JP4125555B2 - デバイスの動きを決定する方法及び装置 - Google Patents

デバイスの動きを決定する方法及び装置 Download PDF

Info

Publication number
JP4125555B2
JP4125555B2 JP2002190422A JP2002190422A JP4125555B2 JP 4125555 B2 JP4125555 B2 JP 4125555B2 JP 2002190422 A JP2002190422 A JP 2002190422A JP 2002190422 A JP2002190422 A JP 2002190422A JP 4125555 B2 JP4125555 B2 JP 4125555B2
Authority
JP
Japan
Prior art keywords
sgn
sin
acceleration change
vertical acceleration
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190422A
Other languages
English (en)
Other versions
JP2003050140A (ja
JP2003050140A5 (ja
Inventor
マンテュヤルビ ヤニ
コルピパー パヌ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of JP2003050140A publication Critical patent/JP2003050140A/ja
Publication of JP2003050140A5 publication Critical patent/JP2003050140A5/ja
Application granted granted Critical
Publication of JP4125555B2 publication Critical patent/JP4125555B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/08Means for compensating acceleration forces due to movement of instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デバイスの動きを決定するための解決法に関する。
【0002】
【従来の技術】
携帯式電子デバイスは、増々多様化する目的のために使用されている。これらのデバイスの典型的な例が移動電話及びコンピュータである。デバイスは、ユーザーについての大量のデータを搬送し、ユーザーにさまざまな情報チャネルに対するアクセスを提供する。しかしながら、現在のところ、デバイスの動きに付随する状態又は状態の変化は、交渉、旅行又はレジャー活動といったような仕事や余暇に関連するユーザーの活動に左右されるユーザーの活動コンテキストを認識できるようにするものの、より広い範囲に利用されてこなかった。
【0003】
移動デバイスの動きを測定するか又はユーザーの活動コンテキストを決定するための1つの方法は、1つ又は複数の加速度計を用いて1つ又は複数の方向でデバイスの加速度を測定することにある。異なる次元に対して平行な加速度は、活動コンテキストに応じて変動し、それは各活動コンテキストに特徴的なものである。従って、原則的に、異なる次元に対して平行な加速度又は動きのデータに基づいて活動コンテキストを識別することが可能である。例えば、ユーザーが歩いているか、走っているか、階段を登っているかなどを識別しようと試みることが可能である。しかしながら、これに関与する問題点は、デバイスの位置が変化したときに加速度計の信号が変化し、従って、加速度が実際に作用を及ぼすデバイスの構造的な方向を知ることが不可能であることにある。例えば、デバイスの構造に対し平行な軸との関係における重力の方向を測定することは不可能であり、従って、デバイスが、おおよそであれ正しい位置にあるか又は逆転しているかを見極めるために測定値を用いることができない。
【0004】
この問題を解決するための一つの試みは、つねに同じ位置でユーザーにデバイスを取付けることにあった。しかしながら、これは、問題を解決せず、デバイスの使用を複雑にした。その上、ユーザーの姿勢の変化がデバイスの位置に影響を及ぼし、かくして加速度の方向を変更し、このため、デバイスとの関係における重力の方向を認識することがさらにむずかしくなる。
【0005】
【発明が解決しようとする課題】
本発明の目的は、デバイスの位置とは無関係で重力と平行な動的加速度成分の決定を行う改良型の方法及び該方法を実施する装置を提供することにある。
【0006】
【課題を解決するための手段】
これは、3次元測定値を提供するため、デバイスの加速度が少なくとも3つの異なる方向で測定される、デバイスの動きを決定するための方法によって達成される。該方法は、デバイスに対して既知の向きにある3つの直交軸に対して平行な加速度信号を生成する段階、異なる軸に対して平行な加速度信号の平均信号を生成する段階、該平均信号を用いて重力方向との関係におけるデバイスの傾斜角度を規定する段階、該平均信号を異なる軸に対し平行なそのそれぞれの加速度信号から除去することによって加速度変化信号を生成する段階、デバイスの傾斜角度及び加速度変化信号を用いてデバイスの加速度変化の一成分を形成する段階であって、該成分が重力に対し平行でかつデバイスの位置とは独立したものである段階、をも有して成る。
【0007】
本発明はまた、3次元測定値を提供するべく少なくとも3つの異なる方向でデバイスの加速度を測定するように配置されている、デバイスの動きを決定するための装置にも関する。該装置は、デバイスに対して既知の向きにある3つの直交軸の方向で加速度信号を測定し、異なる軸に対して平行な加速度信号の平均信号を生成し、重力方向との関係におけるデバイスの傾斜角度を形成するために該平均信号を用い、該平均信号を異なる軸に対し平行なそのそれぞれの加速度信号から除去することによって加速度変化信号を生成し、デバイスの傾斜角度及び加速度変化信号を用いてデバイスの加速度変化の一成分を形成し、該成分は重力に対し平行でかつデバイスの位置とは独立したものである、ように配置されている。
【0008】
本発明の好ましい実施形態は、従属クレーム中で開示されている。
【0009】
本発明の基底にある考え方は、3つの次元に対し平行なデバイス加速度を測定し、重力方向との関係におけるデバイスの傾斜角度を決定するために緩慢に変化する加速度を使用することにある。合計加速度から緩慢に変化する加速度を除去することにより、急速に変化する加速度が得られる。デバイスの急速に変化する加速度及び傾斜角度は、重力に対して平行な急速加速度変化を決定するために用いられる。
【0010】
本発明の方法及び装置は、いくつかの利点を提供する。これらは、活動コンテキストを識別しなければならない場合に重要である、重力に対し平行な加速度及び加速度変化をデバイスの位置とは無関係に決定することを可能にする。
【0011】
【発明の実施の形態】
記述された解決法は、移動電話及びコンピュータといったような携帯式電子ユーザーデバイスにおいて応用可能であるが、これに制限されるわけではない。
【0012】
まず第1に、携帯式ユーザーデバイスの活動コンテキストに関連するいくつかの態様を検討したい。ユーザーが持ち運んでいる場合、携帯式デバイスの位置は通常、それが置かれている状況、時間及び場所に応じて変動する(移動電話は、ポケットの中で逆さまになっているかもしれず、又、水平位置でベルトに取付けられていることもあり、又手で持っている場合にはわずかに傾斜していることもある)。デバイスの位置の変化は、それ自体、デバイスの異なる次元の方向で測定される信号の変化をひき起こし、かくしてデバイスの位置及びその活動コンテキストをきわめて認識し難くする。実際には、活動コンテキスト認識のための最も重要な前提条件は、デバイスの位置が少なくとも垂直方向で決定されるということにある。さらに、位置は水平方向でも同様に決定されるべきである。
【0013】
記述された解決法を詳細に見ていく前に、この記述された解決法の1つの応用が、無線システムに接続された携帯式デバイスでのその使用にあることから、図1を参考にした無線システム構造の一例を検討したい。無線システムは、例えば、GSM又はUMTS無線システムであり得、それは、陸上無線アクセス網2及びユーザー機器UE4を有して成る。ユーザー機器4は、その無線端末がネットワーク2に無線リンクをセットアップするために使用される移動機器ME6である機能ユニットと、ユーザーアイデンティティデータを含むスマートカードであり、かつ標準的に識別アルゴリズムを実行し暗号化パラメータ及び加入者データを記憶するユーザー特定的モジュール、すなわち加入者アイデンティティモジュールSIM8と、という2つの部分を有して成る。
【0014】
ネットワーク2は、基地局コントローラ12及び1つ又は複数の基地局14を含む無線ネットワークサブシステムRNS10で構成されている。各々の基地局コントローラ12は、それに接続された基地局を通して無線資源を制御する。
【0015】
図1の例示はかなり一般的なものであるため、図2に示されているセルラ無線システムのより詳細な例によって明瞭とされる。図2は最も基本的なブロックのみを含んでいるが、当業者であれば、従来のセルラー無線ネットワークもまたここでより詳細に記述する必要のない、その他の機能及び構造をも含むということは明白であるということを見い出すことだろう。また、図2に示された構造が単に一例を提供しているにすぎないということも留意しておくべきである。
【0016】
かくして、セルラー無線ネットワークは標準的に、固定されたネットワーク基盤構造、すなわちネットワーク部分200及び、固定的に取付けられた車両搭載型又は手持ち式端末装置といったユーザー機器202を含む。該ネットワーク部分200は、基地局204を含んでいる。複数の基地局204がそれ自体基地局と通信する無線ネットワークコントローラ206によって制御されている。基地局204は、トランシーバ208及びマルチプレクサ212を含む。
【0017】
基地局204はさらに、トランシーバ208及びマルチプレクサ212の作動を制御する制御ユニット210をも含んでいる。マルチプレクサは、1つの伝送リンク214上の複数のトランシーバ208によって使用されるトラヒック及び制御チャネルを配置するために用いられる。
【0018】
基地局204のトランシーバ208から、ユーザー機器202に双方向無線リンク216を提供するアンテナユニット218に対する接続が存在する。双方向無線リンク216上で転送されるフレームの構造は、各々のシステムについて別々に定義される。本発明の好ましい実施形態においては、1つの信号は少なくとも一部分が、3つ以上の送信アンテナ又は複数の送信アンテナによって提供される3つ以上のビームによって伝送される。
【0019】
無線ネットワークコントローラ206は、グループ交換フィールド220及び制御ユニット222を含む。グループ交換フィールド220は、音声及びデータを交換するため及びシグナリング回路を接続するために用いられる。基地局204及び無線ネットワークコントローラ206で形成された無線ネットワークサブシステム224はさらにトランスコーダ226を含む。トランスコーダ226は通常できるかぎり移動サービス交換センタ228の近くに位置設定されているが、これは、このとき音声が、伝送容量を節約するべくセルラ無線ネットワークの形式で無線ネットワークコントローラ206とトランスコーダ226との間で転送可能となるからである。
【0020】
トランスコーダ226は、例えば固定ネットワークのフォーマットからセルラーネットワーク内の他のフォーマットへ、及びその逆といったように、公衆交換電話ネットワークと無線電話ネットワークとの間で用いられる異なるデジタル音声符号化フォーマットを変換してそれらを互いに互換性あるものとする。制御ユニット222は、呼出し制御、移動性の管理、統計的データの収集及びシグナリングを実施する。
【0021】
図2はさらに、移動サービス交換センタ228及び、ここでは公衆交換電話ネットワーク232に対するものである移動通信システムの外部接続を担うゲートウェイ移動サービス交換センタ230を示している。
【0022】
図3を参照しながら、次にGSM又はUMTS無線システム内の携帯式ユーザー端末の一例について検討していこう。該端末は、端末のソフトウェアルーチンが中で実行されるプロセッサ300を有して成る。プロセッサ300は、例えばデジタル信号処理を担い、その他のブロックのオペレーションを制御する。端末表示装置及びそのキーパッド302は、ユーザーインタフェースとして役立ち、プロセッサ300によって処理されるテキスト及び画像といったような視覚的情報をユーザーに表示するために用いられ、ユーザーインタフェースはまた、ユーザーがかかる情報を生成することをも可能にする。プロセッサ300はまた、SIMモジュール304のチェックをも実施する。加速度計較正用に必要とされるデータといったようなプロセッサ300が必要とする情報は、メモリー306内に記憶されている。加速度計ブロック308は、少なくとも3つの直交方向の加速度を測定する1つ又は複数の加速度計を含んで成る。1つの加速度計のみの場合でさえ、それには、3次元加速度測定を可能にする素子が具備されていなければならない。加速度計によって提供された加速度信号が、実際の信号処理を実施するプロセッサ300に供給される。コーデックブロック310が、プロセッサ300から来る信号をスピーカ312に適したフォーマットへと変換し、またコーデックブロック310は、マイクロホン314から来る信号をプロセッサ300に適したフォーマットに変換する。RFブロック316はそれ自体、プロセッサ300から受信した送信されるべきデジタル信号をアナログ無線周波数信号に変換して、それをアンテナ318を通して電磁放射の形で送信できるようにする。これに対応して、アンテナ318により受信された無線周波数信号は、より低い周波数へと変換され、信号がプロセッサ300に供給される前にRFブロック316の中でデジタル化される。
【0023】
加速度は、その加速度に対応する電気信号をその出力ポールに対して生成する1つ又は複数の加速度計を用いて測定される。加速度計は、例えば電気機械式であってよい。その動作は、例えばその中の電荷分布の変化が結晶に作用する力に比例する圧電結晶に基づくものであってよい。
【0024】
次に、図4及び5を参照しながら、開示された解決法を検討していこう。図4は、記述された解決法を例示するブロック図であり、図5は、該方法の流れ図である。加速度計ブロック400は、3つの互いに直交する次元の方向での加速度を測定する少なくとも3つの加速度計402,404及び406を含んで成る。加速度計の数は3つ以上であってよい。不可欠なのは、加速度計の測定信号を、ブロック500に記されているように3つの次元全てと平行な加速度信号を形成するために使用できるということである。この構造的な解決法は、当業者にとっては明白であり、従ってこれについてここでさらに詳述することはしない。測定された次元に対して平行な軸は、X,Y及びZという文字で記され、これらは好ましくは、デバイスの構造的な方向Xd,Yd及びZdと同一であるか、又は少なくともそれらの方向に対し既知の関係にある。換言すると、軸X,Y及びZは、測定軸の方向を表わし、デバイスの構造的な軸の方向Xd,Yd,及びZdはデバイスのカバー又はフレームなどの正面又は側面と平行である(デバイスは通常、矩形プリズムに類似している)。デバイスの構造的な軸の方向及び測定方向は互いに予め定められた関係にあり、測定方向とデバイスの構造的な次元との間の依存性は、θをデバイスの構造的な方向Xdと重力方向gとの間の角度とし、ψをデバイスの構造的な方向Ydと重力方向gとの間の角度とし、γをデバイスの構造的な方向Zdと重力方向gとの間の角度とし、傾斜角度θ,ψ,γがθ,ψ,γ ∈[−π/2,π/2]内にあるものとして、θ=θ1+△θ,ψ=ψ1+△ψ及びγ=γ1+△γという式で表わされる。
【0025】
測定すべき方向は好ましくは、電子デバイスの構造的な方向と関係するように、例えば、電子デバイスがユーザーに向かって表示装置と垂直な位置にあるとき(ユーザーは文字をその正しい位置で見る)、ユーザーに対し直接、Zd軸が上向きにポイントし、Yd軸が水平方向に左から右へポイントし、Xd軸が水平方向に前から後ろへとポイントするような形で選択される。測定された次元の方向はかくして、好ましくは、デバイスの構造的な方向と同じ、すなわちX=Xd,Y=Yd及びZ=Zdである。
【0026】
異なる次元に対して平行なアナログ測定信号は、A/D変換器408内でデジタル化される。デジタル加速度信号のろ波は、ブロック410及び502で示されている。これは、静的なものからダイナミックな動的信号を分離するのに適したHanning ウインドウといったような有限長と適切な周波数コンテンツのウインドウ412を有限長の信号サンプルシーケンスに乗じることによって、時間平面上で実施される。さらに、多重ウインドウ処理済み信号の平均値は、ブロック414で計算される。実際の平均値を計算する代りに、平均値計算、低域フィルタ処理又はその他の既知の方法を用いて、平均化を実施することができる。平均値に基づいて、静的加速度信号が形成され、これはほとんど絶対に変化しないか又は緩慢な変化に対してのみ反応する。緩慢な現象をいかに考慮に入れるべきかは、例えば、平均値を計算するのに使用されるウインドウを用いて、自由に選択できる。平均値は、ブロック412内で、それ自体既知の例えばHanningウインドウとして形成されうる所望の時間ウインドウを用いて計算される。異なる次元に平行な加速度のためのHanningウインドウは、以下の数学的形態をとる。
【0027】
【数1】
Figure 0004125555
【0028】
なお式中、xi,yi及びziは、異なる次元に対して平行な加速度サンプルであり、nはウインドウ内のサンプル数であり、xi w、yi w、及びzi wは、修正済みサンプルである。それ自体既知のその他の考えられるウインドウとしては、Hamming, Kaiser, Bessel 及び三角ウインドウがある。平均値は、ブロック414において、例えば式(2)を適用することによって計算可能である。
【0029】
【数2】
Figure 0004125555
【0030】
【外3】
Figure 0004125555
【0031】
なお式中、(イ),(ロ)及び(ハ)は平均値を表わす。図6は、異なる加速度信号x,y及びz及び平均化された加速度信号(イ),(ロ)及び(ハ)を示す。図6に示されているように、平均化された信号(イ),(ロ)及び(ハ)は、或る意味で、測定された加速度信号の静的DC信号である。ウインドウ処理されたサンプルxi w、yi w、及びzi wから平均値(イ),(ロ)及び(ハ)を形成することは必要でなく、平均値(イ),(ロ)及び(ハ)を直接サンプルxi,yi及びziから計算することも可能である。
【0032】
平均化された信号はさらに、スケーリングブロック416まで伝播し、ここで、ろ波された信号の各レベルは、正弦関数偏角(arguments)として使用できるような形で互いに正比例するように配置される。平均化された信号は、一部のケースでは、正弦関数偏角として直接適用可能であることから、開示されている解決法では、スケーリングブロック416は絶対に必要なわけではない。スケーリングは例えば、加速度計の動作にひずみがあった場合それを矯正するために使用される。メーカーは通常、納入する加速度計の中にスケーリングブロック内で実施されるべきオペレーションを包含させている。かくしてスケーリングは、少なくとも連続ベースではなく、平均化された加速度が重力加速度を上回ることができないように、従って異なる次元で測定された加速度と重力加速度の比率が、重力方向に対する傾斜角度の正弦関数の比率に対応する、すなわち(イ)/g=sin(θ1),(ロ)/g=sin(ψ1)及び(ハ)/g=sin(γ1)(なお式中θ1は測定された加速度方向Xと重力方向gの間の角度、ψ1は、測定された加速度方向Yと重力方向gの間の角度、そしてγ1は測定された加速度方向Zと重力方向gの間の角度に対応する)となるように、保証する。デバイスの構造的な軸の方向と測定の方向が互いに正比例していることがわかっているため、角度θ1,ψ1及びγ1に基づいて、デバイスの構造的な方向及び重力方向の間の傾斜角度θ,ψ及びγを形成することができる。
【0033】
ブロック418では、重力方向からのデバイスの異なる構造的な方向の偏差を示す傾斜角度θ,ψ及びγを形成するため、異なる次元に対して平行でかつ加速度計によって測定された加速度が使用される。これはまた、ブロック504でも示されている。デバイスの構造的な方向が測定された加速度の方向と同じである場合、△θ=△ψ=△γ=0であり、逆正弦関数 θ1=θ=arcsin((イ)/g),ψ1=ψ=arcsin((ロ)/g)そしてγ1=γ=arcsin((ハ)/g)として角度を形成することができる。そうでなければ、測定された方向X,Y,及びZからの構造的な方向Xd,Yd及びZdの偏差は、θ=θ1+△θ,ψ=ψ1+△ψ及びγ=γ1+△γ を計算することによって考慮に入れられなくてはならない。
【0034】
ブロック420では、平均化された加速度(イ),(ロ)及び(ハ)は、長さがサンプルウィンドウと等しいシーケンス内の異なる次元に平行な、測定された加速度x,y,及びzから減算され、かくして、加速度内の連続的変化を表わす変化信号xc,yc及びzcが形成される。このことは、ブロック506に示されている。これらの加速度変化信号xc,yc及びzcは、往々にして規則的でもあり得、かつ例えばユーザーの活動コンテキストに関係する急速な加速度変化を表わす。図7は、自由に選択されたスケール上の時間の関数としてデバイスの構造的な軸の異なる方向に対して平行な加速度変化信号xc,yc及びzcを示している。デバイスの動きの状態は、軸の異なる方向でかなり著しく変動する。図6及び7に示されているように、加速度変化信号は、ある意味では、測定された加速度信号の動的AC信号である。減算は、平均化された加速度の否定−(イ),−(ロ)及び−(ハ)が加速度x,y及びzに加算される合計ブロック422,424及び426内で、各次元について別々に実施される。
【0035】
ブロック508に従うと、デバイスの加速度変化信号及び傾斜角度θ,ψ及びγは、デバイスの加速度変化の成分Zztotを形成するためにブロック428内で使用することができ、該成分は、地球の重力加速度に対して平行であり、デバイスに作用する重力と平行な連続的に変化する垂直加速度を表わす。ここで基本的な着目点は、垂直方向において、デバイスの加速度変化成分Zztotを、デバイスの位置とは無関係に決定できるという点にある。
【0036】
z,Yz及びZzの垂直加速度変化サブ成分は、
(3)sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合に、
z=−xc sin(θ)
z=−yc sin(ψ)
z=−zc sin(γ)、及び
sgn(θ)<0,sgn(ψ)<0 及び sgn(γ)<0である場合に、
z=xc sin|θ|
z=yc sin|ψ|
z=zc sin|γ|、
である、というとり決めに従ってデバイスの傾斜角度θ,ψ及びγの正弦関数を加速度変化信号 xc,yc及びzcに乗じることによって形成され、式中sgn( )は角度が正か負かに関わらず正負符号関数を表わし、|θ|,|ψ|及び|γ|は角度θ,ψ及びγの絶対値を表わす。重力に平行な加速度変化成分Zztotは、デバイスの加速度変化のサブ成分の和、すなわち、Zztot=Xz+Yz+Zzである。
【0037】
図8〜15を参照しながら、ここで、デバイスのために地球の重力に対し平行な加速度変化成分を形成する1つの代替的方法について検討したい。この実施形態においては、図8〜15に立方体として描かれている空間は、立方体のコーナーとの関係において8つの部分に分割される。3本の軸X,Y,Zの各々との関係における重力方向は、2つの値π/4±π/4又は−(π/4±π/4)を得る可能性があり、かくして部分の数は23=8である。この実施形態においては、重力ベクトルの方向はまず最初に傾斜角度θ,ψ及びγの正負符号に基づいて決定される。正負符号が決定された時点で、適切な計算式が選択される。この手順は、式(3)と完全に同等である。
【0038】
図8において、重力方向gは、立方体の右上前方コーナーの方向に作用しており、かくして傾斜角度θ及びψについて、sgn(θ)<0,sgn(ψ)<0が有効である。さらに角度γはsgn(γ)≧0として定義される。こうして、垂直方向の加速度変化成分について以下の計算式1/8が得られる。
【0039】
z=xc sin|θ|
z=yc sin|ψ|
z=−zc sin(γ)。
【0040】
図9では、重力ベクトルは、立方体の左上後方コーナーをポイントしており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0が有効である。こうして垂直方向の加速度変化成分について、以下の計算式2/8が得られる。
【0041】
z=−xc sin(θ)
z=−yc sin(ψ)
z=−zc sin(γ)。
【0042】
図10において、重力方向gは、立方体の左上前方コーナーの方向に作用しており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)≧0及びsgn(γ)≧0が有効である。こうして垂直方向の加速度変化成分について、以下の計算式3/8が得られる。
【0043】
z=xc sin|θ|
z=−yc sin(ψ)
z=−zc sin(γ)。
【0044】
図11において、重力方向gは、立方体の右上後方コーナーの方向に作用しており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)0≧0が有効である。こうして垂直方向の加速度変化成分について、以下の計算式4/8が得られる。
【0045】
z=−xc sin(θ)
z=yc sin|ψ|
z=−zc sin(γ)。
【0046】
図12において、重力方向gは、立方体の右下前方コーナーの方向に作用しており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0が有効である。こうして、垂直方向の加速度変化成分について、以下の計算式5/8が得られる。
【0047】
z=xc sin|θ|
z=yc sin|ψ|
z=zc sin|γ|。
【0048】
図13において、重力方向gは、立方体の左下後方コーナーの方向に作用しており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)<0が有効である。こうして垂直方向の加速度変化成分について、以下の計算式6/8が得られる。
【0049】
z=−xc sin(θ)
z=−yc sin(ψ)
z=zc sin|γ|。
【0050】
図14において、重力方向gは、立方体の左下前方コーナーの方向に作用しており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)<0が有効である。こうして垂直方向の加速度変化成分について、以下の計算式7/8が得られる。
【0051】
z=xc sin|θ|
z=−yc sin(ψ)
z=zc sin|γ|。
【0052】
図15において、重力方向gは、立方体の右下後方コーナーの方向に作用しており、かくして傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0が有効である。こうして、垂直方向の加速度変化成分について、以下の計算式8/8が得られる。
【0053】
z=−xc sin(θ)
z=−yc sin(ψ)
z=zc sin|γ|。
【0054】
またこの場合、重力に対して平行な加速度変化成分Zztotは、各変化成分の和、すなわち、Zztot=Xz+Yz+Zzである。
【0055】
ブロック430では、垂直合計加速度Zztotは、変化信号xc,yc及びzcから除去され、かくして、水平方向においてデバイスに作用する変化する加速度を表わす水平加速度変化成分Zhtotが形成される。これが実施される数学的形態は減算である、すなわち ZHtot=(xc+yc+zc)−Zztotである。しかしながら、この計算は、水平加速度変化成分の方向をより詳細に決定することを可能にするものではない。
【0056】
記述された解決法はまたコンパスを利用することもでき、これは、磁針に基づく通常のコンパス又はジャイロコンパスであってよい。コンパスは、2本の直交軸との関係において水平方向をアレンジするために用いられる。こうして地球の磁場との関係におけるデバイスの位置を、加速度情報と同時に精確に規定することが可能となる。水平軸を選択するための好ましい方法は、第1の軸Xnsが南北方向にあり、第2の軸Yewが東西方向にあるものである。これらの軸は、軸の予測(projections)として役立つ変化の水平サブ成分Zns及びZewを用いて、ブロック430中に形成された水平加速度変化成分Zhtotを決定することを可能にする。
【0057】
ブロック432では、加速度計内の非線形性を補正するために用いられる加速度計較正値が記憶される。較正の例としては、クローリング、温度変化、地球の異なる緯度における重力の大きさなどがある。
【0058】
本発明について以上では添付図面の中で示された例を基準にして記述しているが、本発明がそれに制限されず、特許請求の範囲内で開示された進歩性ある着想の範囲内で数多くの形で変形しうるものであるということは明らかである。
【図面の簡単な説明】
【図1】移動電話システムの構造を例示する図である。
【図2】セルラー無線システムを例示する図である。
【図3】移動電話を例示するブロック図である。
【図4】記述された装置のブロック図である。
【図5】記述された装置の流れ図である。
【図6】3つの異なる次元に対し平行な緩慢に変化する加速度と急速に変化する加速度を示す図である。
【図7】3つの異なる次元に対し平行な急速に変化する加速度を示す図である。
【図8】デバイスの構造的な軸に基づいて規定された空間の右上前方コーナーに向かう方向に作用する重力を示す図である。
【図9】デバイスの構造的な軸に基づいて規定された空間の左上後方コーナーに向かう方向に作用する重力を示す図である。
【図10】デバイスの構造的な軸に基づいて規定された空間の左上前方コーナーに向かう方向に作用する重力を示す図である。
【図11】デバイスの構造的な軸に基づいて規定された空間の右上後方コーナーに向かう方向に作用する重力を示す図である。
【図12】デバイスの構造的な軸に基づいて規定された空間の右下前方コーナーに向かう方向に作用する重力を示す図である。
【図13】デバイスの構造的な軸に基づいて規定された空間の左下後方コーナーに向かう方向に作用する重力を示す図である。
【図14】デバイスの構造的な軸に基づいて規定された空間の左下前方コーナーに向かう方向に作用する重力を示す図である。
【図15】デバイスの構造的な軸に基づいて規定された空間の右下後方コーナーに向かう方向に作用する重力を示す図である。
【符号の説明】
400…加速度計ブロック
412…ウィンドウ
414…平均計算ブロック
416…スケーリングブロック
418…傾斜角度形成ブロック
428…垂直動的加速度成分形成ブロック
430…水平動的加速度成分形成ブロック
432…較正ブロック

Claims (24)

  1. 3次元測定値によってデバイスの加速度変化成分のうち少なくともデバイスの垂直加速度変化成分を提供するためにデバイスの加速度が少なくとも3つの異なる方向で測定される、デバイスの動きを決定するための方法であって、
    デバイスに対して既知の向きにある3本の直交軸に対して平行な加速度信号を生成する段階、
    前記の直交軸に対して平行な加速度信号の平均信号を生成する段階、
    該平均信号を用いて重力方向との関係におけるデバイスの傾斜角度を規定する段階、
    前記の直交軸に対し平行なそのそれぞれの加速度信号から平均信号を除去することによって加速度変化信号を生成する段階、及び
    デバイスの傾斜角度及び加速度変化信号を用いてデバイスの垂直加速度変化成分を形成する段階であって、該成分が重力に対し平行でかつデバイスの位置とは独立したものである段階、を有して成る方法。
  2. 加速度変化信号から重力に対し平行な前記の垂直加速度変化成分を除去することによって水平加速度変化成分を形成する段階をさらに有して成る、請求項1に記載の方法。
  3. 直交軸が、デバイスの構造的な方向との関係において既知の向きにあり、重力方向との関係におけるデバイスの構造的な方向の傾斜角度が平均信号を用いて形成される、請求項1に記載の方法。
  4. 垂直加速度変化のサブ成分 Xz,Yz及びZzは、
    sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合に、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=−zc sin(γ)、又は
    sgn(θ)<0,sgn(ψ)<0 及び sgn(γ)<0である場合に、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=zc sin|γ|
    である、というとり決めに従ってデバイスの傾斜角度θ,ψ及びγの正弦関数を加速度変化信号 xc,yc及びzcに乗じることによって形成され、ここでsgn( )は正負符号関数を表わし、|θ|,|ψ|及び|γ|は角度θ,ψ及びγの絶対値を表わすこと、及び重力に平行な前記の垂直加速度変化成分 Zztotが垂直加速度変化のサブ成分の和として形成される、すなわち、Zztot=Xz+Yz+Zzである段階をさらに有して成る、請求項1に記載の方法。
  5. デバイスのそれぞれの軸により規定された空間が複数の方向に区分され、方向の各々について垂直加速度変化成分を形成するために別々の公式が決定され、
    重力が作用する方向が、前記の各軸に対する傾斜角度を用いて決定され、かつ
    当該デバイスに作用する垂直加速度変化成分が形成される段階をさらに有して成る、請求項1に記載の方法。
  6. デバイスのそれぞれの軸により規定された空間が、前記デバイスの各軸との関係における重力方向が前記の各軸に対して値(π/4±π/4)又は−(π/4±π/4)となるような形で8つの方向に区分され、該8つの方向の各々についての垂直加速度変化のサブ成分を形成するために別々の公式が決定され、かつ
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0 及び sgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)≧0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=−yc sin(ψ)
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=yc sin|ψ|
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    デバイスの垂直加速度変化成分 Zztotが、各垂直加速度変化のサブ成分の和として重力に対して平行に形成される、すなわち、Zztot=Xz+Yz+Zzである段階をさらに有して成る、請求項5に記載の方法。
  7. 加速度変化信号から重力に対し平行な垂直加速度変化成分を除去することによって水平加速度変化成分を形成する段階、
    コンパスを用いて水平平面内の2つの互いに直交する各軸を決定する段階、及び
    水平加速度変化成分の詳細な決定のために前記の直交する各軸にそれぞれ平行な水平加速度変化のサブ成分を決定する段階、
    をさらに有して成る、請求項1に記載の方法。
  8. 平均信号が形成される前に、所望のウィンドウ機能を用いて、加速度信号がウィンドウ処理される段階をさらに有して成る、請求項1に記載の方法。
  9. 3次元測定値によってデバイスの加速度変化成分のうち少なくともデバイスの垂直加速度変化成分を提供するために少なくとも3つの異なる方向でデバイスの加速度が測定される、デバイスの動きを決定するための装置であって、
    デバイスに対して既知の向きにある3つの直交軸に対して平行な加速度信号を測定する手段、
    前記の直交軸に対して平行な加速度信号の平均信号を生成する手段、
    該平均信号を用いて重力方向との関係におけるデバイスの傾斜角度を規定する手段、
    前記の直交軸に対して平行なそのそれぞれの加速度信号から該平均信号を除去することによって加速度変化信号を生成する手段、及び
    デバイスの傾斜角度及び加速度変化信号を用いてデバイスの垂直加速度変化成分を形成する手段であって、該成分は重力に対し平行で、かつデバイスの位置とは独立したものである手段、を有して成る装置。
  10. 加速度変化信号から重力に対し平行な前記の垂直加速度変化成分を除去することによって水平加速度変化成分を形成する手段をさらに有して成る、請求項9に記載の装置。
  11. 前記の傾斜角度を規定する手段は、
    直交軸が、デバイスの構造的な方向との関係において既知の向きにあり、平均信号を用いて重力方向との関係におけるデバイスの構造的な方向の傾斜角度形成する、請求項9に記載の装置。
  12. 前記の垂直加速度変化成分を形成する手段は、
    sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合に、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=−zc sin(γ)、又は
    sgnθ<0,sgn(ψ)<0 及び sgn(γ)<0である場合に、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=zc sin|γ|
    である、というとり決めに従って、デバイスの傾斜角度θ,ψ及びγの正弦関数を加速度変化信号 xc,yc及びzcに乗じることによって垂直加速度変化のサブ成分Xz,Yz及びZz 形成、ここでsgn( )は正負符号関数を表わし、|θ|,|ψ|及び|γ|は角度θ,ψ及びγの絶対値を表わし、重力に平行な前記の垂直加速度変化成分Zztot 垂直加速度変化のサブ成分の和として、すなわち、Z ztot =X z +Y z +Z z として形成する、請求項9に記載の装置。
  13. 前記の垂直加速度変化成分を形成する手段は、
    デバイスのそれぞれの軸により規定された空間が複数の方向に区分され、方向の各々について垂直加速度変化成分を形成するために別々の公式が決定され、
    重力が作用する方向が、前記の各軸に対する傾斜角度を用いて決定され、かつ
    当該デバイスに作用する垂直加速度変化成分形成する、請求項9に記載の装置。
  14. 前記の垂直加速度変化成分を形成する手段は、
    デバイスのそれぞれの軸により規定された空間が、前記デバイスの各軸との関係における重力方向が前記の各軸に対して値(π/4±π/4)又は−(π/4±π/4)となるような形で8つの方向に区分され、垂直加速度変化のサブ成分を形成するために該8つの方向の各々について別々の公式が規定され、かつ
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0 及び sgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)≧0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=−yc sin(ψ)
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=yc sin|ψ|
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    デバイスの垂直加速度変化成分 Zztot 、各垂直加速度変化のサブ成分の和として、すなわち、Z ztot =X z +Y z +Z z として重力に対して平行に形成する、請求項13に記載の装置。
  15. 加速度変化信号から重力に対し平行な垂直加速度変化成分を除去することによって水平加速度変化成分形成する手段
    コンパスを用いて水平平面内の2つの互いに直交する各軸決定する手段、及び
    水平加速度変化成分の詳細な決定のために前記の直交する各軸にそれぞれ平行な水平加速度変化のサブ成分を決定する手段をさらに有して成る、請求項9に記載の装置。
  16. 平均信号が形成される前に、所望のウィンドウ機能を用いて、加速度信号ウィンドウ処理する手段をさらに有して成る、請求項9に記載の装置。
  17. 3次元測定値によってデバイスの加速度変化成分のうち少なくともデバイスの垂直加速度変化成分を提供するためにデバイスの加速度を少なくとも3つの異なる方向で測定することによって、デバイスの動きを決定するために、
    デバイスに対して既知の向きにある3本の直交軸に対して平行な加速度信号を生成する段階、
    前記の直交軸に対して平行な加速度信号の平均信号を生成する段階、
    該平均信号を用いて重力方向との関係におけるデバイスの傾斜角度を規定する段階、
    前記の直交軸に対し平行なそのそれぞれの加速度信号から平均信号を除去することによって加速度変化信号を生成する段階、及び
    デバイスの傾斜角度及び加速度変化信号を用いてデバイスの垂直加速度変化成分を形成する段階であって、該成分が重力に対し平行でかつデバイスの位置とは独立したものである段階、
    を有して成る方法を実施するための、コンピュータ実行可能な命令を有するコンピュータ読取り可能媒体。
  18. 前記方法は、加速度変化信号から重力に対し平行な前記の垂直加速度変化成分を除去することによって水平加速度変化成分を形成する段階をさらに有して成る、請求項17に記載のコンピュータ読取り可能媒体。
  19. 前記方法は、直交軸が、デバイスの構造的な方向との関係において既知の向きにあるとき、重力方向との関係におけるデバイスの構造的な方向の傾斜角度を平均信号を用いて形成する段階をさらに有して成る、請求項17に記載のコンピュータ読取り可能媒体。
  20. 前記方法は、垂直加速度変化のサブ成分 Xz,Yz及びZzは、
    sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合に、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=−zc sin(γ)、又は
    sgn(θ)<0,sgn(ψ)<0 及び sgn(γ)<0である場合に、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=zc sin|γ|
    である、というとり決めに従ってデバイスの傾斜角度θ,ψ及びγの正弦関数を加速度変化信号 xc,yc及びzcに乗じることによって形成され、ここでsgn( )は正負符号関数を表わし、|θ|,|ψ|及び|γ|は角度θ,ψ及びγの絶対値を表わすこと、及び重力に平行な前記の垂直加速度変化成分 Zztotが垂直加速度変化のサブ成分の和として形成される、すなわち、Zztot=Xz+Yz+Zzである段階をさらに有して成る、請求項17に記載のコンピュータ読取り可能媒体。
  21. 前記方法は、デバイスのそれぞれの軸により規定された空間が複数の方向に区分され、方向の各々について垂直加速度変化成分を形成するために別々の公式が決定され、
    重力が作用する方向が、前記の各軸に対する傾斜角度を用いて決定され、かつ
    当該デバイスに作用する垂直加速度変化成分が形成される段階をさらに有して成る、請求項17に記載のコンピュータ読取り可能媒体。
  22. 前記方法は、デバイスのそれぞれの軸により規定された空間が、前記デバイスの各軸との関係における重力方向が前記の各軸に対して値(π/4±π/4)又は−(π/4±π/4)となるような形で8つの方向に区分され、該8つの方向の各々についての垂直加速度変化のサブ成分を形成するために別々の公式が決定され、かつ
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0 及び sgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)≧0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=−yc sin(ψ)
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)≧0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=yc sin|ψ|
    z=−zc sin(γ)、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=yc sin|ψ|
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)≧0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)≧0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=xc sin|θ|
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    傾斜角度θ,ψ及びγについて、sgn(θ)<0,sgn(ψ)<0及びsgn(γ)<0である場合、垂直加速度変化のサブ成分Xz,Yz及びZzが、
    z=−xc sin(θ)
    z=−yc sin(ψ)
    z=zc sin|γ|、
    といったように形成され、
    デバイスの垂直加速度変化成分 Zztotが、各垂直加速度変化のサブ成分の和として重力に対して平行に形成される、すなわち、Zztot=Xz+Yz+Zzである段階をさらに有して成る、請求項21に記載のコンピュータ読取り可能媒体。
  23. 前記方法は、加速度変化信号から重力に対し平行な垂直加速度変化成分を除去することによって水平加速度変化成分を形成する段階、
    コンパスを用いて水平平面内の2つの互いに直交する各軸を決定する段階、及び
    水平加速度変化成分の詳細な決定のために前記の直交する各軸にそれぞれ平行な水平加速度変化のサブ成分を決定する段階、
    をさらに有して成る、請求項17に記載のコンピュータ読取り可能媒体。
  24. 前記方法は、平均信号が形成される前に、所望のウィンドウ機能を用いて、加速度信号がウィンドウ処理される段階をさらに有して成る、請求項17に記載のコンピュータ読取り可能媒体。
JP2002190422A 2001-06-29 2002-06-28 デバイスの動きを決定する方法及び装置 Expired - Fee Related JP4125555B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20011408 2001-06-29
FI20011408A FI110549B (fi) 2001-06-29 2001-06-29 Menetelmä ja järjestely liikkeen määrittämiseksi

Publications (3)

Publication Number Publication Date
JP2003050140A JP2003050140A (ja) 2003-02-21
JP2003050140A5 JP2003050140A5 (ja) 2005-10-20
JP4125555B2 true JP4125555B2 (ja) 2008-07-30

Family

ID=8561540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190422A Expired - Fee Related JP4125555B2 (ja) 2001-06-29 2002-06-28 デバイスの動きを決定する方法及び装置

Country Status (5)

Country Link
US (1) US6983219B2 (ja)
EP (1) EP1271099B1 (ja)
JP (1) JP4125555B2 (ja)
DE (1) DE60208267T2 (ja)
FI (1) FI110549B (ja)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US7536186B2 (en) * 2003-08-26 2009-05-19 Motorola, Inc. System to improve handover behavior
FI117308B (fi) 2004-02-06 2006-08-31 Nokia Corp Eleohjausjärjestelmä
JP4393902B2 (ja) * 2004-03-24 2010-01-06 旭化成エレクトロニクス株式会社 傾斜角測定装置
DE102004038657A1 (de) * 2004-08-09 2006-02-23 Bomag Gmbh Vorrichtung und Verfahren zur Bestimmung eines beschleunigungsunabhängigen Neigungswinkels
US7216053B2 (en) * 2004-12-30 2007-05-08 Nokia Corporation Low power motion detector
KR100653315B1 (ko) * 2005-01-04 2006-12-01 주식회사 헬스피아 중력방향의 자동인식이 가능한 휴대형 단말기를 이용한운동량 측정방법
KR100601981B1 (ko) * 2005-01-14 2006-07-18 삼성전자주식회사 활동패턴 감시 방법 및 장치
KR20060087744A (ko) * 2005-01-31 2006-08-03 삼성전자주식회사 이동통신 단말기에서 잔상효과를 이용한 데이터 표시장치및 방법
ES2442294T3 (es) 2005-02-28 2014-02-11 Oncotherapy Science, Inc. Péptidos epítopos derivados del receptor 1 del factor de crecimiento endotelial vascular y vacunas que contienen estos péptidos
US7797106B2 (en) * 2005-06-30 2010-09-14 Nokia Corporation System and method for adjusting step detection based on motion information
JP4202366B2 (ja) * 2006-03-08 2008-12-24 任天堂株式会社 動き判別装置および動き判別プログラム
JP4151982B2 (ja) * 2006-03-10 2008-09-17 任天堂株式会社 動き判別装置および動き判別プログラム
JP4330593B2 (ja) 2006-03-13 2009-09-16 任天堂株式会社 ゲーム装置およびゲームプログラム
ATE414470T1 (de) * 2006-03-17 2008-12-15 Myotest Sa Vorrichtung und verfahren zur auswertung der muskularischen kapazität unter verwendung von kurzen tests
US7841967B1 (en) 2006-04-26 2010-11-30 Dp Technologies, Inc. Method and apparatus for providing fitness coaching using a mobile device
US8902154B1 (en) 2006-07-11 2014-12-02 Dp Technologies, Inc. Method and apparatus for utilizing motion user interface
US7457719B1 (en) 2006-11-21 2008-11-25 Fullpower Technologies, Inc. Rotational insensitivity using gravity-based adjustment
US7653508B1 (en) 2006-12-22 2010-01-26 Dp Technologies, Inc. Human activity monitoring device
JP5127242B2 (ja) * 2007-01-19 2013-01-23 任天堂株式会社 加速度データ処理プログラムおよびゲームプログラム
US8620353B1 (en) 2007-01-26 2013-12-31 Dp Technologies, Inc. Automatic sharing and publication of multimedia from a mobile device
US8949070B1 (en) 2007-02-08 2015-02-03 Dp Technologies, Inc. Human activity monitoring device with activity identification
US7753861B1 (en) 2007-04-04 2010-07-13 Dp Technologies, Inc. Chest strap having human activity monitoring device
WO2008128087A1 (en) * 2007-04-13 2008-10-23 Keynetik, Inc. A force sensing apparatus and method to determine the radius of rotation of a moving object
US8555282B1 (en) 2007-07-27 2013-10-08 Dp Technologies, Inc. Optimizing preemptive operating system with motion sensing
US8285344B2 (en) 2008-05-21 2012-10-09 DP Technlogies, Inc. Method and apparatus for adjusting audio for a user environment
US8988439B1 (en) 2008-06-06 2015-03-24 Dp Technologies, Inc. Motion-based display effects in a handheld device
US8678925B1 (en) 2008-06-11 2014-03-25 Dp Technologies, Inc. Method and apparatus to provide a dice application
US8996332B2 (en) 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
FR2933185B1 (fr) * 2008-06-27 2017-07-21 Movea Sa Systeme et procede de determination d'informations representatives du mouvement d'une chaine articulee
US8187182B2 (en) 2008-08-29 2012-05-29 Dp Technologies, Inc. Sensor fusion for activity identification
US8872646B2 (en) * 2008-10-08 2014-10-28 Dp Technologies, Inc. Method and system for waking up a device due to motion
US8587601B1 (en) 2009-01-05 2013-11-19 Dp Technologies, Inc. Sharing of three dimensional objects
EP2251067B1 (en) * 2009-05-07 2018-01-03 Nintendo Co., Ltd. Storage medium storing information processing program, and information processing apparatus
US9529437B2 (en) 2009-05-26 2016-12-27 Dp Technologies, Inc. Method and apparatus for a motion state aware device
DE102009035072A1 (de) * 2009-07-28 2011-02-10 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Prädiktion der Position und/oder Bewegung eines Objekts relativ zu einem Fahrzeug
CN102667882B (zh) * 2009-11-25 2014-08-06 皇家飞利浦电子股份有限公司 用于检测用户跌倒的方法和装置
US9068844B2 (en) * 2010-01-08 2015-06-30 Dp Technologies, Inc. Method and apparatus for an integrated personal navigation system
WO2011114620A1 (ja) * 2010-03-16 2011-09-22 日本電気株式会社 関心度計測システム
GB201009379D0 (en) 2010-06-04 2010-07-21 Univ Edinburgh Method, apparatus, computer program and system for measuring oscillatory motion
US8892390B2 (en) 2011-06-03 2014-11-18 Apple Inc. Determining motion states
US9374659B1 (en) 2011-09-13 2016-06-21 Dp Technologies, Inc. Method and apparatus to utilize location data to enhance safety
WO2013049819A1 (en) * 2011-09-30 2013-04-04 Ims Solutions, Inc. A method of correcting the orientation of a freely installed accelerometer in a vehicle
CN105074386B (zh) * 2013-02-22 2018-09-04 旭化成株式会社 保持状态变化探测装置、保持状态变化探测方法以及程序
WO2014171227A1 (ja) * 2013-04-17 2014-10-23 古野電気株式会社 姿勢角推定装置およびそれを備える移動状態検出装置
WO2014194337A1 (en) 2013-05-30 2014-12-04 Atlas Wearables, Inc. Portable computing device and analyses of personal data captured therefrom
CN104246516B (zh) * 2013-12-05 2018-02-02 华为终端有限公司 一种确定车辆加速度的方法及装置
EP3018920B1 (en) * 2014-11-06 2018-04-04 Volvo Car Corporation Vehicle user identification using user pattern data
US9699759B1 (en) * 2015-03-25 2017-07-04 Marvell International Ltd. Method and device for detecting false movement of a mobile device
US10834535B2 (en) 2015-11-30 2020-11-10 Oura Health Oy Method for monitoring activity of subject and monitoring device therefor
US20210295440A1 (en) 2016-05-11 2021-09-23 State Farm Mutual Automobile Insurance Company Systems and methods for allocating vehicle costs between vehicle users using pre-paid accounts
CN108253992B (zh) * 2017-12-31 2021-07-02 深圳市易景空间智能科技有限公司 基于行走状态的计步方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122960A (en) * 1995-12-12 2000-09-26 Acceleron Technologies, Llc. System and method for measuring movement of objects
US5902968A (en) * 1996-02-20 1999-05-11 Ricoh Company, Ltd. Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
DE69736622T2 (de) 1996-07-03 2007-09-13 Hitachi, Ltd. System zur Bewegungserkennung
GB2358108A (en) * 1999-11-29 2001-07-11 Nokia Mobile Phones Ltd Controlling a hand-held communication device

Also Published As

Publication number Publication date
FI110549B (fi) 2003-02-14
DE60208267T2 (de) 2006-07-13
JP2003050140A (ja) 2003-02-21
EP1271099A3 (en) 2004-09-22
EP1271099B1 (en) 2005-12-28
DE60208267D1 (de) 2006-02-02
EP1271099A2 (en) 2003-01-02
US6983219B2 (en) 2006-01-03
US20030109258A1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
JP4125555B2 (ja) デバイスの動きを決定する方法及び装置
EP3386248B1 (en) Positioning network device and positioning method based on time difference of arrival
JP3721141B2 (ja) 携帯端末装置
US20100191501A1 (en) Traveling direction measuring apparatus and traveling direction measuring method
CN105823483B (zh) 一种基于惯性测量单元的用户步行定位方法
US20130040653A1 (en) Numerically Stable Computation of Heading Without a Reference Axis
US9229091B2 (en) Positioning device, mobile station and positioning method
KR20190056132A (ko) 웨어러블 기기
US20200158533A1 (en) Step-length calculating device, portable terminal, position-information providing system, step-length calculating device control method, and program
WO2021259688A1 (en) Wireless connections between devices of motion tracking system and authentication of a user thereof
CN105204046A (zh) 测位系统、测位装置、存储装置以及测位方法
US8989770B2 (en) Method and apparatus for estimating displacement of a user terminal
EP1811267A1 (en) Measurement method and mobile information device
WO2015054866A1 (en) A relative positioning method
CN109281664B (zh) 水平井产油量的预测方法和装置
CN110095792B (zh) 定位终端的方法及装置
CN109899051B (zh) 油井设备的评价标准确定方法、装置及存储介质
CN114332118A (zh) 图像处理方法、装置、设备及存储介质
JPH0836044A (ja) 携帯電話システムを利用したgps装置
JP2020183921A (ja) 位置情報提供装置、方法、及びプログラム
JP2003259409A (ja) 情報提供システム、プログラムおよび情報記憶媒体
CN216695257U (zh) 一种穿戴式无线测振装置
US20090306889A1 (en) Positioning system and method for a handheld electronic device
CN103857063A (zh) 基于移动终端的空间状态建立连接的方法和装置
CN115720339B (zh) 基站部署位置的确定方法、装置及存储介质

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees