JP4124845B2 - 光波長安定制御装置 - Google Patents

光波長安定制御装置 Download PDF

Info

Publication number
JP4124845B2
JP4124845B2 JP29222897A JP29222897A JP4124845B2 JP 4124845 B2 JP4124845 B2 JP 4124845B2 JP 29222897 A JP29222897 A JP 29222897A JP 29222897 A JP29222897 A JP 29222897A JP 4124845 B2 JP4124845 B2 JP 4124845B2
Authority
JP
Japan
Prior art keywords
wavelength
laser
optical
optical wavelength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29222897A
Other languages
English (en)
Other versions
JPH11126940A (ja
Inventor
秀幸 芹澤
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP29222897A priority Critical patent/JP4124845B2/ja
Priority to DE69820833T priority patent/DE69820833D1/de
Priority to EP98119624A priority patent/EP0911928B1/en
Priority to US09/176,579 priority patent/US6212210B1/en
Publication of JPH11126940A publication Critical patent/JPH11126940A/ja
Priority to US09/769,915 priority patent/US6891867B2/en
Application granted granted Critical
Publication of JP4124845B2 publication Critical patent/JP4124845B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature

Description

【0001】
【発明の属する技術分野】
本発明は、光源から出力される光波長を安定化するための光波長安定制御装置に係り、特に、いかなる周囲条件においても光出力波長を安定化することに好適な光波長安定制御装置に関する。
【0002】
【従来の技術】
近年、通信サービスのマルチメディア化に伴い、基幹伝送である光伝送システムの高速化大容量化が推し進められている。光伝送システムの高速大容量化を実現する手段として光波長多重伝送が注目されている。
【0003】
この光波長多重伝送では、異なる光波長にそれぞれの信号を割り当てることによって複数のチャネルを共通の伝送路で伝送している。従って、光波長多重伝送では、隣接波長の光に対する干渉を少なくすることが、チャネル間の干渉を避けるために要求される。このため、光波長を高精度に安定化させることが求められている。
【0004】
光送信器から出力される光波長が変動する要因としては、例えば、レーザ素子の温度変動とレーザ駆動電流変動との2つが挙げられる。
【0005】
従来、出力される光波長を安定化するために、レーザ素子の温度を一定に保つことにより光波長の安定化を図る方式、出力される光の光波長をモニタして、その光波長を安定化する制御方式などがとられている。以下に、図1および図2を参照して、これらの方式について説明する。
【0006】
まず、図1を参照して、レーザ素子の温度を一定に保つことにより光波長の安定化を図る方式について説明する。
【0007】
図1において、光送信器は、レーザダイオード(LD)共に、感温素子5および冷却加熱素子10が搭載されているレーザモジュール4と、上記感温素子5を用いてレーザダイオードの温度をモニタするための温度モニタ回路6と、レーザダイオードの温度を制御すべきレーザ温度制御目標値を設定するための目標値設定回路8と、上記温度モニタ回路6によってモニタされる温度の値および上記目標値設定回路8によって設定された目標値を比較するための比較部a7と、上記比較部a7における比較の結果に基づいて上記冷却加熱素子10に与える電流を制御するための電流制御部9とを有して構成されている。
【0008】
このような光送信器では、感温素子5および温度モニタ回路6によりモニタされるレーザ温度と、設定回路8で設定されたレーザ温度制御目標値との差が、比較部a7で検知され、電流制御部9に送られる。電流制御部9では、検知された差が零となるように電流値を決定し、決定した電流値で冷却加熱素子10を駆動する。
【0009】
このような温度制御により、レーザ素子(この場合は、レーザダイオード)の温度が一定に保たれ、レーザ素子から出力される光の波長が安定化される。
【0010】
同様の制御方式としては、特開昭57-186383号公報に記載される半導体レーザ装置がある。
【0011】
次に、図2を参照して、出力される光の光波長をモニタして、その光波長を安定化する制御方式について説明する。
【0012】
図2において、光送信器は、レーザダイオード(LD)共に、感温素子5および冷却加熱素子10が搭載されているレーザモジュール4と、上記レーザダイオードから出力される光を分岐するための光カプラ11と、分岐された光の一方を受光し、その波長をモニタするための光波長モニタ部12と、光波長を制御すべき波長制御目標値を設定するための目標値設定回路13と、上記光波長モニタ部12でモニタされる光波長の値および上記目標値設定回路13によって設定された目標値を比較するための比較部b14と、比較部b14における比較の結果に基づいて上記冷却加熱素子10に与える電流を制御するための電流制御部9とを有して構成されている。
【0013】
このような光送信器では、レーザモジュール4から出力される光の波長が、光波長モニタ部12においてモニタされる。モニタされた波長と設定回路13で設定された波長制御目標値との差が、比較部b14により検知され、電流制御部9に送られる。電流制御部9では、検知された差が零となるように電流値を決定し、決定した電流値で冷却加熱素子10を駆動する。同様の制御方式としては、1997年電子情報通信学会総合大会予稿集B−10-215,P724に記載の制御回路がある。
【0014】
この方式では、波長そのものをモニタするため、レーザ素子温度変動やレーザ駆動電流の変動に起因する波長変動を抑圧することができる。
【0015】
【発明が解決しようとする課題】
一般に、レーザを長期間運転すると、経時劣化による出力変動が生じる。このため、自動出力制御(Auto Poer Control;APC)回路によって、出力変動を抑えるようにレーザ駆動電流が制御されている。ところが、レーザから出力される光波長は、レーザ駆動電流の変動によっても変化する。
【0016】
このため、レーザからの光出力波長は、上述したレーザ素子の温度を一定に保つことにより光波長の安定化を図る方式では、図3に示すように変動する。
【0017】
図3において、レーザ運転期間が短いうちは、レーザダイオード(LD)駆動電流が一定と見なせる。この範囲では、周囲温度の変化によりレーザダイオードの温度が変動しても、これを一定の目標値(レーザ温度制御目標値)とするように、電流制御部9(図1参照)からの出力が制御され、この出力電流により冷却加熱素子10(図1参照)が駆動される。従って、短期的には光出力波長は安定化されている。
【0018】
レーザ運転期間が長くなり、レーザの経時劣化によりAPC回路によってレーザ駆動電流If(t)が増減してしまうことがある。この場合、レーザ駆動電流増減に起因する波長変動量△λは、次の(式1)のように表される。
【0019】
△λ=α・{If(tn) - If(t0)} …(式1)
α ;レーザ駆動電流−波長変動変換定数
If(t0);初期時間t0におけるレーザ駆動電流値
If(tn);時間tnだけ経過したときのレーザ駆動電流値
この波長変動量△λはレーザダイオードの温度に依らずに発生するため、この制御方式では、上記波長変動分を補正することはできない。
【0020】
また、温度を一定にするためのフィードバック制御では、一般に、操作(冷却加熱)に対する応答(温度変化)の遅延が大きいため、フィードバックゲインを大きくすると、フィードバックループが発振することがある。このため、フィードバックゲインを小さくしなければならない。制御の誤差は、フィードバックゲインの逆数に比例するため、レーザ温度は、必ずしも高い精度で一定にはならないことがある。従って、この制御方式では、光波長を安定化する制御を高精度化することは困難である。
【0021】
これに対して、レーザから出力される光の光波長をモニタして、その光波長を安定化する制御方式では、
出力される光波長をモニタし、その変動を抑えるようにレーザ温度を制御するため、レーザ駆動電流値が変動しても、光波長を安定化することができる。従って、レーザが経時劣化するような長い期間においても、波長を安定化することができる。
【0022】
また、光の波長は、高速かつ高精度にモニタすることができるので、波長を高い精度で安定化することができる。
【0023】
しかし、この制御方式では、波長モニタ値が零または不安定となる場合、制御目標値との波長差が大きいと認識され、電流制御部9(図2参照)は、レーザ素子を過剰に加熱、冷却する出力電流値を冷却加熱素子10に与えてしまう。これによって、レーザ素子を破壊もしくは劣化させてしまう可能性がある。
【0024】
波長モニタ値が零または不安定となる要因としては、例えば、光波長モニタ部12(図2参照)に導入される光出力が小さくなること、および、レーザモジュール4(図2参照)から出力される光波長が不安定になることが挙げられる。従って、光出力停止信号入力時、光カプラ11以降における光出力断発生時、電源電圧投入時の波長不安定状態時などには、波長モニタ値が零または不安定となり、レーザ素子を破壊もしくは劣化させるような温度制御を行う可能性がある。
【0025】
例えば、図4に示すように、光出力停止信号が入力された時、LD駆動電流が停止し、レーザからの光出力が小さくなる。このような状態では、光波長モニタ部12(図2参照)の出力は、波長が0である状態を示す。すると、比較部b14(図2参照)から出力される波長差の値は、max値となり、電流制御部9(図2参照)の出力電流値もmax値となる。このため、冷却加熱素子10(図2参照)によって、レーザモジュール4(図2参照)は、加熱または冷却されすぎて、破壊または劣化を引き起こしてしまう。
【0026】
上述したように、レーザ温度を一定に保つ方式では、レーザ駆動電流の変化に伴う、光波長の変動を補正することはできないという問題がある。また、光波長値をモニタしてくる方式では、周囲条件によっては波長モニタが不安定になるため、レーザを破壊または劣化させる虞があるという問題がある。
【0027】
本発明の第1の目的は,周囲条件によらずいかなる場合においても長期的に光出力波長を高精度で高安定化させることができる高精度光波長安定制御装置を提供することにある。
【0028】
また、本発明の第2の目的は、周囲条件によらずいかなる場合においても、チャネルごとのレーザ波長が干渉することが避けられる光波長多重送信器を提供することにある。
【0029】
【課題を解決するための手段】
上記第1の目的を達成するために、本発明の第1の態様によれば、
レーザから出力される光波長を安定化するための光波長安定制御装置において、
レーザから出力される光波長の変動要因となるパラメータの1つの、予め定められた目標値に対する第1の制御偏差を検知するためのパラメータ偏差検知手段と、
レーザから出力される光波長の予め定められた目標値に対する第2の制御偏差を検知するための光波長偏差検知手段と、
上記第1および第2の制御偏差のうち一方の制御偏差を選択するための選択手段と、
上記選択された制御偏差が小さくなるように、上記パラメータの1つを操作するための操作手段とを有すること
を特徴とする光波長安定制御装置が提供される。
【0030】
本発明の第2の形態によれば、
レーザと感温素子と冷却加熱素子とを搭載したレーザモジュールから出力される光波長を安定化するための光波長安定制御装置において、
上記光波長を安定化するための第1および第2の波長安定制御手段と、
上記第1および第2の波長安定制御手段のうちの一方を、周囲条件に応じて選択するための選択手段とを有し、
上記第1の波長安定制御手段は、
上記感温素子よりレーザの温度をモニタするための温度モニタ回路と、
該温度モニタ回路出力値とレーザ温度制御目標値との差を検知するための第1の比較部と、
検知された目標値との差が零となるように上記冷却加熱素子に流す電流値を決定するための第1の電流制御手段とを有し、
上記第2の波長安定制御手段は、
レーザモジュールの光出力を分岐するための光カプラと、
分岐された出力光の光波長をモニタするための光波長モニタ部と、
モニタされた光出力波長値と波長制御目標値との差を検知するための第2の比較部と、
検知された目標値との差が零となるように上記冷却加熱素子に流す電流値を決定するための第2の電流制御手段とを有すること
を特徴とする光波長安定制御装置が提供される。
【0031】
また、上記第2の目的を達成するための、本発明の第3の態様によれば、
複数の異なる波長の光を送信するための光波長多重送信器において、
共通のヒートシンクに取り付けられた複数のレーザダイオードと、
上記ヒートシンクの温度を予め定められた温度に制御するための温度制御部と、
上記各レーザダイオードの発振波長をそれぞれ検知するための光センサと、
上記複数のレーザダイオードの各々を駆動するための駆動電源と、
上記検知される各レーザダイオードの発振波長を、各レーザダイオードにそれぞれ定められる目標波長に近づけるように、上記駆動電源が各レーザダイオードを駆動する電流をそれぞれ制御するための電流制御部とを有し、
上記電流制御部は、上記複数のレーザダイオードのうちいずれかが光出力を停止しているとき、および、光出力を開始してから予め定められた時間が経過していないとき、当該レーザダイオードの駆動電流を予め定められた目標電流に近づけるように制御すること
を特徴とする光波長多重送信器が提供される。
【0032】
本発明の第4の態様によれば、
複数の異なる波長の光を送信するための光波長多重送信器において、
複数のレーザダイオードと、
上記複数のレーザダイオードをそれぞれ駆動するための駆動電源と、
上記複数のレーザダイオードの各々の発振波長をそれぞれ検知するための光センサと、
上記複数のレーザダイオードの各々の温度をそれぞれ検知するための温度センサと、
上記各レーザダイオードについて、当該レーザダイオードの発振波長が安定して検知されるとき、検知される発振波長を該レーザダイオードに定められた目標波長に近づけるように該レーザダイオードの温度を制御し、かつ、そうでないとき、当該レーザダイオードの温度を、レーザダイオードごとに予め定められた温度に制御するための温度制御部とを有すること
を特徴とする光波長多重送信器が提供される。
【0033】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態について説明する。
【0034】
まず、図5および図6を参照して、本発明の第1の実施の形態について説明する。本実施の形態では、光波長を制御するための制御方式を2つ備え、これらのうちから一方の制御方式を周囲条件に応じて選択する。
【0035】
図5において、本実施の形態の光波長安定制御装置は、レーザ温度の制御目標値に対する偏差を検知するための温度偏差検知部110と、レーザから出力される光波長の制御目標値に対する偏差を検知するための光波長偏差検知部120と、周囲条件に応じて制御方式を決定して、その制御方式に対応する偏差検知部を温度偏差検知部110および光波長偏差検知部120のうちから選択するための選択部130と、上記選択部130により選択された偏差検知部から出力される偏差に応じてレーザ温度を操作するための温度操作部140とを有して構成される。
【0036】
上記温度偏差検知部110は、予め定められたレーザ温度制御目標値に対する、レーザ素子温度の偏差を検出するためのものである。この偏差は、レーザ素子温度を一定に保つ制御方式に用いられる。温度偏差検知部110は、レーザダイオード(LD)と共にレーザモジュール4に搭載されている感温素子5と、感温素子5を用いてレーザダイオードの温度をモニタするための温度モニタ回路6と、レーザダイオードの温度を制御すべきレーザ温度制御目標値を設定するための目標値設定回路8と、上記温度モニタ回路6によってモニタされる温度の値および上記目標値設定回路8によって設定された目標値を比較するための比較部a7とを有して構成される。
【0037】
上記光波長偏差検知部120は、予め定められた波長制御目標値に対する、レーザから出力される光の波長の偏差を検出するためのものである。この偏差は、レーザから出力される光の光波長をモニタして、その光波長を安定化する制御方式に用いられる。光波長偏差検知部120は、レーザモジュール4上のレーザダイオード(LD)から出力される光を分岐するための光カプラ11と、分岐された光の一方を受光し、その波長をモニタするための光波長モニタ部12と、光波長を制御すべき波長制御目標値を設定するための目標値設定回路13と、上記光波長モニタ部12でモニタされる光波長の値および上記目標値設定回路13によって設定された目標値を比較するための比較部b14とを有して構成される。光波長モニタ部12としては、例えば、波長計、バンドパスフィルタを用いた波長ロッカを使用することができる。
【0038】
上記選択部130は、レーザの周囲条件に応じて制御方式を決定し、その制御方式に対応する偏差を選択して上記温度操作部140に与えるためのものである。選択部130は、周囲条件を読み込み、読み込んだ周囲条件に基づいて制御方式を決定するための制御方式決定回路1と、各制御方式の応答時間、温度制御の応答時間などを考慮して予め定められた遅延時間に応じて、制御方式の切り替えを遅延させるための遅延時間生成回路3と、決定された制御方式に対応して制御方式を選択するための制御方式選択回路2とを有して構成される。本実施の形態における制御方式選択回路2では、決定された制御方式を示す信号を制御方式決定回路1から遅延時間生成回路3を介して受け付け、受け付けた信号が示す制御方式に用いられる偏差を出力する偏差検知部を上記温度偏差検知部110および光波長偏差検知部120のうちから選択し、選択した検知部からの出力を度操作部140に与える。なお、遅延時間生成回路3としては、例えば、ロウパスフィルタ等を用いて構成することができる。また、制御方式選択回路2は、例えば、アナログスイッチ等を用いて構成することができる。さらに、制御方式決定回路1と遅延時間生成回路3とを統合してマイコンを使用しても実現可能である。
【0039】
上記温度操作部140は、上記選択部130によって選択された制御方式に従ってレーザダイオードの温度を操作するためのものである。温度操作部140は、レーザダイオード(LD)共にレーザモジュール4に搭載される冷却加熱素子10と、上記選択部130によって選択された制御方式に従って、上記冷却加熱素子10に与える電流を制御するための電流制御部9とを備えて構成される。
【0040】
次に、本実施の形態における光波長安定制御装置の動作について説明する。
【0041】
まず、2つの制御方式のうちの一方である、レーザ温度一定制御の状態における動作について説明する。この制御方式では、レーザモジュール4に内蔵された感温素子5を用いて温度モニタ回路6によりレーザ温度がモニタされる。温度モニタ回路6からの出力値とレーザ温度制御目標値8との差を比較部a7で検知し、電流制御部9では、この検知された目標値との差が零となるように、レーザモジュール4に内蔵された冷却加熱素子10に流す電流値を決定し駆動する。これによって、レーザ素子(LD)の温度は一定に保たれる。従って、短期的には高精度で波長安定は得られる。レーザ素子温度はレーザ出力光に関係なくモニタすることができるため、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時であっても、制御は安定して行われる。
【0042】
次に、制御方式の他方である、光波長をモニタして、光波長を一定にする制御の状態における動作について説明する。この制御方式では、レーザモジュール4の光出力を光カプラ11で分岐し、分岐された出力光の光波長を光波長モニタ部12によりモニタし、モニタされた光出力波長値と波長制御目標値13との差を比較部b14により検知する。検知された目標値との差が零となるよう電流制御部9により該レーザモジュール4に内蔵された冷却加熱素子10に流す電流値を決定し駆動する。これにより、レーザから出力される光波長が安定化される。この制御方式においては、波長そのものがモニタされるため、レーザ素子温度変動やレーザ駆動電流の変動に起因する波長変動を抑圧することができる。従って、長期的に高精度な波長安定化が達成できる。ただし、光波長のモニタが困難である場合、例えば、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時には、誤動作をする可能性がある。
【0043】
本光波長安定制御装置では、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時には、上記レーザ温度一定制御の制御方式を、それ以外の場合には、上記光波長をモニタして、光波長を一定にする制御方式を適用する。これによって、いかなる周囲条件であっても光波長を高精度で安定化することが可能となる。
【0044】
次に、図6を参照して、上記選択部130における制御方式の選択について説明する。
【0045】
本発明の高精度光波長安定制御装置では、周囲条件を制御方式決定回路1にて読み込む。制御方式決定回路1は、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時等の条件により、Highレベルの信号およびLowレベルの信号のいずれかを選択して出力する。High/Lowレベル信号が入力された遅延時間生成回路3は、既に入力されている状態の信号をある一定時間出力した後、入力されたHigh/Lowレベル信号を出力する。これにより各制御方式の応答時間、もしくは、冷却加熱素子10の応答時間に対応した制御方式の切り替えが可能となる。制御方式選択回路2では、入力された信号がLowレベルの時には短期波長変動に有効であり、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時でも波長安定化できる、レーザ素子温度を一定に保つ制御方式を選択し、Highレベル入力時には長期的に波長を高精度に安定化でき、レーザの経時劣化による波長変動等を補正可能な、波長モニタ制御方式を選択する。
【0046】
本実施の形態では、周囲条件として、電源の状態(電源電圧Vs)、光出力を停止する信号の有無(SD)、光出力の状態(OPT)について、下記のように論理記号に設定した。
【0047】
Figure 0004124845
このとき、上記信号が制御方式決定回路1に入力された場合の制御方式決定回路1出力は、(式2)の論理式で表される。
【0048】
【数1】
Figure 0004124845
【0049】
例えば、光出力停止信号ON時には、(式2)より制御方式決定回路1出力はLowレベルとなり、制御方式選択回路2は光出力停止信号入力時でも波長を安定化できるレーザ素子温度を一定に保つ制御方式を選択し、波長を安定に保つことができる。
【0050】
さらに、長期安定時においては、電源電圧ON、光出力停止信号OFF、光出力正常であるから(式2)より、制御方式決定回路1出力はHighレベルとなり、制御方式選択回路2は長期的に波長を安定化でき、レーザの経時劣化による波長変動等を補正可能な波長モニタ制御方式を選択し、波長を高精度で安定に保つことができる。
【0051】
以降、電源投入時、光出力断時も同様に動作することにより、いかなる周囲条件においても光出力波長を高精度で安定化させることができる。
【0052】
本実施の形態によれば、上記レーザ素子温度を一定に保つ制御方式の場合、短期的には高精度で波長安定は得られ、かつレーザ出力光には関係ないため、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時に有効であり、波長モニタ制御方式では、波長そのものをモニタするため、レーザ素子温度変動やレーザ駆動電流の変動に起因する波長変動を抑圧することができる点から、長期的に高精度な波長安定化が達成できる。これにより、安定化を実現するだけでなく高精度の波長安定化制御が達成できる。
【0053】
また、電流制御部9が制御方式によらず共通化されているため、制御方式ごとに電流駆動部を備えなくもよい。従って、回路規模の小型化が図れる。
【0054】
さらに、遅延時間生成回路3により、制御方式選択回路2と制御方式決定回路1との間に制御方式を切り替える時間に遅延を持たせることができる。これによって、制御方式の切り替え時間を任意に設定できるため、採用した制御方式の応答速度、冷却加熱素子10の応答速度に対応した制御方式選択が可能となる。
【0055】
このような光波長安定制御装置を備えた光送信器を複数併設することにより、周囲条件によらずいかなる場合においても、チャネルごとのレーザ波長が干渉することが避けられる光波長多重送信器を構成することができる。
【0056】
次に、図7を参照して、本発明の第2の実施の形態について説明する。本実施の形態は、温度一定制御に代えて、駆動電流一定制御を、制御方式の1つに用いることにおいて第1の実施の形態と相違する。以下、相違点を中心に説明する。
【0057】
図7において、本実施の形態の光波長安定制御装置は、レーザ駆動電流の制御目標値に対する偏差を検知するための電流偏差検知部210と、レーザから出力される光波長の制御目標値に対する偏差を検知するための光波長偏差検知部220と、周囲条件に応じて制御方式を決定して、その制御方式に対応する偏差検知部を電流偏差検知部210および光波長偏差検知部220のうちから選択するための選択部230と、上記選択部230により選択された偏差検知部から出力される偏差に応じてレーザ駆動電流を操作するための駆動電流制御部15とを有して構成される。
【0058】
上記電流偏差検知部210は、予め定められたレーザ駆動電流制御目標値に対する、レーザ駆動電流の偏差を検出するためのものである。この偏差は、レーザ駆動電流を一定に保つ制御方式に用いられる。電流偏差検知部210は、レーザダイオード(LD)が駆動されている電流をモニタするための駆動電流モニタ回路18と、レーザを駆動すべきレーザ駆動電流制御目標値を設定するための目標値設定回路17と、上記駆動電流モニタ回路18によってモニタされる駆動電流の値および上記目標値設定回路17によって設定された目標値を比較するための比較部c16とを有して構成される。
【0059】
上記光波長偏差検知部220は、予め定められた波長制御目標値に対する、レーザから出力される光の波長の偏差を検出するためのものである。この偏差は、レーザから出力される光の光波長をモニタして、その光波長を安定化する制御方式に用いられる。光波長偏差検知部220は、第1の実施の形態における光波長偏差検知部120(図5参照)と同様に構成されるので詳細な説明は省略する。
【0060】
上記選択部230は、レーザの周囲条件に応じて制御方式を決定し、その制御方式に対応する偏差を選択して上記駆動電流制御部15に与えるためのものである。選択部230は、第1の実施の形態における選択部130(図5参照)と同様に構成されるので詳細な説明は省略する。本実施の形態における選択部230は、周囲条件に応じて決定した制御方式に用いられる偏差を出力する偏差検知部を上記駆動電流偏差検知部210および光波長偏差検知部220のうちから選択し、選択した検知部からの出力を駆動電流制御部15に与える。
【0061】
上記駆動電流制御部15は、上記選択部130によって選択された制御方式に従ってレーザダイオードを駆動する駆動電流を操作するためのものである。
【0062】
次に、本実施の形態における光波長安定制御装置の動作について説明する。
【0063】
まず、2つの制御方式のうちの一方である、レーザ駆動電流一定制御の状態における動作について説明する。この制御方式では、レーザモジュール4が駆動される駆動電流が駆動電流モニタ回路18によりモニタされる。駆動電流モニタ回路18からの出力値とレーザ駆動電流制御目標値17との差を比較部c16で検知し、駆動電流制御部15では、この検知された目標値との差が零となるように、レーザ素子(LD)を駆動する電流値を決定し駆動する。これによって、レーザ駆動電流は一定に保たれる。従って、短期的には高精度で波長安定は得られる。レーザ駆動電流はレーザ出力光に関係なくモニタすることができるため、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時であっても、制御は安定して行われる。
【0064】
制御方式の他方である、光波長をモニタして、光波長を一定にする制御の状態における動作は、第1の実施の形態と同様に行われるので、ここでの説明は省略する。
【0065】
本光波長安定制御装置では、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時には、上記レーザ駆動電流一定制御の制御方式を、それ以外の場合には、上記光波長をモニタして、光波長を一定にする制御方式を適用する。これによって、いかなる周囲条件であっても光波長を高精度で安定化することが可能となる。
【0066】
このための制御方式の決定および選択は、選択部230で行われる。選択部230における制御方式の決定および選択は、第1の実施の形態と同様にして行われるので、このでの説明は省略する。
【0067】
なお、本実施の形態における光波長安定制御装置は、レーザ温度を一定に制御するための温度制御部250を更に備えることができる。レーザ温度が一定に制御された状態で、レーザ駆動電流の制御を行うことができる。このため、光波長のレーザ温度依存する変動を避けた状態で、レーザ駆動電流の制御を制御することにより光波長の安定化を行うことが可能となる。従って、単純な制御内容で、高精度に光波長を安定化することができる。
【0068】
本実施の形態によれば、上記駆動電流を一定に保つ制御方式の場合、光波長は短期的には安定化され、かつレーザ出力光には関係ないため、電源投入時や光出力停止信号入力時、カプラ以降での光出力断時に有効であり、波長モニタ制御方式では、波長そのものをモニタするため、レーザ素子温度変動やレーザ駆動電流の変動に起因する波長変動を抑圧することができる点から、長期的に高精度な波長安定化が達成できる。これにより、安定化を実現するだけでなく高精度の波長安定化制御が達成できる。
【0069】
また、駆動電流制御部15が制御方式によらず共通化されているため、制御方式ごとに電流駆動部を備えなくもよい。従って、回路規模の小型化が図れる。
【0070】
さらに、遅延時間生成回路3により、制御方式選択回路2と制御方式決定回路1との間に制御方式を切り替える時間に遅延を持たせることができる。これによって、制御方式の切り替え時間を任意に設定できるため、採用した制御方式の応答速度に対応した制御方式選択が可能となる。
【0071】
このような光波長安定制御装置を備えた光送信器を複数併設することにより、周囲条件によらずいかなる場合においても、チャネルごとのレーザ波長が干渉することが避けられる光波長多重送信器を構成することができる。特に、本実施の形態は、複数のレーザが共通のヒートシンクに取り付けられる場合には、温度制御部を共通化することができ、光波長多重送信器全体を小型化することができる。また、ヒートシンク相互の熱流遮断を省略しても、高精度で光波長を安定化することができる。
【0072】
【発明の効果】
本発明によれば、光出力停止信号入力時や光出力断時、電源電圧投入時等の短期的波長変動において、または、レーザ経時劣化による駆動電流増加に起因する長期的波長変動においても、波長安定化が可能な制御方式を常に選択することができる。このため、光出力波長の安定制御が達成できる。
【0073】
また、制御方式として、レーザ素子温度一定制御方式と、波長モニタ制御方式とを備えるならば、レーザ素子温度一定制御方式が選択される場合、短期的には高精度で波長安定が実現され、かつ、レーザ出力光に関係なく制御が実行可能であるため、電源投入時、光出力停止信号入力時、カプラ以降での光出力断時などに有効である。そして、波長モニタ制御方式が選択される場合、波長そのものをモニタするため、レーザ素子温度変動やレーザ駆動電流の変動に起因する波長変動を抑圧することができ、長期的に高精度な光波長安定化が達成できる。従って、安定化が実現されるだけでなく、高精度の波長安定化制御が達成できる。
【0074】
さらに、電源制御部を制御手段によらず共通化することにより、制御方式ごとに電流駆動部を備えなくともよいため、回路規模の小型化が図れる。
【0075】
また、制御方式を切り替える時間に遅延を持たせることができるため、制御方式の切り替え時間を任意に設定することができる。従って、採用される制御方式の応答速度、冷却加熱素子の応答速度などに対応した制御方式選択が可能となる。
【0076】
そして、機能の少なくとも一部を光伝送システム内に配置することにより、光送信器部分を小型化することが可能となり、かつ、高精度高安定な光出力波長安定制御が達成できる。
【0077】
また、このような光波長安定制御を行うレーザを複数併設することにより、周囲条件によらずいかなる場合においても、チャネルごとのレーザ波長が干渉することが避けられる光波長多重送信器を構成することができる。
【図面の簡単な説明】
【図1】 従来の、レーザ温度を一定に保つ方式の光波長安定化制御装置の構成を示すブロック図である。
【図2】 従来の、光波長値をモニタしてくる光波長安定化制御構成例を示すブロック図である。
【図3】 従来の、レーザ温度を一定に保つ光波長安定化制御時の動作模式図である。
【図4】 従来の、波長値をモニタしてくる光波長安定化制御時の動作模式図である。
【図5】 本発明を適用した高精度光波長安定制御装置の構成例を示すブロック図である。
【図6】 本発明が適用されたときの光波長安定制御動作模式図である。
【図7】 本発明を適用した高精度光波長安定制御装置の他の構成例を示すブロック図である。
【符号の説明】
1…制御方式決定回路
2…制御方式選択回路
3…遅延時間生成回路
4…レーザモジュール
5…感温素子
6…温度モニタ回路
7…比較部a
8…レーザ温度制御目標値
9…電流制御部
10…冷却加熱素子
11…光カプラ
12…光波長モニタ部
13…波長制御目標値
14…比較部b
15…駆動電流制御部
16…比較部c
17…レーザ駆動電流制御目標値
110…温度偏差検知部
120…光波長偏差検知部
130…選択部
140…温度操作部
210…電流偏差検知部
220…光波長偏差検知部
230…選択部
250…温度制御部

Claims (6)

  1. レーザから出力される光波長を安定化するための光波長安定制御装置において、
    レーザから出力される光波長の変動要因となるパラメータの1つの、予め定められた目標値に対する第1の制御偏差を検知するためのパラメータ偏差検知手段と、
    レーザから出力される光波長の予め定められた目標値に対する第2の制御偏差を検知するための光波長偏差検知手段と、
    2以上の周囲条件をモニタし、当該モニタした周囲条件を用いて、上記第1および第2の制御偏差のうち一方の制御偏差を選択するための選択手段と、
    上記選択された制御偏差が小さくなるように、上記パラメータの1つを操作するための操作手段とを有し、
    上記パラメータの1つは、レーザの温度であること
    を特徴とする光波長安定制御装置。
  2. 請求項記載の光波長安定制御装置において、
    上記選択手段は、上記光波長偏差検知手段によって上記第2の制御偏差が安定して検知される場合、上記第2の制御偏差を選択し、そうでない場合、上記第1の制御偏差を選択すること
    を特徴とする光波長安定制御装置。
  3. レーザと感温素子と冷却加熱素子とを搭載したレーザモジュールから出力される光波長を安定化するための光波長安定制御装置において、
    上記光波長を安定化するための第1および第2の波長安定制御手段と、
    2以上の周囲条件をモニタして当該モニタした周囲条件を用いて、上記第1および第2の波長安定制御手段のうちの一方を選択するための選択手段とを有し、
    上記第1の波長安定制御手段は、
    上記感温素子よりレーザの温度をモニタするための温度モニタ回路と、
    該温度モニタ回路出力値とレーザ温度制御目標値との差を検知するための第1の比較部と、
    検知された目標値との差が零となるように上記冷却加熱素子に流す電流値を決定するための第1の電流制御手段とを有し、
    上記第2の波長安定制御手段は、
    レーザモジュールの光出力を分岐するための光カプラと、
    分岐された出力光の光波長をモニタするための光波長モニタ部と、
    モニタされた光出力波長値と波長制御目標値との差を検知するための第2の比較部と、
    検知された目標値との差が零となるように上記冷却加熱素子に流す電流値を決定するための第2の電流制御手段とを有すること
    を特徴とする光波長安定制御装置。
  4. 請求項記載の光波長安定制御装置において、
    上記第1および第2の電流制御手段は、上記第1および第2の波長安定制御手段に共通の電流制御部により実現されること
    を特徴とする光波長安定制御装置。
  5. 請求項およびのいずれか一項記載の光波長安定制御装置において、
    上記選択手段は、上記第1および第2の波長安定制御手段の一方の選択を周囲条件の変化に応じて変更する際に、周囲条件の変化に対して、予め定められた遅延時間をおいて変更を行うこと
    を特徴とする光波長安定制御装置。
  6. 請求項からのいずれか一項記載の光波長安定制御装置において、
    上記レーザモジュールは、光送信器に搭載され、
    上記光送信器から出力される光を伝送するための光伝送システムに、上記光波長安定制御装置の少なくとも一部が配置されること
    を特徴とする光波長安定制御装置。
JP29222897A 1997-10-24 1997-10-24 光波長安定制御装置 Expired - Lifetime JP4124845B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29222897A JP4124845B2 (ja) 1997-10-24 1997-10-24 光波長安定制御装置
DE69820833T DE69820833D1 (de) 1997-10-24 1998-10-16 Verfahren und Vorrichtung zur Stabilisierung optischer Wellenlängen
EP98119624A EP0911928B1 (en) 1997-10-24 1998-10-16 Control method and apparatus for stabilising optical wavelength
US09/176,579 US6212210B1 (en) 1997-10-24 1998-10-21 Control method and apparatus for stabilizing optical wavelength
US09/769,915 US6891867B2 (en) 1997-10-24 2001-01-25 Control method and apparatus for stabilizing optical wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29222897A JP4124845B2 (ja) 1997-10-24 1997-10-24 光波長安定制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002362938A Division JP4109977B2 (ja) 2002-12-13 2002-12-13 光波長多重送信器

Publications (2)

Publication Number Publication Date
JPH11126940A JPH11126940A (ja) 1999-05-11
JP4124845B2 true JP4124845B2 (ja) 2008-07-23

Family

ID=17779158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29222897A Expired - Lifetime JP4124845B2 (ja) 1997-10-24 1997-10-24 光波長安定制御装置

Country Status (4)

Country Link
US (2) US6212210B1 (ja)
EP (1) EP0911928B1 (ja)
JP (1) JP4124845B2 (ja)
DE (1) DE69820833D1 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124845B2 (ja) * 1997-10-24 2008-07-23 日本オプネクスト株式会社 光波長安定制御装置
JPH11163462A (ja) * 1997-11-27 1999-06-18 Hitachi Ltd 光波長安定制御装置、光送信器、光波長多重送信器
JPH11251673A (ja) * 1998-02-27 1999-09-17 Nec Corp レーザ信号の波長制御回路
JP3408426B2 (ja) * 1998-09-02 2003-05-19 日本電気株式会社 光 源
WO2001003350A1 (fr) * 1999-07-01 2001-01-11 Fujitsu Limited Emetteur optique en mrl
WO2001003349A1 (fr) * 1999-07-01 2001-01-11 Fujitsu Limited Emetteur optique sur plusieurs longueurs d'ondes et procede de gestion des longueurs d'ondes de transmissions optiques
DE69941865D1 (de) * 1999-08-23 2010-02-04 Fujitsu Ltd Multiplexing-Vorrichtung zur Wellenlängentrennung
KR100312309B1 (ko) * 1999-11-11 2001-11-05 윤종용 파장 분할 다중 시스템을 위한 파장 안정화 장치 및 방법
US6503268B1 (en) * 2000-04-03 2003-01-07 Ceramoptec Industries, Inc. Therapeutic laser system operating between 1000nm and 1300nm and its use
US6690693B1 (en) * 2000-05-04 2004-02-10 Agility Communications, Inc. Power and wavelength control of sampled grating distributed Bragg reflector lasers
CA2347551A1 (en) * 2000-05-16 2001-11-16 Furukawa Electric Co., Ltd. Semiconductor laser apparatus
US7061943B2 (en) * 2000-06-29 2006-06-13 Agility Communications, Inc. Controller calibration for small form factor sampled grating distributed Bragg reflector laser
US6738140B2 (en) 2000-09-19 2004-05-18 Lambda Control, Inc. Wavelength detector and method of detecting wavelength of an optical signal
US6839364B1 (en) * 2000-09-29 2005-01-04 Triquint Technology Holding Co. Feedback control loop operating system for tunable source
JP3851809B2 (ja) * 2000-12-06 2006-11-29 住友電気工業株式会社 半導体レーザモジュール
JP3795762B2 (ja) * 2001-03-16 2006-07-12 エヌティティエレクトロニクス株式会社 光出力制御回路
JP2002319736A (ja) * 2001-04-23 2002-10-31 Furukawa Electric Co Ltd:The レーザ光の波長調整装置
AU2002309809A1 (en) * 2001-05-15 2002-11-25 Agility Communications, Inc. Sampled grating distributed bragg reflector laser controller
JP3737383B2 (ja) * 2001-05-21 2006-01-18 ユーディナデバイス株式会社 半導体レーザモジュール試験装置および半導体レーザモジュール試験方法
JP3629446B2 (ja) * 2001-06-29 2005-03-16 ユーディナデバイス株式会社 光半導体レーザの波長検査方法および装置
KR100765001B1 (ko) * 2001-07-10 2007-10-09 엘지노텔 주식회사 다중채널용 광파장 안정화장치
US20030025966A1 (en) * 2001-08-03 2003-02-06 Ross Halgren OSP hardened WDM network
US7116851B2 (en) 2001-10-09 2006-10-03 Infinera Corporation Optical signal receiver, an associated photonic integrated circuit (RxPIC), and method improving performance
CA2463502C (en) 2001-10-09 2011-09-20 Infinera Corporation Digital optical network architecture
US20030076568A1 (en) * 2001-10-22 2003-04-24 Adc Telecommunications, Inc. Light frequency stabilizer
US6859469B2 (en) * 2001-12-11 2005-02-22 Adc Telecommunications, Inc. Method and apparatus for laser wavelength stabilization
US7075656B2 (en) 2001-12-11 2006-07-11 Adc Telecommunications, Inc. Method and algorithm for continuous wavelength locking
US7038782B2 (en) 2001-12-11 2006-05-02 Adc Telecommunications, Inc. Robust wavelength locker for control of laser wavelength
US6795316B2 (en) * 2001-12-21 2004-09-21 Redfern Broadband Networks, Inc. WDM add/drop multiplexer module
WO2003056735A1 (en) * 2001-12-21 2003-07-10 Redfern Broadband Networks, Inc. Improved wdm add/drop multiplexer module
JP2003318481A (ja) * 2002-04-25 2003-11-07 Sumitomo Electric Ind Ltd レーザ制御回路およびレーザモジュール
JP3945308B2 (ja) * 2002-05-09 2007-07-18 住友電気工業株式会社 光送信装置
US7308008B2 (en) * 2002-11-08 2007-12-11 Finisar Corporation Magnetically controlled heat sink
US8891184B2 (en) * 2003-05-21 2014-11-18 Techelan, Llc Method and apparatus for optically-enhanced cooling
US7321606B2 (en) * 2003-10-09 2008-01-22 National Semiconductor Corporation Laser trim and compensation methodology for passively aligning optical transmitter
US7433375B2 (en) * 2003-10-09 2008-10-07 National Semiconductor Corporation Laser trim and compensation methodology for passively aligning optical transmitter
US7539416B2 (en) * 2003-12-09 2009-05-26 Electronics And Telecommunications Research Institute Optical network terminal and wavelength division multiplexing based optical network having the same
US6998587B2 (en) * 2003-12-18 2006-02-14 Intel Corporation Apparatus and method for heating micro-components mounted on a substrate
US20050180711A1 (en) * 2004-02-13 2005-08-18 Kamath Kishore K. Dual loop automatic power control of optical transmitters
US20050271096A1 (en) * 2004-04-12 2005-12-08 Rolland Zeleny Laser output temperature compensation
JP2006005042A (ja) * 2004-06-16 2006-01-05 Opnext Japan Inc 光送信器および光送信方法
KR100609387B1 (ko) 2004-12-20 2006-08-08 한국전자통신연구원 광통신용 광원의 파장 안정화 장치
US20070003285A1 (en) * 2005-06-30 2007-01-04 Meyer A D Optical signal source wavelength stabilization system and method
JP5011914B2 (ja) * 2006-09-28 2012-08-29 住友電気工業株式会社 レーザダイオード制御装置及びatc回路の駆動方法
CN101175352B (zh) * 2007-09-04 2011-03-30 浙江大学 超辐射发光二极管的数控驱动方法及其装置
US20100004518A1 (en) 2008-07-03 2010-01-07 Masimo Laboratories, Inc. Heat sink for noninvasive medical sensor
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
US8339584B2 (en) 2010-05-21 2012-12-25 Teledyne Technologies Incorporated Velocity measuring system
US20120300040A1 (en) * 2011-05-25 2012-11-29 Microsoft Corporation Imaging system
WO2016189714A1 (ja) * 2015-05-27 2016-12-01 三菱電機株式会社 温度制御回路、送信器および温度制御方法
US9660114B2 (en) * 2015-06-25 2017-05-23 International Business Machines Corporation Temperature stabilization of an on-chip temperature-sensitive element
US11114809B2 (en) 2018-02-22 2021-09-07 Lumentum Operations Llc Fiber optic device operational monitoring
GB202015745D0 (en) * 2020-10-05 2020-11-18 British Telecomm A telecommunications network
CN112965188A (zh) * 2021-03-23 2021-06-15 成都优博创通信技术有限公司 一种激光器加热组件以及光模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186383A (en) 1981-05-13 1982-11-16 Hitachi Ltd Semiconductor laser device
US4583228A (en) * 1983-11-21 1986-04-15 At&T Bell Laboratories Frequency stabilization of lasers
DE3590327T1 (de) * 1984-07-05 1986-06-26 Ricoh Co., Ltd., Tokio/Tokyo Verfahren zum Regeln der Temperatur eines Halbleiterlasers in einer optischen Abtasteinrichtung
DE3542090A1 (de) * 1985-11-28 1987-07-23 Standard Elektrik Lorenz Ag Verfahren und schaltung zur automatischen inbetriebnahme eines wellenlaengenstabilisierten halbleiterlasers
JPH01238083A (ja) * 1988-03-18 1989-09-22 Nkk Corp 半導体レーザの発振波長安定方法
US5299212A (en) * 1993-03-10 1994-03-29 At&T Bell Laboratories Article comprising a wavelength-stabilized semiconductor laser
JP3184359B2 (ja) * 1993-03-19 2001-07-09 富士通株式会社 半導体レーザ制御方法および半導体レーザ制御装置
DE69404190T2 (de) * 1993-03-30 1998-02-19 Nec Corp Frequenzstabilisationsverfahren für Halbleiterlaser und frequenzstabilisierte Lichtquelle
GB9308519D0 (en) * 1993-04-24 1993-06-09 Renishaw Transducer Syst Frequency stabilised laser diode
US5684590A (en) * 1995-12-29 1997-11-04 Honeywell Inc. Fiber optic gyroscope source wavelength control
JP4124845B2 (ja) * 1997-10-24 2008-07-23 日本オプネクスト株式会社 光波長安定制御装置
US6018536A (en) * 1998-11-20 2000-01-25 Sarnoff Corporation Multiple-wavelength mode-locked laser
JP2000151011A (ja) * 1998-11-13 2000-05-30 Toyo Commun Equip Co Ltd デジタル光信号送信機
US6389046B1 (en) * 1999-04-12 2002-05-14 Agere Systems Guardian Corp. Method to sense laser array power and wavelength and reduce drift for wavelength selection and stabilization

Also Published As

Publication number Publication date
EP0911928A3 (en) 2001-10-17
JPH11126940A (ja) 1999-05-11
EP0911928B1 (en) 2004-01-02
DE69820833D1 (de) 2004-02-05
EP0911928A2 (en) 1999-04-28
US6212210B1 (en) 2001-04-03
US20010021207A1 (en) 2001-09-13
US6891867B2 (en) 2005-05-10

Similar Documents

Publication Publication Date Title
JP4124845B2 (ja) 光波長安定制御装置
KR100315705B1 (ko) 파장분할다중광전송시스템의파장안정화장치
US20060159141A1 (en) Optical transmitting module operable in wide temperature range
US6483625B2 (en) WDM optical transmission apparatus
US5781572A (en) Optical wavelength stabilizing system
EP0920095A2 (en) Optical wavelength stability control apparatus and optical transmitter
US20090003843A1 (en) Optical transmitter and method for control the same
JP2000323785A (ja) 半導体レーザモジュールの制御装置及びその制御方法
US6853657B2 (en) Method and device for determining the output power of a semiconductor laser diode
JP2004228384A (ja) 発光モジュール及び通電制御方法
JP4103287B2 (ja) Dfbレーザ駆動装置、dfbレーザ駆動方法、及び記憶媒体
EP1167943A2 (en) Detecting aging of optical components
JP4491184B2 (ja) 発光モジュールの温度制御回路
JP4109977B2 (ja) 光波長多重送信器
US6697388B1 (en) Control system for use with DBR lasers
US7535940B2 (en) Optical transmitter
JP5473451B2 (ja) 光送信器、安定化光源およびレーザダイオードの制御方法
US6452953B1 (en) Light source
JP2003298524A (ja) 波長安定化光源および発光素子のスタートアップ制御方法
US20110164885A1 (en) Method to control temperature of ld
US6522675B1 (en) Wavelength control circuit and wavelength control method of light emitting device
US11309985B2 (en) Light source device that includes a plurality of light sources with different wavelengths and method of controlling wavelengths
JP2006005042A (ja) 光送信器および光送信方法
JPH04320385A (ja) 半導体レーザ温度制御方式
JPH10326939A (ja) 多波長光源用波長安定化装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term