JP4136287B2 - ドライバ回路 - Google Patents

ドライバ回路 Download PDF

Info

Publication number
JP4136287B2
JP4136287B2 JP2000219195A JP2000219195A JP4136287B2 JP 4136287 B2 JP4136287 B2 JP 4136287B2 JP 2000219195 A JP2000219195 A JP 2000219195A JP 2000219195 A JP2000219195 A JP 2000219195A JP 4136287 B2 JP4136287 B2 JP 4136287B2
Authority
JP
Japan
Prior art keywords
current
damping
circuit
driver
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219195A
Other languages
English (en)
Other versions
JP2002043915A (ja
Inventor
彰彦 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000219195A priority Critical patent/JP4136287B2/ja
Priority to US09/773,001 priority patent/US6335643B1/en
Publication of JP2002043915A publication Critical patent/JP2002043915A/ja
Application granted granted Critical
Publication of JP4136287B2 publication Critical patent/JP4136287B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/022H-Bridge head driver circuit, the "H" configuration allowing to inverse the current direction in the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • H03K17/6872Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor using complementary field-effect transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電流ドライバ回路の波形制御に関するものであり、特に、HDD装置等の書き込み用コイルドライバに代表される高速な電流ドライバ回路に関するものである。
【0002】
【従来の技術】
HDD装置等のデータ書き込み用コイルの駆動に使用される電流ドライバ回路においては、負荷であるデータ書き込み用コイルの誘導負荷や負荷に至る駆動配線上に分布する誘導性負荷成分により、ドライバ回路によるスイッチング時に誘導性負荷等に働く逆起電力により所謂フライバック電圧が発生し、ドライバ電流にオーバーシュートやアンダーシュートを伴う電流波形のリンギングが発生する。このリンギング波形を抑止するため、従来よりダンピング回路が使用されている。
【0003】
図1は、従来技術におけるダンピング回路を備えた出力回路の回路ブロック図である。ドライバ回路100は、ドライバ110のドライバ端子VoXとドライバ120の出力端子VoYとで挟まれて負荷LOADが接続され、ドライバ定電流回路150から出力されるドライバ電流IOの流れる方向を入力端子ViX,ViYから入力される相補な入力信号により切り替えて、負荷LOADの双方向にドライバ電流IOを流すことができる。そして、各出力端子VoX、VoYには、ダンピング回路130、140が接続されており、ドライバ電流IOのリンギング波形を抑止する構成となっている。
【0004】
図2は、別の従来技術におけるダンピング回路を備えたドライバ回路の回路ブロック図である。ドライバ回路200は、図1におけるドライバ回路100と同様に、ドライバ110の出力端子VoXとドライバ120の出力端子VoYとで挟まれて負荷LOADが接続されており、ドライバ定電流回路150から出力されるドライバ電流IOの流れる方向を入力端子ViX,ViYからの相補入力信号により切り替えて、双方向にドライバ電流IOを流す。本従来技術においては、各出力端子VoX、VoYに接続されているダンピング回路230、240が外部からのダンピング制御信号Vdにより制御されており、同じく外部からの出力電流制御端子Vcにより調整されるドライバ電流IO、負荷LOAD及び負荷LOADに至る駆動配線上に分布する抵抗成分に応じて、調整されるダンピング制御信号Vdにより電流リンギング波形を抑止する構成となっている。
【0005】
図1及び図2の具体的回路例を図3に示す。ここで、ドライバ110、120、ドライバ定電流回路150、及び接続される負荷LOADは図1及び図2において共通であり、ドライバ110は、1対のPMOSトランジスタQ1とNMOSトランジスタQ3をインバータ構成に接続してハーフブリッジ構成とし、入力端子ViXからの入力信号に対する反転信号を出力端子VoXに出力する。同様にドライバ120は、1対のPMOSトランジスタQ2とNMOSトランジスタQ4をインバータ構成に接続してハーフブリッジ構成とし、入力端子ViYからの入力信号に対する反転信号を出力端子VoYに出力する。そして両出力端子VoX、VoYに負荷LOADを接続してHブリッジ構成として負荷を双方向に駆動する。また、ドライバ電流IOを決定するドライバ定電流回路150は、NMOSトランジスタQ5で構成された定電流回路であり、Hブリッジを構成する各NMOSトランジスタQ3,Q4のソースにドライバ電流IOを供給している。
【0006】
ダンピング回路(図1における130、140、図2における230,240)は、電源電圧VCCと出力端子VoX、VoYとの間に接続されている。図3においては出力端子VoY側についてのみ記載しているが、出力端子VoX側についても同様な構成であるので以下の説明では省略する。
【0007】
図1の従来技術の場合には、ダイオード接続されたNPNトランジスタQ7、Q8と抵抗Rdが、電源電圧VCCと出力端子VoY間に直列に接続されている。ドライバ110、120のスイッチング動作によりフライバック電圧が発生して、電源電圧VCCから出力端子VoYへの電位降下がダイオード接続トランジスタQ7、Q8の順方向電圧2つ分を越えて降下した時、ダンピング回路140が動作し出力端子VoYに向けてダンピング電流Idampを供給してダンピング動作を行う。ここで、ダイオードを2段から更に多段に接続してやれば、ダンピング動作開始電圧を段数に応じて設定することができる。
【0008】
図2の別の従来技術の場合は、NPNトランジスタQ7、Q8のうちトランジスタQ7のベースをダンピング制御信号Vdで制御した構成である。図1の場合と同様のダンピング動作を行うが、ダンピング動作を開始する出力端子VoYの電圧をダンピング制御信号Vdに応じて調整するものである。即ち、出力端子VoYの電圧が、ダンピング制御信号Vdからダイオードの順方向電圧2つ分降下した時に、ダンピング回路140を動作させてダンピング動作を行うものである。
【0009】
【発明が解決しようとする課題】
しかしながら、上記図1に示す従来技術では、ダンピング動作を開始する出力端子VoYの電圧は、ダンピング回路140で設定される電位降下に固定される。この降下電圧は、予めダイオードの直列接続段数等を適宜選択して設定することができるものの回路決定後は固定値となるので、負荷の仕様、ドライバ電流IO毎に、最適な動作条件に再設計する必要がある。特に、ドライバ回路を集積回路で構成する場合には、再設計から製作までに多大の時間と労力を必要とすることとなり問題である。負荷の仕様が同じ場合においても、負荷特性等のバラツキを調整する手段がないためドライバ回路の動作余裕を大きく取らざるを得ず、ドライバ回路の能力を最大限に引き出すことができず問題である。
【0010】
また、図2に示す別の従来技術においては、ダンピング制御信号Vdにより、ダンピング動作開始電圧を適宜調整することはできるものの、負荷やドライバ電流IOの仕様毎に、また個体間のバラツキに応じて、個々に最適動作条件を調整することが必要であり、調整が煩雑であるという問題がある。
【0011】
そして、これらの調整がずれた場合には以下に示す種々の問題が発生する虞がある。即ち、ダンピング動作が不十分となれば、電流波形のオーバーシュートやアンダーシュートが大きくなりHDD装置への書き込み動作を高速に行えず最悪の場合には誤書き込みをしてしまう可能性がある。逆に、ダンピング動作が過度となれば、ダンピング電流Idampのパスが切れる前に次ステップのドライバ電流IOパスがオンしてしまい両者が衝突して電流波形の立ち上がりスピードが遅れてしまうと共に、電流消費のロスも大きくなり回路動作上好ましくない。図4は、図1及び図2の従来技術におけるドライバ回路の動作電流波形を示すが、ダンピング動作が不十分であるため、入力端子ViX、ViYにおける入力信号のスイッチングのタイミングにおいて、出力端子VoX、VoYにフライバック電圧が発生することにより、ドライバ電流IOにリンギング波形が発生している。
【0012】
本発明は前記従来技術の問題点を解消するためになされたものであり、外部からダンピング開始電圧を調整することなく、簡単な回路構成により負荷やドライバ電流IOの仕様変更、また個体間のバラツキ等の影響を受けずに、安定したダンピング動作を行うことができるドライバ回路を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記目的を達成するために、請求項1に係るドライバ回路は、出力電流で出力端子に接続された負荷を駆動する際に、出力電流の波形整形を行うダンピング回路を有する電流駆動のドライバ回路において、ダンピング回路に入力され出力端子へのダンピング電流の供給開始を決めるダンピング動作開始電圧の決定のためのダンピング制御信号を出力するダンピング制御回路を備えており、ダンピング制御信号は、出力電流に応じて可変されて出力端子における通常動作電圧とダンピング動作開始電圧との電位差を所定値に設定することを特徴とする。
【0014】
前記請求項1のドライバ回路では、出力電流に応じて出力端子の通常動作電圧が変化しても、ダンピング制御回路が出力するダンピング制御信号は、出力端子における通常動作電圧から所定電圧変化した電圧をダンピング動作開始電圧としてダンピング回路が動作する。
【0015】
これにより、負荷や出力電流値の仕様に合わせてダンピング動作開始電圧を、予め設定して設計したり外部から調整する必要がなく、常に最適な状態で動作させることができる。従って、負荷や出力電流の仕様変更やバラツキ等に影響されず、電流波形のリンギング、遷移スピードの遅れ、及び電流消費のロス等が確実に防止され、安定したダンピング動作を実現することができる。
【0016】
また、請求項2に係るドライバ回路は、請求項1に記載のドライバ回路において、ダンピング制御用電流源回路は、出力電流との電流比が所定値となる第1バイアス電流を出力し、ダンピング制御用負荷回路は、基準電位から出力端子への出力電流の電流経路の抵抗成分との抵抗比が所定値となる抵抗成分を、基準電位からダンピング制御信号に至る第1バイアス電流の電流経路に備えることを特徴とする。
【0017】
前記請求項2のドライバ回路では、ダンピング制御用電流源回路が、出力電流と所定の電流比を有する第1バイアス電流を出力し、この第1バイアス電流が、基準電位から出力端子までの出力電流の電流経路における抵抗成分と所定抵抗比を有するダンピング制御用負荷回路を流れ、出力電流が流れることによる出力端子における基準電位からの電圧変化と、第1バイアス電流が流れることによるダンピング制御用負荷回路における基準電位からの電圧変化とが所定電圧比を保つ。
【0018】
これにより、ダンピング回路におけるダンピング制御信号と出力端子との間の電位関係は、負荷や出力電流値の仕様に関わらず所定の関係に保持することができ、仕様毎の設計変更や外部端子からの調整は行う必要がなく、常に最適な状態で動作させることができ、もって、仕様変更やバラツキ等に影響されない安定したダンピング動作を実現することができる。
【0019】
また、請求項3に係るドライバ回路は、請求項1又は請求項2に記載のドライバ回路において、出力ドライバ素子は、第1スイッチング素子であり、ダンピング制御用負荷回路は、第1スイッチング素子と同一構成の第2スイッチング素子で構成され、第1スイッチング素子に対する第2スイッチング素子のオン抵抗比が、所定抵抗比であることを特徴とする。
【0020】
前記請求項3のドライバ回路では、出力電流が流れる第1スイッチング素子の電圧降下に対する、第1バイアス電流が流れる第2スイッチング素子の電圧降下が、所定電圧比となる。
【0021】
これにより、出力電流経路の抵抗成分のうち、第1スイッチング素子のオン抵抗による抵抗成分と所定抵抗比を有するダンピング制御用負荷回路の抵抗成分を、第1スイッチング素子と同一構成の第2スイッチング素子のオン抵抗で構成するので、両者の所定抵抗比を精度良く設定することができ、第1スイッチング素子を流れる出力電流による電圧降下に対する、第2スイッチング素子を流れる第1バイアス電流による電圧降下の所定電圧比を精度良く設定することができ、ダンピング動作開始電圧を精度良く設定することができる。
【0022】
また、請求項4に係るドライバ回路は、請求項3に記載のドライバ回路において、ダンピング制御用負荷回路は、負荷の抵抗成分、あるいは負荷の抵抗成分に加えて出力ドライバ素子の抵抗を除く出力電流経路の抵抗成分に対して、オン抵抗比と同一抵抗比を有する抵抗成分を備えることを特徴とする。
【0023】
前記請求項4のドライバ回路では、出力電流が流れる第1スイッチング素子の電圧降下に加えて、負荷の抵抗成分あるいは出力ドライバ素子を除く出力電流経路の抵抗成分による電圧降下に対する、第1バイアス電流によるダンピング制御用負荷回路において第2スイッチング素子に他の抵抗成分を加えた電圧降下が所定電圧比となる。
【0024】
これにより、出力電流経路上の第1スイッチング素子のオン抵抗による抵抗成分に加えて負荷や配線経路による抵抗成分についても、所定抵抗比をもってダンピング制御用負荷回路に設定されるので、出力電流による電圧降下に対する第バイアス電流による電圧降下の所定電圧比を更に精度良く設定することができる。
【0025】
また、請求項5に係るドライバ回路は、請求項2乃至請求項4に記載のドライバ回路において、ダンピング制御用電流源回路は、出力電流源回路との間でカレントミラー回路を構成することを特徴とする。
【0026】
これにより、出力電流と第1バイアス電流との電流比を所定電流比に精度良く設定することができる。
【0027】
また、請求項6に係るドライバ回路は、請求項2乃至請求項5に記載のドライバ回路において、ダンピング制御回路は、第2バイアス電流を入力する入力端子を備え、入力端子より入力された第2バイアス電流を、第1バイアス電流に加減することを特徴とする。
【0028】
前記請求項6のドライバ回路では、第1バイアス電流に第2バイアス電流を加減した電流がダンピング制御用負荷回路に流れる。
【0029】
これにより、負荷、電流経路上の状態、及び出力電流等の変更や個体間のバラツキに応じて、第2バイアス電流を調整することにより、ダンピング制御用負荷回路に流れるバイアス電流を調整し、電圧降下を変化させてダンピング制御信号の設定電圧を調整することによりダンピング開始電圧を調整することができ、仕様の変更や個体間のバラツキに対して、より柔軟且つ簡便に安定してダンピング動作の最適動作点を設定することができる。
【0030】
また、請求項7に係るドライバ回路は、請求項3に記載のドライバ回路において、第2スイッチング素子のスイッチング制御端子は、第1スイッチング素子のスイッチング制御端子に接続されていることを特徴とする。
【0031】
前記請求項7のドライバ回路では、ダンピング制御回路において、ダンピング制御用負荷回路を構成する第2スイッチング素子を、出力ドライバ素子を構成する第1スイッチング素子と同一の制御信号で駆動する。
【0032】
これにより、第1及び第2スイッチング素子は、同期して駆動させることができ、定常的にも過渡的にもオン抵抗比を所定抵抗比に維持することができるので、ダンピング動作開始電圧をきめ細かく設定することができる。
【0033】
【発明の実施の形態】
以下、本発明のドライバ回路について具体化した実施形態を図5乃至図10に基づき図面を参照しつつ詳細に説明する。図5は、本発明の第1実施形態のダンピング回路を備えたドライバ回路の回路ブロック図である。図6は、第2実施形態のダンピング回路を備えたドライバ回路の回路ブロック図である。図7は、第1及び第2実施形態のダンピング回路を備えたドライバ回路の回路図である。図8は、ドライバ電流に対する出力端子電圧及びダンピング電圧の特性図である。図9は、第1及び第2実施形態のドライバ回路の動作波形図である。図10は、第1及び第2実施形態のドライバ回路の他の回路例である。
【0034】
図5に示す第1実施形態のドライバ回路10は、ドライバ110の出力端子VoXとドライバ120の出力端子VoYとで挟まれて負荷LOADが接続され、ドライバ定電流回路150から出力されるドライバ電流IOの流れる方向を入力端子ViX,ViYから入力される相補な入力信号により切り替えて、負荷LOADの双方向にドライバ電流IOを流す機能につき従来技術と同様の構成を有する。そして、各出力端子VoX、VoYには、ドライバ電流IOのリンギング波形を抑止するためのダンピング回路13、14が接続されている。ダンピング回路13、14は、ダンピング制御回路11X、11Yで生成されるドライバ電流IOに対して所定電流比を有する第1バイアス電流Ib(図7、参照)に基づき、ダンピング制御回路11X、11Yから出力されるダンピング制御信号Vdによりダンピング開始電圧が制御される。このダンピング制御信号Vdは、出力端子VoX、VoYにおける通常動作電圧と所定の関係を維持する。尚、ドライバ電流IOは、図2における従来技術と同様に出力電流制御端子Vcにより外部より可変調整されるが、可変されてもダンピング制御回路11X、11Yにより、ダンピング制御信号Vdと出力端子VoX、VoYにおける通常動作電圧との関係は所定の関係を維持するように制御され、ダンピング開始電圧に対して常に十分な動作余裕を確保することができる。
【0035】
図6に示す第2実施形態のドライバ回路20のうち、ドライバ定電流回路150、出力電流制御端子Vcにより可変調整されドライバ定電流回路150から出力されるドライバ電流IOで負荷LOADを駆動するドライバ110、120、各出力端子VoX、VoYに接続されダンピング制御回路12X、12Yから出力されるダンピング制御信号Vdによりダンピング開始電圧を制御されるダンピング回路13、14、そして入力端子ViX、ViYからの相補入力に対する出力端子VoX、VoYからの双方向ドライバ電流IOの応答については、図5と同様である。図6におけるダンピング制御回路12X、12Yでは、図5におけるダンピング制御回路11X、11Yの機能に加えて、ダンピング制御信号調整端子を備えている。この端子から第2バイアス電流IBを入力することにより、第1バイアス電流Ibを加減してダンピング制御信号Vdを調整することができる。
【0036】
第1実施形態(図5)及び第2実施形態(図6)の回路ブロックを具体化した回路例が図7である。本実施形態におけるダンピング回路14は、各出力端子VoX、VoYについて同一の構成をしており動作についても同じであるので、以下、出力端子VoY側について説明し、出力端子VoX側の構成については説明を省略する。
【0037】
ドライバ110、120、ドライバ定電流回路150、及び接続される負荷LOADは第1実施形態、第2実施形態、及び従来技術において共通の構成をしており、ドライバ110は、1対のPMOSトランジスタQ1とNMOSトランジスタQ3をインバータ構成に接続してハーフブリッジ構成とし、入力端子ViXからの入力信号に対する反転信号を出力端子VoXに出力する。同様にドライバ120は、1対のPMOSトランジスタQ2とNMOSトランジスタQ4をインバータ構成に接続してハーフブリッジ構成とし、入力端子ViYからの入力信号に対する反転信号を出力端子VoYに出力する。そして両出力端子VoX、VoY間に負荷LOADを接続してHブリッジ構成として負荷LOADを双方向に駆動する。また、ドライバ電流IOを決定するドライバ定電流回路150は、NMOSトランジスタQ5で構成された定電流回路であり、Hブリッジを構成する各NMOSトランジスタQ3,Q4のソースにドライバ電流IOを供給している。
【0038】
ダンピング回路14についても第1及び第2実施形態で同一であり、ベースをダンピング回路制御信号Vdで制御したNPNトランジスタQ7のコレクタを電源電圧VCCに接続し、エミッタをダイオード接続したNPNトランジスタQ8のアノードに接続する。ダイオード接続トランジスタQ8のカソードはダンピング電流制限抵抗Rdを介して出力端子VoYに繋がれてダンピング回路14を構成している。出力端子VoYの電圧が、ダンピング回路制御信号Vdで設定された電圧からNPNトランジスタQ7のベース・エミッタ間順方向電圧Vbe7とダイオード接続トランジスタQ8の順方向電圧Vbe8とを加えた電圧を越えて降下すると、ダンピング回路14が動作を開始し、出力端子VoYの電圧降下に応じてダンピング電流制限抵抗Rdで規定されたダンピング電流Idampを出力端子VoYに供給する。Vbe7=Vbe8=0.7Vとすると、ダンピング回路14の動作を開始する出力端子VoYの電圧は、
VO(damp)=Vd−(Vbe7+Vbe8)
=Vd−1.4V ・・・・・・ (1)
と算出される。即ち、出力端子VoYの電圧がダンピング回路制御信号Vdより、1.4V以上降下した場合にダンピング回路14は、ダンピング動作を開始する。
【0039】
第1実施形態におけるダンピング制御回路11Yでは、ドライバ110を構成するPMOSトランジスタQ1と相似関係にあるPMOSトランジスタQ9を、ソースを電源電圧VCCに、ドレインを抵抗Rbに、ゲートを接地電位に接続してダンピング制御用負荷回路を構成しており、PMOSトランジスタQ1のオン抵抗Ron_P1及び負荷抵抗RLに対して、PMOSトランジスタQ9のオン抵抗Ron_P9及び抵抗Rbが、各々m倍の関係を有している。またダンピング制御用電流源回路は、ドライバ定電流回路150を構成するNMOSトランジスタQ5と(1/N)倍のミラー電流比をなしてカレントミラー回路を構成するNMOSトランジスタQ6で構成されており、ドレインがダンピング制御用負荷回路の抵抗Rbに接続されて第1バイアス電流Ibを流し込んでいる。ダンピング制御信号Vdの設定電圧は、PMOSトランジスタQ9のオン抵抗Ron_P9と抵抗Rbとの総和に流れる第1バイアス電流Ibによる電圧降下で決定されるので、通常動作状態において出力端子VoYが低電位側になるときの電圧(VO)と、ダンピング制御信号Vdの設定電圧は、Ron_P1+RL=RDRVとおくと、
VO=VCC−(Ron_P1+RL)×IO
=VCC−RDRV×IO ・・・・・・・・・・・・ (2)
Vd=VCC−(Ron_P9+Rb)×Ib
=VCC−(m×RDRV)×((1/N)×IO)
=VCC−(m/N)×RDRV×IO ・・・・・・ (3)
となる。従って、ダンピング回路にかかる電圧(ΔVdo)は、
ΔVdo=Vd−VO
=((m/N)−1)×RDRV×IO ・・・・ (4)
式(1)と式(4)より、
ΔVdo<1.4V
((m/N)−1)×RDRV×IO<1.4V ・・・・ (5)
の条件においてダンピング回路の誤動作はなくなる。即ち、
RDRV×IO<1.4V/((m/N)−1) ・・・・ (6)
の関係を満たすドライバ電流IOと電流経路上の抵抗成分RDRVにおいてダンピング回路の誤動作はない。ここで、m=Nの設定とすると、式(3)は、
Vd=VCC−(N/N)×RDRV×IO
=VCC−RDRV×IO ・・・・・・・・・・・・ (7)
=VO
となり、ダンピング制御信号Vdの設定電圧は、出力端子VoYの低電位側電圧(VO)と一致する。従って、出力端子VoYの低電位側電圧(VO)からダンピング開始電圧までの動作余裕は、式(1)、(7)より常に1.4Vとなる。
【0040】
上記の電圧関係の様子をグラフ化すると図8に示すようになる。図8では、電流経路における抵抗成分を固定しドライバ電流IOを可変とした場合の状態を示している。直線(2)は、通常動作状態における出力端子VoYの低電位側の電圧を示す直線であり、式(2)をグラフ化したものである。直線(3)は、ダンピング制御信号Vdの設定電圧を示す直線であり、式(3)をグラフ化したものである。両直線をドライバ電流IOゼロの点に外挿すると縦軸のVCCに交差する。直線(1)は、出力端子VoYにおけるダンピング開始電圧を示す直線であり、式(1)をグラフ化したものである。式(1)からも明らかなように直線(3)を縦軸の負の方向に1.4Vシフトした直線である。
【0041】
図8(A)は、直線(3)に対して直線(2)の傾きが急な場合であり、(m/N)<1の場合である。直線(1)から下の領域Aがダンピング動作領域であり、フライバック電圧等によりこの領域Aに出力端子VoYの端子電圧が遷移するとダンピング回路14はダンピング動作を行う。従って、直線(2)が領域Aより上に位置していればダンピング回路14の誤動作はなく、臨界点X(ドライバ電流IO=IO2)以下のドライバ電流IOでのドライブ動作が可能である。直線(2)から直線(1)に至る領域Bがダンピング動作開始までの動作余裕となり、ドライバ電流IOが小さい領域で動作余裕を大きくすることができる。
【0042】
次に、図8(B)は、m=Nの場合であり、式(7)に示すようにダンピング制御信号Vdと出力端子VoYの低電位側電圧(VO)は一致する(図8(B)の直線(7))。従って、出力端子VoYにおけるダンピング開始電圧を示す直線(1)は、直線(7)から1.4V降下した直線となり、ダンピング回路14における電圧制限がかからない限りダンピング開始電圧から1.4Vの余裕を有して出力端子VoYの低電位側電圧(VO)が設定される。直線(7)から直線(1)に至る領域Bがダンピング動作開始までの動作余裕となり、ドライバ電流IOの全領域で動作余裕を均一にすることができる。
【0043】
更に、図8(C)は、直線(2)に対して直線(3)の傾きが急な場合であり、(m/N)>1の場合である。直線(1)から下の領域Aがダンピング動作領域であり、フライバック電圧等によりこの領域Aに出力端子VoYの端子電圧が遷移するとダンピング回路14はダンピング動作を行う。この場合、直線(2)が領域Aより上に位置しているのでダンピング回路14の誤動作はなく、全てのドライバ電流IOでドライブ動作が可能である。直線(2)から直線(1)に至る領域Bがダンピング動作開始までの動作余裕となり、ドライバ電流IOが大きい領域で動作余裕を大きくすることができる。
【0044】
従って、図8(A)の場合には、出力端子VoYの臨界点Xを適宜調整することにより、図8(B)及び(C)の場合には、ダンピング回路14に電圧制限がかからない限り、ダンピング制御回路11Yは、任意のドライバ電流IOに対してダンピング回路14の誤動作を生じないダンピング制御信号Vdを出力するので、負荷LOADやドライバ電流IOの仕様に合わせてダンピング動作開始電圧を予め設定して設計したり外部から調整する必要がなく、m/N比をダンピング作用についてドライバ波形とドライバ電流IOの関係により最適に作り込んでおけば、常に最適な状態で動作させることができる。従って、負荷LOADやドライバ電流IOの仕様変更やバラツキ等に影響されず、電流波形のリンギング、遷移スピードの遅れ、及び電流消費のロス等が確実に防止され、安定したダンピング動作を実現することができる。
【0045】
第2実施形態におけるダンピング制御回路12Yでは、PMOSトランジスタQ9と抵抗Rbからなるダンピング制御用負荷回路の構成とドライバ電流経路上の抵抗成分との抵抗比、NMOSトランジスタQ5とカレントミラー回路を構成するNMOSトランジスタQ6からなるダンピング制御用電流源回路の構成とドライバ電流IOとの電流比等がダンピング制御回路11Yと同一であるので、上記の基本関係式(1)乃至(7)は同様に成り立つ。第2実施形態においては、ダンピング制御信号調整端子より、第1バイアス電流Ibに対して第2バイアス電流IBを加減することができる。これにより、式(3)において、IbをIb±IBに変換することにより、ダンピング制御信号Vd´は、
Vd´=VCC−(Ron_P9+Rb)×(Ib±IB)
=VCC−(m×RDRV)×((1/N)×IO±IB)
=Vd±(m×RDRV)×IB ・・・・・・ (3´)
に変換される。即ち、第1実施形態におけるダンピング制御信号Vdに対してm×RDRV×IBの電圧分がシフトされることとなる。図8に示すように、直線(3)及び直線(1)において、±(m×RDRV)×IBの幅で調整することが可能となる。これにより、図8(A)の場合においては、ダンピング回路14の誤動作のない臨界点を、XからX2にシフトしてドライバ電流IOの大きい方向に調整して動作余裕を広げることができる。また図8(B)及び(C)の場合においても、ダンピング動作余裕を調整することができる。
【0046】
また、ドライバ回路組み立て後の負荷LOADの仕様変更等に対して、ダンピング制御信号調整端子を調整してダンピング動作余裕を調整することができ、負荷LOADの仕様変更等に柔軟に対応することができる。
【0047】
上記ダンピング動作余裕を有して使用することができるので、電流ドライブ性能を減ずることなくダンピング動作を確実に行うことができ、図9に示すように高速動作の電流スイッチング時おいても確実にオーバーシュートやアンダーシュートを含んだ電流リンギング波形を抑止することができる。
【0048】
また、ダンピング回路14は、図7に示すものに限定されることなく、図10に示すように、ダーリントン接続の構成とすることもできる。この場合は、ダンピング開始電圧を図7におけるダンピング回路14と同電圧とすることができると共に、ダーリントン接続を利用しているので、ダンピング電流Idampの電流能力を大きなものとすることができ、フライバック電圧による電流リンギング波形を強力に解消する能力を有する回路構成を提供することができる。
【0049】
更に、第1及び第2実施形態におけるダンピング制御回路11Y及び12YのPMOSトランジスタQ9のゲートを、PMOSトランジスタQ1のゲートに接続された入力信号ViXに接続することにより、PMOSトランジスタQ9をドライバ110を構成するPMOSトランジスタQ1と同期して駆動させることもできる。この場合、PMOSトランジスタQ9は入力信号ViXの遷移により徐々にオンしてゆくことにより、オン抵抗Ron_P9が低下して安定な状態に至るまではPMOSトランジスタQ9の降下電圧が大きく、ダンピング制御信号Vdが低く保たれるので、ダンピング回路14におけるダンピング動作開始電圧を低く維持でき、ドライバ電流IOの波形立ち上がり時にダンピング誤動作をすることはなくドライバ電流IOの高速遷移を確保することができると共に、その後のオーバーシュートやアンダーシュートを伴う電流波形のリンギング時には、ダンピング制御信号Vdが所定値に安定するので、精度の高いダンピング動作開始電圧の制御を行うことができる。
【0050】
加えて、第1及び第2実施形態におけるダンピング制御回路11Y及び12Yの抵抗Rbを、MOSトランジスタで構成してゲートへのバイアス電圧を制御して可変抵抗とすることにより、また複数の抵抗列で構成してスイッチ等により接続されるべき抵抗列を切り替えて可変抵抗とすることにより、負荷LOADの仕様変更やバラツキに応じて負荷抵抗RLとの抵抗比を所定値に確実に調整することができる。ここで、MOSトランジスタのゲートへのバイアス電圧は、外部から直接入力できるように設定したり、DAコンバータを備え外部からのビット入力に対して内部生成する構成とすることもできる。また抵抗列の接続を切り替えるスイッチ等には、MOSトランジスタを使用することができ、外部からのビット入力等により切り替えることができる。
【0051】
以上詳細に説明したとおり、第1実施形態に係るドライブ回路10では、 ダンピング回路14は、ベースをダンピング回路制御信号Vdで制御したNPNトランジスタQ7のコレクタを電源電圧VCCに、エミッタをダイオード接続トランジスタQ8のアノードに、カソードはダンピング電流制限抵抗Rdを介して出力端子VoYに接続してダンピング回路14を構成しており、出力端子VoYの電圧が、ダンピング回路制御信号Vdの電圧からVbe7+Vbe8を越えて降下すると、ダンピング回路14が動作してダンピング電流制限抵抗Rdで規定されるダンピング電流Idampを出力端子VoYに供給する。Vbe7=Vbe8=0.7Vとすると、ダンピング回路の動作開始電圧は、VO(damp)=Vd−1.4Vとなる。
【0052】
ダンピング制御回路11Yにおいて、ダンピング制御用負荷回路は、PMOSトランジスタQ9のソースを電源電圧に、ドレインを抵抗Rbに、ゲートを接地電位に接続して、ドライバ110PMOSトランジスタQ1のオン抵抗Ron_P1と負荷抵抗RLに対する、PMOSトランジスタQ9のオン抵抗Ron_P9と抵抗Rbの抵抗比がm倍とし、またダンピング制御用電流源回路は、第1バイアス電流Ibがドライバ定電流回路150と(1/N)倍のミラー電流比をなすNMOSトランジスタQ6でカレントミラー構成としており、第1バイアス電流Ibがダンピング制御用負荷回路を流れてダンピング制御信号Vdを作るが、抵抗比mと電流比(1/N)との関係から通常動作状態において出力端子VoYが低電位側電圧になるときの電圧(VO)とは、
ΔVdo=Vd−VO
=((m/N)−1)×RDRV×IO
の関係にあり、ダンピング動作開始電圧の関係、VO(damp)=Vd−1.4Vとから、
ΔVdo<1.4V
((m/N)−1)×RDRV×IO<1.4V
の条件においてダンピング回路の誤動作を防止することができる。
【0053】
図8(A)に示す(m/N)<1の場合には、出力端子VoYの低電位側電圧VOが領域Aより上に位置していればダンピング回路14の誤動作はなく、臨界点X(ドライバ電流IO=IO2)以下のドライバ電流IOでのドライブ動作が可能である。直線(2)から直線(1)に至る領域Bがダンピング動作開始までの動作余裕となり、出力端子VoYの臨界点Xを適宜調整することにより、ドライバ電流IOが小さい領域を中心とした任意のドライバ電流IOに対してダンピング回路14の誤動作を生じないダンピング制御信号Vdを出力することができるので、負荷LOADやドライバ電流IOの仕様に合わせてダンピング動作開始電圧を、予め設定して設計したり外部から調整することなく、m/N比をダンピング作用についてドライバ波形とドライバ電流IOの関係により最適に作り込んでおけば、常に最適な状態で動作させることができる。
【0054】
図8(B)に示すm=Nの場合には、ダンピング制御信号Vdと出力端子VoYの低電位側電圧VOは一致するので、出力端子VoYにおけるダンピング開始電圧は、常にVOから1.4V降下したところとなり、ダンピング回路14における電圧制限がかからない限りダンピング開始電圧から1.4Vの余裕を有して出力端子VoYの低電位側電圧VOが設定され、ドライバ電流IOの全領域で均一な動作余裕を確保して任意のドライバ電流IOに対してダンピング回路14の誤動作を生じないダンピング制御信号Vdを出力することができるので、負荷LOADやドライバ電流IOの仕様に合わせてダンピング動作開始電圧を、予め設定して設計したり外部から調整することなく、常に最適な状態で動作させることができる。
【0055】
図8(C)に示す(m/N)>1の場合には、出力端子VoYの低電位側電圧VOが領域Aより上に位置しているのでダンピング回路14の誤動作はなく、全てのドライバ電流IOでドライブ動作が可能である。特にドライバ電流IOが大きい領域を中心とした任意のドライバ電流IOに対してダンピング回路14の誤動作を生じないダンピング制御信号Vdを出力することができるので、負荷LOADやドライバ電流IOの仕様に合わせてダンピング動作開始電圧を、予め設定して設計したり外部から調整することなく、m/N比をダンピング作用についてドライバ波形とドライバ電流IOの関係により最適に作り込んでおけば、常に最適な状態で動作させることができる。
【0056】
第2実施形態のダンピング制御回路12Yでは、第1実施形態のダンピング制御回路11Yの構成に加えて、ダンピング制御信号調整端子を備えており、第1バイアス電流Ibに対して第2バイアス電流IBを加減できるので、第1バイアス電流Ibに代えてIb±IBがバイアス電流となり、ダンピング制御信号Vd´が、
Vd´=Vd±(m×RDRV)×IB
に変換され、m×RDRV×IBの幅で調整することが可能となるので、図8(A)の場合においては、ダンピング回路14の誤動作のない臨界点を、XからX2にシフトしてドライバ電流IOの大きい方向に調整して動作余裕を広げることができ、図8(B)及び(C)の場合においても、ダンピング動作余裕を調整することができる。 またドライバ回路組み立て後の負荷LOADの仕様変更等に対して、ダンピング動作余裕を調整することができ、負荷LOADの仕様変更等に柔軟に対応することができる。
【0057】
また、ダンピング回路14は、ダーリントン接続の構成とすることもでき、ダンピング電流Idampの電流能力を大きなものとして、フライバック電圧による電流リンギング波形を強力に解消する能力を有する回路構成を提供することができる。
【0058】
更に、PMOSトランジスタQ9のゲート接続を、PMOSトランジスタQ1のゲートに接続された入力信号ViXに接続することにより同期して駆動させることにより、オン抵抗Ron_P9が低下して安定な状態に至るまではPMOSトランジスタQ9の降下電圧が大きく、ダンピング制御信号Vdが低く保たれるので、ダンピング回路14におけるダンピング動作開始電圧を低く維持でき、ドライバ電流IOの波形立ち上がり時にダンピング誤動作をすることはなくドライバ電流IOの高速遷移を確保することができると共に、その後のオーバーシュートやアンダーシュートを伴う電流波形のリンギング時には、ダンピング制御信号Vdが所定値に安定するので、精度の高いダンピング動作開始電圧の制御を行うことができる。
【0059】
加えて、抵抗Rbを、MOSトランジスタで構成してゲートへのバイアス電圧を制御することにより可変抵抗としたり、複数の抵抗列で構成してスイッチ等により接続されるべき抵抗列を切り替えて可変抵抗として、負荷LOADの仕様変更やバラツキに応じて負荷抵抗RLとの抵抗比を所定値に確実に調整することができる。ここで、MOSトランジスタのゲートバイアス電圧は、外部から直接入力したり、DAコンバータを備え外部からのビット入力に対して内部生成する構成とすることもできる。また抵抗列の接続を切り替えるスイッチ等には、MOSトランジスタを使用することができ、外部からビット入力等により切り替えることができる。
【0060】
以上の実施形態により、負荷LOADやドライバ電流IOの仕様変更やバラツキ等に影響されず、電流波形のリンギング、遷移スピードの遅れ、及び電流消費のロス等が確実に防止され、安定したダンピング動作を実現することができる。
【0061】
尚、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良、変形が可能であることは言うまでもない。
例えば、本実施形態においては、ダンピング制御用負荷回路をPMOSトランジスタQ9と抵抗Rbとで構成しているが、これに限定されるものではなく、PMOSトランジスタQ9のみで構成してもよい。
また、ダンピング回路14は、NPNバイポーラトランジスタQ7、Q8で構成しているが、これに限定されるものではなく、MOSトランジスタで構成することもできる。
更に、本実施形態では、負のフライバック電圧による電流リンギング波形に対して出力端子VoYへダンピング電流Idampを供給する構成を例示したが、これに限定されるものではなく、ドライバ定電流回路、ダンピング回路、及びダンピング制御回路等のトランジスタの極性を反転することにより、正のフライバック電圧による電流リンギング波形に対して出力端子VoYからダンピング電流Idampを引き抜く構成とすることも可能である。
【0062】
また、上記実施形態の説明においては、出力端子VoYを中心に説明したが、ドライバ回路10、20の構成上、出力端子VoXについても同一構成の回路が構成されることは言うまでもない。
【0063】
【発明の効果】
本発明によれば、ドライバ回路において、出力電流に応じて出力端子の通常動作電圧が変化しても、ダンピング制御回路が出力するダンピング制御信号は、出力端子電圧からの所定電圧変化をダンピング動作開始電圧としてダンピング回路を動作させるので、負荷や出力電流の仕様に合わせてダンピング動作開始電圧を予め調整しておく必要がなく、常に最適な状態で動作させることができ、もって、負荷や出力電流の仕様変更やバラツキ等に影響されず、電流波形のリンギング、遷移スピードの遅れ、及び電流消費のロス等が確実に防止され、安定したダンピング動作を実現することができる。
【図面の簡単な説明】
【図1】 従来技術におけるダンピング回路を備えたドライバ回路の回路ブロック図である。
【図2】 別の従来技術におけるダンピング回路を備えたドライバ回路の回路ブロック図である。
【図3】 従来技術におけるダンピング回路を備えたドライバ回路の回路図である。
【図4】 従来技術におけるドライバ回路の動作波形図である。
【図5】 第1実施形態のダンピング回路を備えたドライバ回路の回路ブロック図である。
【図6】 第2実施形態のダンピング回路を備えたドライバ回路の回路ブロック図である。
【図7】 第1及び第2実施形態のダンピング回路を備えたドライバ回路の回路図である。
【図8】 出力電流に対する出力端子電圧及びダンピング電圧の特性図である。
【図9】 第1及び第2実施形態のドライバ回路の動作波形図である。
【図10】 第1及び第2実施形態のドライバ回路の他の回路例である。
【符号の説明】
10、20 ドライバ回路
11X、11Y、12X、12Y ダンピング制御回路
13、14 ダンピング回路
110、120 ドライバ
150 ドライバ定電流回路
Q1、Q2、Q9 PMOSトランジスタ
Q3、Q4、Q5、Q6 NMOSトランジスタ
Q7、Q8 NPNバイポーラトランジスタ
LOAD 負荷
RL 負荷抵抗
Rb 抵抗
Rd ダンピング電流制限抵抗
Ib 第1バイアス電流
IB 第2バイアス電流
Idamp ダンピング電流

Claims (7)

  1. 出力電流を設定する出力電流源回路と、前記出力電流で出力端子に接続された負荷を駆動する出力ドライバ素子と、前記出力端子に接続され前記負荷を駆動する際の前記出力電流の波形整形を行うダンピング回路とを有する電流駆動のドライバ回路において、
    ダンピング制御回路を備え、
    前記ダンピング制御回路は、前記ダンピング回路に入力され前記出力端子へのダンピング電流の供給開始を決めるダンピング動作開始電圧を決定するダンピング制御信号を出力し、
    前記ダンピング制御信号は、前記出力電流に応じて可変され前記出力端子における通常動作電圧とダンピング動作開始電圧とを所定電位差に設定することを特徴とするドライバ回路。
  2. 前記ダンピング制御回路は、
    前記出力電流との電流比が所定値となる、第1バイアス電流を出力するダンピング制御用電流源回路と、
    基準電位から前記出力端子に至る前記出力電流の経路における抵抗成分との抵抗比が所定値となる、前記基準電位から前記ダンピング制御信号に至る前記第1バイアス電流の電流経路の抵抗成分を有するダンピング制御用負荷回路とを備えることを特徴とする請求項1に記載のドライバ回路。
  3. 前記出力ドライバ素子は、第1スイッチング素子であり、
    前記ダンピング制御用負荷回路は、前記第1スイッチング素子と同一構成の第2スイッチング素子で構成され、
    前記第1スイッチング素子に対する前記第2スイッチング素子のオン抵抗比が所定抵抗比であることを特徴とする請求項1又は請求項2に記載のドライバ回路。
  4. 前記ダンピング制御用負荷回路は、
    前記負荷の抵抗成分、あるいは前記負荷の抵抗成分に加えて前記基準電位から前記出力端子に至る前記出力電流の電流経路から前記出力ドライバ素子を除く抵抗成分に対して、前記オン抵抗比と同一抵抗比を有する抵抗成分を備えることを特徴とする請求項3に記載のドライバ回路。
  5. 前記ダンピング制御用電流源回路は、前記出力電流源回路との間でカレントミラー回路を構成することを特徴とする請求項2乃至請求項4に記載のドライバ回路。
  6. 前記ダンピング制御回路は、
    第2バイアス電流を入力する入力端子を備え、
    前記入力端子より入力された前記第2バイアス電流を、前記第1バイアス電流に加減することを特徴とする請求項2乃至請求項5に記載のドライバ回路。
  7. 前記第2スイッチング素子のスイッチング制御端子は、前記第1スイッチング素子のスイッチング制御端子に接続されていることを特徴とする請求項3に記載のドライバ回路。
JP2000219195A 2000-07-19 2000-07-19 ドライバ回路 Expired - Fee Related JP4136287B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000219195A JP4136287B2 (ja) 2000-07-19 2000-07-19 ドライバ回路
US09/773,001 US6335643B1 (en) 2000-07-19 2001-01-31 Driver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219195A JP4136287B2 (ja) 2000-07-19 2000-07-19 ドライバ回路

Publications (2)

Publication Number Publication Date
JP2002043915A JP2002043915A (ja) 2002-02-08
JP4136287B2 true JP4136287B2 (ja) 2008-08-20

Family

ID=18714017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219195A Expired - Fee Related JP4136287B2 (ja) 2000-07-19 2000-07-19 ドライバ回路

Country Status (2)

Country Link
US (1) US6335643B1 (ja)
JP (1) JP4136287B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417817B1 (en) * 2003-03-18 2008-08-26 Marvell International Ltd. Write driver circuit for magnetic data storage systems
ATE490597T1 (de) * 2003-07-04 2010-12-15 Dialog Semiconductor Gmbh Hochspannungschnittstelle und steuerschaltung dafür
JP4864622B2 (ja) * 2006-09-27 2012-02-01 株式会社ケーヒン 誘導性負荷の駆動装置
WO2020000230A1 (zh) * 2018-06-27 2020-01-02 江苏时代全芯存储科技股份有限公司 记忆体驱动装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537891B2 (ja) * 1994-10-24 2004-06-14 株式会社ルネサステクノロジ ライトドライバ回路と半導体集積回路装置
US5880626A (en) * 1996-12-02 1999-03-09 Vtc, Inc. Active damping for a disk drive write circuit
US6246269B1 (en) * 1998-04-06 2001-06-12 Agere Systems Guardian Corp. Programmable damping for write circuits

Also Published As

Publication number Publication date
US6335643B1 (en) 2002-01-01
US20020008552A1 (en) 2002-01-24
JP2002043915A (ja) 2002-02-08

Similar Documents

Publication Publication Date Title
US6297921B1 (en) Write driver circuit having programmable overshoot and undershoot
JP2004229057A (ja) ゲートドライブ装置
KR20040075024A (ko) 하프-브릿지 구동기 및 그러한 구동기를 갖는 파워 변환시스템
KR20030021118A (ko) 구동제어장치
JP2647014B2 (ja) BiCMOS論理回路
JPS63202126A (ja) 論理回路
JP2020178206A (ja) ゲートドライバおよび半導体モジュール
US8154217B2 (en) Driver circuit, method for operating and use of a current mirror of a driver circuit
JP5348115B2 (ja) 負荷駆動装置
JP4136287B2 (ja) ドライバ回路
JP2557619B2 (ja) 信号出力回路
US8477441B2 (en) Write data switching for magnetic disk drives
US9813055B2 (en) Gate driver that drives with a sequence of gate resistances
US6326803B1 (en) Terminating circuit for a transmission line
US6215607B1 (en) Write driver using continuous damping network to reduce overshoot, undershoot and settling time for magnetic inductive recording head
US6184727B1 (en) Write driver circuit having enhanced switching control circuitry
US5990710A (en) High performance write driver for magnetic inductive recording head
US7449948B2 (en) Amplifier
US6731449B2 (en) Magnetic recording writing circuit
US7362142B2 (en) Current source apparatus, light-emitting-device apparatus and digital-analog converting apparatus
JP2001084505A (ja) 電流ドライバ回路
JP3684210B2 (ja) Cmos出力バッファー回路
US6377088B1 (en) Sharp transition push-pull drive circuit with switching signal input circuit
JP4887111B2 (ja) シュミット回路
JP7161509B2 (ja) ゲート駆動回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees