JP4130148B2 - バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置 - Google Patents

バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置 Download PDF

Info

Publication number
JP4130148B2
JP4130148B2 JP2003098325A JP2003098325A JP4130148B2 JP 4130148 B2 JP4130148 B2 JP 4130148B2 JP 2003098325 A JP2003098325 A JP 2003098325A JP 2003098325 A JP2003098325 A JP 2003098325A JP 4130148 B2 JP4130148 B2 JP 4130148B2
Authority
JP
Japan
Prior art keywords
signal
information
value
burst
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003098325A
Other languages
English (en)
Other versions
JP2004304741A (ja
Inventor
和廣 太田
敬一 宇治田
智則 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003098325A priority Critical patent/JP4130148B2/ja
Publication of JP2004304741A publication Critical patent/JP2004304741A/ja
Application granted granted Critical
Publication of JP4130148B2 publication Critical patent/JP4130148B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、デジタル変調されたバ−スト信号の復調を行うバ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置に関する。
【0002】
【従来の技術】
バ−スト復調装置に関する第1の従来例として、クロック再生を、プリアンブルにおけるクロック再生と、その後のクロック再生との2種類に分けたものがある。この第1の従来例として、特許文献1に示されたものがある。この第1の従来例について、図面を用いて説明する。
【0003】
図19は特許文献1に記載されたバ−ストモ−ド復調装置の全体構成図である。
図中のクロック位相推定回路(本発明におけるクロック再生部が行う動作の一部を担うもの)は、クロック再生符号(本発明におけるプリアンブルと同じ)を用いてバ−スト初期のクロック位相(本発明におけるサンプルタイミングと同じ)を推定する。クロック位相誤差極性検出回路(本発明におけるクロック再生部が行う動作の一部を担うもの)は、クロック再生符号に続く、バ−スト同期語部(本発明におけるプリアンブルとデ−タ領域の間に存在すると考えてもよいし、デ−タ領域に含まれると考えてもよい)を用いてクロック位相誤差の極性を検出し、クロック同期(本発明におけるクロック再生に相当する)をとる。しかしながら、この方法では、以下の問題点がある。
【0004】
(A−1)まず第1の問題点を説明する。
前記のクロック位相推定回路は、非常に回路規模が大きく、現実にバ−スト復調部を構成するための回路として適さない。特許文献1の図20には、前記のクロック位相推定回路の構成図が示されている。ここでは、乗算器など規模の大きくなる回路が使用されている。一般に、変数と定数とを乗算するような乗算器であれば、小さな回路で実現できるが、ここで使用されている変数と変数とを乗算する乗算器は、回路規模が非常に大きくなり、現実にバ−スト復調部を構成するための回路として適さない。図20全体をROMに置き換えるなど、別の構成をとることも可能だが、いずれにせよ高い精度が必要なので、回路規模は大きくなる。
【0005】
また、乗算の精度を落とすなど、何らかの技術を用いてクロック位相推定回路の回路規模を小さくすることができた場合を仮定する。この場合、クロック再生符号の期間中は、ある程度の粗いクロック同期を行い、それに続くバ−スト同期語部の期間中に完了させることになる。このとき、クロック同期の完了までに長い時間が必要となる。つまり、この第1の従来例では、高速にクロック同期を完了させることができない。
【0006】
(A−2)第2の問題点を説明する。
第1の従来例では、クロック位相推定回路は、クロック再生符号の期間中、毎シンボル常に同じ手法を用いてクロック位相(サンプルタイミング)の推定を行う。この方法はノイズの影響を大きく受ける。例えば、最後のクロック位相推定の際に大きなノイズが発生すると、クロック位相を大きく誤り、それに続くバ−スト同期語の期間中にクロック同期を完全にとることができなくなる可能性がある。
【0007】
このように、第1の従来例はノイズの影響を受け易く、高速にクロック同期を完了させることができない。従って第1の従来例は、高速にバ−スト引き込みを完了させることができない。
【0008】
バ−スト復調装置に関する第2の従来例として、クロック再生を、ある信号を積分した結果を用いて実行するものがある。第2の従来例は、特許文献2に示され、クロック再生回路と呼ばれるものである。第2の従来例について説明する。
【0009】
第2の従来例は、π/4シフトQPSK変調方式を用いたもので、搬送波エンベロ−プがボ−タイミング周波数成分を有していることを利用しており、π/4シフトQPSK変調方式のバ−スト復調装置のクロック再生回路に特化したものである。この一部の機構は一般的なバ−スト復調装置に適用できる。この特徴は、クロック位相推定に用いる信号を得る際に、積分回路で積分している点である。これにより、第1の従来例における第2の問題点であるノイズの影響を受けやすいという問題点は解決できる。即ち、積分によりノイズの影響を平均化できるからである。
【0010】
しかしながら、この積分により新たな問題点が発生する。それは、積分が完了するまで、この第2の従来例におけるクロック再生回路は、精度の低いクロックを他の回路へ供給するため、他の回路の動作精度が下がり、バ−スト復調装置全体の動作精度が下がる点である。
【0011】
これを解決するには、積分をやめ、毎シンボル新たなクロック位相(サンプルタイミング)を推定すればよいが、そうすれば第1の従来例における第2の問題点と同様、ノイズの影響を受けやすいという問題が発生する。
【0012】
このように、第2の従来例においては、クロック再生回路におけるノイズの影響を下げつつ、バ−スト復調装置全体の動作精度を上げることができない。従って、第2の従来例は高速にバ−スト引き込みを完了させることができない。
【0013】
バ−スト復調装置に関する第3の従来例として、クロック再生及びキャリア再生を行う際に、遅延させた信号を用いて実行するものがある。この第3の従来例として、特許文献3及び特許文献4に示されたものがある。これら2つの文献に示される第3の従来例は、プリアンブル期間中はまったく同じ動作を行う。この第3の従来例について、特許文献3の図面を用いて説明する。
【0014】
図21は第3の従来例におけるバ−スト信号復調装置の全体構成図である。本図にバ−スト検出手段(本発明における信号有無判定部に相当する役割を担うもの)がバ−ストを検出した後、ビットタイミング抽出手段(本発明におけるクロック再生部に相当する役割を担う)においてビットタイミングを抽出(本発明におけるクロック再生やサンプルタイミングを求めることに相当する)する。その後、キャリア再生手段(本発明におけるキャリア再生部に相当する役割を担う)がキャリア周波数および位相の推定を行い、その結果を用いて複素乗算器(本発明における複素乗算部に相当する)が復調を行う。
【0015】
この動作の中で、この第3の従来例は以下のような特徴をもつ。
(B−1)まず第1の特徴を説明する。
バ−スト検出手段がバ−ストを検出するのに必要な時間、ビットタイミング抽出手段の入力は、第1の遅延手段(本発明には存在しない)に保存される。これにより、バ−スト検出手段がバ−ストを検出するのに長い時間がかかったとしても、ビットタイミング抽出手段はプリアンブルの先頭から使用できる。このことから、この第3の従来例は高速なクロック再生が可能であるが、反面、第1の遅延手段が必要なため、回路規模が大きくなる。
【0016】
(B−2)次に第2の特徴を説明する。
図21のキャリア再生手段がキャリア周波数および位相の推定を行うのに必要な時間、複素乗算器の入力は、第3の遅延手段(本発明には存在しない)に保存される。これにより、キャリア再生手段がキャリア周波数および位相の推定を行うのに長い時間がかかったとしても、複素乗算器はプリアンブルの先頭から使用できる。このことから、この第3の従来例は高速なキャリア再生が可能であるが、反面、第3の遅延手段が必要なため、回路規模が大きくなる。
【0017】
(B−3)第3の特徴を説明する。
まず、バ−スト検出手段の動作を特許文献3の図22を用いて説明する。図22はバ−スト検出手段の構成図を示す。逆変調手段から第3のエンベロ−プ検出手段までで受信信号電力を測定し、比較手段で閾値と比較し、受信信号電力が閾値より大きければ、バ−ストあり(本発明における信号有に相当する)と判定する。
【0018】
しかしながら、この方法には以下のような問題がある。即ち、送信電力の大きさや、伝送路における減衰の大きさの違いにより生じる受信電力の大小によって、プリアンブルのどのタイミングでバ−ストありと判定されるかが異なってしまう。
【0019】
例えば、プリアンブルが20シンボルあったとして、最初の5シンボルは、電力0から徐々に大きくなっていき、8シンボル目で完全に立ち上がるとする。ある受信信号は非常に電力が大きいため、3シンボル目で閾値を超えることもある。またある受信信号は非常に電力が小さいため、6シンボル目でやっと閾値を超えることもある。
【0020】
ここで図14(a),(b)を用いて説明を補足する。図14(a)は、送信電力が小さいか、または伝送路における減衰が大きいため、受信電力が小さい場合のバ−スト引き込みの様子を示すものである。図14(b)は、送信電力が大きいか、または伝送路における減衰が小さいため、受信電力が大きい場合のバ−スト引き込みの様子を示すものである。図14(a),(b)で、受信信号は電力0から徐々に立ち上がり、8シンボル進んで完全に立ち上がる。その途中で「信号有」と判定される。ここでは、電力「b」で「信号有」と判定するものとする。また、プリアンブルの長さを20シンボルとする。
【0021】
この第3の従来例は、電力「b」で「信号有」と判定してからバ−スト引き込みを開始するため、20シンボルのプリアンブルの全てをバ−スト引き込みに使用することはできない。例えば、図14(a)では、受信電力が小さいため、最初の6シンボル程度が「信号無」とされ、利用できない。図14(b)では、受信電力が大きいため図14(a)よりは有利だが、それでも最初の3シンボル程度が「信号無」とされ、利用できない。
【0022】
このように、第3の従来例における第3の特徴において挙げられる第1の問題点(B−3−1)として、プリアンブルの一部をバ−スト引き込みに使用することができず、そのためプリアンブル中にバ−スト引き込みを完了できない可能性があるということが挙げられる。
【0023】
次に、第3の従来例における第3の特徴において挙げられる第2の問題点(B−3−2)の説明をする。キャリア再生やクロック再生において、プリアンブルのどのタイミングであるかによってきめ細かに処理方法を変えることにより、効率のよい処理を行うことができることが予想される。例えば、最初の10シンボルはレンジを大きく取り、その代わり荒い制御を行い、その後11シンボル目からレンジを小さく取り、その代わり細かい制御を行う。このような処理を行うことで、高速に処理を完了することができることが予想される。
【0024】
しかしながら、この第3の従来例は受信電力の違いにより、プリアンブルのどのタイミングでバ−ストありと判定されるかが異なってしまうので、キャリア再生やクロック再生におけるきめ細かな処理方法に悪影響を与え、処理に時間がかかってしまう。
【0025】
例えば、3シンボル目で閾値を超える場合は、3シンボル目がプリアンブルの先頭と認識されてしまう。また、6シンボル目でやっと閾値を超える場合は、6シンボル目がプリアンブルの先頭と認識されてしまう。これでは、プリアンブルのどのタイミングであるかによって、きめ細かに処理方法を変えることができない。その結果、この第3の従来例においては、前記の遅延手段の回路が増大してしまう。また、遅延手段をもたない場合、長いプリアンブルを必要としてしまう。
【0026】
以上のように、第3の従来例は多くの遅延手段を必要とするため、非常に回路規模が大きく、現実にバ−スト復調装置を構成するための回路として適さない。現実にバ−スト復調装置を構成するため、遅延手段を減らせば長いプリアンブルが必要となり、高速にバ−スト引き込みを完了させることができない。
【0027】
以上の第1〜3の従来例によれば、従来のバ−スト復調装置は、高速にバ−スト引き込みを完了させることができない。そのため送信側のバ−スト送信装置で、バ−ストの先頭に長いプリアンブルを付加することが必要とされる。この結果、オ−バ−ヘッドの増加を招き、スル−プットを減少させてしまう。
【0028】
このような点に注目して、以下、バ−スト復調装置及びバ−スト送信装置に関する第4〜6の従来例の説明を行う。
【0029】
バ−スト復調装置及びバ−スト送信装置に関する第4の従来例として、512シンボルという長いプリアンブルに設定可能なものがある。この第4の従来例として、非特許文献1に示された規格「DOCSIS1.0」及び非特許文献2に示された規格「DOCSIS1.1」に従ったものがある。これらの規格はケ−ブルモデムの国際標準規格である。
【0030】
この第4の従来例は、QPSKモ−ド時0〜512シンボル、16QAMモ−ド時0〜256シンボルから選択してプリアンブルの長さを決定する。しかし、一般的には、30シンボル以上という長いプリアンブルに設定される。
【0031】
例えば、シスコ社のDOCSISセンタ−部は、デフォルトで以下のようにプリアンブルの長さを設定する。
「rwquest」パケットは、QPSKで64bit、即ち32シンボルである。
「initial」パケットは、QPSKで128bit、即ち64シンボルである。
「station」パケットは、QPSKで128bit、即ち64シンボルである。
「short」パケットは、16QAMで144bit、即ち32シンボルである。
「long」パケットは、16QAMで160bit、即ち40シンボルである。
【0032】
また、同DOCSISセンタ−部は、QPSKモ−ド固定使用時、デフォルトで以下のようにプリアンブルの長さを設定する。
「request」パケットは、64bit、即ち32シンボルである。
「initial」パケットは、128bit、即ち64シンボルである。
「station」パケットは、128bit、即ち64シンボルである。
「short」パケットは、72bit、即ち32シンボルである。
「long」パケットは、80bit、即ち40シンボルである。
【0033】
また、同DOCSISセンタ−部は、16QAMモ−ド固定使用時、デフォルトで以下のようにプリアンブルの長さを設定する。
「request」パケットは、128bit、即ち32シンボルである。
「initial」パケットは、256bit、即ち64シンボルである。
「station」パケットは、256bit、即ち64シンボルである。
「short」パケットは、144bit、即ち32シンボルである。
「long」パケットは、160bit、即ち40シンボルである。
以上のように第4の従来例は、長いプリアンブルを必要とする。
【0034】
バ−スト復調装置及びバ−スト送信装置に関する第5の従来例として、144シンボルという長いプリアンブルに設定されるものがある。この第5の従来例として、非特許文献3に示された規格「IEEE802.11」及び「IEEE802.11b」に従ったものがある。これらの規格は、無線LANの国際標準規格である。
【0035】
非特許文献3によれば、これらの規格ではロングプリアンブルでは、BPSKで144bit、即ち144シンボルという長いプリアンブルが使用される。また、ショ−トプリアンブル時は、ロングプリアンブル時の「プリアンブル(144bit)+ヘッダ(48bit)」時間幅に対し、半分の時間幅の「プリアンブル+ヘッダ」が使用されることが示されている。ショ−トプリアンブル時のプリアンブルの具体的なシンボル数は記載されていないが、仮にヘッダのビット数を削減せず、プリアンブルのビット数のみ削減したとしても、48bit、即ち48シンボルという長いプリアンブルが使用される。以上のように、第5の従来例は、長いプリアンブルを必要とする。
【0036】
バ−スト復調装置及びバ−スト送信装置に関する第6の従来例として、時間幅の異なるシンボルを扱うものがある。この第6の従来例として、非特許文献4に示された規格「IEEE802.11a」に従ったものがある。この規格も、第5の従来例と同様に無線LANの国際標準規格である。
【0037】
非特許文献4によれば、この規格では12シンボルという短いプリアンブルが固定的に使用される。最初の10シンボルは、時間幅の短い(0.8μ秒)シンボルであって、最後の2シンボルは、プリアンブルに続くデ−タ領域と同じ時間幅(4μ秒)のシンボルである。デ−タ領域のシンボルより短い時間幅のシンボルを用いることで、精度の高いバ−スト引き込みを行うことができるので、12シンボルという短いプリアンブルでのバ−スト引き込みを可能とする。
【0038】
しかしながら、この方法では、時間幅の異なるシンボルを扱う必要があるため、送信側、復調側ともに回路が複雑になる。以上のように、第6の従来例は、短いプリアンブルでのバ−スト引き込みを可能とするために、複雑な回路を必要とするという欠点があった。
【0039】
以上、第1〜6の従来例を用いて従来技術の説明を行ったが、第3の従来例において説明したとおり、プリアンブルのどのタイミングであるかによって、きめ細かにバ−スト引き込み方法を変えることにより、効率のよい処理を行うことができることが予想される。しかしながら、以上に示した第1〜6の従来例においては、その具体的方法が明らかにされていない。プリアンブルのどのタイミングであるかによってきめ細かに処理方法を変えないとすると、バ−スト引き込みを実行するためには、長いプリアンブルを必要とする。
【0040】
【特許文献1】
特許公報「特許番号第2753485号 バ−ストモ−ド復調装置」(第3−4頁、図1、図3)
【特許文献2】
特許公報「特許番号第2940895号 クロック再生回路」(第3−4頁、図1)
【特許文献3】
特許公報「特公平7−44576号 バ−スト信号復調装置」(第2−4頁、第1図、第5図)
【特許文献4】
特許公報「特公平7−20146号 バ−スト信号復調装置」(第3−5頁、第1図、第5図)
【非特許文献1】
Data−Over−Cable Service Interface Specifications Radio Frequency Interface Specification SP−RFI−I05−991105 第26頁
【非特許文献2】
Data−Over−Cable Service Interface Specifications Radio Frequency Interface Specification SP−RFIv1.1−I03−991105 第26頁
【非特許文献3】
守倉 正博、松江 英明、“IEEE802.11準拠無線LANの動向”、2001年11月、電子情報通信学会論文誌B Vol.J84−B No.11、第1920−1922頁、図6
【非特許文献4】
同上、第1923−1925頁、図9、図13
【0041】
【発明が解決しようとする課題】
上述したように、従来のバ−スト復調装置は、高速にバ−スト引き込みを完了させることができないため、長いプリアンブルを必要とする。そのため送信側のバ−スト送信装置で、バ−ストの先頭に長いプリアンブルを付加することが必要とされる。この結果、オ−バ−ヘッドの増加を招き、スル−プットを減少させてしまう。
【0042】
本発明は、このような従来の問題点に鑑みてなされたものであって、短いプリアンブルを用い、又はプリアンブルの信号を早期に検出して高速のバースト引き込みができるバ−スト復号方法及びバ−スト復号装置、バ−スト復号方法を記録したプログラム媒体、バースト送信装置を実現することを目的とする。
【0043】
【課題を解決する手段】
本願の請求項1の発明は、プリアンブルと、それに続くデ−タ領域とからなる受信信号を入力し、プリアンブルの終わりまでにバ−スト引き込みを完了し、デ−タ領域の復調を行って元信号を出力するバ−スト復調方法であって、前記受信信号に基づいて作られるデジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かを判定し、含んでいれば信号有、含んでいなければ信号無を示す有無情報を出力する信号有無判定ステップと、前記デジタル信号に対して補正を施した信号を補正デジタル信号とするとき、前記デジタル信号または前記補正デジタル信号と前記有無情報とを入力し、引き込み実行用変数を出力するバ−スト引き込みステップと、前記補正デジタル信号を入力し、その信号点を判別することにより元信号を出力するデジタル復調ステップと、を具備し、前記バ−スト引き込みステップは、前記プリアンブルの特性に基づいて、前記補正デジタル信号の状態が理想状態になるよう前記引き込み実行用変数を求めることでバ−スト引き込み動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記引き込み実行用変数を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0044】
本願の請求項2の発明は、請求項1のバ−スト復調方法において、前記バ−スト引き込みステップは、前記補正デジタル信号の状態と前記理想状態との差に基づく差分情報を求める差分情報出力ステップと、前記差分情報から前記引き込み実行用変数の調整値を求める調整値出力ステップと、前記調整値と前回求めた前記引き込み実行用変数とから新たな前記引き込み実行用変数を求める引き込み実行変数出力ステップと、を具備し、前記調整値出力ステップは、同じ値の前記差分情報に対して前記調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0045】
本願の請求項3の発明は、請求項2のバ−スト復調方法において、前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定ステップは、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力ステップと、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、前記有無情報出力ステップは、前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報の値をクリアして0からその値を計数するものであり、前記バ−スト引き込みステップの調整値出力ステップは、同じ値の前記差分情報に対して前記調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0046】
本願の請求項4の発明は、請求項3のバ−スト復調方法において、前記確実性情報出力ステップは、前記受信信号の電力を測定して前記確実性情報とすることを特徴とする。
【0047】
本願の請求項5の発明は、請求項1のバ−スト復調方法において、前記デジタル信号は、タイミング情報に基づいて前記受信信号をサンプリングして作成されたものであり、前記バ−スト引き込みステップは、前記デジタル信号と前記有無情報とを入力し、前記タイミング情報を出力するクロック再生ステップを具備するものとし、前記クロック再生ステップは、前記プリアンブルの特性に基づいて、前記デジタル信号の状態が理想状態になるよう前記タイミング情報を求めることでクロック再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記タイミング情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0048】
本願の請求項6の発明は、請求項5のバ−スト復調方法において、前記デジタル信号は、前記受信信号を2倍オ−バ−サンプリングして作成されたものであって、前記クロック再生ステップは、前記デジタル信号を3サンプル保持し、そのなかの1サンプル目と3サンプル目の一方の信号振幅がA、他方が−Aとなって2サンプル目が0という理想状態になるよう、ゼロクロス法に基づいて前記タイミング情報を求めるものであって、前記タイミング情報によって得られた前記デジタル信号の状態と前記理想状態との差に基づくタイミング差分情報を求めるタイミング差分情報出力ステップと、前記タイミング差分情報からタイミング調整値を求めるタイミング調整値出力ステップと、前記タイミング調整値と前回求めた前記タイミング情報とから新たな前記タイミング情報を求めるタイミング情報出力ステップと、を具備し、前記タイミング調整値出力ステップは、同じ値の前記タイミング差分情報に対して前記タイミング調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0049】
本願の請求項7の発明は、請求項6のバ−スト復調方法において、前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定ステップは、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力ステップと、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、前記有無情報出力ステップは、記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、前記クロック再生ステップのタイミング調整値出力ステップは、同じ値の前記タイミング差分情報に対し前記タイミング調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0050】
本願の請求項8の発明は、請求項1のバ−スト復調方法において、前記デジタル復調ステップは、前記デジタル信号と前記引き込み実行用変数の1つである位相情報とを入力し、前記デジタル信号に前記位相情報を複素乗算することで位相調整を行って、調整済の前記補正デジタル信号として出力する複素乗算ステップと、前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力ステップと、を具備し、前記バ−スト引き込みステップは、前記デジタル信号または調整済の前記補正デジタル信号と、前記有無情報とを入力し、前記位相情報を出力するキャリア再生ステップを具備し、前記キャリア再生ステップは、前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記位相情報を求めることでキャリア再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記位相情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0051】
本願の請求項9の発明は、請求項8のバ−スト復調方法において、前記キャリア再生ステップは、前記デジタル信号または調整済の前記補正デジタル信号を入力し、前記補正デジタル信号のIQ平面上の位相が1シンボル毎に交互に「0」、「π」の理想状態になるよう前記位相情報を求めるものであって、前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく位相差分情報を求める位相差分情報出力ステップと、前記位相差分情報から位相調整値を求める位相調整値出力ステップと、前記位相調整値と前回求めた前記位相情報とから新たな前記位相情報を求める位相情報出力ステップと、を具備し、前記位相調整値出力ステップは、同じ値の前記位相差分情報に対して前記位相調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0052】
本願の請求項10の発明は、請求項9のバ−スト復調方法において、前記有無情報は、信号無の時は値が0で、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定ステップは、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力ステップと、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、前記有無情報出力ステップは、前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、前記キャリア再生ステップの位相調整値出力ステップは、同じ値の前記位相差分情報に対し前記位相調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0053】
本願の請求項11の発明は、請求項1のバ−スト復調方法において、前記デジタル復調ステップは、前記デジタル信号と前記引き込み実行用変数の1つである振幅情報とを入力し、前記デジタル信号に前記振幅情報を乗算することで振幅調整を行って、調整済の前記補正デジタル信号として出力する乗算ステップと、前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力ステップと、を具備し、前記バ−スト引き込みステップは、前記デジタル信号または前記調整済の補正デジタル信号と、前記有無情報とを入力し、前記振幅情報を出力するゲイン調整ステップを具備し、前記ゲイン調整ステップは、前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記振幅情報を求めることでゲイン調整動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記振幅情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0054】
本願の請求項12の発明は、請求項11のバ−スト復調方法において、前記ゲイン調整ステップは、前記デジタル信号または調整済の補正デジタル信号を入力し、前記調整済の補正デジタル信号のI,Qそれぞれの振幅が基準値をとる理想状態になるよう前記振幅情報を求めるものであって、前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく振幅差分情報を求める振幅差分情報出力ステップと、前記振幅差分情報から振幅調整値を求める振幅調整値出力ステップと、前記振幅調整値と前回求めた前記振幅情報とから新たな前記振幅情報を求める振幅情報出力ステップと、を具備し、前記振幅調整値出力ステップは、同じ値の前記振幅差分情報に対して前記振幅調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0055】
本願の請求項13の発明は、請求項12のバ−スト復調方法において、前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定ステップは、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、前記確実性情報を入力し、その増大量を測定し、確実性増大量として出力する増大量出力ステップと、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、前記有無情報出力ステップは、前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、前記ゲイン調整ステップの振幅調整値出力ステップは、同じ値の前記振幅差分情報に対し前記振幅調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0056】
本願の請求項14の発明は、請求項1〜13記載のバ−スト復調方法のうちいずれかのプログラムを格納したプログラム媒体である。
【0057】
本願の請求項15の発明は、プリアンブルと、それに続くデ−タ領域とからなる受信信号を入力し、プリアンブルの終わりまでにバ−スト引き込みを完了し、デ−タ領域の復調を行って元信号を出力するバ−スト復調装置であって、前記受信信号に基づいて作られるデジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否か判定し、含んでいれば信号有、含んでいなければ信号無を示す有無情報を出力する信号有無判定部と、前記デジタル信号に対して補正を施した信号を補正デジタル信号とするとき、前記デジタル信号または前記補正デジタル信号と前記有無情報とを入力し、引き込み実行用変数を出力するバ−スト引き込み部と、前記補正デジタル信号を入力し、その信号点を判別することにより元信号を出力するデジタル復調部と、を具備し、前記バ−スト引き込み部は、前記プリアンブルの特性に基づいて、前記補正デジタル信号の状態が理想状態になるよう前記引き込み実行用変数を求めることでバ−スト引き込み動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記引き込み実行用変数を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0058】
本願の請求項16の発明は、請求項15のバ−スト復調装置において、前記バ−スト引き込み部は、前記補正デジタル信号の状態と前記理想状態との差に基づく差分情報を求める差分部と、前記差分情報から前記引き込み実行用変数の調整値を求める調整部と、前記調整値と前回求めた前記引き込み実行用変数とから新たな前記引き込み実行用変数を求める引き込み実行変数出力部と、を具備し、前記調整部は、同じ値の前記差分情報に対して前記調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0059】
本願の請求項17の発明は、請求項16のバ−スト復調装置において、前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定部は、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力部と、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力部と、を具備し、前記有無情報出力部は、前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報の値をクリアして0からその値を計数するものであり、前記バ−スト引き込みステップの調整部は、同じ値の前記差分情報に対して前記調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0060】
本願の請求項18の発明は、請求項17のバ−スト復調装置において、前記確実性情報出力部は、前記受信信号の電力を測定して前記確実性情報とすることを特徴とする。
【0061】
本願の請求項19の発明は、請求項15のバ−スト復調装置において、前記デジタル信号は、タイミング情報に基づいて前記受信信号をサンプリングして作成されたものであり、前記バ−スト引き込み部は、前記デジタル信号と前記有無情報とを入力し、前記タイミング情報を出力するクロック再生部を具備するものとし、前記クロック再生部は、前記プリアンブルの特性に基づいて、前記デジタル信号の状態が理想状態になるよう前記タイミング情報を求めることでクロック再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記タイミング情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0062】
本願の請求項20の発明は、請求項19のバ−スト復調装置において、前記デジタル信号は、前記受信信号を2倍オ−バ−サンプリングして作成されたものであって、前記クロック再生部は、前記デジタル信号を3サンプル保持し、そのなかの1サンプル目と3サンプル目の一方の信号振幅がA、他方が−Aとなって2サンプル目が0という理想状態になるよう、ゼロクロス法に基づいて前記タイミング情報を求めるものであって、前記タイミング情報によって得られた前記デジタル信号の状態と前記理想状態との差に基づくタイミング差分情報を求めるタイミング差分部と、前記タイミング差分情報からタイミング調整値を求めるタイミング調整部と、前記タイミング調整値と前回求めた前記タイミング情報とから新たな前記タイミング情報を求めるタイミング情報出力部と、を具備し、前記タイミング調整部は、同じ値の前記タイミング差分情報に対して前記タイミング調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0063】
本願の請求項21の発明は、請求項20のバ−スト復調装置において、前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定部は、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力部と、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、前記有無情報出力部は、記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、前記クロック再生部内のタイミング調整部は、同じ値の前記タイミング差分情報に対し前記タイミング調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0064】
本願の請求項22の発明は、請求項15のバ−スト復調装置において、前記デジタル復調部は、前記デジタル信号と前記引き込み実行用変数の1つである位相情報とを入力し、前記デジタル信号に前記位相情報を複素乗算することで位相調整を行って、調整済の前記補正デジタル信号として出力する複素乗算部と、前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力部と、を具備し、前記バ−スト引き込み部は、前記デジタル信号または調整済の前記補正デジタル信号と、前記有無情報とを入力し、前記位相情報を出力するキャリア再生部を具備し、前記キャリア再生部は、前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記位相情報を求めることでキャリア再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記位相情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0065】
本願の請求項23の発明は、請求項22のバ−スト復調装置において、前記キャリア再生部は、前記デジタル信号または調整済の前記補正デジタル信号を入力し、前記補正デジタル信号のIQ平面上の位相が1シンボル毎に交互に「0」、「π」の理想状態になるよう前記位相情報を求めるものであって、前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく位相差分情報を求める位相差分部と、前記位相差分情報から位相調整値を求める位相調整部と、前記位相調整値と前回求めた前記位相情報とから新たな前記位相情報を求める位相情報部と、を具備し、前記位相調整部は、同じ値の前記位相差分情報に対して前記位相調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0066】
本願の請求項24の発明は、請求項23のバ−スト復調装置において、前記有無情報は、信号無の時は値が0で、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定部は、前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力部と、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力部と、を具備し、前記有無情報出力部は、前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、前記キャリア再生部内の位相調整部は、同じ値の前記位相差分情報に対し前記位相調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0067】
本願の請求項25の発明は、請求項15のバ−スト復調装置において、前記デジタル復調部は、記デジタル信号と前記引き込み実行用変数の1つである振幅情報とを入力し、前記デジタル信号に前記振幅情報を乗算することで振幅調整を行って、調整済の前記補正デジタル信号として出力する乗算部と、前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力部と、を具備し、前記バ−スト引き込み部は、前記デジタル信号または前記調整済の補正デジタル信号と、前記有無情報とを入力し、前記振幅情報を出力するゲイン調整部を具備し、前記ゲイン調整部は、前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記振幅情報を求めることでゲイン調整動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記振幅情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする。
【0068】
本願の請求項26の発明は、請求項25のバ−スト復調装置において、前記ゲイン調整部は、前記デジタル信号または調整済の補正デジタル信号を入力し、前記調整済の補正デジタル信号のI,Qそれぞれの振幅が基準値をとる理想状態になるよう前記振幅情報を求めるものであって、前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく振幅差分情報を求める振幅差分部と、前記振幅差分情報から振幅調整値を求める振幅調整部と、前記振幅調整値と前回求めた前記振幅情報とから新たな前記振幅情報を求める振幅情報出力部と、を具備し、前記振幅調整値出力部は、同じ値の前記振幅差分情報に対して前記振幅調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする。
【0069】
本願の請求項27の発明は、請求項26のバ−スト復調装置において、前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、前記信号有無判定部は、記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、前記確実性情報を入力し、その増大量を測定し、確実性増大量として出力する増大量出力部と、前記確実性増大量を入力し、前記有無情報を出力する有無情報出力部と、を具備し、前記有無情報出力部は、前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、前記ゲイン調整部内の振幅調整値出力部は、同じ値の前記振幅差分情報に対し前記振幅調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする。
【0070】
本願の請求項28の発明は、請求項1〜13のいずれか1項記載のバースト復調方法を用いたバースト復調装置、又は請求項15〜27のいずれか1項記載のバースト復調装置に対して信号を送信するバースト送信装置であって、プリアンブルとそれに続くデータ領域とからなるバースト信号を送信し、前記プリアンブルは30シンボル未満であり、その1シンボルの時間幅は前記データ領域の1シンボルの時間幅と同じであることを特徴とする。
【0071】
【発明の実施の形態】
本発明のバ−スト復調方法及びバ−スト復調装置における各実施の形態について、図面を用いて説明する。
(実施の形態1)
図1は、本発明のバ−スト復調装置の全体構成を示すブロック図である。バ−スト復調装置には受信信号1が入力される。この受信信号1は、主信号が16QAM変調されたバ−スト信号であり、先頭の20シンボルのプリアンブルと、それに続く主信号、即ちデ−タ領域とからなる。プリアンブルはBPSK等の交番信号により構成される。交番信号については、第1の従来例で詳細に説明したものと同一である。
【0072】
受信信号1をデジタル化したものがデジタルI信号及びデジタルQ信号である。デジタルI信号2は、IQ平面(横軸I,縦軸Qの位相平面)上のI成分であり、デジタルQ信号3は、IQ平面上のQ成分である。タイミング情報4は値0〜359のうち一つを指す信号である。5は元信号である。6は有無情報であり、0以上の整数値を持つものであって、0は「信号無」を、1以上は「信号有」を示す。
【0073】
サンプリング部(SP)51は、受信信号1と、タイミング情報4とを入力し、タイミング情報4に基づいて、受信信号1をサンプリングし、デジタルI信号2と、デジタルQ信号3とを出力するものである。デジタル復調部(DEM)52は、デジタルI信号2と、デジタルQ信号3と、有無情報6とを入力し、元信号5と、タイミング情報4とを出力するものである。信号有無判定部(SIG)53は、デジタルI,Q信号2,3を入力し、有無情報6を出力するものである。
【0074】
図2は、サンプリング部51の内部構成を示すブロック図である。101はADクロックである。102はデジタル受信信号であり、受信信号1をデジタル化したものである。103,104はそれぞれデジタルI,Q受信信号であり、デジタル受信信号102をベ−スバンドへ落としたものである。
【0075】
ADクロック部(ADCLK)151はADクロック101を出力する回路である。ADコンバ−タ(A/D)152は、受信信号1と、ADクロック101とを入力し、受信信号1をADクロック101でサンプリングしてデジタル化し、デジタル受信信号102として出力するものである。
【0076】
デジタルダウンコンバ−タ(DDC)153は、デジタル受信信号102と、ADクロック101とを入力し、デジタル受信信号102の搬送波周波数をダウンコンバ−トしてベ−スバンドにまで落とし、また、デ−タの間引きを行って、1シンボル当り2サンプルのデ−タ、即ち2倍オ−バ−サンプリングされたデ−タに変換し、I成分、Q成分をそれぞれデジタルI受信信号103、デジタルQ受信信号104として出力するものである。
【0077】
フィルタ(FIL)154,155は波形成形の機能を有し、デジタルI受信信号103、デジタルQ受信信号104を入力し、タイミング情報4に基づいて津それぞれフィルタリング処理し、それぞれデジタルI信号2、デジタルQ信号3として出力するものである。
【0078】
フィルタ154,155は、360通りのサンプルタイミングに対応した360通りのフィルタ係数を保持しており、タイミング情報4の値に従ってフィルタ係数を選択して使用する。タイミング情報4の値が1大きくなると、サンプルタイミングを1度進めるフィルタ係数が選択される。タイミング情報4の値が1小さくなると、サンプルタイミングを1度遅らせるようなフィルタ係数が選択される。従ってフィルタ154,155は、後述するようにタイミング情報の引き込み実行部の機能を有している。
【0079】
図3は、信号有無判定部53の内部構成を示すブロック図である。301は電力値である。電力測定部351は、デジタルI,Q信号2,3を入力し、受信電力を測定し、電力値301として出力する確実性情報出力部である。判定部354は、電力値301を入力し、有無情報6を出力するものであって、電力値301がb以上ならば(bは定数)「信号有」と判定し、有無情報6の値をインクリメントする。また、電力値301がbより小さければ「信号無」として有無情報6を0とする。従って判定部354は有無情報出力部ともいう。
【0080】
図4は、デジタル復調部52の内部構成を示すブロック図である。201,202はそれぞれ振幅調整済I,Q信号であり、それぞれデジタルI,Q信号2,3を振幅調整したものである。203,204はそれぞれ位相調整済I,Q信号であり、それぞれ振幅調整済I,Q信号201,202を位相調整したものであり、補正デジタル信号ともいう。205は元信号点であり、値0〜15のうち一つを指す。
【0081】
207は振幅情報である。208は位相情報であり、0は0度、正の値はIQ平面上で時計回り、負の値はIQ平面上で反時計回りを示し、数字の大きさの単位は「度」である。例えば、この位相情報208の値が「−30」であれば、IQ平面上で反時計回りに30度という内容を示す。乗算部251,252は、ともに振幅情報207を入力し、また、それぞれデジタルI,Q信号2,3を入力し、それぞれの信号に振幅情報207を乗算することで、振幅調整を行って、それぞれ振幅調整済I,Q信号201,202として出力する。
【0082】
複素乗算部253は、振幅調整済I,Q信号201,202(以下、Ia,Qaという)と、位相情報208(以下、θという)とを入力し、Ia×cosθ+Qa×sinθなる位相調整済I信号203(以下、補正デジタル信号Iともいう)と、Qa×cosθ−Ia×sinθなる位相調整済Q信号204(以下、補正デジタル信号Qともいう)とを出力するものである。乗算部251,252と複素乗算部253は、振幅情報(ゲイン調整)と位相情報(キャリア再生)の引き込み実行部の機能を有している。
【0083】
信号点判定部254は、位相調整済I,Q信号203,204を入力し、IQ平面上の16QAM信号点と照らし合わせ、どの信号点のものであるかを判定し、0〜15の数字で示し、元信号点205として出力するものである。信号点判定部254は復調部ともいう。IQ平面上の16QAM信号点と0〜15の値の対応は図13に従う。
【0084】
パラレルシリアル変換部(P/S)255は、元信号点205を入力し、シリアルに変換して元信号5として出力する元信号出力部である。バ−スト引き込み部257は、位相調整済I,Q信号203,204と、有無情報6とを入力し、タイミング情報4と、位相情報208と、振幅情報207とを出力するものである。
【0085】
図5は、バ−スト引き込み部257の内部構成を示すブロック図である。クロック再生部(CLK)451は、位相調整済I,Q信号203,204と、有無情報6とを入力し、タイミング情報4を出力するものである。キャリア再生部(CAR)452は、位相調整済I,Q信号203,204と、有無情報6とを入力し、位相情報208を出力するものである。ゲイン調整部(AGC)453は、位相調整済I,Q信号203,204と、有無情報6とを入力し、振幅情報207を出力するものである。
【0086】
図6はクロック再生部451の内部構成を示すブロック図である。501はタイミング差分情報、502はタイミング調整情報である。タイミング差分情報出力部551は、位相調整済I,Q信号203,204(I,Qという)を入力し、I,Qを3サンプルずつ保持するものである。この3サンプルとは、ある時点、1サンプル前、2サンプル前のIQを意味し、それぞれIQに続く0,1,2を付ける。1シンボル毎に、(I0−I2)×I1+(Q0−Q2)×Q1を求め、この値をタイミング差分情報501として出力する。
【0087】
タイミング調整値出力部552は、タイミング差分情報501と有無情報6とを入力し、以下のようにタイミング調整情報502を作成する。有無情報6の値が0の時、タイミング調整情報502の値を例えばタイミング差分情報501×40の整数値とする。有無情報6の値が1〜5の時、タイミング調整情報502の値を例えばタイミング差分情報501×20の整数値とする。有無情報6の値が6〜10の時、タイミング調整情報502の値を例えばタイミング差分情報501×10の整数値とする。
【0088】
タイミング情報出力部553は、タイミング調整情報502を入力し、1シンボル前のタイミング情報4からタイミング調整情報502を差し引いたものを、今回のタイミング情報4として出力するものである。
【0089】
図7はキャリア再生部452の内部構成を示すブロック図である。601は位相差分情報、602は位相調整情報である。位相差分情報出力部651は、位相調整済I,Q信号203,204(I,Qと記す)を入力し、1シンボル毎にI^2−Q^2を求め、この値を位相差分情報601として出力するものである。
【0090】
位相調整値出力部652は、位相差分情報601と有無情報6とを入力し、以下のように位相調整情報602を出力するものである。有無情報6の値が0の時、位相調整情報602の値を例えば位相差分情報601×10の整数値とする。有無情報6の値が1〜5の時、位相調整情報602の値を例えば位相差分情報601×5の整数値とする。有無情報6の値が6〜10の時、位相調整情報602の値を例えば位相差分情報601×2の整数値とする。位相情報出力部652は、位相調整情報602を入力し、1シンボル前の位相情報208から位相調整情報602を差し引いたものを、今回の位相情報208として出力するものである。
【0091】
図8はゲイン調整部453の内部構成を示すブロック図である。701は振幅差分情報、702は振幅調整情報である。振幅差分情報出力部751は、位相調整済I,Q信号203,204(I,Qと記す)を入力し、1シンボル毎に、I^2+Q^2−2を求め、この値を振幅差分情報701として出力するものである。
【0092】
振幅調整値出力部752は、振幅差分情報701と有無情報6とを入力し、以下のように振幅調整情報702を出力するものである。有無情報6の値が0の時、振幅調整情報702の値を例えば振幅差分情報701の整数値とする。有無情報6の値が1〜5の時、振幅調整情報702の値を例えば振幅差分情報701の1/5の整数値とする。有無情報6の値が6〜10の時、振幅調整情報702の値を振幅差分情報701の1/10の整数値とする。振幅情報出力部753は、振幅調整情報702を入力し、1シンボル前の振幅情報207から振幅調整情報702を差し引いたものを、今回の振幅情報207として出力するものである。
【0093】
以上のように構成された実施の形態1におけるバ−スト復調装置について、その動作を説明する。ここでは、以下のように説明を2つに分けて行う。まず、1番目の説明(E−1−1)として、受信信号1から元信号5までの信号処理の流れに沿って動作の概略を述べ、2番目の説明(E−1−2)として、バ−スト引き込み動作に注目した動作説明をする。
【0094】
(E−1−1)
図2に示すサンプリング部51の内部で、以下の動作が行われる。ADコンバ−タ152は、受信信号1をADクロック101の立ち上がりエッジでサンプリングしてデジタル化し、デジタル受信信号102として出力する。デジタルダウンコンバ−タ153は、デジタル受信信号102の搬送波周波数をダウンコンバ−トしてベ−スバンドにまで落とす。またデジタルダウンコンバ−タ153は、デ−タの間引きを行って、1シンボル当り2サンプルのデ−タ、即ち2倍オ−バ−サンプリングされたデ−タに変換し、I成分、Q成分を、それぞれデジタルI受信信号103、デジタルQ受信信号104として出力する。
【0095】
フィルタ154,155は、ともにタイミング情報4を入力し、また、それぞれデジタルI受信信号103、デジタルQ受信信号104を入力し、フィルタリング処理し、それぞれデジタルI信号2、デジタルQ信号3として出力する。このフィルタリング処理は、波形成形とサンプルタイミング調整とを兼ねた動作であり、バ−スト引き込み動作の一つである「クロック再生」に関連する動作である。それについては2番目の動作説明(E−1−2)において詳しく説明する。
【0096】
図4に示すデジタル復調部52の内部で、以下の動作が行われる。乗算部251,252は、それぞれデジタルI,Q信号2,3に振幅情報207を乗算することで振幅調整を行って、それぞれ振幅調整済I,Q信号201,202として出力する。この振幅調整はバ−スト引き込み動作の一つである「ゲイン調整」に関連する動作である。それについては2番目の動作説明(E−1−2)において説明する。
【0097】
複素乗算部253は、振幅調整済I,Q信号201,202(Ia,Qa)のセットに位相情報208(θ)を複素乗算することによりIQ平面上で位相調整し、それぞれ位相調整済I,Q信号203,204として出力する。具体的には、Ia×cosθ+Qa×sinθなる位相調整済I信号203(以下、Iという)と、Qa×cosθ−Ia×sinθなる位相調整済Q信号204(以下、Qという)とを求める。例えば、
(Ia,Qa)=(1.37,0.37)、θ=−30
であれば、
I=1.37×cos(−30)+0.37×sin(−30)=1.0、
Q=0.37×cos(−30)−1.37×sin(−30)=1.0、
となる。
【0098】
この位相調整はバ−スト引き込み動作の一つである「キャリア再生」に関連する動作である。それについては2番目の動作説明(E−1−2)において説明する。信号点判定部254は、位相調整済I,Q信号203,204を入力し、IQ平面上の16QAM信号点と照らし合わせ、どの信号点のものであるかを判定し、0〜15の値で示し、この値を元信号点205として出力する。IQ平面上の16QAM信号点と0〜15の値の対応は図13に従う。例えば、位相調整済I,Q信号203,204がそれぞれ1,1ならば、元信号点205は3となる。また、位相調整済I,Q信号203,204がそれぞれ−1/3,−1ならば、元信号点205は9となる。ただし、このIQ平面上の16QAM信号点と0〜15の値の対応は、送信側と受信側で一致させていれば良いというだけのものであって、この図13に限らず、自由に設定することができる。パラレルシリアル変換部255は、元信号点205を入力し、シリアルに変換して、元信号5として出力する。以上のようにして、実施の形態1のバ−スト復調装置は、受信信号1を復調して元信号5を出力する。
【0099】
(E−1−2)
次に、バ−スト引き込み動作に注目した説明をする。2番目の説明における第1の説明(E−1−2−1)として、「クロック再生」に関する説明をする。
【0100】
(E−1−2−1)
図2に示すサンプリング部51において、フィルタ154,155は、ともにタイミング情報4を入力し、またそれぞれデジタルI,Q受信信号103,104を入力し、フィルタリング処理してそれぞれデジタルI,Q信号2,3を出力する。これらフィルタ154,155は、内部で保持するフィルタ係数の選び方をタイミング情報4によって切り替え、サンプルタイミング調整を行う。サンプルタイミング調整というものは、本来、デジタルダウンコンバ−タ153内部でのデ−タ間引き処理の間引くタイミングを変化させ、シンボルの変化点と次の変化点との中央のデ−タが出力されるよう調整するものである。2倍オ−バ−サンプリングの場合、中央のサンプルと、変化点のサンプルとが交互に出現することになる。ここでは、デジタルダウンコンバ−タ153内部でのデ−タ間引き処理の間引くタイミングを固定とし、フィルタ係数の選び方により同等の処理を行うものである。その仕組みについては前述の第1の従来例に詳しく説明されている。
【0101】
このサンプルタイミング調整は、バ−スト引き込み動作の一つである「クロック再生」に関連する動作であって、振幅変調、位相変調などの違いに関係なく、全てのデジタル変調された信号の復調において必要とされる。
【0102】
ここで図9、図10(a)〜(c)を用いてサンプルタイミング調整の説明を行う。図9はプリアンブルの信号点配置である。この図の右上の黒点と左下の黒点を1シンボル毎(2サンプル毎)に交互に移動するものとする。図10(a)はI方向またはQ方向の振幅の時間変動を示すタイミング図である。矢印は、サンプルタイミング調整が完了している時のデジタルI,Q信号2,3を示すものである。中央のサンプルと、変化点のサンプルとが交互に出現しており、1,0,−1,0…を繰り返していることがわかる。
【0103】
また、サンプルタイミング調整が完了していない様子を図10の(b)と(c)に示す。矢印の位置が正規の位置からずれ、振幅が1,0,−1,0…とならないことが判る。フィルタ154,155は、プリアンブルの終わりまでにこのようなサンプルタイミング調整を完了し、デ−タ領域の復調に備える。
【0104】
なお、フィルタ154,155はサンプルタイミングの調整を行うが、その方法は、内部で保持するフィルタ係数の選び方をタイミング情報4によって切り替え、フィルタリングすることである。例えば、タイミング情報4の値が1シンボル前と同じであれば、1シンボル前と同じフィルタ係数が選択され、同じサンプルタイミングとなる。
【0105】
また、タイミング情報4の値が1シンボル前より大きければ、サンプルタイミングを進める方向にフィルタ係数が選択され、小さければ遅らせる方向にフィルタ係数が選択される。変更の大きさは、タイミング情報4の値が1だけ変わるのに対して1度とする。
【0106】
タイミング情報4を作る作業は「クロック再生」と呼ばれ、デジタル復調部52内部のバ−スト引き込み部257において、図5に示すクロック再生部451が行う。
【0107】
そこで、図6に示すクロック再生部451の動作を説明する。タイミング差分部551は、ゼロクロス法に基づいて、クロック再生における理想状態と現状との差を求め、その値をタイミング差分情報501とする。ここでは、クロック再生における理想状態とは、(I0,Q0)及び(I2,Q2)のセットが前述の図9(a)における信号点を指し、(I1,Q1)のセットがシンボルの変化点である状態とする。この時、ノイズがなければ、I0,Q0の信号振幅がいずれも「1」、I1,Q1の信号振幅がいずれも「0」、I2,Q2の信号振幅がいずれも「−1」となる。もしくは、I0,Q0の信号振幅がいずれも「−1」、I1,Q1の信号振幅がいずれも「0」、I2,Q2の信号振幅がいずれも「1」となる。このことは、図10(a)に四角の囲みで示している。タイミング差分部551が(I0−I2)×I1+(Q0−Q2)×Q1の値を求め、この値をタイミング差分情報501とするのは、以上の内容を踏まえたものである。
【0108】
例えば、理想状態においては、前記タイミング差分情報501は、
(1+1)×0+(1+1)×0=0、
又は
(−1−1)×0+(−1−1)×0=0、
となって、理想状態との差が0であることを示す。
【0109】
また、理想状態よりクロック再生がπ/4だけ遅れている場合を図10(b)に示す。これは、I0,Q0の信号振幅がいずれも「0.7」、I1,Q1の信号振幅がいずれも「−0.7」、I2,Q2の信号振幅がいずれも「−0.7」となるか、もしくは、I0,Q0の信号振幅がいずれも「−0.7」、I1,Q1の信号振幅がいずれも「0.7」、I2,Q2の信号振幅がいずれも「0.7」となる場合であって、
(0.7+0.7)×(−0.7)+(0.7+0.7)×(−0.7)=−1.96、又は
(−0.7−0.7)×0.7+(−0.7−0.7)×0.7=−1.96、
となって、理想状態より遅延があることを示す。
【0110】
また、理想状態よりクロック再生がπ/4だけ進んでいる場合を図10(c)に示す。これは、I0,Q0の信号振幅がいずれも「−0.7」、I1,Q1の信号振幅がいずれも「−0.7」、I2,Q2の信号振幅がいずれも「0.7」となるか、もしくは、I0,Q0の信号振幅がいずれも「0.7」、I1,Q1の信号振幅がいずれも「0.7」、I2,Q2の信号振幅がいずれも「−0.7」となる場合であって、
(−0.7−0.7)×(−0.7)+(−0.7−0.7)×(−0.7)=1.96、又は
(0.7+0.7)×0.7+(0.7+0.7)×0.7=1.96、
となって、理想状態より進みがあることを示す。
【0111】
タイミング調整値出力部552は、有無情報6の値が0の時、即ち「信号無」の時(以下、状態1という)は、タイミング差分情報501を40倍した整数値をタイミング調整情報502とする。また、有無情報6の値が1〜5の時、即ち「信号有」となってから5シンボル目まで(以下、状態2という)は、タイミング差分情報501を20倍した整数値をタイミング調整情報502とする。また、有無情報6の値が6〜10の時、即ち「信号有」となってから6シンボル目から10シンボル目まで(以下、状態3という)は、タイミング差分情報501を10倍した整数値をタイミング調整情報502とする。
【0112】
そして、タイミング情報出力部553は、1シンボル前のタイミング情報4からタイミング調整情報502を差し引いたものを、今回のタイミング情報4として出力する。例えば、理想状態においては、タイミング差分情報501は0だから、タイミング調整情報502は0である。従って、タイミング情報4は1シンボル前と同じである。
【0113】
また、理想状態よりクロック再生がπ/4だけ遅れている場合は、タイミング差分情報501は−1.96だから、タイミング調整情報502は状態1では−78、状態2では−39、状態3では−20となる。従って、タイミング情報4は1シンボル前より、状態1では78、状態2では39、状態3では20だけ大きくなる。
【0114】
また、理想状態よりクロック再生がπ/4だけ進んでいる場合は、タイミング差分情報501は1.96だから、タイミング調整情報502は状態1では78、状態2では39、状態3では20である。従って、タイミング情報4は1シンボル前より、状態1では78、状態2では39、状態3では20だけ小さくなる。
【0115】
ここで、再びサンプリング部51におけるフィルタ154,155の動作説明に戻る。例えば、理想状態であれば、タイミング情報4の値は1シンボル前と同じであるから、1シンボル前と同じフィルタ係数が選択され、サンプルタイミングの変更はない。
【0116】
また、理想状態よりクロック再生がπ/4だけ遅れている場合は、タイミング情報4が1シンボル前より、状態1では78、状態2では39、状態3では20だけ大きい。この場合、状態1では78度、状態2では39度、状態3では20度だけサンプルタイミングを進める方向にフィルタ係数が選択される。
【0117】
また、理想状態よりクロック再生がπ/4だけ進んでいる場合は、タイミング情報4が1シンボル前より、状態1では78、状態2では39、状態3では20だけ小さいので、状態1では78度、状態2では39度、状態3では20度だけサンプルタイミングを遅らせる方向にフィルタ係数が選択される。
【0118】
以上のようにして、クロック再生部451は、有無情報6が「信号有」の時のみならず、「信号無」の時にもプリアンブルの特性に基づくクロック再生処理を行い、かつ、有無情報6が「信号無」であるか「信号有」であるかによって異なるクロック再生処理を行う。具体的には、「信号無」の時は引き込み速度を重視した引き込みの調整が粗く大きなクロック再生処理を行い、「信号有」の時には引き込み精度を重視した引き込みの調整が細かく小さなクロック再生処理を行う。
【0119】
2番目の説明における第2の説明(E−1−2−2)として、「ゲイン調整」に関する説明をする。
【0120】
(E−1−2−2)
図4に示すデジタル復調部52で以下の動作が行われる。乗算部251,252は、ともに振幅情報207を入力し、またデジタルI,Q信号2,3を入力し、それぞれの信号に振幅情報207を乗算することで振幅調整を行って、振幅調整済I,Q信号201,202を出力する。この振幅調整は、バ−スト引き込み動作の一つである「ゲイン調整」に関連する動作であって、特に、ASKやQAMなど振幅成分に情報を含むデジタル変調で必須である。PSKのように位相成分のみに情報を含み、振幅成分に情報を含まないデジタル変調では必ずしも必要ではない。
【0121】
ここで図11(a)〜(d)を用いて振幅調整の説明を行う。図11(a)は、振幅調整が完了したプリアンブルの信号点配置である。図11(b)は、振幅調整が完了していないプリアンブルの信号点配置である。図11(c)は、振幅調整が完了したデ−タ領域の信号点配置である。図11(d)は、振幅調整が完了していないデ−タ領域の信号点配置である。
【0122】
図11(b),(d)では、本来(1,1)なる信号点が、どちらかと言えば、(1/3,1/3)なる信号点の方に近くなってしまい、正しく元信号を導けない状態であることが判る。そこで、乗算部251,252は、プリアンブルの終わりまでに振幅調整を完了し、図11(a),(c)のような状態にしてデ−タ領域の復調に備える。
【0123】
なお、乗算部251,252は、振幅調整を行うとは言え、振幅情報207を乗算するだけの動作である。例えば、振幅情報207の値が1シンボル前と同じであれば、同じ値が乗算されるので、1シンボル前と同じ振幅調整となる。また、振幅情報207の値が1シンボル前より大きければ、1シンボル前より振幅を大きくする方向に振幅調整が変更され、小さければ小さくする方向に振幅調整が変更される。振幅情報207を作る作業は「ゲイン調整」と呼ばれ、バ−スト引き込み部257内部のゲイン調整部453が行う。
【0124】
そこで、ゲイン調整部453の内部での動作について図8を用いて説明する。振幅差分情報出力部751は、ゲイン調整における理想状態と現状との差を求め、差分値を振幅差分情報701とする。ここでは、ゲイン調整における理想状態とは、位相調整済I,Q信号203,204(I,Qと記す)のセットは、(1,1)又は(−1,−1)の場合であって、(I,Q)が前述の図11(a)における信号点を指している状態である。ただし、振幅が同じであれば、位相はずれていてもよい。つまり、(I,Q)=(cosA+sinA,cosA−sinA)であればよい(Aは任意の位相角)。振幅差分情報出力部751がI^2+Q^2−2を求め、振幅差分情報701とするのは、以上の内容を踏まえたからである。
【0125】
例えば、理想状態においては、前記位相差分情報701は、
(cosA+sinA)^2+(cosA−sinA)^2−2
=(1+2・cosA・sinA)+(1−2・cosA・sinA)−2=0、
となる。これは理想状態との差が0であることを示す。
【0126】
また、(I,Q)=(0.5,0.5)などゲインが半分の場合(以下、ゲイン1/2という)の状態を考える。図11(b)に示した状態においては、
(0.5×(cosA+sinA))^2+(0.5×(cosA−sinA))^2−2
=0.25(1+2・cosA・sinA)+0.25(1−2・cosA・sinA)−2
=−1.5、
となる。これは理想状態よりゲインが小さいことを示す。
【0127】
また、(I,Q)=(1.5,1.5)などゲインが1.5倍の場合(以下、ゲイン1.5倍状態という)においては、
(1.5×(cosA+sinA))^2+(1.5×(cosA−sinA))^2−2
=2.25(1+2・cosA・sinA)+2.25(1−2・cosA・sinA)−2
=2.5、
となる。これは理想状態よりゲインが大きいことを示す。
【0128】
振幅調整値出力部752は、有無情報6の値が0の時、即ち「信号無」の時(状態1)は、振幅差分情報701をそのまま振幅調整情報702とする。また、有無情報6の値が1〜5の時、即ち「信号有」となってから5シンボル目まで(状態2)は、振幅差分情報701を5分の1にし、この値を振幅調整情報702とする。また、有無情報6の値が6〜10の時、即ち「信号有」となってから6シンボル目から10シンボル目まで(状態3)は、振幅差分情報701を10分の1にし、この値を振幅調整情報702とする。
【0129】
そして、振幅情報出力部753は、1シンボル前の振幅情報207から振幅調整情報702を差し引いたものを今回の振幅情報207として出力する。例えば、理想状態においては、振幅差分情報701は0だから振幅調整情報702は0である。従って、振幅情報207は1シンボル前と同じである。
【0130】
また、ゲインが1/2の状態においては、振幅差分情報701は−1.5だから、振幅調整情報702は状態1では−1.5、状態2では−0.3、状態3では−0.15である。従って、振幅情報207は1シンボル前より、状態1では1.5、状態2では0.3、状態3では0.15だけそれぞれ大きくなる。
【0131】
また、ゲインが1.5倍の状態においては、振幅差分情報701は2.5だから、振幅調整情報702は状態1では2.5、状態2では0.5、状態3では0.25である。従って、振幅情報207は1シンボル前より、状態1では2.5、状態2では0.5、状態3では0.25だけ小さくなる。
【0132】
ここで再び乗算部251,252の動作説明に戻る。例えば、理想状態であれば、振幅情報207の値は1シンボル前と同じであるから、振幅調整の変更はない。即ちデジタルI,Q信号2,3に1シンボル前と同じ値が乗算される。
【0133】
また、ゲインが1/2の状態においては、振幅情報207の値が1シンボル前より大きいので、1シンボル前より振幅を大きくする方向に振幅調整が変更される。例えば、1シンボル前にデジタルI,Q信号2,3に0.5を乗じたものを振幅調整済I,Q信号201,202としていた場合、今回は、状態1では2.0、状態2では0.8、状態3では0.65を乗じることになる。これは、1シンボル前より、状態1では1.5、状態2では0.3、状態3では0.15だけ外方向にゲイン調整を変更したことを意味する。
【0134】
また、ゲインが1.5倍の状態においては、振幅情報207の値が1シンボル前より小さいので、1シンボル前より振幅を小さくする方向に振幅調整が変更される。例えば、1シンボル前にデジタルI,Q信号2,3に10を乗じたものを振幅調整済I,Q信号201,202としていた場合、今回は、状態1では7.5、状態2では9.5、状態3では9.75を乗じることになる。これは、1シンボル前より、状態1では2.5、状態2では0.5、状態3では0.25だけ中心方向にゲイン調整を変更したことを意味する。
【0135】
以上のようにして、ゲイン調整部453は、有無情報6が「信号有」の時のみならず、「信号無」の時にもプリアンブルの特性に基づくゲイン調整処理を行い、かつ、有無情報6が「信号無」であるか「信号有」であるかによって異なるゲイン調整処理を行う。具体的には、「信号無」の時は引き込み速度を重視した引き込みの調整が粗く大きなゲイン調整処理を行う。「信号有」の時には引き込み精度を重視した引き込みの調整が細かく小さなゲイン調整処理を行う。
【0136】
2番目の説明における第3の説明(E−1−2−3)として、「キャリア再生」に関する説明をする。
【0137】
(E−1−2−3)
図4に示す複素乗算部253は、振幅調整済I,Q信号201,202と位相情報208とを入力し、I,Qのセットに位相情報208を複素乗算することで、IQ平面上で位相調整を行い、それぞれ位相調整済I,Q信号203,204として出力する。この位相調整は、バ−スト引き込み動作の一つである「キャリア再生」に関連する動作であって、特にPSKやQAMなど位相成分に情報を含むデジタル変調で必須である。ASKのように振幅成分のみに情報を含み、位相成分に情報を含まないデジタル変調では必ずしも必要ではない。
【0138】
ここで図12(a)〜(d)を用いて位相調整の説明を行う。図12(a)は位相調整が完了したプリアンブルの信号点配置である。図12(b)は、位相調整が完了していないプリアンブルの信号点配置である。図12(c)は、位相調整が完了したデ−タ領域の信号点配置である。図12(d)は、位相調整が完了していないデ−タ領域の信号点配置である。
【0139】
図12(b),(d)では、本来(1,1)なる信号点が、どちらかと言えば(1/3,1)に近くなってしまい、正しく元信号を導けないであろうことが判る。そこで複素乗算部253は、プリアンブルの終わりまでに位相調整を完了し、図12(a),(c)のような状態にし、デ−タ領域の復調に備える。
【0140】
なお、複素乗算部253は、位相調整を行うとは言え、位相情報208を複素乗算する動作に留まる。例えば、位相情報208の値が1シンボル前と同じであれば、同じ値が複素乗算されるので、1シンボル前と同じ位相調整となる。また、位相情報208の値が1シンボル前より大きければ、1シンボル前より位相を時計回りにまわす方向に、小さければ反時計回りにまわす方向に位相調整が変更される。位相情報208を作る作業は「キャリア再生」と呼ばれ、バ−スト引き込み部257のキャリア再生部452が行う。
【0141】
そこで、キャリア再生部452内部での動作を、図7を用いて説明する。位相差分情報出力部651は、キャリア再生における理想状態と現状との差を求め、この差分値を位相差分情報601とする。ここでは、キャリア再生における理想状態とは、位相調整済I,Q信号203,204(I,Qと記す)のセット=(1,1)または(−1,−1)の場合であって、(I,Q)が前述の図12(a)における信号点を指している状態である。ただし、位相が同じであれば、振幅はずれていてもよい。つまり、(I,Q)=(B,B)または(−B,−B)であればよい(Bは任意の値)。位相差分情報出力部651がI^2−Q^2の値を求め、位相差分情報601とするのは以上の内容を踏まえたからである。例えば、理想状態においては、位相差分情報601はB^2−B^2=0となって、理想状態との差が0であることを示す。
【0142】
以下、説明を簡単にするため、振幅のずれは考慮に入れない状態、例えばB=1の場合を考える。理想状態よりキャリア再生がπ/8だけ反時計まわりにずれている場合(以下、−π/8状態と表す)を図12(b)に示した。これは、(I,Q)の信号振幅が(0.5,1.3)となるか、もしくは、(−0.5,−1.3)となる場合である。この場合
0.5^2−1.3^2=−1.44、
もしくは、
(−0.5)^2−(−1.3)^2=−1.44、
となって、理想状態より反時計回りの方向にずれがあることを示す。
【0143】
また、理想状態よりキャリア再生がπ/8だけ時計まわりにずれている場合(以下、+π/8状態と表す)を考える。これは、(I,Q)の信号振幅が(1.3,0.5)となるか、もしくは、(−1.3,−0.5)となる場合である。この場合、
1.3^2−0.5^2=1.44、
もしくは、
(−1.3)^2−(−0.5)^2=1.44、
となって、理想状態より時計回りの方向にずれがあることを示す。
【0144】
図7の位相調整部652は、有無情報6の値が0の時、即ち「信号無」の時(状態1)は、位相差分情報601を10倍した整数値を位相調整情報602とする。また、有無情報6の値が1〜5の時、即ち「信号有」となってから5シンボル目まで(状態2)は、位相差分情報601を5倍した整数値を位相調整情報602とする。また、有無情報6の値が6〜10の時、即ち「信号有」となってから6シンボル目から10シンボル目まで(状態3)は、位相差分情報601を2倍した整数値を位相調整情報602とする。
【0145】
そして、位相情報出力部653は、1シンボル前の位相情報208から位相調整情報602を差し引いたものを今回の位相情報208として出力する。例えば、理想状態において位相差分情報601は0だから、位相調整情報602は0である。従って、位相情報208は1シンボル前と同じである。
【0146】
また、−π/8状態においては、位相差分情報601は−1.44だから、位相調整情報602は状態1では−14、状態2では−7、状態3では−3である。従って位相情報208は1シンボル前より、状態1では14、状態2では7、状態3では3だけ大きくなる。
【0147】
また、+π/8状態においては、位相差分情報601は1.44だから、位相調整情報602は状態1では14、状態2では7、状態3では3である。従って位相情報208は1シンボル前より、状態1では14、状態2では7、状態3では3だけ小さくなる。
【0148】
ここで再び複素乗算部253の動作説明に戻る。例えば理想状態であれば、位相情報208の値は1シンボル前と同じであるから、位相調整の変更はない。即ち振幅調整済I,Q信号201,202に1シンボル前と同じ値が複素乗算される。
【0149】
また、−π/8状態においては、位相情報208の値が1シンボル前より大きいので、1シンボル前より位相を時計回りにずらす方向に位相調整が変更される。例えば、1シンボル前にデジタルI,Q信号2,3を時計回りに15度ずらしたものを位相調整済I,Q信号203,204としていた場合、今回は、状態1では29度、状態2では22度、状態3では18度、時計回りにずらすことになる。これは、1シンボル前に比べ、状態1では14度、状態2では7度、状態3では3度だけ時計回りに位相調整を変更したことを意味する。
【0150】
また、+π/8状態においては、位相情報208の値が1シンボル前より小さいので、1シンボル前より位相を反時計回りにずらす方向に位相調整が変更される。例えば、1シンボル前にデジタルI,Q信号2,3を時計回りに15度ずらしたものを位相調整済I,Q信号203,204としていた場合、今回は、状態1では1度、状態2では8度、状態3では12度、時計回りにずらすことになる。これは、1シンボル前に比べ、状態1では14度、状態2では7度、状態3では3度だけ反時計回りに位相調整を変更したことを意味する。
【0151】
以上のようにして、キャリア再生部452は、有無情報6が「信号有」の時のみならず、「信号無」の時にもプリアンブルの特性に基づくキャリア再生処理を行い、かつ有無情報6が「信号無」であるか「信号有」であるかによって、異なるキャリア再生処理を行う。具体的には「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなキャリア再生処理を行う。また「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなキャリア再生処理を行う。
【0152】
以上、2番目の説明における第1〜3の説明(E−1−2−3)〜(E−1−2−3)に示したように、バ−スト引き込み部257は、位相調整済I,Q信号203,204と有無情報6とを入力し、タイミング情報4と位相情報208と振幅情報207とを出力するとした。そしてバ−スト引き込み部257が、有無情報6が「信号有」の時のみならず、「信号無」の時にもプリアンブルの特性に基づくバ−スト引き込み動作を行い、かつ、有無情報6が「信号無」であるか「信号有」であるかによって異なるバ−スト引き込み動作を行うとした。具体的には、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うことを示した。
【0153】
ここで受信電力という観点から、図14(a),(b)を用いてバ−スト引き込みに関する説明を補足する。前述したように図14(a)は、送信電力が小さいか、または伝送路における減衰が大きいため、受信電力が小さい場合のバ−スト引き込みの様子を示す説明図である。図14(b)は、送信電力が大きいか、または伝送路における減衰が小さいため、受信電力が大きい場合のバ−スト引き込みの様子を示す説明図である。
【0154】
図14(a),(b)で、受信信号は電力0から徐々に立ち上がり、数シンボル進んで電力は大きくなる。そしてその途中で「信号有」と判定される。信号有無判定部53は、例えば電力が「b」になった時点で「信号有」と判定する。従来であれば、そこからバ−スト引き込みを開始するため、20シンボルのプリアンブルの全てをバ−スト引き込みに使用することはできない。例えば、図14(a)では受信電力が小さいため、最初の6シンボル程度が「信号無」とされ、バ−スト引き込みに利用できない。図14(b)では受信電力が大きいため、図14(a)よりは有利だが、それでも最初の3シンボル程度が「信号無」とされ、この部分はバ−スト引き込みにき利用できない。そのため従来の方法であればプリアンブル中にバ−スト引き込みを完了できない可能性があった。
【0155】
以上に述べた実施の形態1によるバ−スト復調装置では、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行うので、「信号有」と判定された時には既に、ある程度引き込みが進行している。その後、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うので、短いプリアンブルでバ−スト引き込みを完了できる。
【0156】
(実施の形態2)
次に本発明の実施の形態2におけるバ−スト復調装置について説明する。本実施の形態における各部の構成は、信号有無判定部を除いて実施の形態1と同一である。即ち図1〜図2、図4〜図14は、本発明のバ−スト復調装置の構成図又は動作説明図として用いることができる。
【0157】
図15は、本実施の形態における信号有無判定部53Aの内部構成を示すブロック図である。なお図3に示す信号有無判定部53と同一である構成要素には同一番号を付す。図15において、301は電力値であり、302は1シンボル前のシンボルに対する電力、即ち遅延電力である。
【0158】
電力測定部351はデジタルI,Q信号2,3を入力し、受信電力を測定して電力値301として出力する確実性情報出力部である。遅延部352は電力値301を入力し、1シンボル遅延させて遅延電力302として出力する増大量又は減少量出力部である。判定部353は電力値301と遅延電力302とを入力し、有無情報6を出力する有無情報出力部である。判定部353は「信号無」又は「信号有」に関わらず、即ち、有無情報6の値に関わらず、電力値301が遅延電力302よりa以上大きければ(aは定数)、今まさに「信号無」から「信号有」に変化しようとしていると判定し、有無情報6を一旦0とし、次のシンボルからインクリメントする。また判定部353は、電力値301の値が0であれば「信号無」として有無情報6を0とし、次に「信号有」に変化しようとしていると判定されるまでは、有無情報6を0として出し続ける。
【0159】
このように構成された実施の形態2におけるバ−スト復調装置の動作説明を行う。ここでは、有無情報6を「信号無」から「信号有」へどのようにして切り替えるかという点に注目した説明をする。
【0160】
信号有無判定部53Aは、受信電力を測定し、受信電力の増大量から有無情報6を作成する。「信号無」又は「信号有」に関わらず、即ち、有無情報6の値に関わらず、受信電力の増大量が閾値「a」より大きければ、今まさに「信号無」から「信号有」に変化しようとしていると判定し、有無情報6を一旦0とし、次のシンボルからインクリメントする。
【0161】
バ−スト引き込み部257は、有無情報6が0以外の時(「信号有」を示す)の時のみならず、0の時(「信号無」を示す)にもプリアンブルの特性に基づくバ−スト引き込み動作を行い、かつ、有無情報6が「信号無」であるか「信号有」であるかによっても異なるバ−スト引き込み動作を行う。具体的には、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行う。
【0162】
ここで、実施の形態1における信号有無判定部53は、電力の増大量ではなく、電力そのものの値から有無情報6を求めていた。しかし、本実施の形態のように、電力の変化量を用いることで、もう一つの特徴が得られる。
【0163】
その特徴について図16(a),(b)を用いて説明する。図16(a)は、送信電力が小さいか、または伝送路における減衰が大きいため、受信電力が小さい場合のバ−スト引き込みの様子を示す説明図である。図16(b)は、送信電力が大きいか、または伝送路における減衰が小さいため、受信電力が大きい場合のバ−スト引き込みの様子を示す説明図である。図16(a),(b)で、受信信号は電力0から徐々に立ち上がり、数シンボル進んで完全に立ち上がる。
【0164】
実施の形態1においては、図14に示したとおり、受信信号は電力0から徐々に立ち上がる途中で「信号有」と判定された。図14(a)と(b)とで「信号有」と判定される個所が異なった。この方法には、以下のような問題が予想される。
【0165】
通常、バ−スト引き込みにおいては、プリアンブルのどのタイミングであるかによってきめ細かに処理方法を変える。実施の形態1及び本実施の形態においても、クロック再生、キャリア再生、ゲイン調整において、例えば最初の5シンボルは荒い制御を行い、その後細かい制御を行うこととしている。
【0166】
しかしながら、この実施の形態1では受信電力の違いにより、プリアンブルのどのタイミングでバ−ストありと判定されるかが異なる可能性がある。このため、キャリア再生やクロック再生におけるきめ細かな処理方法に影響を与えないとは言えない。実施の形態1の方法は従来例と比較すると、大幅なバ−スト引き込みが実現されるものの、処理時間に更なる改良方法が残されていると考えられる。
【0167】
本実施の形態においては、受信電力そのものではなく、1シンボル間の受信電力の増大量から有無情報6を作成する。「信号無」、「信号有」に関わらず、即ち有無情報6の値に関わらず、受信電力の増大量が閾値「a」より大きければ、今まさに「信号無」から「信号有」に変化しようとしていると判定し、有無情報6の値を一旦0とし、次のシンボルからインクリメントする。
【0168】
従って、本実施の形態においては、プリアンブルが完全に立ち上がる付近まで「信号無」と判定されるため、有無情報6の値は、正確にプリアンブルが完全に立ち上がったところからインクリメントされるので、キャリア再生やクロック再生におけるきめ細かな処理方法に悪影響を与えることなく、且つ処理に時間がかからないといえる。
【0169】
以上のように本実施の形態によれば、送信電力の大きさや伝送路における減衰の大きさの違いにより生じる受信電力の違いに関わらず、プリアンブルの一定のタイミングでバ−ストありと判定され、きめ細かなバ−スト引き込みを行うことができる。
【0170】
以上のように、タイミング差分情報501、位相差分情報601、振幅差分情報701は、理想状態においては0、そうでない場合は0より大きな値を持つ。この性質を利用して、信号有無判定部53Aを構成してもよい。即ち、タイミング差分情報501、または位相差分情報601、または振幅差分情報701の変化量を測定し、その変化量がしきい値を超えれば、「信号無」から「信号有」に変化しようとしているところであると判定してもよい。
【0171】
なお、本実施の形態では、受信電力が0の時「信号無」とするよう信号有無判定部53Aを構成したが、そうでなくともよい。その機構を取り除いても、信号有無判定部53Aの内部の判定部353は、電力値301が遅延電力302よりa以上大きければ(aは定数)、今まさに「信号無」から「信号有」に変化しようとしているところであると判定し、有無情報6の値を一旦0とし、次のシンボルからインクリメントするよう構成してもよい。この場合、プリアンブルが立ち上がるところで必ず一旦「信号無」となるので、最初に説明した本実施の形態の機能と同様の動作を行うことになる。
【0172】
なお、実施の形態1及び2では、「信号無」の時は、常に引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行ったが、そうでなくともよい。例えば、受信電力が0であれば、バ−スト引き込み動作を止めても動かしても影響は全くない。また、受信電力がノイズレベル以下であれば、バ−スト引き込み動作を行ってもほとんど効果がない。以上のことを考慮に入れて、受信電力がノイズレベル以下の間バ−スト引き込み動作を止め、消費電力低減を図ってもよい。
【0173】
なお、実施の形態1及び2では、「信号無」の間(以下、第1期間という)と、「信号有」と判定された後1〜5シンボルの間(以下、第2期間という)と、「信号有」と判定された後6〜10シンボルの間(以下、第3期間という)の3段階に分け、第1期間から第3期間へ進むに従って、徐々に引き込み精度を重視した引き込みの調整が細かく、小さなバ−スト引き込み動作を行うものとしたが、そうでなくともよい。例えば、「信号無」と「信号有」との2段階に別けてもよい。そうすることにより、より小さな回路規模で実現することができる。また、「信号有」と判定された後1シンボル毎に徐々に引き込み精度を重視した引き込みの調整が細かく、小さなバ−スト引き込み動作を行うものとしてもよい。そうすることにより、より引き込み速度を速くすることができる。
【0174】
なお、実施の形態1及び2では、「信号有」と判定された後10シンボルの間だけ、引き込み精度を重視した引き込みの調整が細かく、小さなバ−スト引き込み動作を行うものとしたが、そうでなくともよい。「信号有」と判定された後10シンボルを超えた後も、以下の方法でバ−スト引き込み動作を行ってもよい。
【0175】
クロック再生に関しては、実施の形態1及び2で示したプリアンブルの特性に基づく引き込み動作を、デ−タ領域でも引き続き行うことができる。プリアンブルにおいては、(I0,Q0)及び(I2,Q2)のセットが前述の図9における信号点を指し、(I1,Q1)のセットがシンボルの変化点である理想状態において、I0,Q0の信号振幅がいずれも「1」、I1,Q1の信号振幅がいずれも「0」、I2,Q2の信号振幅がいずれも「−1」となるか、もしくは、I0,Q0の信号振幅がいずれも「−1」、I1,Q1の信号振幅がいずれも「0」、I2,Q2の信号振幅がいずれも「1」となる。このことから、(I0−I2)×I1+(Q0−Q2)×Q1=0となることを利用した。
【0176】
デ−タ領域においても、デ−タがランダムであれば、平均的には0となる。また、(I0,Q0)及び(I2,Q2)のセットがIQ平面上で点対称となる場合のみ、引き込み動作を行えば、理想状態において、(I0,Q0)=(A,B)、(I1,Q1)=(0,0)、(I2,Q2)=(−A,−B)に近い値となり(A,Bは任意)、(I0−I2)×I1+(Q0−Q2)×Q1の値が0に近い値となることから、より精度を大きくすることができる。
【0177】
キャリア再生及びゲイン調整に関しては、元信号点205のIQ平面上の振幅及び位相と、位相調整済I,Q信号203,204の振幅及び位相とを比較することで、位相情報208及び振幅情報207を求めることができ、引き込み動作をデ−タ領域でも引き続き行うことができる。
【0178】
なお、実施の形態1では、クロック再生部451が、位相調整済I,Q信号203,204からタイミング差分情報501を作り、これに乗数をかけたものを1シンボル前のタイミング情報4から差し引いて、今回のタイミング情報4とした。この際に、タイミング調整部552が、タイミング差分情報501に乗算処理を行い、タイミング調整情報502とした。そのとき、有無情報6の値に従って、その乗算する値を40、20などと切り替えたが、この値は他の値でもよい。例えば、40の代わりに35でもよい。
【0179】
本発明は、何等このような詳細に捕らわれるものではなく、有無情報6の値に従ってこの乗算する値を切り替えることで、クロック再生部451が有無情報6の値によって異なるクロック再生処理を行うものとする。具体的には、値が小さい時は、引き込み速度を重視した引き込みの調整が粗く大きなクロック再生処理を行い、値が大きい時は、引き込み精度を重視した引き込みの調整が細かく小さなクロック再生処理を行う。
【0180】
また、実施の形態1では、キャリア再生部452が、位相調整済I,Q信号203,204から位相差分情報601を作り、これに乗数をかけたものを1シンボル前の位相情報208から差し引いて、今回の位相情報208とした。この際に、位相調整部652が位相差分情報601に乗算処理を行い、位相調整情報602とした。そしてその時の有無情報6の値に従って、その乗算する値を10、5などと切り替えたが、この値は他の値でもよい。例えば、10の代わりに15でもよい。
【0181】
本発明は、何等このような詳細にとらわれるものではなく、有無情報6の値に従ってこの乗算する値を切り替えることで、キャリア再生部452が有無情報の値によって異なるキャリア再生処理を行うものとする。具体的には、値が小さい時は、引き込み速度を重視した引き込みの調整が粗く大きなキャリア再生処理を行い、値が大きい時は、引き込み精度を重視した引き込みの調整が細かく小さなキャリア再生処理を行う。
【0182】
また、実施の形態1では、ゲイン調整部453が、位相調整済I,Q信号203,204から振幅差分情報701を作り、これに乗数をかけたものを1シンボル前の振幅情報207から差し引いて今回の記振幅情報207とした。この際に、振幅調整部752が振幅差分情報701に乗算処理を行い、振幅調整情報702とする。その時、有無情報6の値に従って、その乗算する値を1、1/5などと切り替えたが、この値は他の値でもよい。例えば、1の代わりに1/2でもよい。
【0183】
本発明は、何等このような詳細にとらわれるものではなく、有無情報6の値に従ってこの乗算する値を切り替えることで、ゲイン調整部453が有無情報6の値によって異なるゲイン調整処理を行うものとする。具体的には、値が小さい時は、引き込み速度を重視した引き込みの調整が粗く大きなゲイン調整処理を行い、値が大きい時は、引き込み精度を重視した引き込みの調整が細かく小さなゲイン調整処理を行う。
【0184】
以上のようにして、従来はバ−ストありと判定されてから行っていたバ−スト引き込みを、本発明においてはそれ以前から行い、有無情報6の値に従ってバ−スト引き込み方法を切り替えることによって、バ−スト引き込みを高速に完了することができる。
【0185】
また、従来は有無情報6の値が正確にプリアンブルのどのタイミングであるかを表していなかったため、有無情報6の値に従って乗算する値を切り替えるという機構がうまく機能していなかった。しかし、本発明においては、有無情報6の値が正確にプリアンブルのどのタイミングであるかを表すため、有無情報6の値に従って乗算する値を切り替えるという機構がうまく機能し、バ−スト引き込みを高速に完了することができる。
【0186】
なお、実施の形態1及び2では、クロック再生部451は、位相調整済I,Q信号203,204からタイミング差分情報501を作り、これに乗数をかけたものを1シンボル前のタイミング情報4から差し引いて、今回のタイミング情報4とした。そして、この乗数を「信号無」の時は大きく、「信号有」の時は小さくすることで、「信号無」の時は引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行った。
【0187】
しかしそうでなくてもよい。例えば、一覧表を設けて「信号無」の時はタイミング差分情報501から直接値を導き、1シンボル前のタイミング情報4から差し引いてもよい。そのようにしても、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うことができる。
【0188】
また、クロック再生部451は、位相調整済I,Q信号203,204を用いてタイミング差分情報501を作ったが、そうでなくてもよい。例えば、振幅調整済I,Q信号201,202は、位相調整済I,Q信号203,204と比べてIQ平面上における位相が異なるだけなので、これを用いてタイミング差分情報501を作ることもできる。また、デジタルI,Q信号2,3は、振幅調整済I,Q信号201,202と比べて振幅が異なるだけなので、これを用いてもよい。
【0189】
また、クロック再生部451は、デジタル受信信号102として、1シンボル当り2サンプルのデ−タ、即ち2倍オ−バ−サンプリングされたデ−タを扱ったが、そうでなくともよい。このようにした理由は、ゼロクロス法に基づいて、クロック再生における理想状態と現状との差を求め、タイミング差分情報501とするためであった。例えば、4倍オ−バ−サンプリングされたデ−タは、2倍オ−バ−サンプリングされたデ−タを含むものであるから、4倍オ−バ−サンプリングされたデ−タを用いてもゼロクロス法を用いることが可能である。
【0190】
なお、実施の形態1、2では、キャリア再生部452は位相調整済I,Q信号203,204から位相差分情報601を作り、これに乗数をかけたものを1シンボル前の位相情報208から差し引いて今回の位相情報208とした。そして、この乗数を「信号無」の時は大きく、「信号有」の時は小さくすることで、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行った。
【0191】
しかしそうでなくてもよい。例えば一覧表を設けて、「信号無」の時は位相差分情報601から直接値を導き、1シンボル前の位相情報208から差し引いてもよい。そのようにしても「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うことができる。
【0192】
また、キャリア再生部452は、位相調整済I,Q信号203,204を用いて位相差分情報601を作ったが、そうでなくてもよい。一般に、細かい制御にはフィ−ドバックがかかる構成が向いているが、大まかな制御にはその必要がない。このため、引き込みの調整が粗く、大きなバ−スト引き込み動作を行う「信号無」の時は、振幅調整済I,Q信号201,202を用いて位相差分情報601を作ることもできる。また、デジタルI,Q信号2,3は、振幅調整済I,Q信号201,202と比べて振幅が異なるだけなので、これを用いてもよい。
【0193】
なお、実施の形態1、2では、ゲイン調整部453は位相調整済I,Q信号203,204から振幅差分情報701を作り、これに乗数をかけたものを1シンボル前の振幅情報207から差し引いて今回の振幅情報207とした。そして、この乗数を「信号無」の時大きく、「信号有」の時小さくすることで、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行った。
【0194】
しかしそうでなくてもよい。例えば一覧表を設けて「信号無」の時は振幅差分情報701から直接値を導き、1シンボル前の振幅情報207から差し引いてもよい。そのようにしても、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行い、「信号有」の時には、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うことができる。
【0195】
また、ゲイン調整部453は、位相調整済I,Q信号203,204を用いて振幅差分情報701を作ったが、そうでなくてもよい。一般に、細かい制御にはフィ−ドバックがかかる構成が向いているが、大まかな制御にはその必要がない。このため、引き込みの調整が粗く、大きなバ−スト引き込み動作を行う「信号無」の時は、振幅調整済I,Q信号201,202を用いて位相差分情報601を作ることもできる。また、デジタルI,Q信号2,3は、振幅調整済I,Q信号201,202と比べて振幅が異なるだけなので、これを用いてもよい。
【0196】
(実施の形態3)
実施の形態1,2では、ハ−ドウェアのみで処理を実行する構成で説明したが、そうでなくともよい。例えば、ハ−ドウェアとしてDSPを用いて、処理の大部分をソフトウェアで実行することも可能である。各部を、それぞれ「ステップ」に置き換えることで、同様の動作を行うソフトウェアを実現できる。
【0197】
図17は、本発明の実施の形態3におけるバ−スト復調装置の構成を示すブロック図である。このバ−スト復調装置は図1及び図2に示した実施の形態1、2において、図2内の全ブロックと、図1のフィルタ154,155部分とをDSPに置き換えたものである。同一である構成要素には同一番号を付けて詳細な説明を省略する。
【0198】
DSP851は、デジタルI,Q受信信号103,104を入力し、元信号5を出力するものである。図18はDSP851の信号処理図である。901(FIL)はフィルタステップである。902(SIG)は信号有無判定ステップである。903(GAIN)はゲイン調整乗算ステップである。904(CAR1)は複素乗算ステップである。905(CLK)はクロック再生ステップである。906(CAR2)はキャリア再生ステップである。907(POINT)は信号点判定ステップである。908(P/S)はパラレルシリアル変換ステップである。
【0199】
フィルタステップ901は、図2のフィルタ154,155と同様の処理を行う。信号有無判定ステップ902は、図1の信号有無判定部53と同様の処理を行う。ゲイン調整乗算ステップ903は、図3のゲイン調整部453及び図4の乗算部251,252と同様の処理を行う。
【0200】
複素乗算ステップ904は、図4の複素乗算部253と同様の処理を行う。クロック再生ステップ905は、図5のクロック再生部451と同様の処理を行う。キャリア再生ステップ906は、図5のキャリア再生部452と同様の処理を行う。信号点判定ステップ907は、図4の信号点判定部254と同様の処理を行う。パラレルシリアル変換ステップ908は、図4のパラレルシリアル変換部255と同様の処理を行う。以上のように構成された実施の形態3のバ−スト復号装置は、実施の形態1、2のバ−スト復号部と同様の動作を行う。
【0201】
本発明は、以上のバ−スト復号方法を記載したプログラム、及びプログラムを記録するプログラム媒体を含むものとする。
【0202】
なお、以上の実施の形態1〜3では、バ−スト引き込み動作として、クロック再生と、キャリア再生と、ゲイン調整の3つについて言及したが、そうでなくともよい。例えば、PSKのように位相成分のみに情報を含み、振幅成分に情報を含まないデジタル変調ではゲイン調整は不要である。また、ASKのように振幅成分のみに情報を含み、位相成分に情報を含まないデジタル変調ではキャリア再生は不要である。また、信号のオン、オフに情報を乗せるような変調方式では、キャリア再生、ゲイン調整ともに行わず、クロック再生だけを行ってもよい。また、上記3つ以外のバ−スト引き込み動作が必要な場合もある。例えば、デジタルダウンコンバ−タ153が扱う搬送波周波数と、実際に送信される際の搬送波周波数との間に大きな誤差がある時は、「周波数調整」という作業が必要である。
【0203】
本発明のバ−スト引き込み方法は、このような細かな違いにとらわれるものではなく、プリアンブルと、それに続くデ−タ領域とからなる受信信号を入力し、プリアンブルの終わりまでにバ−スト引き込みを完了し、デ−タ領域の復調を行って元信号を出力するバ−スト復調装置で用いられるバ−スト復調方法とする。そして受信信号に基づいて作られるデジタル信号を入力し、受信信号が変調された信号を含んでいるかどうか判定し、含んでいれば「信号有」、含んでいなければ「信号無」を示す有無情報を出力する信号有無判定ステップを有する。また、デジタル信号に基づく信号(補正デジタル信号)と有無情報とを入力し、引き込み実行用変数を出力するバ−スト引き込みステップを有する。更にデジタル信号を入力し、元信号を出力する復調ステップとを有する。このようなバ−スト復調方法において、バ−スト引き込みステップは、プリアンブルの特性に基づいて、補正デジタル信号の状態がある理想状態になるよう、引き込み実行用変数を求めることでバ−スト引き込み動作を行うものとする。また有無情報が「信号有」の時のみならず、「信号無」の時にも引き込み実行用変数を求めるものであって、かつ、有無情報が「信号無」であるか「信号有」であるかによって異なる求め方を採用することを特徴とする。このことにより、「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行うので、「信号有」と判定された時には既にある程度引き込みが進行している。その後、引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うので、短いプリアンブルでバ−スト引き込みを完了できる。
【0204】
また、このバ−スト引き込み方法におけるバ−スト引き込みステップは、デジタル信号の状態と理想状態との差に基づく差分情報を求める差分ステップと、差分情報から調整値を求める調整ステップと、調整値と前回求めた引き込み実行用変数とから新たな引き込み実行用変数を求める引き込み実行ステップとを具備している。また調整ステップは、同じ値の差分情報に対し、調整値を有無情報が「信号無」の時大きく、有無情報が「信号有」の時小さくすることを特徴とすることにより実現できる。
【0205】
また、有無情報は「信号無」の時値が0で、「信号有」の時「信号有」になってからの時間を示す信号であって、信号有無判定ステップは、デジタル信号を入力し、受信信号が変調された信号を含んでいる確からしさを測定し、確実性情報として出力する確実性ステップと、確実性情報を入力し、その増大量を測定し、確実性増大量として出力する増大量ステップと、確実性増大量を入力し、有無情報を出力する有無ステップとを具備する。そして有無ステップは、確実性増大量がaより大きくなれば(aは定数)、今まさに「信号無」から「信号有」に切り替わろうとしているところであると判定する。そして一旦有無情報をクリアして0からカウントを開始することを特徴とする。バ−スト引き込みステップの調整ステップは、同じ値の差分情報に対し、調整値を有無情報の値が小さい時大きく、有無情報の値が大きい時小さくすることを特徴とする。こうすることにより、プリアンブルが完全に立ち上がる付近まで「信号無」と判定されるため、有無情報6の値は、正確にプリアンブルが完全に立ち上がったところからインクリメントされる。このため、キャリア再生やクロック再生におけるきめ細かな処理方法に悪影響を与えることなく、更に処理時間を短縮することができる。
【0206】
なお、本発明のバ−スト引き込み方法を用いれば、プリアンブルの長さを30シンボル未満としても、良好にバ−スト引き込みを行うことが可能となる。またプリアンブルの長さを30シンボル未満とすることで、スル−プットの向上を計ることができる。
【0207】
第6の従来例で示したように、プリアンブルとデ−タ領域とで1シンボルの時間幅を変えれば、本発明のバ−スト引き込み部を用いずともプリアンブルの長さを30シンボル未満とすることができるが、その方法では、時間幅の異なるシンボルを扱う必要があるため、送信側、復調側ともに回路が複雑になる。本発明によれば、プリアンブルとデ−タ領域とで1シンボルの時間幅を同じにしても、プリアンブルの長さを30シンボル未満とすることができる。
【0208】
本発明は、バ−スト引き込み部へ30シンボル未満のプリアンブルで、かつ、その1シンボルの時間幅が、前記デ−タ領域の1シンボルの時間幅と同じであるバ−ストを送信するバ−スト送信装置を含むものとする。
【0209】
なお、本発明のバ−スト引き込み方法は、プリアンブルとデ−タ領域とで1シンボルの時間幅を変えていても実行可能であり、本発明を用いることでスル−プットの向上を計ることができる。従って、本発明のバ−スト引き込み方法及びバ−スト引き込み部に関しては、プリアンブルとデ−タ領域とで1シンボルの時間幅が同じである場合に限定されるものではない。
【0210】
【発明の効果】
以上説明したように本発明によれば、プリアンブルと、それに続くデ−タ領域とからなる受信信号を入力してデータを復号する場合、バ−スト引き込みにおいて、プリアンブルの特性に基づいて補正デジタル信号の状態がある理想状態になるよう、引き込み実行用変数を求める。そしてプリアンブルから得られる有無情報が「信号無」であるか「信号有」であるかによって異なる求め方を採用している。このような制御により「信号無」の時は、引き込み速度を重視した引き込みの調整が粗く大きなバ−スト引き込み動作を行うことができる。また「信号有」と判定された時には、既にある程度引き込みが進行しているので、その後は引き込み精度を重視した引き込みの調整が細かく小さなバ−スト引き込み動作を行うので、短いプリアンブルでバ−スト引き込みを完了することができる。
【0211】
また確実性増大量が閾値より大きくなれば、「信号無」から「信号有」に切り替わる時点と判定し、一旦有無情報をクリアして0からカウントを開始する。そしてバ−スト引き込みの調整ステップは、同じ値の差分情報に対して調整値を、有無情報の値が小さい時は大きく、有無情報の値が大きい時は小さくする。このことにより、キャリア再生やクロック再生におけるきめ細かな処理方法に悪影響を与えることなく、バ−スト引き込みの処理時間を大幅に短縮することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1及び2におけるバ−スト復調装置の全体構成を示すブロック図である。
【図2】実施の形態1及び2におけるサンプリング部の構成図である。
【図3】実施の形態1における信号有無判定部の構成図である。
【図4】実施の形態1及び2におけるデジタル復調部の構成図である。
【図5】実施の形態1及び2におけるバ−スト引き込み部の構成図である。
【図6】実施の形態1及び2におけるクロック再生部の構成図である。
【図7】実施の形態1及び2におけるキャリア再生部の構成図である。
【図8】実施の形態1及び2におけるゲイン調整部の構成図である。
【図9】プリアンブルの信号点配置図である。
【図10】サンプルタイミング調整の説明図である。
【図11】振幅調整の説明図である。
【図12】位相調整の説明図である。
【図13】16QAMの信号点の配置図である。
【図14】受信電力を検出する場合のバ−スト引き込みの説明図である。
【図15】本発明の実施の形態2における信号有無判定部の構成図である。
【図16】受信電力の増加分を検出する場合のバ−スト引き込みの説明図である。
【図17】本発明の実施の形態3におけるバ−スト復調装置の全体構成を示すブロック図である。
【図18】本発明の実施の形態3におけるバ−スト復調方法のプログラム図である。
【図19】特許文献1に記載れたバ−ストモ−ド復調装置の全体構成図である。
【図20】特許文献1に記載されたクロック位相推定回路の構成図である。
【図21】第3の従来例におけるバ−スト信号復調装置の全体構成図である。
【図22】特許文献3に記載されたバ−スト検出手段の構成図である。
【符号の説明】
1 受信信号
2 デジタルI信号
3 デジタルQ信号
4 タイミング情報
5 元信号
6 有無情報
51 サンプリング部
52 デジタル復調部
53 信号有無判定部
101 ADクロック
102 デジタル受信信号
103 デジタルI信号
104 デジタルQ信号
151 ADクロック部
152 ADコンバ−タ
153 デジタルダウンコンバ−タ
154,155 フィルタ
201 振幅調整済I信号
202 振幅調整済Q信号
203 位相調整済I信号(補正デジタル信号)
204 位相調整済Q信号(補正デジタル信号)
205 元信号点
207 振幅情報
208 位相情報
251,252 乗算部
253 複素乗算部
254 信号点判定部
255 パラレルシリアル変換部
257 バ−スト引き込み部
301 電力値
302 遅延電力
351 電力測定部
352 遅延部
353,354 判定部
451 クロック再生部
452 キャリア再生部
453 ゲイン調整部
501 タイミング差分情報
502 タイミング調整情報
551 タイミング差分情報出力部
552 タイミング調整値出力部
553 タイミング情報出力部
601 位相差分情報
602 位相調整情報
651 位相差分情報出力部
652 位相調整値出力部
653 位相情報情報出力部
701 振幅差分情報
702 振幅調整情報
751 振幅差分情報出力部
752 振幅調整値出力部
753 振幅情報出力部

Claims (28)

  1. プリアンブルと、それに続くデ−タ領域とからなる受信信号を入力し、プリアンブルの終わりまでにバ−スト引き込みを完了し、デ−タ領域の復調を行って元信号を出力するバ−スト復調方法であって、
    前記受信信号に基づいて作られるデジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かを判定し、含んでいれば信号有、含んでいなければ信号無を示す有無情報を出力する信号有無判定ステップと、
    前記デジタル信号に対して補正を施した信号を補正デジタル信号とするとき、前記デジタル信号または前記補正デジタル信号と前記有無情報とを入力し、引き込み実行用変数を出力するバ−スト引き込みステップと、
    前記補正デジタル信号を入力し、その信号点を判別することにより元信号を出力するデジタル復調ステップと、を具備し、
    前記バ−スト引き込みステップは、
    前記プリアンブルの特性に基づいて、前記補正デジタル信号の状態が理想状態になるよう前記引き込み実行用変数を求めることでバ−スト引き込み動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記引き込み実行用変数を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とするバ−スト復調方法。
  2. 前記バ−スト引き込みステップは、
    前記補正デジタル信号の状態と前記理想状態との差に基づく差分情報を求める差分情報出力ステップと、
    前記差分情報から前記引き込み実行用変数の調整値を求める調整値出力ステップと、
    前記調整値と前回求めた前記引き込み実行用変数とから新たな前記引き込み実行用変数を求める引き込み実行変数出力ステップと、を具備し、
    前記調整値出力ステップは、同じ値の前記差分情報に対して前記調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項1記載のバ−スト復調方法。
  3. 前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定ステップは、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、
    前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力ステップと、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、
    前記有無情報出力ステップは、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報の値をクリアして0からその値を計数するものであり、
    前記バ−スト引き込みステップの調整値出力ステップは、
    同じ値の前記差分情報に対して前記調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項2記載のバ−スト復調方法。
  4. 前記確実性情報出力ステップは、前記受信信号の電力を測定して前記確実性情報とすることを特徴とする請求項3記載のバ−スト復調方法。
  5. 前記デジタル信号は、タイミング情報に基づいて前記受信信号をサンプリングして作成されたものであり、
    前記バ−スト引き込みステップは、前記デジタル信号と前記有無情報とを入力し、前記タイミング情報を出力するクロック再生ステップを具備するものとし、
    前記クロック再生ステップは、
    前記プリアンブルの特性に基づいて、前記デジタル信号の状態が理想状態になるよう前記タイミング情報を求めることでクロック再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記タイミング情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする請求項1記載のバ−スト復調方法。
  6. 前記デジタル信号は、前記受信信号を2倍オ−バ−サンプリングして作成されたものであって、
    前記クロック再生ステップは、
    前記デジタル信号を3サンプル保持し、そのなかの1サンプル目と3サンプル目の一方の信号振幅がA、他方が−Aとなって2サンプル目が0という理想状態になるよう、ゼロクロス法に基づいて前記タイミング情報を求めるものであって、
    前記タイミング情報によって得られた前記デジタル信号の状態と前記理想状態との差に基づくタイミング差分情報を求めるタイミング差分情報出力ステップと、
    前記タイミング差分情報からタイミング調整値を求めるタイミング調整値出力ステップと、
    前記タイミング調整値と前回求めた前記タイミング情報とから新たな前記タイミング情報を求めるタイミング情報出力ステップと、を具備し、
    前記タイミング調整値出力ステップは、
    同じ値の前記タイミング差分情報に対して前記タイミング調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項5記載のバ−スト復調方法。
  7. 前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定ステップは、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、
    前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力ステップと、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、
    前記有無情報出力ステップは、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、
    前記クロック再生ステップのタイミング調整値出力ステップは、
    同じ値の前記タイミング差分情報に対し前記タイミング調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項6記載のバ−スト復調方法。
  8. 前記デジタル復調ステップは、
    前記デジタル信号と前記引き込み実行用変数の1つである位相情報とを入力し、前記デジタル信号に前記位相情報を複素乗算することで位相調整を行って、調整済の前記補正デジタル信号として出力する複素乗算ステップと、
    前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力ステップと、を具備し、
    前記バ−スト引き込みステップは、前記デジタル信号または調整済の前記補正デジタル信号と、前記有無情報とを入力し、前記位相情報を出力するキャリア再生ステップを具備し、
    前記キャリア再生ステップは、
    前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記位相情報を求めることでキャリア再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記位相情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする請求項1記載のバ−スト復調方法。
  9. 前記キャリア再生ステップは、
    前記デジタル信号または調整済の前記補正デジタル信号を入力し、前記補正デジタル信号のIQ平面上の位相が1シンボル毎に交互に「0」、「π」の理想状態になるよう前記位相情報を求めるものであって、
    前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく位相差分情報を求める位相差分情報出力ステップと、
    前記位相差分情報から位相調整値を求める位相調整値出力ステップと、
    前記位相調整値と前回求めた前記位相情報とから新たな前記位相情報を求める位相情報出力ステップと、を具備し、
    前記位相調整値出力ステップは、同じ値の前記位相差分情報に対して前記位相調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項8記載のバ−スト復調方法。
  10. 前記有無情報は、信号無の時は値が0で、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定ステップは、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、
    前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力ステップと、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、
    前記有無情報出力ステップは、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、
    前記キャリア再生ステップの位相調整値出力ステップは、
    同じ値の前記位相差分情報に対し前記位相調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項9記載のバ−スト復調方法。
  11. 前記デジタル復調ステップは、
    前記デジタル信号と前記引き込み実行用変数の1つである振幅情報とを入力し、前記デジタル信号に前記振幅情報を乗算することで振幅調整を行って、調整済の前記補正デジタル信号として出力する乗算ステップと、
    前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力ステップと、を具備し、
    前記バ−スト引き込みステップは、前記デジタル信号または前記調整済の補正デジタル信号と、前記有無情報とを入力し、前記振幅情報を出力するゲイン調整ステップを具備し、
    前記ゲイン調整ステップは、
    前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記振幅情報を求めることでゲイン調整動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記振幅情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする請求項1記載のバ−スト復調方法。
  12. 前記ゲイン調整ステップは、
    前記デジタル信号または調整済の補正デジタル信号を入力し、前記調整済の補正デジタル信号のI,Qそれぞれの振幅が基準値をとる理想状態になるよう前記振幅情報を求めるものであって、
    前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく振幅差分情報を求める振幅差分情報出力ステップと、
    前記振幅差分情報から振幅調整値を求める振幅調整値出力ステップと、
    前記振幅調整値と前回求めた前記振幅情報とから新たな前記振幅情報を求める振幅情報出力ステップと、を具備し、
    前記振幅調整値出力ステップは、同じ値の前記振幅差分情報に対して前記振幅調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項11記載のバ−スト復調方法。
  13. 前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定ステップは、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力ステップと、
    前記確実性情報を入力し、その増大量を測定し、確実性増大量として出力する増大量出力ステップと、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、
    前記有無情報出力ステップは、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、
    前記ゲイン調整ステップの振幅調整値出力ステップは、
    同じ値の前記振幅差分情報に対し前記振幅調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項12記載のバ−スト復調方法。
  14. 請求項1〜13記載のバ−スト復調方法のうちいずれかのプログラムを格納したプログラム媒体。
  15. プリアンブルと、それに続くデ−タ領域とからなる受信信号を入力し、プリアンブルの終わりまでにバ−スト引き込みを完了し、デ−タ領域の復調を行って元信号を出力するバ−スト復調装置であって、
    前記受信信号に基づいて作られるデジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否か判定し、含んでいれば信号有、含んでいなければ信号無を示す有無情報を出力する信号有無判定部と、
    前記デジタル信号に対して補正を施した信号を補正デジタル信号とするとき、前記デジタル信号または前記補正デジタル信号と前記有無情報とを入力し、引き込み実行用変数を出力するバ−スト引き込み部と、
    前記補正デジタル信号を入力し、その信号点を判別することにより元信号を出力するデジタル復調部と、を具備し、
    前記バ−スト引き込み部は、
    前記プリアンブルの特性に基づいて、前記補正デジタル信号の状態が理想状態になるよう前記引き込み実行用変数を求めることでバ−スト引き込み動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記引き込み実行用変数を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とするバ−スト復調装置。
  16. 前記バ−スト引き込み部は、
    前記補正デジタル信号の状態と前記理想状態との差に基づく差分情報を求める差分部と、
    前記差分情報から前記引き込み実行用変数の調整値を求める調整部と、
    前記調整値と前回求めた前記引き込み実行用変数とから新たな前記引き込み実行用変数を求める引き込み実行変数出力部と、を具備し、
    前記調整部は、同じ値の前記差分情報に対して前記調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項15記載のバ−スト復調装置。
  17. 前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定部は、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、
    前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力部と、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力部と、を具備し、
    前記有無情報出力部は、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報の値をクリアして0からその値を計数するものであり、
    前記バ−スト引き込みステップの調整部は、
    同じ値の前記差分情報に対して前記調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項16記載のバ−スト復調装置。
  18. 前記確実性情報出力部は、前記受信信号の電力を測定して前記確実性情報とすることを特徴とする請求項17記載のバ−スト復調装置。
  19. 前記デジタル信号は、タイミング情報に基づいて前記受信信号をサンプリングして作成されたものであり、
    前記バ−スト引き込み部は、前記デジタル信号と前記有無情報とを入力し、前記タイミング情報を出力するクロック再生部を具備するものとし、
    前記クロック再生部は、
    前記プリアンブルの特性に基づいて、前記デジタル信号の状態が理想状態になるよう前記タイミング情報を求めることでクロック再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記タイミング情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする請求項15記載のバ−スト復調装置。
  20. 前記デジタル信号は、前記受信信号を2倍オ−バ−サンプリングして作成されたものであって、
    前記クロック再生部は、
    前記デジタル信号を3サンプル保持し、そのなかの1サンプル目と3サンプル目の一方の信号振幅がA、他方が−Aとなって2サンプル目が0という理想状態になるよう、ゼロクロス法に基づいて前記タイミング情報を求めるものであって、
    前記タイミング情報によって得られた前記デジタル信号の状態と前記理想状態との差に基づくタイミング差分情報を求めるタイミング差分部と、
    前記タイミング差分情報からタイミング調整値を求めるタイミング調整部と、前記タイミング調整値と前回求めた前記タイミング情報とから新たな前記タイミング情報を求めるタイミング情報出力部と、を具備し、
    前記タイミング調整部は、
    同じ値の前記タイミング差分情報に対して前記タイミング調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項19記載のバ−スト復調装置。
  21. 前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定部は、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、
    前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力部と、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力ステップと、を具備し、
    前記有無情報出力部は、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、
    前記クロック再生部内のタイミング調整部は、
    同じ値の前記タイミング差分情報に対し前記タイミング調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項20記載のバ−スト復調装置。
  22. 前記デジタル復調部は、
    前記デジタル信号と前記引き込み実行用変数の1つである位相情報とを入力し、前記デジタル信号に前記位相情報を複素乗算することで位相調整を行って、調整済の前記補正デジタル信号として出力する複素乗算部と、
    前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力部と、を具備し、
    前記バ−スト引き込み部は、前記デジタル信号または調整済の前記補正デジタル信号と、前記有無情報とを入力し、前記位相情報を出力するキャリア再生部を具備し、
    前記キャリア再生部は、
    前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記位相情報を求めることでキャリア再生動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記位相情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする請求項15記載のバ−スト復調装置。
  23. 前記キャリア再生部は、
    前記デジタル信号または調整済の前記補正デジタル信号を入力し、前記補正デジタル信号のIQ平面上の位相が1シンボル毎に交互に「0」、「π」の理想状態になるよう前記位相情報を求めるものであって、
    前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく位相差分情報を求める位相差分部と、
    前記位相差分情報から位相調整値を求める位相調整部と、
    前記位相調整値と前回求めた前記位相情報とから新たな前記位相情報を求める位相情報部と、を具備し、
    前記位相調整部は、同じ値の前記位相差分情報に対して前記位相調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項22記載のバ−スト復調装置。
  24. 前記有無情報は、信号無の時は値が0で、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定部は、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、
    前記確実性情報を入力してその増大量を測定し、確実性増大量として出力する増大量出力部と、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力部と、を具備し、
    前記有無情報出力部は、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、
    前記キャリア再生部内の位相調整部は、
    同じ値の前記位相差分情報に対し前記位相調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項23記載のバ−スト復調装置。
  25. 前記デジタル復調部は、
    前記デジタル信号と前記引き込み実行用変数の1つである振幅情報とを入力し、前記デジタル信号に前記振幅情報を乗算することで振幅調整を行って、調整済の前記補正デジタル信号として出力する乗算部と、
    前記調整済の補正デジタル信号を入力し、前記元信号を出力する元信号出力部と、を具備し、
    前記バ−スト引き込み部は、前記デジタル信号または前記調整済の補正デジタル信号と、前記有無情報とを入力し、前記振幅情報を出力するゲイン調整部を具備し、
    前記ゲイン調整部は、
    前記プリアンブルの特性に基づいて、前記調整済の補正デジタル信号の状態が理想状態になるよう前記振幅情報を求めることでゲイン調整動作を行い、また、前記有無情報が信号有の時のみならず、信号無の時にも前記振幅情報を求めるものであって、かつ前記有無情報が信号無であるか信号有であるかによって異なる求め方を用いることを特徴とする請求項15記載のバ−スト復調装置。
  26. 前記ゲイン調整部は、
    前記デジタル信号または調整済の補正デジタル信号を入力し、前記調整済の補正デジタル信号のI,Qそれぞれの振幅が基準値をとる理想状態になるよう前記振幅情報を求めるものであって、
    前記デジタル信号または調整済の前記補正デジタル信号の状態と前記理想状態との差に基づく振幅差分情報を求める振幅差分部と、
    前記振幅差分情報から振幅調整値を求める振幅調整部と、
    前記振幅調整値と前回求めた前記振幅情報とから新たな前記振幅情報を求める振幅情報出力部と、を具備し、
    前記振幅調整値出力部は、同じ値の前記振幅差分情報に対して前記振幅調整値を、前記有無情報が信号無の時は大きく、前記有無情報が信号有の時は小さくすることを特徴とする請求項25記載のバ−スト復調装置。
  27. 前記有無情報は、信号無の時は値が0であり、信号有の時は信号有になってからの経過時間を示す情報であって、
    前記信号有無判定部は、
    前記デジタル信号を入力し、前記受信信号が変調された信号を含んでいるか否かの確からしさを測定し、確実性情報として出力する確実性情報出力部と、
    前記確実性情報を入力し、その増大量を測定し、確実性増大量として出力する増大量出力部と、
    前記確実性増大量を入力し、前記有無情報を出力する有無情報出力部と、を具備し、
    前記有無情報出力部は、
    前記確実性増大量が閾値aより大きくなれば、信号無から信号有に切り替わる時点と判定し、一旦前記有無情報をクリアして0からその値を計数するものであり、
    前記ゲイン調整部内の振幅調整値出力部は、
    同じ値の前記振幅差分情報に対し前記振幅調整値を、前記有無情報の値が小さい時は大きく、前記有無情報の値が大きい時は小さくすることを特徴とする請求項26記載のバ−スト復調装置。
  28. 請求項1〜13のいずれか1項記載のバースト復調方法を用いたバースト復調装置、又は請求項15〜27のいずれか1項記載のバースト復調装置に対して信号を送信するバースト送信装置であって、
    プリアンブルとそれに続くデータ領域とからなるバースト信号を送信し、
    前記プリアンブルは30シンボル未満であり、その1シンボルの時間幅は前記データ領域の1シンボルの時間幅と同じであることを特徴とするバースト送信装置。
JP2003098325A 2003-04-01 2003-04-01 バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置 Expired - Fee Related JP4130148B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098325A JP4130148B2 (ja) 2003-04-01 2003-04-01 バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098325A JP4130148B2 (ja) 2003-04-01 2003-04-01 バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置

Publications (2)

Publication Number Publication Date
JP2004304741A JP2004304741A (ja) 2004-10-28
JP4130148B2 true JP4130148B2 (ja) 2008-08-06

Family

ID=33409882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098325A Expired - Fee Related JP4130148B2 (ja) 2003-04-01 2003-04-01 バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置

Country Status (1)

Country Link
JP (1) JP4130148B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063728A1 (ja) * 2014-10-21 2016-04-28 ソニー株式会社 受信装置、および、受信装置の受信方法、並びにプログラム
WO2016063729A1 (ja) * 2014-10-21 2016-04-28 ソニー株式会社 受信装置、および、受信装置の受信方法、並びにプログラム

Also Published As

Publication number Publication date
JP2004304741A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
JP3803705B2 (ja) 周波数およびタイミング制御を有するデジタル復調器
KR101906149B1 (ko) 개선된 심볼 타이밍 오프셋 보상을 사용하는 블루투스 수신 방법 및 장치
JP4366808B2 (ja) タイミングエラー検出回路および復調回路とその方法
JP2634319B2 (ja) コヒーレント無線受信機の周波数制御方法及びその方法を実施する装置
JP2008530951A (ja) 予め符号化された部分応答信号用の復調器および受信器
US6377634B1 (en) Circuit for reproducing bit timing and method of reproducing bit timing
JPH06334567A (ja) 改善されたタイミング手段を有する受信機からなる送信方式
US20100308879A1 (en) Phase synchronization device and phase synchronization method
JP2008154285A (ja) シンボルタイミング検出装置及び無線端末装置
JP3085236B2 (ja) バースト信号復調器
JP4130148B2 (ja) バ−スト復調方法及びバ−スト復調装置、バ−スト復調方法を記録したプログラム媒体、バースト送信装置
JPWO2006046632A1 (ja) ディジタル無線受信装置
US7130360B2 (en) Apparatus and method for receiving digital signal
EP0789958A1 (en) Method of, and apparatus for, symbol timing recovery
JP2001510661A (ja) 位相及び振幅用に別々のブランチを備える復調
JP4130149B2 (ja) バ−スト復調方法及びバ−スト復調装置、並びにバ−スト復調方法を格納したプログラム媒体及びバースト送信装置
JP4268180B2 (ja) シンボルタイミング検出装置及び無線端末装置
JP3592489B2 (ja) クロックタイミング再生方法および回路
JP2004064469A (ja) タイミング補正回路及び受信装置
CN110535620B (zh) 一种基于判决反馈的信号检测与同步方法
US7623598B2 (en) Demodulation of a frequency-modulated received signal by means of a Viterbi algorithm
JP3968546B2 (ja) 情報処理装置および方法、並びに提供媒体
JP4127672B2 (ja) デジタル復調器及びデジタル復調方法
JP2002084267A (ja) タイミング検出装置およびタイミング検出方法
JP2739318B2 (ja) 最尤受信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees