されるマスク。
  20. 前記菱形の長辺の長さが短辺の長さの10乃至20倍の範囲の大きさを有していることを特徴とする請求項19に記載のマスク。
  21. 前記不透明材料がクロムで構成されていることを特徴とする請求項19に記載のマスク。
  22. 前記位相シフト材料が、Si化合物、Cr化合物、Al化合物、Ti化合物、MoSi化合物、およびこれらの混合物で構成されていることを特徴とする請求項19に記載のマスク。
  23. 前記第1および第2のパターンは、光がマスクを通過するときに同時に感光材料を露光するように構成されていることを特徴とする請求項19に記載のマスク。
JP17866897A 1996-07-03 1997-07-03 位相シフトマスクのシフタの位相差測定方法およびそれに用いるマスク Expired - Fee Related JP4138046B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/674,805 US5807647A (en) 1996-07-03 1996-07-03 Method for determining phase variance and shifter stability of phase shift masks
US674805 2003-09-29

Publications (2)

Publication Number Publication Date
JPH1083068A JPH1083068A (ja) 1998-03-31
JP4138046B2 true JP4138046B2 (ja) 2008-08-20

Family

ID=24707950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17866897A Expired - Fee Related JP4138046B2 (ja) 1996-07-03 1997-07-03 位相シフトマスクのシフタの位相差測定方法およびそれに用いるマスク

Country Status (2)

Country Link
US (1) US5807647A (ja)
JP (1) JP4138046B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260697A (ja) * 1998-03-12 1999-09-24 Fujitsu Ltd スキャン式縮小投影露光方法および装置
JP3761357B2 (ja) * 1999-02-22 2006-03-29 株式会社東芝 露光量モニタマスク、露光量調整方法及び半導体装置の製造方法
US6614924B1 (en) * 1999-08-02 2003-09-02 Applied Materials, Inc. Adaptive mask technique for defect inspection
KR100893516B1 (ko) * 2000-12-28 2009-04-16 가부시키가이샤 니콘 결상특성 계측방법, 결상특성 조정방법, 노광방법 및노광장치, 프로그램 및 기록매체, 그리고 디바이스 제조방법
US6803995B2 (en) * 2001-01-17 2004-10-12 International Business Machines Corporation Focus control system
TWI220999B (en) * 2001-02-13 2004-09-11 Nikon Corp Measuring method of image formation characteristic, exposure method, exposure apparatus and its adjustment method, manufacture method of device, and recording medium
US20060285100A1 (en) * 2001-02-13 2006-12-21 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
TWI223132B (en) * 2002-01-29 2004-11-01 Nikon Corp Image formation state adjustment system, exposing method and exposing device and data recording medium
WO2003075328A1 (fr) * 2002-03-01 2003-09-12 Nikon Corporation Procede de reglage d'un systeme optique de projection, procede de prediction, procede d'evaluation, procede de reglage, procede d'exposition, dispositif d'exposition, programme et procede de fabrication dudit dispositif
TWI232359B (en) * 2002-06-17 2005-05-11 Nanya Technology Corp Best focus determining method
US7075639B2 (en) * 2003-04-25 2006-07-11 Kla-Tencor Technologies Corporation Method and mark for metrology of phase errors on phase shift masks
US7557921B1 (en) 2005-01-14 2009-07-07 Kla-Tencor Technologies Corporation Apparatus and methods for optically monitoring the fidelity of patterns produced by photolitographic tools
TWI368327B (en) * 2005-01-17 2012-07-11 Samsung Electronics Co Ltd Optical mask and manufacturing method of thin film transistor array panel using the optical mask
JP2010128279A (ja) * 2008-11-28 2010-06-10 Toshiba Corp パターン作成方法及びパターン検証プログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115830A (ja) * 1985-11-15 1987-05-27 Fujitsu Ltd 露光方法
JPS62285437A (ja) * 1986-06-03 1987-12-11 Matsushita Electric Ind Co Ltd パタ−ン検査方法
JPS6363038A (ja) * 1986-09-03 1988-03-19 Hitachi Ltd レジスト特性測定装置
US4786166A (en) * 1987-06-01 1988-11-22 Hewlett-Packard Company Determination of focal plane for a scanning projection aligner
JP2659550B2 (ja) * 1988-04-29 1997-09-30 ホーヤ株式会社 パターン形成方法
FR2642188B1 (fr) * 1988-12-30 1991-08-30 Tissier Annie Procede de determination de la mise au point d'une machine d'exposition de photolithographie
JPH03155112A (ja) * 1989-11-13 1991-07-03 Nikon Corp 露光条件測定方法
US5044750A (en) * 1990-08-13 1991-09-03 National Semiconductor Corporation Method for checking lithography critical dimensions
JPH04255847A (ja) * 1991-02-08 1992-09-10 Fujitsu Ltd 露光方法
JPH0651497A (ja) * 1992-07-28 1994-02-25 Fujitsu Ltd レチクル作製プロセス別寸法良否判別方法およびそのための手段を具備したレチクル
JPH06120115A (ja) * 1992-10-01 1994-04-28 Nikon Corp 露光位置精度の検査方法
US5300786A (en) * 1992-10-28 1994-04-05 International Business Machines Corporation Optical focus phase shift test pattern, monitoring system and process
US5446540A (en) * 1992-10-30 1995-08-29 International Business Machines Corporation Method of inspecting phase shift masks employing phase-error enhancing
JP3265668B2 (ja) * 1993-01-13 2002-03-11 株式会社ニコン ベストフォーカス位置の算出方法
EP0608657A1 (en) * 1993-01-29 1994-08-03 International Business Machines Corporation Apparatus and method for preparing shape data for proximity correction
JP2500423B2 (ja) * 1993-02-17 1996-05-29 日本電気株式会社 位相シフトマスクの検査方法
JP3209645B2 (ja) * 1993-10-12 2001-09-17 三菱電機株式会社 位相シフトマスクの検査方法およびその方法に用いる検査装置
US5476738A (en) * 1994-05-12 1995-12-19 International Business Machines Corporation Photolithographic dose determination by diffraction of latent image grating

Also Published As

Publication number Publication date
JPH1083068A (ja) 1998-03-31
US5807647A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
KR0139030B1 (ko) 감쇠 위상-쉬프트 마스크 구조 및 제조 방법
US5807649A (en) Lithographic patterning method and mask set therefor with light field trim mask
KR940002733B1 (ko) 노광용 마스크와 그 노광용 마스크의 제조방법
KR101396078B1 (ko) 포토마스크, 포토마스크의 제조 방법 및 수정 방법
JP4138046B2 (ja) 位相シフトマスクのシフタの位相差測定方法およびそれに用いるマスク
JP2996127B2 (ja) パターン形成方法
US6901576B2 (en) Phase-width balanced alternating phase shift mask design
JP4068503B2 (ja) 集積回路用露光マスク及びその形成方法
JP3566042B2 (ja) 露光量調節による位相反転マスクの製造方法
JP4613364B2 (ja) レジストパタン形成方法
US5840448A (en) Phase shifting mask having a phase shift that minimizes critical dimension sensitivity to manufacturing and process variance
JP2004259765A (ja) フォーカスモニタ方法及びマスク
KR100475083B1 (ko) 미세한 콘택홀 어레이를 위한 포토마스크, 그 제조방법 및사용방법
KR19980071487A (ko) 위상 시프트 마스크, 노광 방법 및 구면 수차량 측정 방법
US6171739B1 (en) Method of determining focus and coma of a lens at various locations in an imaging field
US6122056A (en) Direct phase shift measurement between interference patterns using aerial image measurement tool
US6451488B1 (en) Single-level masking with partial use of attenuated phase-shift technology
US7344824B2 (en) Alternating aperture phase shift photomask having light absorption layer
KR20030036124A (ko) 위상 변이 마스크 제작에서 위상변이 영역 형성시얼라인먼트를 결정하는 방법
US6555274B1 (en) Pupil filtering for a lithographic tool
JP3381933B2 (ja) 露光用マスク
JPH11184070A (ja) 収差測定方法および収差測定用フォトマスク
JP3178516B2 (ja) 位相シフトマスク
JP2919023B2 (ja) レジストパターン形成方法
US6576376B1 (en) Tri-tone mask process for dense and isolated patterns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees