JP4114763B2 - Method for removing germanium in aqueous solution - Google Patents

Method for removing germanium in aqueous solution Download PDF

Info

Publication number
JP4114763B2
JP4114763B2 JP29875999A JP29875999A JP4114763B2 JP 4114763 B2 JP4114763 B2 JP 4114763B2 JP 29875999 A JP29875999 A JP 29875999A JP 29875999 A JP29875999 A JP 29875999A JP 4114763 B2 JP4114763 B2 JP 4114763B2
Authority
JP
Japan
Prior art keywords
group
germanium
fiber
chelate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29875999A
Other languages
Japanese (ja)
Other versions
JP2001113179A (en
Inventor
吉成 犬養
泰彦 甲斐田
誠二 安田
允武 三原
信義 南部
治 伊藤
貴雄 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chelest Corp
Chubu Chelest Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Chelest Corp
Chubu Chelest Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chelest Corp, Chubu Chelest Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Chelest Corp
Priority to JP29875999A priority Critical patent/JP4114763B2/en
Publication of JP2001113179A publication Critical patent/JP2001113179A/en
Application granted granted Critical
Publication of JP4114763B2 publication Critical patent/JP4114763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定のキレート形成性官能基が導入されたキレート形成性繊維を用いて、水溶液中のゲルマニウムを効率よく除去する方法に関し、この除去法を用いれば、水中に微量存在するゲルマニウムを選択的に効率よく除去することができ、例えば工業・農業用水、排水の浄化、更には資源の回収など、工業的に幅広く応用することができる
【0002】
【従来の技術】
ゲルマニウムは、ポリエステルの重合触媒、トランジスター、ダイオード等の半導体材料、光ファイバー用合成石英のドープ材など、工業原料として様々の分野で広く使用されており、希少元素として各分野においてその回収技術が求められている。また亜鉛の電解精錬工程では、不純物として亜鉛鉱石に含まれるゲルマニウムが、電解時の電流効率を著しく低下させるため、電解液中のゲルマニウムの除去が望まれている。
【0003】
従来から水溶液中のゲルマニウムの簡便な分離法として、D.A.Everest and J.E.Salmon,J.Chem.Soc.,1954,2438に示される様なイオン交換法、あるいはG.Kraft,H.Doschand K.Gabbent,Z.Anal.Chem.,267、106(1973)やJ.Seidl,J.Stamberg and E.Hrbkova,J.Appl.Chem.,12,500(1962)に示される様なキレート樹脂吸着法が挙げられる。これらの方法によればゲルマニウムを吸着することは可能であるが、ゲルマニウムの選択吸着性が乏しく、また基材である樹脂がビーズ状あるいは粒状であることから、ゲルマニウムを含む液が基材内部にまで含浸するのに長時間を要するため、吸着速度が低くなり、効率的なゲルマニウム捕捉ができなかった。
【0004】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、水溶液中に微量含まれるゲルマニウムを簡単な方法で効率よく除去することのできる方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係るゲルマニウムの除去法とは、分子中に下記式(1)で示される基を有するキレート形成性繊維を使用し、これを、pH3〜12に調整されたゲルマニウム含有水溶液と接触させてゲルマニウムを除去するところに要旨を有している。

Figure 0004114763
[式中、R1は水素原子、炭素数1〜4のアルキル基、ヒドロキシエチル基、またはヒドロキシプロピル基、R2は炭素数1〜4のアルキル基、ヒドロキシエチル基、またはヒドロキシプロピル基を表し、R1とR2とは同一もしくは異なる基であってもよい]。
【0006】
上記式(1)で示される基の中でも好ましいのは、該式(1)中のR1およびR2がいずれもヒドロキシエチル基であるもの、或いはR1が水素原子またはメチル基、R2がヒドロキシエチル基であるものである。
【0007】
上記式(1)で示される基は、繊維分子中の反応性官能基(ヒドロキシル基、アミノ基、イミノ基、アルデヒド基、カルボキシル基、チオール基など)等に直接結合していてもよく、あるいは繊維分子中にエポキシ基、反応性二重結合、ハロゲン基、酸無水物から選ばれる2個以上の官能基を有する架橋剤を介して間接的に結合していても構わない。
【0008】
上記除去法を実施することによってゲルマニウムを捕捉したキレート形成性繊維は、酸水溶液を用いて処理することによってゲルマニウムを簡単に溶離させることができるので、この方法を採用すれば、キレート形成性繊維を簡単に再生できるばかりでなく、溶離液からゲルマニウムを高濃度で回収することも可能となる。
【0009】
【発明の実施の形態】
本発明にかかるゲルマニウムの除去法は、上記の様に、繊維分子中に前記式(1)で示される基、より好ましくは、式(1)中のR1およびR2がいずれもヒドロキシエチル基、あるいはR1が水素原子またはメチル基で、R2がヒドロキシエチル基である基が導入されたキレート形成性繊維を、ゲルマニウムを含有するpH3〜12の水溶液と接触させ、水溶液中のゲルマニウムを捕捉除去するところに特徴を有している。
【0010】
即ち本発明では、前記式(1)で示される基が、特定pH領域でゲルマニウムに対して高いキレート形成能を発揮することを活用し、該基を繊維分子中に導入することによって、水溶液中のゲルマニウムを効率よく捕捉除去することに成功したものである。
【0011】
本発明で用いる前記式(1)で示される基が導入される繊維の種類は特に制限されず、例えば綿、麻などを始めとする種々の植物繊維;絹、羊毛などを始めとする種々の動物性繊維;ビスコースレーヨンなどを始めとする種々の再生繊維;ポリアミド、アクリル、ポリエステルなどを始めとする様々の合成繊維を使用することができ、これらの繊維は必要に応じて各種の変性を加えたものであっても構わないが、前記式(1)で示される基の導入のし易さ、被処理液の濡れ性、強度、安定性を考慮して最も好ましいのはセルロース系繊維である。
【0012】
上記ベース繊維の性状にも格別の制限はなく、長繊維のモノフィラメント、マルチフィラメント、短繊維の紡績糸あるいはこれらを織物状もしくは編物状に製織もしくは製編した布帛、更には不織布であってもよい。また、2種以上の繊維を複合もしくは混紡した繊維や織・編物であってもよい。
【0013】
更に該キレート形成性繊維と被処理水溶液との接触効率を上げるため、上記基材繊維を短繊維状の粉末あるいはフィルター状の素材として使用することも有効である。
【0014】
ここで用いられる短繊維状粉末の好ましい形状は、長さ0.01〜5mm、より好ましくは0.03〜3mmで、単繊維径が1〜50μm程度、より好ましくは5〜30μmであり、アスペクト比としては1〜600程度、より好ましくは1〜100程度のものである。
【0015】
この様な短繊維状の粉末素材を使用すれば、ゲルマニウムを含む水性液に該短繊維粉末状のキレート形成性繊維を添加して攪拌し、通常の濾過処理を行うという非常に簡単な方法で、且つ短時間の処理で被処理水中に含まれるゲルマニウムを効率よく捕捉して清浄化することができる。また場合によっては、該短繊維粉末状のキレート形成性繊維をカラム等に充填して被処理水を通過させることによっても、同様にゲルマニウムを捕捉できる。
【0016】
またフィルター状の素材も格別特殊なものではなく、その用途に応じて任意の繊維間隙を有する織・編物もしくは不織布などからなる単層もしくは複層構造のマット状に成形して適当な支持体に組み付けた構造、あるいは通水性支持筒の外周側に紐状の繊維を綾巻状に複数層巻回した構造、または同繊維からなる織・編物もしくは不織布シートをプリーツ状に折り曲げて支持部材に装着した構造、同繊維を用いて作製した織・編物や不織布を袋状に成形したバグフィルタータイプなど、公知のあらゆる形態のものが使用できる。
【0017】
本発明において、ベース繊維に前記式(1)で示される基を導入する際に使用するアミノ化合物としては、前記式(2)で示されるアミノ化合物が使用され、例えば各種アミンにエチレンオキサイドやプロピレンオキサイドを付加させたものを用いることができる。しかし、ゲルマニウムとのキレート形成能や繊維分子との反応性、コスト等を総合的に考えて最も実用的なのは、ジエタノールアミン、モノエタノールアミン、N−メチルエタノールアミンである。
【0018】
これらキレート形成能を与えるため繊維分子中に導入される基は、繊維分子中の反応性官能基(例えば、ヒドロキシル基、アミノ基、イミノ基、カルボキシル基、アルデヒド基、チオール基など)等に直接結合していてもよく、あるいは架橋剤を介して間接的に結合していても構わないが、繊維分子への導入の容易性を考えると、後述する様な架橋剤を介して間接的に導入したものが、実用性の高いものとして推奨される。
【0019】
本発明で用いる上記キレート形成性繊維を製造する方法としては、繊維分子が元々有している前述の様な反応性官能基もしくは変性によって導入した反応性官能基に、前記アミノ化合物を直接反応させ、あるいは、該反応性官能基に、架橋剤として分子中にエポキシ基、反応性二重結合、ハロゲン基、酸無水物基から選ばれる2個以上の官能基を有する化合物を反応させた後、前記アミノ化合物を反応させる方法などが採用される。
【0020】
これらの架橋剤を用いて前記式(1)で示される基を繊維に導入する際の反応は特に制限されないが、好ましい方法を挙げると、ベース繊維と前記架橋剤を水あるいはN,N’−ジメチルホルムアミドやジメチルスルホキシド等の極性溶媒中で、必要により反応触媒や乳化剤などを併用して、60〜100℃程度で30分〜数十時間程度反応させる方法であり、この反応により、架橋剤が繊維分子中の反応性官能基(例えば、ヒドロキシル基やアミノ基など)と反応して繊維と結合し、前記アミノ化合物と容易に反応する官能基を繊維分子中に導入することができる。次いで、該官能基を導入した繊維と前記アミノ化合物を、水やN,N’−ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒中で、必要により反応触媒を用いて60〜100℃で30分〜数十時間程度反応させると、前記アミノ化合物のアミノ基が架橋剤の反応性官能基(例えばエポキシ基やハロゲン基など)と反応し、ゲルマニウムに対してキレート形成能を有する基が繊維分子中にペンダント状に導入される。
【0021】
上記の様にして得られるキレート形成性繊維は、用いるベース繊維の性状に応じてモノフィラメント状、マルチフィラメント状、紡績糸状、不織布状、繊維織・編物状など任意の性状のものとして得ることができるが、いずれにしても細径の繊維分子表面にペンダント状に導入された前述のキレート形成性を有する基の実質的に全てが、ゲルマニウム捕捉性能を有効に発揮するので、例えば顆粒状やフィルム状などのキレート形成性樹脂に比べると非常に優れた除去性能を発揮する。
【0022】
従ってこの繊維をゲルマニウムを含む水溶液と接触させ、具体的には該繊維を任意の厚さで積層したり或はカラム内に充填して被処理液を通す方法、あるいは短繊維粉末状の該繊維を被処理液に添加して攪拌し、通常の濾過処理を行うという非常に簡単な方法で、且つ短時間の処理で被処理水中に含まれるゲルマニウムを効率よく捕捉して清浄化することができる。
【0023】
なお本発明を実施するに当たり、水溶液中に含まれるゲルマニウムイオンもしくはその化合物を前記キレート形成性繊維によって効率よく除去するには、該水溶液のpHを3〜12に調整することが必須となる。ちなみに該水溶液のpHが3未満の酸性側でも、またpHが12を超える強アルカリ側でも、前記キレート形成性繊維のゲルマニウムイオンに対するキレート形成能が有効に発揮されず、満足のいくゲルマニウム除去効果が得られないからである。
【0024】
上記の様にしてゲルマニウムを捕捉したキレート形成性繊維は、例えば塩酸水溶液や硫酸水溶液で処理すると、キレートを形成して捕捉されたゲルマニウム成分は簡単に離脱するので、こうした特性を利用すれば該繊維を簡単に再生することができ、更に溶出液からゲルマニウムを有価成分として有効に回収することも可能となる。
【0025】
【実施例】
次に本発明の実施例を示すが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0026】
(キレート形成性繊維の合成例1)
蒸留水1000mlに、硫酸第一鉄アンモニウム六水和物0.025gを溶解後、綿糸(染色試材社製 40/1綿単糸晒品)50gを添加し、室温で30分撹拌後、メタクリル酸グリシジル50g、非イオン系界面活性剤(日本油脂社製ノニオン「OT−221」)1g、31%H22水0.81g、二酸化チオ尿素0.31gを添加し、60℃で1時間撹拌する。次いで、処理を終えた綿糸を蒸留水で洗浄し、脱液した後50℃で15時間乾燥することにより、グリシジルメタクリレートがグラフトしたグラフト繊維68.0gを得た。
【0027】
次に、蒸留水350g、ジメチルスルホキシド350gの混合溶媒にモノエタールアミン300gを溶解させた溶液に上記グラフト繊維を浸漬し、80℃で2時間加熱処理する。次いで十分に水洗し脱液した後、50℃で15時間乾燥することにより、キレート形成性繊維(キレート繊維A)73.2g(置換率:46.4質量%)を得た。
【0028】
(キレート形成性繊維の合成例2)
前記合成例1において、モノエタノールアミンをジエタノールアミンに代えた以外はすべて同様にして、キレート形成性繊維(キレート繊維B)78.0g(置換率:56.0質量%)を得た。
【0029】
実施例1
(バッチ式でのゲルマニウム吸着性能試験1)
前記合成例1で得たキレート繊維A50mgを、10mmol/lのゲルマニウム(IV)、ほう素(III)およびテルル(VI)を含む0.1mol/lの塩化カリウム溶液25mlに添加し、更に塩酸または水酸化ナトリウム水溶液を用いてpHを変化させ25℃で24時間攪拌を行った後、水溶液中に残存するゲルマニウムを定量することによって、各pHでの吸着量を確認した。結果は図1に示す通りであり、水溶液pHを3〜12の範囲、より好ましくはpHが5〜10の範囲に調整して処理することにより、ゲルマニウムを選択的に効率よく吸着・除去できることが分かる。
【0030】
実施例2
(バッチ式でのゲルマニウム吸着性能試験2)
前記実施例1のキレート繊維Aに代えてキレート繊維Bを用いた以外は同様にして、吸着試験を行なった。結果は図2に示す通りであり、水溶液pHを5〜12の範囲、より好ましくはpHが6〜11の範囲に調整して処理することにより、ゲルマニウムを選択的に効率よく吸着・除去できることが確認された。
【0031】
実施例3
(破過曲線測定試験)
前記合成例で得られたキレート繊維Bを内径5mmのガラスカラム内に1.8ml充填し、1mmol/lのゲルマニウム(IV)、ほう素(III)、テルル(VI)をそれぞれ含んだ0.1mol/lの塩化アンモニウム−アンモニア緩衝液(pHを8.6に調整)をSV=75hr-1の流速で流し、流出液中の各元素の濃度を測定することによって破過曲線を求め、図3に示す結果を得た。
【0032】
また比較のため、キレート繊維Bに代えて市販のビーズ状スチレン系グルカミン型キレート樹脂(三菱化学社製商品名「ダイヤイオンCRB02」)1.3mlを用いて同様の試験を行った。市販キレート樹脂の場合は、キレート繊維Bの条件に合わせたSV=75hr‐1の流速と、実際の使用条件に合わせたSV=10hr‐1の流速でそれぞれ試験を行ない、図4、図5に示す結果を得た。
【0033】
破過曲線を示す図3と図4、図5を比較すれば明らかな様に、市販のキレート樹脂を用いたカラム式除去法では、SV=75hr-1という高流速においてはゲルマニウム、ほう素、テルルのいずれもほとんど吸着されずに流出してしまい、またSV=10hr‐1においてはゲルマニウム、ほう素、テルルのいずれも保持されてしまうのに対し、本発明のキレート繊維Bを用いたカラム式除去法では、SV=75hr-1という高流速においても、ほう素およびテルルは全く吸着されないうちに流出するが、ゲルマニウムは吸着量が飽和に達するまでは完全に吸着除去されており、この結果からも明らかな様に本発明のキレート形成性繊維は、ゲルマニウムに対して特に優れた選択吸着性能を有していることがわかる。
【0034】
【発明の効果】
本発明は以上の様に構成されており、本発明の除去方法を用いれば、ゲルマニウムを高い選択吸着性で除去できるばかりでなく、吸着速度も格段に優れており、従来のイオン交換樹脂やキレート樹脂に較べて用排水中のゲルマニウムを極めて効率よく捕捉・除去することができ、それらを極めて効率よく清浄化することができる。しかも、該成分を捕捉した本発明のキレート形成性繊維は、酸水溶液による処理によって簡単に該成分を離脱するので、その再生が簡単で繰り返し使用できるばかりでなく、該成分の濃縮採取にも利用することができる。また不織布状もしくは布帛状等のキレート形成性繊維を使用すれば、これらをカートリッジ方式として交換その他の作業性を高めることも容易であり、更には繰り返し使用によって捕捉性能を失った場合は、通常の焼却炉などによって簡単に焼却処分することができる。
【図面の簡単な説明】
【図1】実施例1で得た元素吸着量とpHの関係を示すグラフである。
【図2】実施例2で得た元素吸着量とpHの関係を示すグラフである。
【図3】実施例3で得た処理液量と元素濃度の関係を示すグラフである。
【図4】実施例3で対照例として用いた市販のキレート樹脂を用いた場合の処理液量と元素濃度の関係を示すグラフである。
【図5】実施例3で対照例として用いた市販のキレート樹脂を使用し、処理流速を変えた場合の処理液量と元素濃度の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently removing germanium in an aqueous solution using a chelate-forming fiber into which a specific chelate-forming functional group has been introduced. With this removal method, germanium that is present in a trace amount in water is selected. It can be removed efficiently, for example, industrial and agricultural water, wastewater purification, and resource recovery can be widely applied industrially.
[Prior art]
Germanium is widely used in various fields as an industrial raw material, such as polyester polymerization catalysts, semiconductor materials such as transistors and diodes, and synthetic silica doping materials for optical fibers. As a rare element, recovery technology is required in each field. ing. In addition, in the electrolytic refining process of zinc, germanium contained in zinc ore as an impurity significantly reduces the current efficiency during electrolysis, and therefore it is desired to remove germanium from the electrolytic solution.
[0003]
Conventionally, as a simple method for separating germanium in an aqueous solution, D.I. A. Everest and J.M. E. Salmon, J.M. Chem. Soc. , 1954, 2438, or G. Kraft, H .; Doshand K.K. Gabbent, Z .; Anal. Chem. , 267, 106 (1973) and J. Org. Seidl, J .; Stamberg and E.M. Hrbkova, J .; Appl. Chem. , 12,500 (1962). Although it is possible to adsorb germanium according to these methods, the selective adsorption property of germanium is poor, and since the resin as the base material is in the form of beads or particles, the liquid containing germanium is contained inside the base material. Since it takes a long time to impregnate, the adsorption rate was low, and efficient germanium capture was not possible.
[0004]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-described circumstances, and an object of the present invention is to provide a method capable of efficiently removing germanium contained in a trace amount in an aqueous solution by a simple method.
[0005]
[Means for Solving the Problems]
The method for removing germanium according to the present invention that has solved the above problems uses a chelate-forming fiber having a group represented by the following formula (1) in the molecule, and this is adjusted to pH 3-12. The present invention is summarized in that germanium is removed by contacting with an aqueous solution containing germanium.
Figure 0004114763
[Wherein, R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyethyl group, or a hydroxypropyl group, and R 2 represents an alkyl group having 1 to 4 carbon atoms, a hydroxyethyl group, or a hydroxypropyl group. R 1 and R 2 may be the same or different groups.
[0006]
Among the groups represented by the formula (1), R 1 and R 2 in the formula (1) are both hydroxyethyl groups, or R 1 is a hydrogen atom or a methyl group, and R 2 is It is a hydroxyethyl group.
[0007]
The group represented by the above formula (1) may be directly bonded to a reactive functional group (hydroxyl group, amino group, imino group, aldehyde group, carboxyl group, thiol group, etc.) in the fiber molecule, or The fiber molecule may be indirectly bonded via a crosslinking agent having two or more functional groups selected from an epoxy group, a reactive double bond, a halogen group, and an acid anhydride.
[0008]
Since the chelate-forming fiber capturing germanium by carrying out the above removal method can be easily eluted by treating with an acid aqueous solution, if this method is employed, the chelate-forming fiber is In addition to being easily regenerated, germanium can be recovered from the eluent at a high concentration.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the method for removing germanium according to the present invention, as described above, the group represented by the formula (1) in the fiber molecule, more preferably, R 1 and R 2 in the formula (1) are both hydroxyethyl groups. Alternatively, the chelate-forming fiber into which R 1 is a hydrogen atom or a methyl group and R 2 is a hydroxyethyl group is brought into contact with an aqueous solution containing germanium and having a pH of 3 to 12 to trap germanium in the aqueous solution. It is characterized by its removal.
[0010]
That is, in the present invention, utilizing the fact that the group represented by the formula (1) exhibits a high chelate-forming ability with respect to germanium in a specific pH region, and introducing the group into the fiber molecule, The germanium was successfully captured and removed.
[0011]
The type of fiber into which the group represented by the formula (1) used in the present invention is introduced is not particularly limited, and various plant fibers such as cotton and hemp; various types including silk and wool Animal fibers; various recycled fibers including viscose rayon; various synthetic fibers including polyamide, acrylic, polyester, etc. can be used, and these fibers can be modified as required. Cellulose fibers are the most preferable in consideration of the ease of introduction of the group represented by the formula (1), the wettability, strength, and stability of the liquid to be treated. is there.
[0012]
The properties of the base fiber are not particularly limited, and may be a long-fiber monofilament, multifilament, short-fiber spun yarn, a fabric woven or knitted into a woven or knitted shape, or a non-woven fabric. . Further, it may be a fiber or a woven / knitted fabric obtained by combining or blending two or more kinds of fibers.
[0013]
Furthermore, in order to increase the contact efficiency between the chelate-forming fiber and the aqueous solution to be treated, it is also effective to use the base fiber as a short fiber powder or a filter material.
[0014]
The preferred shape of the short fibrous powder used here is 0.01 to 5 mm in length, more preferably 0.03 to 3 mm, and the single fiber diameter is about 1 to 50 μm, more preferably 5 to 30 μm. The ratio is about 1 to 600, more preferably about 1 to 100.
[0015]
If such a short fiber powder material is used, the chelate-forming fiber in the form of short fiber powder is added to an aqueous liquid containing germanium, stirred, and subjected to a normal filtration process. In addition, germanium contained in the water to be treated can be efficiently captured and cleaned in a short time treatment. In some cases, germanium can be captured in the same manner by filling the chelate-forming fibers in the form of short fiber powder into a column or the like and allowing the water to be treated to pass through.
[0016]
In addition, the filter-like material is not particularly special, and depending on its use, it is formed into a single-layer or multi-layer mat made of woven, knitted or non-woven fabric having an arbitrary fiber gap to form an appropriate support. An assembled structure, or a structure in which multiple layers of string-like fibers are wound around the outer periphery of a water-permeable support cylinder, or a woven / knitted or non-woven sheet made of the same fiber is folded into a pleat shape and attached to a support member Any known form such as a bag filter type in which the structure, a woven or knitted fabric produced using the same fiber, and a nonwoven fabric formed into a bag shape can be used.
[0017]
In the present invention, as the amino compound used when the group represented by the formula (1) is introduced into the base fiber, the amino compound represented by the formula (2) is used. For example, various amines include ethylene oxide and propylene. What added the oxide can be used. However, diethanolamine, monoethanolamine, and N-methylethanolamine are the most practical in terms of chelate-forming ability with germanium, reactivity with fiber molecules, cost, and the like.
[0018]
The group introduced into the fiber molecule to give these chelate forming ability is directly connected to a reactive functional group (for example, hydroxyl group, amino group, imino group, carboxyl group, aldehyde group, thiol group, etc.) in the fiber molecule. It may be bonded or indirectly bonded via a cross-linking agent, but considering the ease of introduction into the fiber molecule, it is indirectly introduced via a cross-linking agent as described below. Is recommended as a highly practical one.
[0019]
As a method for producing the chelate-forming fiber used in the present invention, the amino compound is directly reacted with the reactive functional group originally contained in the fiber molecule or the reactive functional group introduced by modification. Alternatively, after reacting the reactive functional group with a compound having two or more functional groups selected from an epoxy group, a reactive double bond, a halogen group, and an acid anhydride group in the molecule as a crosslinking agent, A method of reacting the amino compound is employed.
[0020]
The reaction when the group represented by the formula (1) is introduced into the fiber using these cross-linking agents is not particularly limited. However, when a preferable method is mentioned, the base fiber and the cross-linking agent are mixed with water or N, N′— In a polar solvent such as dimethylformamide or dimethyl sulfoxide, a reaction catalyst or an emulsifier is used in combination, if necessary, and the reaction is carried out at about 60 to 100 ° C. for about 30 minutes to several tens of hours. A functional group that reacts with a reactive functional group (for example, a hydroxyl group or an amino group) in the fiber molecule to bind to the fiber and easily reacts with the amino compound can be introduced into the fiber molecule. Subsequently, the fiber into which the functional group is introduced and the amino compound are mixed in water, a polar solvent such as N, N′-dimethylformamide, dimethyl sulfoxide, and the like at 60 to 100 ° C. for 30 minutes to several times using a reaction catalyst as necessary. When reacted for about 10 hours, the amino group of the amino compound reacts with a reactive functional group of the cross-linking agent (for example, epoxy group or halogen group), and a group capable of forming a chelate with respect to germanium is pendant in the fiber molecule. Introduced into the shape.
[0021]
The chelate-forming fiber obtained as described above can be obtained as an arbitrary property such as a monofilament shape, a multifilament shape, a spun yarn shape, a nonwoven fabric shape, a fiber woven or knitted shape, depending on the properties of the base fiber to be used. However, in any case, substantially all of the aforementioned chelate-forming groups introduced in a pendant form on the surface of the fine fiber molecule effectively exhibit germanium scavenging performance. It exhibits very good removal performance compared to chelate-forming resins such as
[0022]
Therefore, this fiber is brought into contact with an aqueous solution containing germanium, specifically, the fiber is laminated at an arbitrary thickness, or the column is filled into the column and the liquid to be treated is passed, or the fiber in the form of short fiber powder Can be efficiently trapped and cleaned of germanium contained in the water to be treated by a very simple method of adding and stirring the liquid to the liquid to be treated and performing a normal filtration treatment, and in a short time treatment. .
[0023]
In carrying out the present invention, it is essential to adjust the pH of the aqueous solution to 3 to 12 in order to efficiently remove germanium ions or compounds thereof contained in the aqueous solution by the chelate-forming fibers. Incidentally, the chelate-forming ability of the chelate-forming fiber with respect to germanium ions is not exhibited effectively even on the acidic side of the aqueous solution having a pH of less than 3 or on the strong alkali side having a pH of more than 12, and a satisfactory germanium removal effect is obtained. It is because it cannot be obtained.
[0024]
When the chelate-forming fiber capturing germanium as described above is treated with, for example, an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution, the germanium component captured by forming a chelate is easily released. Can be easily regenerated, and germanium can be effectively recovered from the eluate as a valuable component.
[0025]
【Example】
Next, examples of the present invention will be shown. However, the present invention is not limited by the following examples as a matter of course, and it is needless to say that the present invention can be implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. These are all included in the technical scope of the present invention.
[0026]
(Synthesis example 1 of chelate-forming fiber)
After dissolving 0.025 g of ferrous ammonium sulfate hexahydrate in 1000 ml of distilled water, 50 g of cotton yarn (40/1 cotton single yarn bleached product manufactured by Dyeing Materials Co., Ltd.) is added, stirred at room temperature for 30 minutes, and then methacrylic. Add 50 g of glycidyl acid, 1 g of nonionic surfactant (Nonion “OT-221” manufactured by NOF Corporation), 0.81 g of 31% H 2 O 2 water, 0.31 g of thiourea dioxide and add at 60 ° C. for 1 hour. Stir. Next, the treated cotton yarn was washed with distilled water, drained, and dried at 50 ° C. for 15 hours to obtain 68.0 g of graft fiber grafted with glycidyl methacrylate.
[0027]
Next, the graft fiber is immersed in a solution in which 300 g of monoethalamine is dissolved in a mixed solvent of 350 g of distilled water and 350 g of dimethyl sulfoxide, and heat-treated at 80 ° C. for 2 hours. Next, after sufficiently washing with water and draining, it was dried at 50 ° C. for 15 hours to obtain 73.2 g (substitution rate: 46.4% by mass) of a chelate-forming fiber (chelate fiber A).
[0028]
(Synthesis example 2 of chelate-forming fiber)
Except that monoethanolamine was replaced with diethanolamine in Synthesis Example 1, 78.0 g of chelate-forming fiber (chelate fiber B) (substitution rate: 56.0% by mass) was obtained.
[0029]
Example 1
(Batch type germanium adsorption performance test 1)
50 mg of the chelate fiber A obtained in Synthesis Example 1 was added to 25 ml of a 0.1 mol / l potassium chloride solution containing 10 mmol / l germanium (IV), boron (III), and tellurium (VI), and further hydrochloric acid or After changing the pH using an aqueous sodium hydroxide solution and stirring at 25 ° C. for 24 hours, the amount of germanium remaining in the aqueous solution was quantified to confirm the amount of adsorption at each pH. The results are as shown in FIG. 1, and germanium can be selectively adsorbed and removed efficiently by adjusting the aqueous solution pH in the range of 3 to 12, more preferably in the range of 5 to 10. I understand.
[0030]
Example 2
(Batch type germanium adsorption performance test 2)
An adsorption test was performed in the same manner except that the chelate fiber B was used instead of the chelate fiber A of Example 1. The results are as shown in FIG. 2, and germanium can be selectively adsorbed and removed efficiently by adjusting the aqueous solution pH in the range of 5 to 12, more preferably in the range of 6 to 11. confirmed.
[0031]
Example 3
(Breakthrough curve measurement test)
The chelate fiber B obtained in the above synthesis example was packed in 1.8 ml in a glass column having an inner diameter of 5 mm, and 0.1 mol each containing 1 mmol / l germanium (IV), boron (III), and tellurium (VI). / L ammonium chloride-ammonia buffer (pH adjusted to 8.6) was flowed at a flow rate of SV = 75 hr −1 , and the breakthrough curve was determined by measuring the concentration of each element in the effluent. The result shown in was obtained.
[0032]
For comparison, a similar test was performed using 1.3 ml of a commercially available bead-like styrene-based glucamine type chelate resin (trade name “Diaion CRB02” manufactured by Mitsubishi Chemical Corporation) instead of the chelate fiber B. For commercial chelating resin, it was used as an SV = 75hr- 1 flow rate to match the conditions of the chelate fiber B, and each test with combined SV = 10hr- 1 flow rate in actual use conditions, Fig. 4, FIG. 5 The results shown are obtained.
[0033]
As is clear from comparison between FIG. 3 showing the breakthrough curve, FIG. 4, and FIG. 5, in the column-type removal method using a commercially available chelate resin, at a high flow rate of SV = 75 hr −1 , germanium, boron, All of the tellurium flows out without being adsorbed, and at SV = 10 hr- 1 , all of germanium, boron and tellurium are retained, whereas the column type using the chelate fiber B of the present invention is used. In the removal method, even at a high flow rate of SV = 75 hr −1 , boron and tellurium flow out before being adsorbed at all, but germanium is completely adsorbed and removed until the adsorption amount reaches saturation. As is apparent, the chelate-forming fiber of the present invention has a particularly excellent selective adsorption performance with respect to germanium.
[0034]
【The invention's effect】
The present invention is configured as described above. If the removal method of the present invention is used, germanium can be removed with a high selective adsorption property, and the adsorption rate is remarkably excellent. As compared with the resin, germanium in the effluent can be captured and removed very efficiently, and they can be cleaned very efficiently. In addition, the chelate-forming fiber of the present invention that captures the component can be easily and repeatedly used because it is easily removed by treatment with an aqueous acid solution, and can also be used for concentration and collection of the component. can do. If chelating fibers such as non-woven fabrics or fabrics are used, it is easy to replace them with a cartridge system and improve other workability. Furthermore, if the capture performance is lost by repeated use, It can be easily incinerated with an incinerator.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of element adsorption obtained in Example 1 and pH.
2 is a graph showing the relationship between the amount of element adsorption obtained in Example 2 and pH. FIG.
FIG. 3 is a graph showing the relationship between the amount of treatment liquid obtained in Example 3 and the element concentration.
4 is a graph showing the relationship between the amount of treatment liquid and element concentration when a commercially available chelate resin used as a control example in Example 3 is used. FIG.
FIG. 5 is a graph showing the relationship between the amount of treatment liquid and the element concentration when a commercially available chelate resin used as a control example in Example 3 is used and the treatment flow rate is changed.

Claims (5)

セルロース系繊維分子中に下記式(1)で示される基を有し、下記式(1)で示される基が前記繊維分子中の反応性官能基に、分子中にエポキシ基および反応性二重結合を有する架橋剤を介して導入されているキレート形成性繊維を、pH3〜12に調整されたゲルマニウム含有水溶液と接触させ、該水溶液中のゲルマニウムを除去することを特徴とする水溶液中のゲルマニウムの除去法。
−N−R2
| ……(1)
1
[式中、R1は水素原子、炭素数1〜4のアルキル基、ヒドロキシエチル基、またはヒドロキシプロピル基、R2は炭素数1〜4のアルキル基、ヒドロキシエチル基、またはヒドロキシプロピル基を表し、R1とR2とは同一もしくは異なる基であってもよい]
Have a group represented by the following formula in the cellulose fiber molecules (1), the reactive functional groups of the group in the fiber molecule represented by the following formula (1), epoxy groups in the molecule and a reactive double the chelate-forming fiber that has been introduced through the cross-linking agent having a binding, is contacted with germanium-containing aqueous solution is adjusted to PH3~12, germanium in aqueous solution, characterized in that the removal of the germanium in the aqueous solution Removal method.
-N-R 2
| …… (1)
R 1
[Wherein, R 1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyethyl group, or a hydroxypropyl group, and R 2 represents an alkyl group having 1 to 4 carbon atoms, a hydroxyethyl group, or a hydroxypropyl group. R 1 and R 2 may be the same or different groups]
前記式(1)中のR1およびR2がいずれもヒドロキシエチル基である請求項1に記載の除去法。The removal method according to claim 1, wherein R 1 and R 2 in the formula (1) are both hydroxyethyl groups. 前記式(1)中のR1が水素原子またはメチル基、R2がヒドロキシエチル基である請求項1に記載の除去法。The removal method according to claim 1, wherein R 1 in the formula (1) is a hydrogen atom or a methyl group, and R 2 is a hydroxyethyl group. 前記架橋剤が、メタクリル酸グリシジル、アクリル酸グリシジル、アリルグリシジルエーテルよりなる群から選択される少なくとも1種である請求項1〜3のいずれかに記載の除去法。The crosslinking agent is, removal method according to claim 1 is at least one selected glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether by Li Cheng group. 請求項1〜4のいずれかに記載の除去法を実施した後、酸水溶液を用いてキレート形成性繊維からゲルマニウムを溶離させる、キレート形成性繊維の再生法。After performing removal method according to any one of claims 1 to 4, eluting the germanium from the chelate-forming fiber with an aqueous acid solution, reproducing method of chelate forming fiber.
JP29875999A 1999-10-20 1999-10-20 Method for removing germanium in aqueous solution Expired - Lifetime JP4114763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29875999A JP4114763B2 (en) 1999-10-20 1999-10-20 Method for removing germanium in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29875999A JP4114763B2 (en) 1999-10-20 1999-10-20 Method for removing germanium in aqueous solution

Publications (2)

Publication Number Publication Date
JP2001113179A JP2001113179A (en) 2001-04-24
JP4114763B2 true JP4114763B2 (en) 2008-07-09

Family

ID=17863869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29875999A Expired - Lifetime JP4114763B2 (en) 1999-10-20 1999-10-20 Method for removing germanium in aqueous solution

Country Status (1)

Country Link
JP (1) JP4114763B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060824A1 (en) * 2001-01-31 2002-08-08 Chubu Chelest Co., Ltd. Method for treating solution containing metal and/or metalloid
ES2257181B2 (en) * 2004-10-14 2007-02-01 Universidad De Alicante PROCEDURE FOR THE RECOVERY OF GERMANIUM IN DISSOLUTION BY ACTIVE CARBON.
JP5136735B2 (en) * 2005-07-15 2013-02-06 征一 真鍋 Method for removing toxic substances in exudate from final disposal site for stable industrial waste
JP5369440B2 (en) * 2008-01-11 2013-12-18 東亞合成株式会社 Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution
JP2009222427A (en) * 2008-03-13 2009-10-01 Fuji Electric Holdings Co Ltd Alloy composition analysis method and composition analyzer
CA2852897C (en) * 2011-10-21 2016-08-16 Nagasaki University Ge adsorbent for 68ge-68ga generator

Also Published As

Publication number Publication date
JP2001113179A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP3940236B2 (en) Metal chelate-forming fiber and production method thereof, metal ion trapping method and metal chelate fiber using the fiber
CN1176265C (en) Metal chelate-forming fiber, process for producing the same, method of trapping metal ion with the fiber, and metal chelate fiber
JP3822329B2 (en) Fiber having metal chelate-forming ability, process for producing the same, and metal ion trapping method using the fiber
JP4114763B2 (en) Method for removing germanium in aqueous solution
JP4484993B2 (en) Treatment of boron-containing water
JP4683820B2 (en) Method for treating metal and / or metal-containing solution
JP2001113272A (en) Method for capturing selenium or arsenic in aqueous solution
WO1999056850A1 (en) Chelate-forming filter, process for producing the same, and method of purifying liquid with the filter
JP3723225B2 (en) Chelate-forming fibers, their production and use
JP2001123381A (en) Chelate-forming fiber, its production and use thereof
JP3940367B2 (en) Chelate-forming fiber and production method thereof, metal ion capture method using the fiber, and metal chelate fiber
JP3999596B2 (en) Arsenic-trapping fiber and arsenic-containing water treatment method using the same
WO1998048098A1 (en) Metal chelate-forming fibers, process for producing the same, process for sequestering with the same, and filter produced therefrom
JP2000169828A (en) Powdery chelate-catching material and its production, and ion-catching using the catching material
JP4149628B2 (en) Chelate-forming fiber, process for producing the same, and use thereof
JP3964830B2 (en) Chelate-forming fiber and method for treating metal ion-containing water using the same
JP3887492B2 (en) Chelate capture filter production method
JP7441429B2 (en) Ion exchange fiber and ion exchange filter containing the fiber
JPH11309318A (en) Filter apparatus and liquid purification using the same
JP2003200152A (en) Filter for filtering metal ions in solution
JP2013078724A (en) Oxyacid ion adsorbent, method of producing the same, and method of adsorbing oxyacid ion present in raw liquid to be treated using the adsorbent
JP4051550B2 (en) Filter media using fibers bound with compounds having complex-forming ability
JP2004000874A (en) Filter apparatus for metal ions in solution
JP2004256853A (en) Method for purifying noble-metal-plating solution
WO2003106757A1 (en) Chelating fibers and treatment of metal ion containing water with the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term