JP4124895B2 - Electronic component characteristic inspection method - Google Patents

Electronic component characteristic inspection method Download PDF

Info

Publication number
JP4124895B2
JP4124895B2 JP00857699A JP857699A JP4124895B2 JP 4124895 B2 JP4124895 B2 JP 4124895B2 JP 00857699 A JP00857699 A JP 00857699A JP 857699 A JP857699 A JP 857699A JP 4124895 B2 JP4124895 B2 JP 4124895B2
Authority
JP
Japan
Prior art keywords
measurement terminal
lead wire
electronic component
lead
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00857699A
Other languages
Japanese (ja)
Other versions
JP2000206179A (en
Inventor
幸治 加賀
Original Assignee
日本インター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本インター株式会社 filed Critical 日本インター株式会社
Priority to JP00857699A priority Critical patent/JP4124895B2/en
Publication of JP2000206179A publication Critical patent/JP2000206179A/en
Application granted granted Critical
Publication of JP4124895B2 publication Critical patent/JP4124895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ダイオード、抵抗等の電子部品の特性検査時に、検査装置の測定端子電子部品のリード線との接触抵抗を予め測定し、かつ、接触状態を良好にしてから本来の特性検査を実施するようにした電子部品の特性検査方法関するものである。
【0002】
【従来の技術】
この種の電子部品の特性検査方法について、図2を参照して説明する。
図において、DUTはリード型電子部品であり、ここではダイオードを示している。
【0003】
このDUTのリード線1a,1bに対して検査装置の測定端子D1,D2及びD3,D4をそれぞれ接触させている。また、各測定端子D1〜D4に切換えのための可動接点と固定接点a,bとをそれぞれ有するリレーRY1〜RY4が図示のように接続されている。
すなわち、測定端子D1にはリレーRY1、測定端子D2にはリレーRY2、測定端子D3にはリレーRY3、測定端子D4にはリレーRY4がそれぞれ接続されている。
ここで、すべてのリレーRY1〜RY4の可動接点が固定接点aに接続される場合をモード1とし、また、すべてのリレーRY1〜RY4の可動接点が固定接点bに接続される場合のモードをモード2とする。
上記モード1の場合、測定端子D1,D3はそれぞれ直流電源E1,E2に接続され、他方の測定端子D2,D4は、抵抗R1,R2を介してフォトカプラPC1,PC2にそれぞれ接続される。
【0004】
上記の構成において、DUTの本来の特性検査をするに先立ち、まず、該DUTと特性検査装置の測定端子D1〜D4との接触状態を検査する。
すなわち、上記のような回路構成で、スイッチSW1,SW2をオンにし、直流電源E1側の測定端子D1,D2がDUTのリード線1aに接触していると、フォトカプラPC1には抵抗R1を介して電流が流れ、オン状態となる。この場合には測定端子D1,D2と前記リード線1aとの接触状態をOKとする信号を取り出す。
【0005】
一方、測定端子D1,D2が前記リード線1aに接触していない場合には、フォトカプラPC1には直流電源E1からの電流が流れない。かかる場合には該フォトカプラPC1はオフ状態となり、測定端子D1,D2と前記リード線1aとの接触状態をNGとする信号を取り出す。
直流電源E2側も同様にして、フォトカプラPC2の点滅により測定端子D3,D4とリード線1bとの接触状態を目視的に確認できるようにしている。
【0006】
次に、リード線1a側及びリード線1b側ともに測定端子とリード線とが接触していることを確認すると、図示を省略した手段により、すべてのリレーが固定接点bに接続されてモード2となる。その時、スイッチSW3をオンにして、直流電源E3から測定端子D1,D3を介して特性検査のための電流が、DUTに流れる。そして、該DUTに流れる電流により該DUTの両端の電圧が測定端子D2,D4を介して電圧計VFによって計測される。
【0007】
【発明が解決しようとする課題】
本来の特性検査に先立ち、従来では上記の方法によりリード線1a,1bと測定端子D1〜D4との接触状態を検査していた。すなわち、実際には10〜100mAの範囲の微少電流が流れるか、流れないかで接触状態を判断しており、測定端子D1〜D4とリード線1a,1bとの実際の接触抵抗の大小は無視した検査方法であった。上記のような検査方法では、例え測定端子D1〜D4がリード線1a,1bに接触していても、毎回被検査電子部品を交換させて接触させると、その時の接触抵抗はその都度異なり、例えば接触抵抗の大きい時に、50〜200A位の本来の試験電流を瞬間的に流した場合、測定端子D1〜D4とリード線1a,1b間にスパークが発生し、それら測定端子D1〜D4とリード線1a,1bとが溶解し、以後の検査が不能となるという解決すべき課題があった。
【0008】
本発明は上記のような課題を解決すためになされたもので、特性検査装置の測定端子とリード型電子部品DUTのリード線1a,1bとの接触抵抗値を検査できるようにするとともに、接触抵抗値の検査電流I1によって測定端子D1〜D4とリード線との接触状態を良好にし、本来の特性検査を正確に行い得るようにした電子部品の特性検査方法提供することを目的とするものである。
【0009】
【課題を解決するための手段】
請求項1に記載の発明によれば、リード型電子部品(DUT)の一方のリード線(1a)の一部と、第1測定端子(S1)と、第1抵抗(R1)と、第1直流電源(E1)と、第2測定端子(S2)とが直列接続された第1直列回路を形成し、
第1直列回路に10〜30Aの電流を流し、第1測定端子(S1)と一方のリード線(1a)との接触抵抗(Rd)、および、第2測定端子(S2)と一方のリード線(1a)との接触抵抗(Re)を小さくし、
第1直列回路を流れる電流値(I1)と、第1測定端子(S1)と第2測定端子(S2)との間の電圧値(vr1)とに基づいて、第1測定端子(S1)と一方のリード線(1a)との接触抵抗(Rd)、および、第2測定端子(S2)と一方のリード線(1a)との接触抵抗(Re)を算出し、
リード型電子部品(DUT)の他方のリード線(1b)の一部と、第3測定端子(S3)と、第2抵抗(R2)と、第2直流電源(E2)と、第4測定端子(S4)とが直列接続された第2直列回路を形成し、
第2直列回路に10〜30Aの電流を流し、第3測定端子(S3)と他方のリード線(1b)との接触抵抗、および、第4測定端子(S4)と他方のリード線(1b)との接触抵抗を小さくし、
第2直列回路を流れる電流値と、第3測定端子(S3)と第4測定端子(S4)との間の電圧値とに基づいて、第3測定端子(S3)と他方のリード線(1b)との接触抵抗、および、第4測定端子(S4)と他方のリード線(1b)との接触抵抗を算出し、
リード型電子部品(DUT)と、リード型電子部品(DUT)の一方のリード線(1a)と、第1測定端子(S1)と、第3抵抗(R3)と、第3直流電源(E3)と、第4測定端子(S4)と、リード型電子部品(DUT)の他方のリード線(1b)とが直列接続された第3直列回路を形成し、
第3直列回路に50〜200Aの電流を流し、
第2測定端子(S2)および第3測定端子(S3)を介してリード型電子部品(DUT)に並列接続された電圧計(VF)により、リード型電子部品(DUT)の電圧降下を測定することを特徴とする電子部品の特性検査方法が提供される。
【0012】
【実施例】
以下に本発明の実施例を、図1を参照して説明する。
図1において、DUTは、ダイオード等のリード型電子部品である。このDUTのリード線1aに特性検査試験装置の測定端子S1〜S2を、また、リード線1bに該検査試験装置の測定端子S3〜S4を接触させてある。
【0013】
測定端子S1にはリレーRY11,RY13が、測定端子S2にはリレーRY12,RY14がそれぞれ接続され、該リレーRY11及びRY12の固定接点a,a間には後述する電圧を測定するための電圧計VR1が接続されている。
リレーRY13及びRY14の固定接点a,a間には検査電流I1を流すための電源E1が接続されている。
【0014】
測定端子S3にはリレーRY15,RY17が、測定端子S4にはリレーRY16,RY18がそれぞれ接続され、リレーRY15及びRY16の固定接点a,a間には後述する電圧を測定するための電圧計VR2が接続されている。また、リレーRY17及びRY18の固定接点a,a間には検査電流I1を流すための電源E2が接続されている。
【0015】
さらに、リレーRY11の固定接点bとリレーRY18の固定接点b間には試験電流ISを流すための電源E3が抵抗R3、スイッチSW3を介して接続されている。
また、リレーRY12の固定接点bとリレーRY17の固定接点b間には、後述する電圧を測定するための電圧計VFが接続される。
なお、リレーRY13,RY14,RY15,RY16の固定接点bには何も接続されない。
【0016】
上記の構成において、測定端子S1及びS2とリード線1aとの接触状態を検査するため、リレーRY11,RY12,RY13及びRY14の可動接点を固定接点aに接触させ、モード1の状態にする。
次いで、スイッチSW1をオンにすると、電源E1から抵抗R1、リレーRY13、測定端子S1、リード線1a、測定端子S2、リレーRY14、スイッチSW1の経路で検査電流I1が流れる。
なお、検査電流I1は、この実施例では10〜30Aの範囲とした。
【0017】
上記のような範囲の電流値は、本発明で特に意義がある。
すなわち、リード線1a,1bの表面の汚れ、樹脂成形時に形成されたモールドのバリ等が付着して測定端子との接触が不完全でも上記範囲の検査電流I1を流すことにより部分的な微少スパークで接触を良好にする。一方、この範囲よりも小さい電流では接触が完全にならず、また、この範囲以上大きな電流では大きなスパークとなり、測定端子やリード線が溶着してしまうことが種々の実験結果から判明した。
従って、上記の電流値の範囲が好ましい。
【0018】
また、電源E1から検査電流I1を流すと同時に、測定端子S1とS2間の電圧を電圧計VR1で測定し、その電流値が規定値以内であれば接触抵抗が小さく、接触状態が良好であることを示している。
【0019】
ここで、検査電流I1を流した時の電圧計VR1で測定した電圧をvr1とし、このvr1について考察する。
図示の場合、配線L1部の抵抗をRa、リード線1aの長さLoに相当する部分の抵抗をRc、配線L2部の抵抗をRbとし、さらに測定端子S1とリード線1aとの接触抵抗をRd、測定端子S2とリード線1aとの接触抵抗Reとすると、上記電圧vr1は次式で表される。
vr1=I1*(Ra+Rb+Rc+Rd+Re)………(1)
【0020】
上記(1)式でRa,Rb,Rcを、予め実測して求めておけば図1のモード1で測定されたvr1からI1*(Ra+Rb+Rc)を差し引くことにより接触抵抗分Rd,Reが分かる。
【0021】
リード線1b側においても上記と同様にしてモード1の状態で測定端子S3,S4部分の接触抵抗を求める。
なお、図示は省略したが、電圧計VR1及び電圧計VR2で測定された数値vr1,vr2は公知の手段により記憶保持される。
そして、VR1=I1*(Rd+Re)が規定値より大きい場合は、後述のモード2の状態に入る前に被検査ダイオードを測定ステーションから除去する。
【0022】
一方、被検査ダイオードのvr1,vr2が規定値であれば、次のモードに入る。そして、スイッチSW1,SW2をオフしてからリレーRY11〜RY18のすべての固定接点aを固定接点b側に切換え。すなわち、リレーRY11とRY18の固定接点bを介して試験電流を供給する電源E3に接続され、リレーRY12とRY17によってダイオードの電圧降下を測定する電圧計VFに接続される。
【0023】
上記のモード2の場合、スイッチSW3をオンにし、電源E3からダイオードに試験電流ISとして50〜200Aの電流を流す。この電流値はダイオードの品種によって決定される。また、この試験電流ISによるダイオードの順電圧降下分が電圧計VFによって測定される。そして、その電流値測定結果が規定値以内であれば、良品として記憶保持される。
【0024】
こうして試験が終了すると、スイッチSW3がオフされ、ダイオードは次のステーションに搬送される。また、リレーRY11〜RY18もすべてモード1に復帰する。
なお、電源E1,E2,E3はいずれも定電流電源である。
【0025】
以上のように本発明では、接触抵抗を検査するための従来の検査電流10〜100mAと異なり、10〜30Aと大きくしたことを特徴とするものであるが、10A以下では、後述する接触面の異物等を除去するのに効果的ではなく、また、被検査製品へのダメージを極力少なくするために30A以下とした。
【0026】
すなわち、従来ではリード線1a,1bと測定端子D1〜D4が僅かに接触していて接触抵抗が大きくても電流が流れるために、その後、本来の特性電流検査時に流す試験電流でスパークを生じさせていた。
そこで、本発明では、10〜30Aの範囲の比較的大きな電流を初期の段階で流して接触抵抗を検査するとともに、かかる電流によって接触状態を良好に改善しょうとするものである。
【0027】
なお、検査対象となる製品の端子の大きさ、本来の試験電流の大きさ等により最初に流す電流の大きさを具体的に決定する。これによりリード線1a,1bの表面の汚れ、酸化、微少な異物等が測定端子S1,S2,S3,S4間に介在していても両者の接触状態が良好となり、従来のようにスパーク等を起こすことがなくなる。
【0028】
上記の実施例ではDUTとしてダイオードを用いて説明したが、アキシャルリード型電子部品ある他の素子にも利用することが可能である。また、図1に示したリレーRY11〜RY18、スイッチSW1〜SW3は、電子的な素子に代えても良い。
【0029】
【発明の効果】
以上説明したように本発明の電子部品の特性検査方法、最初に接触抵抗を検査する電流を、10〜30Aの範囲で決定し、従来法に比較しその電流値を大きくしたので、リード線1a,1bと測定端子S1,S2との接触面の汚れ、すなわちモールド時の薄バリ、ハンダフラックスの付着等を除去することができる。これにより良好な接触状態で本来の特性試験を正確に実施することが可能となる。さらに、本来の特性試験を行うに先立ち、リード線1a,1bと測定端子S1,S2,S3及びS4との接触抵抗値を測定することにより、極端に接触抵抗が大きい場合にはその後の特性試験を中止することができる。これにより測定端子の磨耗やリード線のスパーク等による損傷をなくすることが可能となるなどの効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す電子部品の特性検査方法を実施するための回路図である。
【図2】従来の電子部品の特性検査方法を実施するための回路図である。
【符号の説明】
DUT リード型電子部品
1a,1b リード線
S1〜S4 測定端子
RY11〜RY18 リレー
E1〜E3
VR1,VR2 電圧計
VF 電圧計
[0001]
[Industrial application fields]
The present invention measures the contact resistance between the measuring terminal of the inspection device and the lead wire of the electronic component in advance during the characteristic inspection of electronic components such as diodes and resistors, and performs the original characteristic inspection after improving the contact state. those concerning the characteristic inspection method of the electronic component which is adapted to implement.
[0002]
[Prior art]
This kind of electronic component characteristic inspection method will be described with reference to FIG.
In the figure, DUT is a lead-type electronic component, and a diode is shown here.
[0003]
Measurement terminals D1, D2 and D3, D4 of the inspection device are brought into contact with the lead wires 1a, 1b of the DUT. Further, relays RY1 to RY4 each having a movable contact for switching and fixed contacts a and b are connected to the measurement terminals D1 to D4 as shown in the figure.
That is, the relay RY1 is connected to the measurement terminal D1, the relay RY2 is connected to the measurement terminal D2, the relay RY3 is connected to the measurement terminal D3, and the relay RY4 is connected to the measurement terminal D4.
Here, the mode when the movable contacts of all the relays RY1 to RY4 are connected to the fixed contact a is set to mode 1, and the mode when the movable contacts of all the relays RY1 to RY4 are connected to the fixed contact b is set to the mode. 2.
In the mode 1, the measurement terminals D1 and D3 are connected to the DC power sources E1 and E2, respectively, and the other measurement terminals D2 and D4 are connected to the photocouplers PC1 and PC2 via the resistors R1 and R2, respectively.
[0004]
In the above configuration, prior to performing the original characteristic inspection of the DUT, first, the contact state between the DUT and the measurement terminals D1 to D4 of the characteristic inspection apparatus is inspected.
That is, in the circuit configuration as described above, when the switches SW1 and SW2 are turned on and the measurement terminals D1 and D2 on the DC power supply E1 side are in contact with the lead wire 1a of the DUT, the photocoupler PC1 is connected via the resistor R1. Current flows and the device is turned on. In this case, a signal for taking the contact state between the measurement terminals D1, D2 and the lead wire 1a as OK is taken out.
[0005]
On the other hand, when the measurement terminals D1 and D2 are not in contact with the lead wire 1a, no current from the DC power supply E1 flows through the photocoupler PC1. In such a case, the photocoupler PC1 is turned off, and a signal with NG as the contact state between the measurement terminals D1 and D2 and the lead wire 1a is taken out.
Similarly, the direct current power supply E2 side can visually check the contact state between the measurement terminals D3 and D4 and the lead wire 1b by the blinking of the photocoupler PC2.
[0006]
Next, when it is confirmed that the measurement terminal and the lead wire are in contact with each other on the lead wire 1a side and the lead wire 1b side, all the relays are connected to the fixed contact b by means not shown, and the mode 2 and Become. At that time, the switch SW3 is turned on, and a current for characteristic inspection flows from the DC power supply E3 to the DUT via the measurement terminals D1 and D3. Then, the voltage at both ends of the DUT is measured by the voltmeter VF via the measurement terminals D2 and D4 by the current flowing through the DUT.
[0007]
[Problems to be solved by the invention]
Prior to the original characteristic inspection, conventionally, the contact state between the lead wires 1a and 1b and the measurement terminals D1 to D4 has been inspected by the above method. That is, the contact state is actually determined based on whether or not a minute current in the range of 10 to 100 mA flows, and the actual contact resistance between the measurement terminals D1 to D4 and the lead wires 1a and 1b is ignored. Was the inspection method. In the inspection method as described above, even if the measurement terminals D1 to D4 are in contact with the lead wires 1a and 1b, the contact resistance at that time varies every time when the electronic components to be inspected are exchanged and contacted each time. When an original test current of about 50 to 200 A is passed instantaneously when the contact resistance is large, a spark occurs between the measurement terminals D1 to D4 and the lead wires 1a and 1b, and the measurement terminals D1 to D4 and the leads There was a problem to be solved that the lines 1a and 1b are dissolved and the subsequent inspection becomes impossible.
[0008]
The present invention has been made to solve the above-described problems, and enables the contact resistance value between the measurement terminal of the characteristic inspection apparatus and the lead wires 1a and 1b of the lead-type electronic component DUT to be inspected. An object of the present invention is to provide a method for inspecting the characteristics of an electronic component, in which the contact state between the measuring terminals D1 to D4 and the lead wire is improved by the resistance inspection current I1, and the original characteristic inspection can be performed accurately. It is.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, a part of one lead wire (1a) of the lead-type electronic component (DUT), the first measurement terminal (S1), the first resistor (R1), and the first Forming a first series circuit in which a DC power source (E1) and a second measurement terminal (S2) are connected in series;
A current of 10 to 30 A is passed through the first series circuit, the contact resistance (Rd) between the first measurement terminal (S1) and one lead wire (1a), and the second measurement terminal (S2) and one lead wire. Reduce the contact resistance (Re) with (1a)
Based on the current value (I1) flowing through the first series circuit and the voltage value (vr1) between the first measurement terminal (S1) and the second measurement terminal (S2), the first measurement terminal (S1) Calculate the contact resistance (Rd) with one lead wire (1a) and the contact resistance (Re) between the second measurement terminal (S2) and one lead wire (1a),
Part of the other lead wire (1b) of the lead-type electronic component (DUT), the third measurement terminal (S3), the second resistor (R2), the second DC power supply (E2), and the fourth measurement terminal (S4) to form a second series circuit connected in series,
A current of 10 to 30 A is passed through the second series circuit, the contact resistance between the third measurement terminal (S3) and the other lead wire (1b), and the fourth measurement terminal (S4) and the other lead wire (1b). The contact resistance with
Based on the current value flowing through the second series circuit and the voltage value between the third measurement terminal (S3) and the fourth measurement terminal (S4), the third measurement terminal (S3) and the other lead wire (1b) ) And the contact resistance between the fourth measurement terminal (S4) and the other lead wire (1b),
Lead type electronic component (DUT), one lead wire (1a) of lead type electronic component (DUT), first measurement terminal (S1), third resistor (R3), and third DC power source (E3) A third series circuit in which the fourth measurement terminal (S4) and the other lead wire (1b) of the lead type electronic component (DUT) are connected in series;
A current of 50 to 200 A is passed through the third series circuit,
A voltage drop of the lead type electronic component (DUT) is measured by a voltmeter (VF) connected in parallel to the lead type electronic component (DUT) via the second measurement terminal (S2) and the third measurement terminal (S3). An electronic component characteristic inspection method is provided.
[0012]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
In FIG. 1, DUT is a lead-type electronic component such as a diode. Measurement terminals S1 to S2 of the characteristic inspection test apparatus are brought into contact with the lead wire 1a of the DUT, and measurement terminals S3 to S4 of the inspection test apparatus are brought into contact with the lead wire 1b.
[0013]
The measurement terminal S1 is connected to relays RY11 and RY13, and the measurement terminal S2 is connected to relays RY12 and RY14. A voltmeter VR1 for measuring a voltage described later between the fixed contacts a and a of the relays RY11 and RY12. Is connected.
A power supply E1 for flowing the inspection current I1 is connected between the fixed contacts a and a of the relays RY13 and RY14.
[0014]
Relays RY15 and RY17 are connected to measurement terminal S3, and relays RY16 and RY18 are connected to measurement terminal S4. A voltmeter VR2 for measuring a voltage to be described later is provided between fixed contacts a and a of relays RY15 and RY16. It is connected. In addition, a power source E2 for flowing an inspection current I1 is connected between the fixed contacts a and a of the relays RY17 and RY18.
[0015]
Further, a power source E3 for flowing a test current IS is connected between the fixed contact b of the relay RY11 and the fixed contact b of the relay RY18 via a resistor R3 and a switch SW3.
Further, a voltmeter VF for measuring a voltage described later is connected between the fixed contact b of the relay RY12 and the fixed contact b of the relay RY17.
Note that nothing is connected to the fixed contact b of the relays RY13, RY14, RY15, RY16.
[0016]
In the above configuration, in order to inspect the contact state between the measurement terminals S1 and S2 and the lead wire 1a, the movable contacts of the relays RY11, RY12, RY13, and RY14 are brought into contact with the fixed contact a to be in the mode 1 state.
Next, when the switch SW1 is turned on, the inspection current I1 flows from the power source E1 through the path of the resistor R1, the relay RY13, the measurement terminal S1, the lead wire 1a, the measurement terminal S2, the relay RY14, and the switch SW1.
In this embodiment, the inspection current I1 is in the range of 10 to 30A.
[0017]
A current value in the above range is particularly significant in the present invention.
That is, even if the surface of the lead wires 1a and 1b is soiled, burrs of the mold formed at the time of resin molding adhere, and even if the contact with the measurement terminal is incomplete, the inspection current I1 in the above range is applied to cause a partial minute spark. To improve contact. On the other hand, it has been found from various experimental results that contact is not complete at a current smaller than this range, and that a spark larger than this range results in a large spark and the measurement terminals and lead wires are welded.
Therefore, the above current value range is preferable.
[0018]
Further, at the same time when the inspection current I1 is supplied from the power source E1, the voltage between the measurement terminals S1 and S2 is measured by the voltmeter VR1, and if the current value is within the specified value, the contact resistance is small and the contact state is good. It is shown that.
[0019]
Here, the voltage measured by the voltmeter VR1 when the inspection current I1 is supplied is defined as vr1, and this vr1 is considered.
In the illustrated case, the resistance of the wiring L1 portion is Ra, the resistance of the portion corresponding to the length Lo of the lead wire 1a is Rc, the resistance of the wiring L2 portion is Rb, and the contact resistance between the measurement terminal S1 and the lead wire 1a is When Rd is the contact resistance Re between the measurement terminal S2 and the lead wire 1a, the voltage vr1 is expressed by the following equation.
vr1 = I1 * (Ra + Rb + Rc + Rd + Re) (1)
[0020]
If Ra, Rb, and Rc are obtained in advance by the above equation (1), contact resistance Rd, by subtracting I1 * (Ra + Rb + Rc) from vr1 measured in mode 1 of FIG. Re is understood.
[0021]
Also on the lead wire 1b side, the contact resistances of the measurement terminals S3 and S4 are obtained in the mode 1 in the same manner as described above.
Although not shown, the numerical values vr1 and vr2 measured by the voltmeter VR1 and the voltmeter VR2 are stored and held by known means.
If VR1 = I1 * (Rd + Re) is larger than the specified value, the diode to be inspected is removed from the measurement station before entering the mode 2 mode described later.
[0022]
On the other hand, if vr1 and vr2 of the diode to be inspected are specified values, the next mode is entered. Then, Ru switched from off the switches SW1, SW2 all fixed contact a of relay RY11~RY18 the fixed contact b. That is, it is connected to a power source E3 that supplies a test current via a fixed contact b of relays RY11 and RY18, and is connected to a voltmeter VF that measures a voltage drop of a diode by relays RY12 and RY17.
[0023]
In the case of the above mode 2, the switch SW3 is turned on, and a current of 50 to 200 A is supplied as a test current IS from the power source E3 to the diode. This current value is determined by the type of diode. The forward voltage drop of the diode due to the test current IS is measured by a voltmeter VF. If the measurement result of the current value is within the specified value, it is stored and held as a non-defective product.
[0024]
When the test is thus completed, the switch SW3 is turned off, and the diode is transported to the next station. Relays RY11-RY18 all return to mode 1.
The power supplies E1, E2, E3 are all constant current power supplies.
[0025]
As described above, the present invention is characterized in that it is increased to 10 to 30 A, unlike the conventional inspection current of 10 to 100 mA for inspecting the contact resistance. It is not effective for removing foreign matter and the like, and is 30 A or less in order to minimize damage to the product to be inspected.
[0026]
That is, in the prior art, since the lead wires 1a and 1b and the measurement terminals D1 to D4 are slightly in contact with each other and a current flows even if the contact resistance is large, a spark is generated by a test current that is passed during an original characteristic current inspection. It was.
Therefore, in the present invention, a relatively large current in the range of 10 to 30 A is passed at an early stage to inspect the contact resistance, and the contact state is to be improved satisfactorily by such current.
[0027]
It should be noted that the magnitude of the current that is initially supplied is specifically determined based on the size of the terminal of the product to be inspected, the magnitude of the original test current, and the like. As a result, even if dirt, oxidation, minute foreign matter, etc. on the surface of the lead wires 1a, 1b are present between the measurement terminals S1, S2, S3, S4, the contact state between the two becomes good, and a spark or the like can be performed as in the prior art. No waking.
[0028]
In the above embodiment, the diode is used as the DUT. However, the present invention can also be used for other elements having an axial lead type electronic component. Further, the relays RY11 to RY18 and switches SW1 to SW3 shown in FIG. 1 may be replaced with electronic elements.
[0029]
【The invention's effect】
As described above, in the method for inspecting characteristics of an electronic component according to the present invention, the current for inspecting the contact resistance is first determined in the range of 10 to 30 A, and the current value is increased as compared with the conventional method. Dirt on the contact surface between 1a and 1b and measurement terminals S1 and S2, that is, thin burrs during molding, adhesion of solder flux, and the like can be removed. This makes it possible to accurately perform the original characteristic test in a good contact state. Further, prior to conducting the original characteristic test, by measuring the contact resistance value between the lead wires 1a and 1b and the measurement terminals S1, S2, S3 and S4, if the contact resistance is extremely large, the subsequent characteristic test is performed. Can be canceled. As a result, there is an effect that it is possible to eliminate damage due to wear of the measurement terminal, spark of the lead wire, or the like.
[Brief description of the drawings]
FIG. 1 is a circuit diagram for carrying out an electronic component characteristic inspection method according to an embodiment of the present invention.
FIG. 2 is a circuit diagram for carrying out a conventional characteristic inspection method for electronic components.
[Explanation of symbols]
DUT leaded electronic components 1a, 1b leads S1~S4 measuring terminals RY11~RY18 relay E1~E3 power <br/> VR1, VR2 voltmeter VF voltmeter

Claims (1)

リード型電子部品(DUT)の一方のリード線(1a)の一部と、第1測定端子(S1)と、第1抵抗(R1)と、第1直流電源(E1)と、第2測定端子(S2)とが直列接続された第1直列回路を形成し、Part of one lead wire (1a) of the lead-type electronic component (DUT), the first measurement terminal (S1), the first resistor (R1), the first DC power supply (E1), and the second measurement terminal (S2) to form a first series circuit connected in series,
第1直列回路に10〜30Aの電流を流し、第1測定端子(S1)と一方のリード線(1a)との接触抵抗(Rd)、および、第2測定端子(S2)と一方のリード線(1a)との接触抵抗(Re)を小さくし、A current of 10 to 30 A is passed through the first series circuit, the contact resistance (Rd) between the first measurement terminal (S1) and one lead wire (1a), and the second measurement terminal (S2) and one lead wire. Reduce the contact resistance (Re) with (1a)
第1直列回路を流れる電流値(I1)と、第1測定端子(S1)と第2測定端子(S2)との間の電圧値(vr1)とに基づいて、第1測定端子(S1)と一方のリード線(1a)との接触抵抗(Rd)、および、第2測定端子(S2)と一方のリード線(1a)との接触抵抗(Re)を算出し、Based on the current value (I1) flowing through the first series circuit and the voltage value (vr1) between the first measurement terminal (S1) and the second measurement terminal (S2), the first measurement terminal (S1) Calculate the contact resistance (Rd) with one lead wire (1a) and the contact resistance (Re) between the second measurement terminal (S2) and one lead wire (1a),
リード型電子部品(DUT)の他方のリード線(1b)の一部と、第3測定端子(S3)と、第2抵抗(R2)と、第2直流電源(E2)と、第4測定端子(S4)とが直列接続された第2直列回路を形成し、Part of the other lead wire (1b) of the lead-type electronic component (DUT), the third measurement terminal (S3), the second resistor (R2), the second DC power supply (E2), and the fourth measurement terminal (S4) to form a second series circuit connected in series,
第2直列回路に10〜30Aの電流を流し、第3測定端子(S3)と他方のリード線(1b)との接触抵抗、および、第4測定端子(S4)と他方のリード線(1b)との接触抵抗を小さくし、A current of 10 to 30 A is passed through the second series circuit, the contact resistance between the third measurement terminal (S3) and the other lead wire (1b), and the fourth measurement terminal (S4) and the other lead wire (1b). The contact resistance with
第2直列回路を流れる電流値と、第3測定端子(S3)と第4測定端子(S4)との間の電圧値とに基づいて、第3測定端子(S3)と他方のリード線(1b)との接触抵抗、および、第4測定端子(S4)と他方のリード線(1b)との接触抵抗を算出し、Based on the current value flowing through the second series circuit and the voltage value between the third measurement terminal (S3) and the fourth measurement terminal (S4), the third measurement terminal (S3) and the other lead wire (1b) ) And the contact resistance between the fourth measurement terminal (S4) and the other lead wire (1b),
リード型電子部品(DUT)と、リード型電子部品(DUT)の一方のリード線(1a)と、第1測定端子(S1)と、第3抵抗(R3)と、第3直流電源(E3)と、第4測定端子(S4)と、リード型電子部品(DUT)の他方のリード線(1b)とが直列接続された第3直列回路を形成し、Lead type electronic component (DUT), one lead wire (1a) of lead type electronic component (DUT), first measurement terminal (S1), third resistor (R3), and third DC power source (E3) A third series circuit in which the fourth measurement terminal (S4) and the other lead wire (1b) of the lead type electronic component (DUT) are connected in series;
第3直列回路に50〜200Aの電流を流し、A current of 50 to 200 A is passed through the third series circuit,
第2測定端子(S2)および第3測定端子(S3)を介してリード型電子部品(DUT)に並列接続された電圧計(VF)により、リード型電子部品(DUT)の電圧降下を測定することを特徴とする電子部品の特性検査方法。A voltage drop of the lead type electronic component (DUT) is measured by a voltmeter (VF) connected in parallel to the lead type electronic component (DUT) via the second measurement terminal (S2) and the third measurement terminal (S3). A method for inspecting characteristics of electronic parts.
JP00857699A 1999-01-18 1999-01-18 Electronic component characteristic inspection method Expired - Fee Related JP4124895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00857699A JP4124895B2 (en) 1999-01-18 1999-01-18 Electronic component characteristic inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00857699A JP4124895B2 (en) 1999-01-18 1999-01-18 Electronic component characteristic inspection method

Publications (2)

Publication Number Publication Date
JP2000206179A JP2000206179A (en) 2000-07-28
JP4124895B2 true JP4124895B2 (en) 2008-07-23

Family

ID=11696866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00857699A Expired - Fee Related JP4124895B2 (en) 1999-01-18 1999-01-18 Electronic component characteristic inspection method

Country Status (1)

Country Link
JP (1) JP4124895B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056736B2 (en) * 2008-12-03 2012-10-24 トヨタ自動車株式会社 Inspection apparatus and inspection method
JP6189199B2 (en) * 2013-12-11 2017-08-30 新電元工業株式会社 Contact inspection apparatus, contact inspection method, and electronic component

Also Published As

Publication number Publication date
JP2000206179A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
US5676867A (en) Apparatus and method for monitoring and evaluating weld quality
US20030132752A1 (en) Method and apparatus for automated relay testing
JP6252106B2 (en) Contact maintenance method and inspection device
JPH02503940A (en) Apparatus and method for controlling and monitoring electrical loads, e.g. in heater plugs or glow plugs
CN111406220A (en) Diagnostic device and method for establishing a degraded state of an electrical connection in a power semiconductor device
JP4124895B2 (en) Electronic component characteristic inspection method
JP6155725B2 (en) Semiconductor device inspection method and semiconductor device manufacturing method using the same
JP5291860B2 (en) Insulation withstand voltage test equipment
JP2002048833A (en) Circuit board inspecting device
JP2015055596A (en) Inspection device and inspection method
US20040095124A1 (en) Automatic multimeter
JP3878779B2 (en) Resistance measuring method and apparatus
JP4788868B2 (en) Earthester and ground resistance measurement method
JPH10332767A (en) Probe for inspecting missing article of circuit board and inspection device of missing article of circuit board using it
CN111141957A (en) Measuring circuit and testing equipment for contact resistance of quick-change connector and electric automobile
JP2006030131A (en) Resistance measuring method and device therefor
KR100911723B1 (en) Method For Welding Monitoring Using Arc Welding Power Source Device
JPH0810965A (en) Method and device for falling off detecting of resistance welding electrode
CN210037977U (en) Measuring circuit and testing equipment for contact resistance of quick-change connector and electric automobile
JPH10115642A (en) Resistivity measuring device
JPH0836012A (en) Device and method for detecting grounding fault
JP6808517B2 (en) Contact condition improvement device
JP3612841B2 (en) 4-wire resistance measuring method and apparatus
JPH0734369Y2 (en) Lubricant stain detector
JPH0299877A (en) Integrated circuit part and contact inspection thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees