JP4113302B2 - Method and apparatus for removing influence of coexisting gas in gas analysis - Google Patents

Method and apparatus for removing influence of coexisting gas in gas analysis Download PDF

Info

Publication number
JP4113302B2
JP4113302B2 JP16801399A JP16801399A JP4113302B2 JP 4113302 B2 JP4113302 B2 JP 4113302B2 JP 16801399 A JP16801399 A JP 16801399A JP 16801399 A JP16801399 A JP 16801399A JP 4113302 B2 JP4113302 B2 JP 4113302B2
Authority
JP
Japan
Prior art keywords
gas
concentration
data processing
processing unit
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16801399A
Other languages
Japanese (ja)
Other versions
JP2000356589A (en
Inventor
香 井上
賢二 武田
正昭 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP16801399A priority Critical patent/JP4113302B2/en
Priority to US09/498,553 priority patent/US6422056B1/en
Publication of JP2000356589A publication Critical patent/JP2000356589A/en
Application granted granted Critical
Publication of JP4113302B2 publication Critical patent/JP4113302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、赤外吸収法によるガス分析など各種のガス分析における共存ガスの影響を除去する方法及びガス分析装置に関する。
【0002】
【従来の技術およびその問題点】
NDIR法(非分散型赤外線ガス分析法)やFTIR法(フーリエ変換赤外法)などの赤外吸収法によって、あるガス成分を測定する際、吸収スペクトルが分離できている共存成分あるいは赤外領域に吸収をもたない共存成分によってスパン感度が影響されてしまうことがある。これは、同一ガス成分・同一ガス濃度であってもベースガス組成の違いによりスペクトル強度に差が生ずることがあるにもかかわらず、従来の赤外吸収法では成分同士の干渉は全てスペクトルの重なりに起因すると認識されていたことが前提になっていたためである。実際に、自動車排ガスなどの分析において、COおよびCO2 に対するH2 OやO2 の影響が問題になりやすいことが確認されている。
【0003】
図3(A)は、種々の濃度のCO2 (測定対象成分)を測定したときにおける共存するH2 Oの濃度とCO2 指示値の誤差との関係を示すもので、この図からH2 O濃度が高くなるにつれてCO2 指示値の誤差がプラス側に大きく表れることがわかる。そして、同図(B)は、2台の分析計を用いて種々の濃度のCO2 を測定したときにおける共存するO2 の濃度とCO2 指示値の誤差との関係を示すもので、この図からO2 濃度が高くなるにつれてCO2 指示値の誤差がマイナス側に大きく表れることがわかる。
【0004】
上記図3(A),(B)に示したような現象が生ずる正確な機構は不明であるが、一つには、ガス分子同士の相互作用によるクエンチング等が関係していることが考えられる。図4は、クエンチングによる赤外吸収量変化モデルを示すもので、このモデルは、ガス成分Xとベースガスの衝突確率および相互作用の大小によって、赤外吸収量に変化が生ずることを示している。すなわち、同図(A)は、ガス成分Xに対してベースガスAの衝突確率および相互作用が共に小さい場合を示し、この場合、ガス成分Xの基底状態・励起状態の平衡に影響を余り与えないため、ベースガスAの存在はガス成分Xの吸収量に殆ど影響しない。また、同図(B)は、ガス成分Xに対してベースガスBの衝突確率および相互作用が共に大きい場合を示し、この場合、ガス成分Xの平衡が基底状態側にずれるため、新たな光吸収が起こりやすくなる。つまり、ベースガスBの存在により、ガス成分Xの吸収強度が大きくなり、ベースガスが成分Aであった場合よりも強い吸収を示す。
【0005】
また、他の機構としては、他成分の共存によって吸収スペクトルの線幅が広がる「衝突広がり」というメカニズムも考えられる。
【0006】
この発明は、上述の事柄に留意してなされたもので、その目的は、校正ガスとサンプルガスとにおけるベースガス組成の差によるスパン感度の影響値を抑制し、共存ガスの影響を可及的になくするようにしたガス分析における共存ガスの影響除去方法及びその方法を用いたガス分析装置を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、この発明のガス分析における共存ガスの影響除去方法校正ガス中の測定対象成分の濃度値と、実サンプルと校正ガスのベースガス組成の差の情報を入力し、前記ベースガス組成の差の情報と、前記測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数を示す相関関係式とに基づいて、感度調整係数を決定して、この感度調整係数と前記測定対象成分の濃度値からガス分析装置を校正すること(請求項1)、または、実サンプルと校正ガスのベースガス組成の差の情報を入力し、このベースガス組成の差の情報と、測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数を示す相関関係式とに基づいて、感度調整係数を決定してガス分析装置を校正すること(請求項3)を特徴としている。
また、この発明のガス分析装置は、ガス分析部と、この分析部の出力に基づいて測定対象成分を分析するデータ処理部とを有するガス分析装置であって、前記データ処理部には、前記測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数との間で算出される相関関係式が記憶され、前記ガス分析部は、該ガス分析部を校正する時、前記データ処理部に記憶させている前記相関関係式と、校正時に前記データ処理部に入力される実サンプルと校正ガスのベースガス組成の差の情報とに基づいて感度調整係数を決定して、この感度調整係数と前記データ処理部に入力される校正ガス中の測定対象成分の濃度値に基づいてガス分析部を校正するように構成されていること(請求項2)、または、ガス分析部と、この分析部の出力に基づいて測定対象成分を分析するデータ処理部とを有するガス分析装置であって、前記データ処理部には、前記測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数との間で算出される相関関係式が記憶され、前記ガス分析部は、該ガス分析部を校正する時、前記データ処理部に記憶させている前記相関関係式と、校正時に前記データ処理部に入力される実サンプルと校正ガスのベースガス組成の差の情報とに基づいて感度調整係数を決定して、この感度調整係数に基づいてガス分析部を校正するように構成されていること(請求項4)を特徴としている。
【0008】
上記ガス分析における共存ガスの影響除去方法及びガス分析装置によれば、ベースガスとして校正ガス中に含めることが難しい共存成分、例えば高濃度(室温飽和以上)のH2 Oによるスパン影響を予め補正しておけるので、共存成分の濃度が比較的小さい場合であればサンプル測定時またはデータ処理時に特別の補正を行う必要がなく、ソフトウェアが非常にシンプルになる。その上、校正ガスとしても2 ベースなど安価なものが使用できる。さらに、感度調整をガス分析部の校正時に併せて行うので、共存成分濃度の異なる測定ラインを測定する場合であっても再校正を行うだけでよい。また、共存成分濃度が変動するサンプルであっても平均的な状態に合わせることで誤差を最小に抑えることができる。
【0009】
【発明の実施の形態】
この発明の実施の形態を、図面を参照しながら説明する。まず、図1は、この発明のガス分析における共存ガスの影響除去方法(以下、共存ガスの影響除去方法という)が適用されるフーリエ変換赤外分光光度計を用いたガス分析装置(以下、FTIRガス分析装置という)の構成を概略的に示すもので、この図において、1は分析部、2はこの分析部1の出力であるインターフェログラムを処理するデータ処理部である。
【0010】
前記分析部1は、平行な赤外光を発するように構成された赤外光源3と、ビームスプリッタ4、固定ミラー5、図外の駆動機構によって例えばX−Y方向に平行移動する可動ミラー6からなる干渉機構7と、測定試料や比較(参照)試料等を収容し、干渉機構7を介して赤外光源3からの赤外光が照射されるセル8と、半導体検出器9等から構成されている。
【0011】
そして、前記データ処理部2は、例えばコンピュータよりなり、インターフェログラムを加算平均し、その加算平均出力を高速でフーリエ変換し、さらに、このフーリエ変換出力に基づいて測定対象成分に関するスペクトル演算を行うように構成されている。
【0012】
上述のように構成されたFTIRガス分析装置においては、次のようにして複数の成分を定量分析することができる。すなわち、セル8に比較試料または測定試料をそれぞれ収容して赤外光源3からの赤外光をセル8に照射し、比較試料または測定試料のインターフェログラムを測定する。これらのインターフェログラムをデータ処理部2において、それぞれフーリエ変換してパワースペクトルを得た後、比較試料のパワースペクトルに対する測定試料のパワースペクトルの比を求め、これを吸光度スケールに変換することにより吸収スペクトルを得た後、この吸収スペクトル中の複数の波数ポイントにおける吸光度に基づいて測定試料中に含まれる複数の成分を定量分析するのである。
【0013】
以下、上記FTIRガス分析装置を用いてCOを測定したときのベースガス中の共存成分の一例である2 の濃度の影響について説明する。下記表1における(1)欄は、FTIR法におけるベースガス中のH2 濃度とCO指示(真値250ppm)の関係を示している。
【0014】
【表1】

Figure 0004113302
【0015】
この場合、上記(1)欄に示すように、感度はH2 濃度0%を基準に校正しており、H2 共存による誤差は最大6.1ppmである。ここで、H2 濃度0%時の指示(250.0ppm)と、H2 濃度32%時の指示(253.6ppm)との比率(250.0/253.6)は、0.9858であることから、この値を用いてH2 濃度32%時の感度に校正しなおすと、前記表1の(2)に示すように、誤差の最大値は−3.6ppmにまで抑制される。実際のH2 濃度が例えば16%〜48%の範囲と見なせる場合であれば、誤差は−1.3ppm〜+1.1ppmとなる(H2 濃度0%基準の校正では+2.2ppm〜+4.7ppmとなる)。これは、真値(250ppm)の±0.5%の範囲内にあり、通常の実用レベルといえる。
【0016】
具体的に校正を行うには、下記表2および図2に示すように、ベースガス中のH2 濃度Xと感度補正係数Y(例えば、上記例における数値0.9858)の数点のデータからその近似曲線(1〜4次式程度)Y=f(X)を算出し、前記データ処理部2の演算部に予め記憶させておく。
【0017】
【表2】
Figure 0004113302
【0018】
前記表2は、表1における(1)において、H2 濃度0%におけるCO指示値と各H2 濃度におけるCO指示値との比率を表しており、図2は、この表2をグラフ化して示したもので、横軸はH2 濃度、縦軸はスパンガス補正係数である。
【0019】
例えば、校正ガスがCO250ppm(N2 ベース)、サンプルガスの平均的なH2 濃度が48%の場合、分析計内部で校正曲線を求める際のボンベ濃度として、
250×f(48)=250×0.9815=245.4
が得られ、245.4ppmを使用するのである。
【0020】
上述の実施の形態においては、FTIR法における共存ガスの影響除去方法であったが、この発明はこれに限られるものではなく、例えば一般的な赤外吸収法によるNDIR法にも適用することができる。また、化学発光法(CLD)のクエンチングなど、スパン点のみに影響する干渉の補正にも適用することができる。
【0021】
【発明の効果】
以上説明したように、この発明においては、実サンプルと校正ガスのベースガス組成の差の情報入力し、これとデータ処理部に予め記憶されている共存成分濃度とその濃度に対する補正係数との相関関係式に基づいて、感度調整係数を決定するようにしているので、実際の実サンプル測定時には特別の補正ルーチンを必要とすることがなく、ベースガス組成の差によるスパン感度への影響による誤差を最小に抑えることができる。
【図面の簡単な説明】
【図1】 この発明方法が適用されるガス分析装置の一例を概略的に示す図である。
【図2】 この発明方法で用いる補正係数とH2 濃度との関係の一例を示すグラフである。
【図3】 (A)は種々の濃度のCO2 を測定したときにおける共存するH2 Oの濃度とCO2 指示値の誤差との関係を示す図、(B)は2台の分析計を用いて種々の濃度のCO2 を測定したときにおける共存するO2 の濃度とCO2 指示値の誤差との関係を示す図である。
【図4】 クエンチングによる赤外吸収量変化モデルを示す図である。
【符号の説明】
1…ガス分析部、2…データ処理部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a gas analyzer for removing the influence of a coexisting gas in various types of gas analysis such as gas analysis by an infrared absorption method.
[0002]
[Prior art and its problems]
Coexisting component or infrared region in which absorption spectrum can be separated when measuring a certain gas component by infrared absorption method such as NDIR method (non-dispersive infrared gas analysis method) or FTIR method (Fourier transform infrared method) sometimes it is affected span sensitivity by coexisting components having no absorption in the. This is because even if the same gas component and the same gas concentration are used, there is a difference in the spectrum intensity due to the difference in the base gas composition. It was because it was assumed that it was recognized that it was caused by. In fact, it has been confirmed that the influence of H 2 O and O 2 on CO and CO 2 tends to be a problem in the analysis of automobile exhaust gas and the like.
[0003]
3 (A) is, shows the relationship between the error of the of H 2 O concentration and CO 2 indicated value coexist in when measuring CO 2 in various concentrations (measurement target component), H 2 from FIG. It can be seen that as the O concentration increases, the error in the CO 2 indication value appears more positively. FIG. 4B shows the relationship between the concentration of coexisting O 2 and the error of the CO 2 indicated value when measuring CO 2 of various concentrations using two analyzers. From the figure, it can be seen that as the O 2 concentration increases, the error of the CO 2 indication value appears more negatively.
[0004]
Although the exact mechanism in which the phenomenon shown in FIGS. 3A and 3B occurs is unknown, it is thought that one of them is related to quenching due to interaction between gas molecules. It is done. FIG. 4 shows an infrared absorption amount change model due to quenching. This model shows that the infrared absorption amount changes depending on the collision probability of gas component X and base gas and the magnitude of the interaction. Yes. That is, FIG. 5A shows a case where the collision probability and interaction of the base gas A are both small with respect to the gas component X. In this case, the balance between the ground state and the excited state of the gas component X is significantly affected. Therefore, the presence of the base gas A has little influence on the absorption amount of the gas component X. FIG. 5B shows a case where the collision probability and interaction of the base gas B are large with respect to the gas component X. In this case, the equilibrium of the gas component X shifts to the ground state side, so that a new light Absorption is likely to occur. That is, due to the presence of the base gas B, the absorption intensity of the gas component X increases, and the absorption is stronger than when the base gas is the component A.
[0005]
As another mechanism, a mechanism called “collision broadening” in which the line width of the absorption spectrum is widened by the coexistence of other components is also conceivable.
[0006]
The present invention has been made in consideration of the above-mentioned matters, and its purpose is to suppress the influence value of the span sensitivity due to the difference in the base gas composition between the calibration gas and the sample gas, and to influence the influence of the coexisting gas as much as possible. An object of the present invention is to provide a method for eliminating the influence of coexisting gas in gas analysis, and a gas analyzer using the method .
[0007]
[Means for Solving the Problems]
To achieve the above object, effects removal method of coexisting gas in the gas analysis of the present invention inputs a density value measurement Target components in the calibration gas, the difference information of the base gas composition of the actual sample and calibration gas the base and the information of the difference of the gas composition, based on the correlation equation showing a correction coefficient for influencing coexisting components concentration and its concentration on the measurement of the measurement target component, to determine the sensitivity adjustment factor, the The gas analyzer is calibrated from the sensitivity adjustment coefficient and the concentration value of the component to be measured (Claim 1), or information on the difference between the base gas composition of the actual sample and the calibration gas is input, and the difference in the base gas composition The gas analyzer is calibrated by determining the sensitivity adjustment coefficient based on the information on the above and the correlation equation indicating the concentration of the coexisting component that affects the measured value of the measurement target component and the correction coefficient for the concentration (contract). 3.) it is characterized in.
The gas analyzer of the present invention is a gas analyzer having a gas analyzer and a data processor that analyzes a measurement target component based on the output of the analyzer, and the data processor A correlation equation calculated between the concentration of coexisting components affecting the measurement value of the measurement target component and a correction coefficient for the concentration is stored, and the gas analyzer is configured to calibrate the gas analyzer when the data A sensitivity adjustment coefficient is determined based on the correlation equation stored in the processing unit and information on the difference between the base gas composition of the actual sample and the calibration gas input to the data processing unit during calibration. The gas analyzer is configured to be calibrated based on the adjustment coefficient and the concentration value of the component to be measured in the calibration gas input to the data processor (Claim 2), or the gas analyzer, This analysis unit A gas analyzer having a data processing unit for analyzing a measurement target component based on an output, wherein the data processing unit includes a coexisting component concentration that affects a measured value of the measurement target component and a correction coefficient for the concentration Is stored, and when the gas analyzer calibrates the gas analysis unit, the correlation equation stored in the data processing unit and the data processing unit at the time of calibration are stored. A sensitivity adjustment coefficient is determined based on the actual sample input to the base gas composition and the difference information of the base gas composition of the calibration gas, and the gas analyzer is calibrated based on the sensitivity adjustment coefficient ( It is characterized by claim 4).
[0008]
According to the method for removing the influence of the coexisting gas in the gas analysis and the gas analyzing apparatus , the span influence due to the coexisting component that is difficult to be included in the calibration gas as the base gas, for example, H 2 O of high concentration (room temperature saturation or more) is corrected in advance Therefore, if the concentration of coexisting components is relatively small, there is no need to perform special correction at the time of sample measurement or data processing, and the software becomes very simple. In addition, an inexpensive gas such as N 2 base can be used as the calibration gas. Furthermore, since sensitivity adjustment is performed together with the calibration of the gas analyzer , it is only necessary to recalibrate even when measuring measurement lines having different concentrations of coexisting components. Even in the case of a sample in which the concentration of coexisting components varies, the error can be minimized by adjusting to the average state.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 shows a gas analyzer (hereinafter referred to as FTIR) using a Fourier transform infrared spectrophotometer to which the method for removing the influence of coexisting gas in the gas analysis of the present invention (hereinafter referred to as the influence removing method of coexisting gas) is applied. FIG. 1 schematically shows a configuration of a gas analyzer, in which 1 is an analysis unit, and 2 is a data processing unit that processes an interferogram that is an output of the analysis unit 1.
[0010]
The analysis unit 1 includes an infrared light source 3 configured to emit parallel infrared light, a beam splitter 4, a fixed mirror 5, and a movable mirror 6 that translates in the XY direction, for example, by a driving mechanism (not shown). An interference mechanism 7 comprising: a cell 8 that accommodates a measurement sample, a comparison (reference) sample, etc., and is irradiated with infrared light from the infrared light source 3 via the interference mechanism 7; and a semiconductor detector 9 and the like. Has been.
[0011]
The data processing unit 2 is composed of, for example, a computer, averages the interferograms, performs a Fourier transform on the summed average output at high speed, and further performs a spectrum calculation on the measurement target component based on the Fourier transform output. It is configured as follows.
[0012]
In the FTIR gas analyzer configured as described above, a plurality of components can be quantitatively analyzed as follows. That is, a comparison sample or a measurement sample is accommodated in the cell 8 and the cell 8 is irradiated with infrared light from the infrared light source 3, and an interferogram of the comparison sample or the measurement sample is measured. These interferograms are Fourier-transformed in the data processing unit 2 to obtain power spectra, respectively, and then the ratio of the power spectrum of the measurement sample to the power spectrum of the comparative sample is obtained and absorbed by converting this to an absorbance scale. After obtaining the spectrum, a plurality of components contained in the measurement sample are quantitatively analyzed based on the absorbance at a plurality of wavenumber points in the absorption spectrum.
[0013]
Hereinafter, the influence of the concentration of H 2 , which is an example of a coexisting component in the base gas, when CO is measured using the FTIR gas analyzer will be described. The column (1) in Table 1 below shows the relationship between the H 2 concentration in the base gas and the CO indication (true value 250 ppm) in the FTIR method.
[0014]
[Table 1]
Figure 0004113302
[0015]
In this case, as shown in the column (1) above, the sensitivity is calibrated based on the H 2 concentration of 0%, and the error due to H 2 coexistence is a maximum of 6.1 ppm. Here, the ratio (250.0 / 253.6) between the instruction at the H 2 concentration of 0% (250.0 ppm) and the instruction at the H 2 concentration of 32% (253.6 ppm) is 0.9858. Therefore, when this value is used to recalibrate the sensitivity when the H 2 concentration is 32%, as shown in (2) of Table 1, the maximum value of the error is suppressed to −3.6 ppm. If the actual H 2 concentration can be regarded as a range of 16% to 48%, for example, the error is −1.3 ppm to +1.1 ppm (in the calibration based on the H 2 concentration of 0%, +2.2 ppm to +4.7 ppm). Becomes). This is within a range of ± 0.5% of the true value (250 ppm), and can be said to be a normal practical level.
[0016]
Specifically, as shown in the following Table 2 and FIG. 2, calibration is performed from data of several points of the H 2 concentration X in the base gas and the sensitivity correction coefficient Y (for example, the numerical value 0.9858 in the above example). The approximate curve (about 1 to 4th order equation) Y = f (X) is calculated and stored in advance in the calculation unit of the data processing unit 2 .
[0017]
[Table 2]
Figure 0004113302
[0018]
Table 2 shows the ratio between the CO indication value at the H 2 concentration of 0% and the CO indication value at each H 2 concentration in (1) in Table 1. FIG. In the figure, the horizontal axis represents the H 2 concentration, and the vertical axis represents the span gas correction coefficient.
[0019]
For example, when the calibration gas is CO250 ppm (N 2 base) and the average H 2 concentration of the sample gas is 48%, as the cylinder concentration when obtaining the calibration curve inside the analyzer,
250 * f (48) = 250 * 0.9815 = 245.4
Is obtained, and 245.4 ppm is used.
[0020]
In the above-described embodiment, the method for removing the influence of the coexisting gas in the FTIR method has been described. However, the present invention is not limited to this, and may be applied to, for example, a general infrared absorption method NDIR method. it can. It can also be applied to correction of interference affecting only the span point, such as chemiluminescence (CLD) quenching.
[0021]
【The invention's effect】
As described above, in the present invention, information on the difference between the base gas composition of the actual sample and the calibration gas is input, and the coexisting component concentration stored in advance in the data processing unit and the correction coefficient for the concentration are calculated. based on the correlation equation, since so as to determine the sensitivity adjustment factor, the actual time of actual sample measurement without requiring a special correction routine is due to the influence of the span sensitivity due to the difference of the base gas composition The error can be minimized .
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of a gas analyzer to which the method of the present invention is applied.
FIG. 2 is a graph showing an example of a relationship between a correction coefficient used in the method of the present invention and H 2 concentration.
FIG. 3A is a diagram showing the relationship between the concentration of coexisting H 2 O and the error of the CO 2 reading when measuring various concentrations of CO 2, and FIG. 3B is a graph showing two analyzers. it is a diagram showing the relationship between errors of the concentration and CO 2 indication of O 2 coexist in when measuring CO 2 in various concentrations using.
FIG. 4 is a diagram showing an infrared absorption amount change model by quenching.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas analysis part, 2 ... Data processing part .

Claims (4)

校正ガス中の測定対象成分の濃度値と、実サンプルと校正ガスのベースガス組成の差の情報を入力し、前記ベースガス組成の差の情報と、前記測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数を示す相関関係式とに基づいて、感度調整係数を決定して、この感度調整係数と前記測定対象成分の濃度値からガス分析装置を校正することを特徴とするガス分析における共存ガスの影響除去方法。 And density values of the measurement Target component in calibration gas, enter the information of the difference between the base gas composition of the actual sample and calibration gas, and the information of the difference between the base gas composition, the effect on the measurement values of the measurement target component A sensitivity adjustment coefficient is determined based on a coexisting component concentration exerted and a correlation equation indicating a correction coefficient for the concentration, and the gas analyzer is calibrated from the sensitivity adjustment coefficient and the concentration value of the measurement target component. A method for removing the influence of coexisting gases in gas analysis. ガス分析部と、この分析部の出力に基づいて測定対象成分を分析するデータ処理部とを有するガス分析装置であって、前記データ処理部には、前記測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数との間で算出される相関関係式が記憶され、前記ガス分析部は、該ガス分析部を校正する時、前記データ処理部に記憶させている前記相関関係式と、校正時に前記データ処理部に入力される実サンプルと校正ガスのベースガス組成の差の情報とに基づいて感度調整係数を決定して、この感度調整係数と前記データ処理部に入力される校正ガス中の測定対象成分の濃度値に基づいてガス分析部を校正するように構成されていることを特徴とするガス分析装置。A gas analyzer having a gas analysis unit and a data processing unit for analyzing a measurement target component based on an output of the analysis unit, wherein the data processing unit affects a measured value of the measurement target component A correlation equation calculated between the coexistence component concentration and a correction coefficient for the concentration is stored, and the gas analysis unit stores the correlation stored in the data processing unit when the gas analysis unit is calibrated. The sensitivity adjustment coefficient is determined based on the equation and the information on the difference between the actual sample and the base gas composition of the calibration gas input to the data processing unit at the time of calibration, and the sensitivity adjustment coefficient and the data processing unit are input. A gas analyzer configured to calibrate a gas analyzer based on a concentration value of a measurement target component in a calibration gas. 実サンプルと校正ガスのベースガス組成の差の情報を入力し、このベースガス組成の差の情報と、測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数を示す相関関係式とに基づいて、感度調整係数を決定してガス分析装置を校正することを特徴とするガス分析における共存ガスの影響除去方法。Enter the information on the difference between the base gas composition of the actual sample and the calibration gas, and the correlation indicating the information on the difference in the base gas composition, the concentration of coexisting components that affect the measured value of the measurement target component, and the correction coefficient for that concentration A method for removing the influence of coexisting gas in gas analysis, wherein the gas analysis apparatus is calibrated by determining a sensitivity adjustment coefficient based on the equation. ガス分析部と、この分析部の出力に基づいて測定対象成分を分析するデータ処理部とを有するガス分析装置であって、前記データ処理部には、前記測定対象成分の測定値に影響を及ぼす共存成分濃度とその濃度に対する補正係数との間で算出される相関関係式が記憶され、前記ガス分析部は、該ガス分析部を校正する時、前記データ処理部に記憶させている前記相関関係式と、校正時に前記データ処理部に入力される実サンプルと校正ガスのベースガス組成の差の情報とに基づいて感度調整係数を決定して、この感度調整係数に基づいてガス分析部を校正するように構成されていることを特徴とするガス分析装置。A gas analyzer having a gas analysis unit and a data processing unit for analyzing a measurement target component based on an output of the analysis unit, wherein the data processing unit affects a measured value of the measurement target component A correlation equation calculated between the coexistence component concentration and a correction coefficient for the concentration is stored, and the gas analysis unit stores the correlation stored in the data processing unit when the gas analysis unit is calibrated. The sensitivity adjustment coefficient is determined based on the equation and information on the difference between the actual sample input to the data processing unit at the time of calibration and the base gas composition of the calibration gas, and the gas analysis unit is calibrated based on the sensitivity adjustment coefficient. It is comprised so that it may carry out. The gas analyzer characterized by the above-mentioned.
JP16801399A 1999-02-05 1999-06-15 Method and apparatus for removing influence of coexisting gas in gas analysis Expired - Lifetime JP4113302B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16801399A JP4113302B2 (en) 1999-06-15 1999-06-15 Method and apparatus for removing influence of coexisting gas in gas analysis
US09/498,553 US6422056B1 (en) 1999-02-05 2000-02-04 Method for correcting the effect of a effect of a coexistent gas in a gas analysis and a gas analyzing apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16801399A JP4113302B2 (en) 1999-06-15 1999-06-15 Method and apparatus for removing influence of coexisting gas in gas analysis

Publications (2)

Publication Number Publication Date
JP2000356589A JP2000356589A (en) 2000-12-26
JP4113302B2 true JP4113302B2 (en) 2008-07-09

Family

ID=15860197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16801399A Expired - Lifetime JP4113302B2 (en) 1999-02-05 1999-06-15 Method and apparatus for removing influence of coexisting gas in gas analysis

Country Status (1)

Country Link
JP (1) JP4113302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951167B2 (en) 2016-11-29 2021-10-20 株式会社堀場製作所 Gas analyzer and gas analysis method

Also Published As

Publication number Publication date
JP2000356589A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
Sooväli et al. Uncertainty sources in UV-Vis spectrophotometric measurement
JP4079404B2 (en) Multi-component gas analysis method by FTIR method
EP3767277B1 (en) Method and device for analyzing gas
JP2000346801A5 (en)
JP6967387B2 (en) Gas analyzers, programs for gas analyzers, and gas analysis methods
US5351198A (en) Quantitative analytical method and apparatus for determining a plurality of ingredients with spectrometric analysis
US5305076A (en) Quantitative analytical method and apparatus for spectrometric analysis using wave number data points
JP4113302B2 (en) Method and apparatus for removing influence of coexisting gas in gas analysis
JP2010151624A (en) Gas analyzer using ftir method and program used therefor
JP4048139B2 (en) Concentration measuring device
US6422056B1 (en) Method for correcting the effect of a effect of a coexistent gas in a gas analysis and a gas analyzing apparatus using same
JP4205821B2 (en) Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer
WO2021005900A1 (en) Sample gas analysis device, sample gas analysis method, and program for sample gas analysis
JP3004747B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
JP2556768B2 (en) Multi-component analysis method in spectroscopic analysis
JP2649667B2 (en) Multi-component analysis method in spectroscopic analysis
JP3004748B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP3636829B2 (en) Gas concentration measurement method using multi-wavelength light
WO2019012773A1 (en) Gas analysis device, program for gas analysis device, and gas analysis method
WO2024127968A1 (en) Analysis device, machine learning device, calculation device, analysis method, and analysis program
CN117783035A (en) Calibration method for FTIR analyzer
CN118130400A (en) DOAS system gas concentration measurement method based on solution generalized inverse matrix
JPH0815253A (en) Exhaust gas weight measuring method using trace gas
JP2913527B2 (en) Quantitative analysis method using a spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4113302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term