JP4110799B2 - Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint - Google Patents

Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint Download PDF

Info

Publication number
JP4110799B2
JP4110799B2 JP2002053408A JP2002053408A JP4110799B2 JP 4110799 B2 JP4110799 B2 JP 4110799B2 JP 2002053408 A JP2002053408 A JP 2002053408A JP 2002053408 A JP2002053408 A JP 2002053408A JP 4110799 B2 JP4110799 B2 JP 4110799B2
Authority
JP
Japan
Prior art keywords
coating material
photocatalyst
titanium oxide
oxide powder
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053408A
Other languages
Japanese (ja)
Other versions
JP2003253156A (en
Inventor
寛樹 平田
行也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002053408A priority Critical patent/JP4110799B2/en
Publication of JP2003253156A publication Critical patent/JP2003253156A/en
Application granted granted Critical
Publication of JP4110799B2 publication Critical patent/JP4110799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒活性、透明性に優れた酸化チタン系光触媒塗料及びその製造方法並びに該塗料を塗布して得られた光触媒機能を有するコーティング材に関するものである。
【0002】
【従来の技術】
この種の光触媒薄膜を得る方法として、特開平7−100378号公報に記載されているように、チタンのアルコキシドとアルコールアミン類から調製されたチタニアゾルを基板にコーティングした後、焼成することにより光触媒薄膜を形成する方法が知られている。また、基板の保護及び酸化チタン層との密着性向上のために、基板と酸化チタン層との間にアンダーコート膜を設けた2層コートタイプの塗膜の製造方法も知られている。
【0003】
このうち、チタニアゾルを用いて焼成する方法では、高温で焼成処理しなければならないため、得られた光触媒薄膜の透明性が低下するおそれがあるだけでなく、焼成炉を必要とするためコストが高くなる問題があった。
また、低温で処理できる2層コートタイプでは、2回塗り及び乾燥が必要であるため、処理工程が多くなり、簡便な方法とはいえなかった。この2層コートタイプでは光触媒の活性を十分に引き出すために、酸化チタンの含有量を80重量%以上としなければならないため、成膜した膜の透明性が十分に得られないだけでなく、基板との密着性が十分に得られず安定した膜が形成できなくなるという問題があった。
【0004】
上記諸問題を解決する方策として本出願人は、一次粒子の平均粒径0.01〜0.1μmの超微粒子アナターゼ型酸化チタン、有機溶媒、β-ジケトン、チタネート系又はアルミネート系カップリング剤とシリカゾルからなる光触媒塗料を提案した(特開平10−195341号)。この公報に示された光触媒塗料を用いることにより、透明性、触媒活性、塗膜強度に優れた光触媒塗膜を形成することができる。
【0005】
【発明が解決しようとする課題】
しかし、特開平10−195341号公報に示された光触媒塗料を用いて塗膜を形成することにより、従来の光触媒薄膜と比べて高い透明性、光触媒活性、膜強度に優れた塗膜が得られるが、光触媒の用途の拡大とともに、より高い透明性を有する塗膜を形成し得る光触媒塗料の開発が要望されている。
【0006】
本発明の目的は、透明性、硬度及び分解性能に優れた光触媒塗料及び該塗料を塗布して得られた光触媒機能を有するコーティング材を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、アナターゼ型酸化チタン粉末と混合アルコールとβ-ジケトンとチタネート系カップリング剤とシリカゾルを含む光触媒塗料の改良である。その特徴ある構成は、混合アルコールが4〜15重量%のメチルアルコールと96〜85重量%のエチルアルコールの混合液であり、アナターゼ型酸化チタン粉末はその一次粒子径が0.01〜0.03μm及びその見掛比重が50〜200g/Lであって、一次粒子及び一次粒子が凝集又は集塊した二次粒子からなる光触媒塗料である。
請求項1に係る発明では、このような物性を有するアナターゼ型酸化チタン粉末を塗料中に分散することにより、透明性、硬度及び分解性能に優れた光触媒塗料が得られる。
【0008】
請求項2に係る発明は、請求項1に係る発明であって、アナターゼ型酸化チタン粉末はBET比表面積が30〜100m2/gであり、この一次粒子及び一次粒子が凝集又は集塊した二次粒子の粒子同士が0.01〜0.3μmの間隔をあけて塗料中に分散している光触媒塗料である。
請求項3に係る発明は、請求項1又は2に係る発明であって、酸化チタン粉末の含有量が0.5〜20重量%である光触媒塗料である。
請求項4に係る発明は、請求項1ないし3いずれかに係る発明であって、β-ジケトンの含有量が酸化チタン粉末に対して0.5〜10重量%である光触媒塗料である。
請求項5に係る発明は、請求項1ないし4いずれかに係る発明であって、チタネート系カップリング剤の添加量が酸化チタン粉末に対して0.1〜5重量%である光触媒塗料である
請求項に係る発明は、請求項1ないしいずれかに係る発明であって、シリカゾルがエチルシリケートの加水分解物又は部分加水分解物である光触媒塗料である。
【0009】
請求項2〜に記載された構成にすることにより、より一層透明性、硬度及び分解性能に優れた光触媒塗料が得られる。
【0011】
請求項に係る発明は、請求項1ないし6いずれか記載の光触媒塗料を基材表面に塗布して形成させたことを特徴とする光触媒機能を有するコーティング材である。
請求項に係る発明は、請求項に係る発明であって、基材表面に無機質の下地層と、この下地層の上に光触媒塗料から形成された光触媒膜とを有するコーティング材である。
請求項に係る発明は、請求項又はに係る発明であって、基材がガラス、プラスチック、金属、木材、タイルを含むセラミック、セメント、コンクリート、石、繊維、紙及び皮革からなる群より選ばれた材質であるコーティング材である。
請求項10に係る発明は、請求項に係る発明であって、無機質の下地層がシリカ又はアルミナからなるコーティング材である。
【0012】
請求項11に係る発明は、請求項ないし10いずれか記載のコーティング材により表面被覆を行った石材加工品である。
請求項12に係る発明は、請求項ないし10いずれか記載のコーティング材により表面被覆を行った壁材である。
請求項13に係る発明は、請求項ないし10いずれか記載のコーティング材により表面被覆を行った硝子である。
【0013】
【発明の実施の形態】
次に本発明の実施の形態を説明する。
本発明者らは、その一次粒子径が0.01〜0.03μm及びその見掛比重が50〜200g/Lであって、一次粒子及び一次粒子が凝集又は集塊した二次粒子からなることを特徴とするアナターゼ型酸化チタン粉末をβ-ジケトン、チタネート系カップリング剤存在下で、有機溶媒である混合アルコール中に均一に分散させた後、この分散液にシリカゾルを混合して得られる塗料は、より高い透明性を有し、硬度及び分解性能に優れた塗膜を形成することができるとの知見を得、本発明に至った。
【0014】
一次粒子径が0.01〜0.03μm及び見掛比重が50〜200g/Lの一次粒子及び一次粒子が凝集又は集塊した二次粒子からなるアナターゼ型酸化チタン粉末が、溶媒である混合アルコールとβ-ジケトンとチタネート系カップリング剤からなる液体中で、一次粒子に近い状態まで均一で高度に分散する。酸化チタン粉末は一次粒子径が0.01μm未満のものは入手が困難であり、0.03μmを越えると光触媒塗料の透明度が低下する。見掛比重が50g/L未満であると均一に分散することができず、見掛比重が200g/Lを越えると塗膜の透明性において不具合を生じる。一次粒子と二次粒子の割合は個数比で一次粒子/二次粒子が1.0〜3.0であることが好ましい。一次粒子/二次粒子が下限値未満、即ち二次粒子が一次粒子に対して多くなると透明度が低下し易くなり、上限値を越えると製造が困難である。
【0015】
この分散液に適量のシリカゾルを均一混合することにより、塗料中にアナターゼ型酸化チタン粉末が極めて一次粒子に近い状態まで均一で高度に分散した透明性、硬度及び分解性能に優れた光触媒塗料が得られる。
【0016】
アナターゼ型酸化チタン粉末はそのBET比表面積が30〜100m2/gであることが好ましい。BET比表面積を30〜100m2/gとしたのは、下限値未満では十分な触媒活性が得られず、上限値を越えると分散性が低下するからである。一次粒子及び一次粒子が凝集又は集塊した二次粒子の粒子同士は0.01〜0.3μmの間隔をあけて塗料中に分散させることが好ましい。このように酸化チタンの粒子同士が0.01〜0.3μmの間隔をあけることにより塗膜の透明度が低下しない。酸化チタンの粒子同士の間隔は0.02〜0.15μmが好ましい。
この光触媒塗料を基材上に塗布することにより薄く均一な塗布が可能であり、かつβ-ジケトンとチタネート系カップリング剤更には、シリカゾルの作用により酸化チタン粒子間、及び基材との密着性が向上し、安定した光触媒薄膜が形成できる。
【0017】
酸化チタン粉末の含有量は0.5〜20重量%である。1.0〜10.0重量%の割合で含有させることが好ましい。酸化チタン粉末の含有量が0.5重量%未満では十分な触媒活性が得られず、20重量%を越えると酸化チタンの分散性が低下し、形成する光触媒薄膜のヘイズが悪化する不具合を生じる。
【0018】
β-ジケトンは、極性官能基(ケトン基)が、酸化チタン微粉末及び基材表面に存在する極性基(水酸基や酸素基)に作用して、焼付け中に縮合することにより、酸化チタン粉末の最密充填が起こり、粉末間及び粉末-基板間を結合させ膜形成剤として作用し密着性を上げたのではないかと考えられる。
β-ジケトンとしては、2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-イソプロピル-2,4-ペンタンジオン、2,2-ジメチル-3,5-ヘキサンジオン等が挙げられる。β-ジケトンは酸化チタン粉末に対して0.5〜10重量%の割合で含有させる。1.0〜5.0重量%の割合で含有させることが好ましい。β-ジケトンの含有量が0.5重量%未満では、十分な分散性が得られず、10.0重量%を越えても更なる分散性の向上にはならない。
【0019】
カップリング剤は低ヘイズ化剤として作用する。カップリング剤を添加することにより、膜構造に二次凝集群を形成せず、均一な最密充填化と表面の平滑精度がより一層高められるためにヘイズが低下(透明性が向上する)すると推測される。
カップリング剤としては、下記式(1)〜式(5)に示されるようなジアルキルパイロホスフェート基やジアルキルホスファイト基を含有するチタネート系カップリング剤等が挙げられ、1種又は2種以上を使用することができる。
【0020】
【化1】

Figure 0004110799
【0021】
【化2】
Figure 0004110799
【0022】
【化3】
Figure 0004110799
【0023】
【化4】
Figure 0004110799
【0024】
【化5】
Figure 0004110799
【0025】
チタネート系カップリング剤は酸化チタン粉末に対して0.1〜5重量%の割合で含有させる。0.5〜2.0重量%の割合で含有させることが好ましい。カップリング剤の含有量が0.1重量%未満では分散性及びヘイズ低下の効果が得られず、5.0重量%を越えても更なるヘイズ低下や分散性の向上にはならない。
【0026】
溶媒として用いられる混合アルコールとしては、メチルアルコールとエチルアルコールからなる混合液が好適である。この混合アルコールの含有割合はメチルアルコールが4〜15重量%、エチルアルコールが96〜85重量%である。メチルアルコールの含有割合が4重量%未満の場合、極めて透明な光触媒薄膜が得られず、15重量%を越えても更なる効果は得られない。光触媒塗料に含まれる溶媒の量は、塗布に適した粘度が得られればよく、特に制限されない。
【0027】
また、シリカゾルの均一混合作用により透明度を低下させることがなく、充分な触媒活性を得ることが出来、更にシリカゾルの作用で基材との密着性が一層向上する。
シリカゾルとしてはエチルシリケートの加水分解物又は部分加水分解物が挙げられる。
【0028】
次に、光触媒塗料の製造方法について説明する。
先ずその一次粒子径が0.01〜0.03μm、その見掛比重が50〜200g/L及びそのBET比表面積が30〜100m2/gの範囲内の物性を有し、一次粒子及び一次粒子が凝集又は集塊した二次粒子からなるアナターゼ型酸化チタン粉末を所定量用意する。このアナターゼ型酸化チタン粉末は四塩化チタンを高温気相中で加水分解反応させ、反応生成物を急速冷却することにより得られる。
次いでこの酸化チタン粉末を混合アルコールとβ-ジケトンとチタネート系カップリング剤からなる液体に混合し、例えばジルコニアビーズの所定量により、所定時間ペイントシェーカーにて均一に分散させる。次に、この分散液に所定濃度のシリカゾル溶液を適量加えて均一混合することにより、本発明の光触媒塗料を製造することができる。この光触媒塗料を例えばスピンコーターにより所定の基材表面に塗布し、乾燥することにより、その表面に光触媒塗膜を有するコーティング材が得られる。
【0029】
また基材表面に無機質の下地層を形成し、この下地層の上に光触媒塗料を塗布、乾燥して光触媒膜を形成して光触媒機能を有するコーティング材を得ることもできる。本発明の光触媒塗料を用いた基材への塗布方法としては、スピンコート法、ディッピング法、スプレー法等により施すことができるが、特に塗布方法は限定されない。
【0030】
本発明の基材に使用される材質には、ガラス、プラスチック、金属、木材、タイルを含むセラミック、セメント、コンクリート、石、繊維、紙及び皮革からなる群より選ばれる。ガラスとしては、蛍光灯、窓等の室内環境浄化(汚染物質分解)ガラス、水槽、生け簀等の水質浄化ガラス、車の防曇ガラス、CRT、LCD画面、窓、鏡、眼鏡等の防汚ガラス、カメラ、光学機器の防汚、防黴レンズ等がある。プラスチックとしては、AV機器、コンピューター、マウス、キーボード、リモコン、フロッピーディスク、等の機器及びその周辺製品、車の内装品、家具、キッチン、風呂、洗面所等で使用する家庭用品等の使用する防汚、抗菌、防黴プラスチック等がある。金属としては、物干し台、物干し竿、キッチン、実験室等の作業台や洗い場、換気扇等に使用する防汚、抗菌、防黴ステンレス、防汚、抗菌処理ドアノブ等がある。木材の用途としては、防汚家具、公園の抗菌遊技施設等がある。タイルを含むセラミック、セメント、コンクリート、石等の建材としては、防汚処理した外壁材、屋根、床材等、室内環境浄化(汚染物質分解)性を持つ内壁材、防汚、抗菌、防黴処理した各種内装品等がある。紙としては、抗菌処理文房具等に使用できる。フィルム等の繊維としては、食品包装用透明抗菌フィルム、野菜保存用透明エチレンガス分解フィルム、環境、水質浄化用フィルム等がある。このように各種基材は、防汚、環境浄化、抗菌、防黴の効果を有するので、太陽光や蛍光灯等から発せられる紫外線の照射が可能な条件であれば、例示した以外でも多くの用途に使用することができる。無機質の下地層としてはシリカ、アルミナ等が挙げられる。本発明のコーティング材により表面被覆を行った石材加工品、壁材又は硝子は透明性及び硬度に優れるとともに高い分解性能を示す。
【0031】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
有機溶媒に4.7重量%のメチルアルコールと95.3重量%のエチルアルコールの混合アルコール40g、β-ジケトンに2,4-ペンタンジオン0.25g、上記化学式(1)に示されるチタネート系カップリング剤0.25g、一次粒子径0.021μm、見掛比重130g/L、BET比表面積50m2/gのアナターゼ型酸化チタン10gを混合し、ジリコニアビーズ100gにより16時間ペイントシェーカーにて分散させた。この分散液に10重量%シリカゾル溶液11gを混合し、光触媒塗料を調製した。調製した光触媒塗料をスピンコーターでガラス基板に塗布し、125℃で1時間乾燥させることにより、ガラス基板表面に光触媒薄膜が形成されたコーティング材を得た。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.02〜0.3μmの間隔をあけて塗料中に分散していることを確認した。
【0032】
<実施例2>
有機溶媒に10.2重量%のメチルアルコールと89.8重量%のエチルアルコールの混合アルコール150g、上記化学式(1)に示されるチタネート系カップリング剤0.1gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.01〜0.15μmの間隔をあけて塗料中に分散していることを確認した。
<実施例3>
有機溶媒に4.7重量%のメチルアルコールと95.3重量%のエチルアルコールの混合アルコール150g、上記化学式(2)に示されるチタネート系カップリング剤0.1gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.02〜0.15μmの間隔をあけて塗料中に分散していることを確認した。
<実施例4>
有機溶媒に10.2重量%のメチルアルコールと89.8重量%のエチルアルコールの混合アルコール40g、β-ジケトンに3-メチル-2,4-ペンタンジオン0.5g、上記化学式(3)に示されるチタネート系カップリング剤0.5gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.05〜0.20μmの間隔をあけて塗料中に分散していることを確認した。
【0033】
<実施例5>
有機溶媒に10.2重量%のメチルアルコールと89.8重量%のエチルアルコールの混合アルコール150g、β-ジケトンに3-メチル-2,4-ペンタンジオン0.5g、上記化学式(4)に示されるチタネート系カップリング剤0.25g、10重量%シリカゾル溶液43gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.05〜0.10μmの間隔をあけて塗料中に分散していることを確認した。
<実施例6>
有機溶媒に4.7重量%のメチルアルコールと95.3重量%のエチルアルコールの混合アルコール40g、β-ジケトンに3-イソプロピル-2,4-ペンタンジオン1.0g、上記化学式(5)に示されるチタネート系カップリング剤0.4g、10重量%シリカゾル溶液43gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.05〜0.25μmの間隔をあけて塗料中に分散していることを確認した。
【0034】
<比較例1>
有機溶媒にエチルアルコール40g、上記化学式(1)に示されるチタネート系カップリング剤0.1gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.1〜0.4μmの間隔をあけて塗料中に分散していることを確認した。
<比較例2>
有機溶媒にエチルアルコール40g、上記化学式(2)に示されるチタネート系カップリング剤0.4gを用い、β-ジケトンを添加しない以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.2〜0.5μmの間隔をあけて塗料中に分散していることを確認した。
【0035】
<比較例3>
有機溶媒にエチルアルコール40g、β-ジケトンに2,4-ペンタンジオン0.5g、10重量%シリカゾル溶液43gを用い、チタネートカップリング剤を添加しない以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.2〜0.5μmの間隔をあけて塗料中に分散していることを確認した。
<比較例4>
酸化チタンに一次粒子径0.04μm、見掛比重250g/L、BET比表面積25m2/gのアナターゼ型酸化チタン10gを用いた以外は実施例1と同様にして光触媒塗料を調製し、実施例1と同様の方法でガラス基板表面に光触媒薄膜を形成した。得られた光触媒塗料の酸化チタン粉末の形態について透過型電子顕微鏡で測定したところ、粒子同士が0.2〜0.4μmの間隔をあけて塗料中に分散していることを確認した。
【0036】
<比較試験及び評価>
実施例1〜6及び比較例1〜4で得られたコーティング材の光触媒薄膜について光触媒薄膜のヘイズ、鉛筆硬度及び光触媒活性をそれぞれ測定した。なお、ヘイズ測定には、スガ試験機社製ヘイズコンピューターHGM−3Dを用いた。また光触媒活性は、以下に示す手順により求めた除去率を光触媒活性の指標とした。先ず、光触媒薄膜を塗布したガラス基板を1Lのガラス(パイレックス)製容器に入れて密閉した。次いで容器内に350ppm(初期濃度)のアセトアルデヒドを導入した。次に、容器を照射量1.2mW/cm2の紫外線ランプで2時間照射した。照射後の容器内部のアセトアルデヒド濃度をガス検知管(ガステック社製)で測定し、下記に示す式に基づいて除去率を求めた。
【0037】
除去率[%]=[(初期濃度−光照射後の濃度)÷初期濃度]×100
実施例1〜6及び比較例1〜4で得られたコーティング材の光触媒薄膜について測定した結果を表1にそれぞれ示す。
【0038】
【表1】
Figure 0004110799
【0039】
表1より明らかなように、有機溶媒にエチルアルコールを用いた比較例1〜3では、ヘイズが高く透明性に劣り、鉛筆による硬度でもH〜3Hと柔らかく、アセトアルデヒド除去率も75〜90%と低い数値を示している。また物性が本発明の範囲外である酸化チタンを用いた比較例4でも、ヘイズ値が高く、鉛筆硬度、アセトアルデヒド除去率ともに低くなった。これに対して実施例1〜6ではヘイズが極めて低く、鉛筆による硬度も3H〜4Hと硬く、アセトアルデヒド除去率は85〜95%と高い除去率を示した。
【0040】
【発明の効果】
以上述べたように、本発明によれば、その一次粒子径が0.01〜0.03μm及びその見掛比重が50〜200g/Lであって、一次粒子及び一次粒子が凝集又は集塊した二次粒子からなるアナターゼ型酸化チタン粉末をβ-ジケトンとチタネート系カップリング剤の存在下で溶媒である4〜15重量%のメチルアルコールと96〜85重量%のエチルアルコールからなる混合アルコール中に均一に分散させた後、シリカゾルを混合することにより、アナターゼ型酸化チタン粉末が極めて一次粒子に近い状態まで均一で高度に分散した透明性、硬度及び分解性能に優れた光触媒塗料が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium oxide photocatalyst paint excellent in photocatalytic activity and transparency, a method for producing the same, and a coating material having a photocatalytic function obtained by applying the paint.
[0002]
[Prior art]
As a method for obtaining this type of photocatalyst thin film, as described in JP-A-7-1000037, a titania sol prepared from an alkoxide of titanium and an alcoholamine is coated on a substrate and then fired to form a photocatalytic thin film. A method of forming is known. Also known is a method for producing a two-layer coat type coating film in which an undercoat film is provided between a substrate and a titanium oxide layer in order to protect the substrate and improve adhesion to the titanium oxide layer.
[0003]
Of these, the method of firing using titania sol requires firing at a high temperature, which not only reduces the transparency of the resulting photocatalyst thin film, but also requires a firing furnace, resulting in high costs. There was a problem.
In addition, the two-layer coating type that can be processed at a low temperature requires two coatings and drying, so that the number of processing steps is increased, which is not a simple method. In this two-layer coating type, the titanium oxide content must be 80% by weight or more in order to sufficiently bring out the activity of the photocatalyst. There was a problem that a sufficient film could not be formed and a stable film could not be formed.
[0004]
As a measure for solving the above-mentioned problems, the present applicant has proposed an ultrafine particulate anatase-type titanium oxide having an average primary particle size of 0.01 to 0.1 μm, an organic solvent, a β-diketone, a titanate-based or aluminate-based coupling agent. And a photocatalytic coating material composed of silica sol was proposed (Japanese Patent Laid-Open No. 10-195341). By using the photocatalyst paint disclosed in this publication, a photocatalyst coating film excellent in transparency, catalytic activity, and coating film strength can be formed.
[0005]
[Problems to be solved by the invention]
However, by forming a coating film using the photocatalyst paint disclosed in JP-A-10-195341, a coating film having higher transparency, photocatalytic activity, and film strength than a conventional photocatalyst thin film can be obtained. However, development of a photocatalyst coating capable of forming a coating film having higher transparency is demanded as the use of the photocatalyst is expanded.
[0006]
An object of the present invention is to provide a transparent coating material having a photocatalytic function obtained by applying a hardness and decomposition performance excellent in the photocatalytic coating及beauty the paint.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an improvement of a photocatalytic coating material comprising anatase-type titanium oxide powder, mixed alcohol, β-diketone, titanate coupling agent, and silica sol. The characteristic structure is a mixed solution of 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol. The anatase-type titanium oxide powder has a primary particle size of 0.01 to 0.03 μm. And the apparent specific gravity is 50-200 g / L, Comprising: It is a photocatalyst coating material which consists of a secondary particle which the primary particle and the primary particle aggregated or agglomerated.
In the invention which concerns on Claim 1, the photocatalyst coating material excellent in transparency, hardness, and decomposition | disassembly performance is obtained by disperse | distributing the anatase type titanium oxide powder which has such a physical property in a coating material.
[0008]
The invention according to claim 2 is the invention according to claim 1, wherein the anatase-type titanium oxide powder has a BET specific surface area of 30 to 100 m 2 / g, and the primary particles and the primary particles are aggregated or agglomerated. This is a photocatalytic coating in which the particles of the next particles are dispersed in the coating at an interval of 0.01 to 0.3 μm.
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the content of the titanium oxide powder is 0.5 to 20% by weight.
The invention according to claim 4 is the photocatalyst paint according to any one of claims 1 to 3, wherein the content of β-diketone is 0.5 to 10% by weight based on the titanium oxide powder.
The invention according to claim 5 is the photocatalyst paint according to any one of claims 1 to 4, wherein the titanate coupling agent is added in an amount of 0.1 to 5% by weight based on the titanium oxide powder. .
The invention according to claim 6 is the photocatalyst coating material according to any one of claims 1 to 5 , wherein the silica sol is a hydrolyzate or a partial hydrolyzate of ethyl silicate.
[0009]
By adopting the constitution described in claims 2 to 6 , a photocatalyst coating material that is further excellent in transparency, hardness, and decomposition performance can be obtained.
[0011]
The invention according to claim 7 is a coating material having a photocatalytic function, characterized in that the claims 1 to photocatalytic paint 6 wherein any one was formed by coating on the substrate surface.
The invention according to claim 8 is the invention according to claim 7 , which is a coating material having an inorganic underlayer on the surface of a substrate and a photocatalyst film formed from a photocatalyst paint on the underlayer.
The invention according to claim 9 is the invention according to claim 7 or 8 , wherein the substrate is made of glass, plastic, metal, wood, tile-containing ceramic, cement, concrete, stone, fiber, paper and leather. It is a coating material that is a more selected material.
The invention according to claim 10 is the invention according to claim 8 , wherein the inorganic underlayer is a coating material made of silica or alumina.
[0012]
The invention according to an eleventh aspect is a processed stone material that is surface-coated with the coating material according to any one of the seventh to tenth aspects.
The invention according to claim 12 is a wall material that is surface-coated with the coating material according to any one of claims 7 to 10 .
A thirteenth aspect of the invention is a glass surface-coated with the coating material according to any one of the seventh to tenth aspects.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
The inventors have a primary particle diameter of 0.01 to 0.03 μm, an apparent specific gravity of 50 to 200 g / L, and primary particles and secondary particles that are aggregated or agglomerated. A paint obtained by uniformly dispersing anatase-type titanium oxide powder characterized by the above in a mixed alcohol as an organic solvent in the presence of a β-diketone and a titanate coupling agent, and then mixing silica sol with this dispersion Has obtained the knowledge that a coating film having higher transparency and excellent hardness and decomposition performance can be formed, leading to the present invention.
[0014]
Mixed alcohol in which anatase-type titanium oxide powder comprising primary particles having a primary particle diameter of 0.01 to 0.03 μm and an apparent specific gravity of 50 to 200 g / L and secondary particles in which primary particles are aggregated or agglomerated is a solvent In a liquid consisting of, β-diketone and titanate coupling agent, it is uniformly and highly dispersed to a state close to primary particles. Titanium oxide powder having a primary particle size of less than 0.01 μm is difficult to obtain, and if it exceeds 0.03 μm, the transparency of the photocatalyst coating material is lowered. If the apparent specific gravity is less than 50 g / L, it cannot be uniformly dispersed, and if the apparent specific gravity exceeds 200 g / L, a defect occurs in the transparency of the coating film. The ratio of primary particles to secondary particles is preferably 1.0 to 3.0 in terms of the number ratio of primary particles / secondary particles. When the primary particle / secondary particle is less than the lower limit, that is, when the secondary particle is larger than the primary particle, the transparency tends to be lowered, and when the upper limit is exceeded, the production is difficult.
[0015]
By uniformly mixing an appropriate amount of silica sol with this dispersion, a photocatalyst coating with excellent transparency, hardness and decomposition performance is obtained in which the anatase-type titanium oxide powder is uniformly and highly dispersed in the coating to a state close to primary particles. It is done.
[0016]
The anatase-type titanium oxide powder preferably has a BET specific surface area of 30 to 100 m 2 / g. The reason why the BET specific surface area is set to 30 to 100 m 2 / g is that sufficient catalytic activity cannot be obtained if it is less than the lower limit value, and dispersibility is lowered if the upper limit value is exceeded. It is preferable to disperse | distribute the primary particle and the particle | grains of the secondary particle which the primary particle aggregated or agglomerated in the coating material at intervals of 0.01-0.3 micrometer. Thus, the transparency of a coating film does not fall because the particle | grains of titanium oxide leave a space | interval of 0.01-0.3 micrometer. The distance between the titanium oxide particles is preferably 0.02 to 0.15 μm.
By applying this photocatalyst paint on the substrate, thin and uniform coating is possible, and β-diketone, titanate coupling agent, and the adhesion between titanium oxide particles and the substrate by the action of silica sol. And a stable photocatalytic thin film can be formed.
[0017]
The content of titanium oxide powder is 0.5 to 20% by weight. It is preferable to make it contain in the ratio of 1.0-10.0 weight%. When the content of the titanium oxide powder is less than 0.5% by weight, sufficient catalytic activity cannot be obtained. When the content exceeds 20% by weight, the dispersibility of the titanium oxide is lowered, and the haze of the formed photocatalytic thin film is deteriorated. .
[0018]
In β-diketone, the polar functional group (ketone group) acts on the titanium oxide fine powder and the polar group (hydroxyl group and oxygen group) present on the surface of the base material and condenses during baking, so that the titanium oxide powder It is thought that close packing occurred and the adhesion between the powder and the powder-substrate was increased by acting as a film forming agent.
Examples of β-diketones include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-isopropyl-2,4-pentanedione, 2,2-dimethyl-3,5-hexanedione, and the like. It is done. β-diketone is contained in a proportion of 0.5 to 10% by weight based on the titanium oxide powder. It is preferable to make it contain in the ratio of 1.0-5.0 weight%. If the content of β-diketone is less than 0.5% by weight, sufficient dispersibility cannot be obtained, and if it exceeds 10.0% by weight, no further improvement in dispersibility is obtained.
[0019]
The coupling agent acts as a low haze agent. By adding a coupling agent, the secondary aggregate group is not formed in the film structure, and the haze is lowered (transparency is improved) because uniform close-packing and surface smoothness accuracy are further enhanced. Guessed.
Examples of the coupling agent include titanate coupling agents containing a dialkyl pyrophosphate group or a dialkyl phosphite group as shown in the following formulas (1) to (5). Can be used.
[0020]
[Chemical 1]
Figure 0004110799
[0021]
[Chemical formula 2]
Figure 0004110799
[0022]
[Chemical 3]
Figure 0004110799
[0023]
[Formula 4]
Figure 0004110799
[0024]
[Chemical formula 5]
Figure 0004110799
[0025]
The titanate coupling agent is contained in a proportion of 0.1 to 5% by weight with respect to the titanium oxide powder. It is preferable to make it contain in the ratio of 0.5 to 2.0 weight%. If the content of the coupling agent is less than 0.1% by weight, the effects of dispersibility and haze reduction cannot be obtained, and if it exceeds 5.0% by weight, further haze reduction and dispersibility cannot be improved.
[0026]
As the mixed alcohol used as the solvent, a mixed liquid composed of methyl alcohol and ethyl alcohol is suitable. The content ratio of the mixed alcohol is 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol. When the content ratio of methyl alcohol is less than 4% by weight, a very transparent photocatalytic thin film cannot be obtained, and even if the content exceeds 15% by weight, no further effect can be obtained. The amount of the solvent contained in the photocatalyst coating is not particularly limited as long as a viscosity suitable for application can be obtained.
[0027]
Further, the transparency of the silica sol is not lowered by the uniform mixing action of the silica sol, and sufficient catalytic activity can be obtained. Further, the adhesion to the substrate is further improved by the action of the silica sol.
Examples of the silica sol include a hydrolyzate or partial hydrolyzate of ethyl silicate.
[0028]
Next, the manufacturing method of a photocatalyst coating material is demonstrated.
First, the primary particle diameter is 0.01 to 0.03 μm, the apparent specific gravity is 50 to 200 g / L, and the BET specific surface area is in the range of 30 to 100 m 2 / g. A predetermined amount of anatase-type titanium oxide powder consisting of secondary particles that are aggregated or agglomerated is prepared. This anatase-type titanium oxide powder is obtained by hydrolyzing titanium tetrachloride in a high-temperature gas phase and rapidly cooling the reaction product.
Next, the titanium oxide powder is mixed with a liquid composed of a mixed alcohol, β-diketone, and titanate coupling agent, and is uniformly dispersed in a paint shaker for a predetermined time with a predetermined amount of zirconia beads, for example. Next, the photocatalyst coating material of the present invention can be produced by adding an appropriate amount of a silica sol solution having a predetermined concentration to this dispersion and mixing them uniformly. The photocatalyst paint is applied to the surface of a predetermined substrate by, for example, a spin coater and dried to obtain a coating material having a photocatalyst coating film on the surface.
[0029]
It is also possible to obtain a coating material having a photocatalytic function by forming an inorganic underlayer on the surface of the substrate and applying a photocatalyst coating on the underlayer and drying to form a photocatalyst film. As a coating method to the base material using the photocatalyst coating material of the present invention, it can be applied by spin coating method, dipping method, spraying method or the like, but the coating method is not particularly limited.
[0030]
The material used for the substrate of the present invention is selected from the group consisting of glass, plastic, metal, wood, ceramic including tile, cement, concrete, stone, fiber, paper, and leather. Glasses include fluorescent lamps, windows and other indoor environment purification (pollutant decomposition) glass, water tanks, water purification glass such as sacrifices, car anti-fog glass, CRT, LCD screens, windows, mirrors, glasses, etc. , Anti-fouling, anti-fouling lenses, etc. for cameras and optical equipment. Plastics include AV equipment, computers, mice, keyboards, remote controls, floppy disks, etc. and peripheral products, car interiors, furniture, kitchens, bathrooms, household items used in bathrooms, etc. There are dirt, antibacterial, anti-bacterial plastic and so on. Examples of the metal include clothes racks, clothes racks, kitchen benches, laboratory benches and antifouling, antibacterial, antibacterial stainless steel, antifouling and antibacterial door knobs used for ventilation fans. Wood applications include antifouling furniture and park antibacterial amusement facilities. As building materials such as ceramics, cement, concrete and stone including tiles, anti-stain-treated outer wall materials, roofs, floor materials, etc., interior wall materials with indoor environment purification (contaminant decomposition), anti-fouling, antibacterial, anti-fouling There are various interior items that have been processed. As paper, it can be used for antibacterial treatment stationery and the like. Examples of the fiber such as a film include a transparent antibacterial film for food packaging, a transparent ethylene gas decomposition film for preservation of vegetables, a film for environmental and water purification, and the like. As described above, since various base materials have antifouling, environmental purification, antibacterial, and antifungal effects, there are many other than those exemplified as long as they can be irradiated with ultraviolet rays emitted from sunlight or fluorescent lamps. Can be used for applications. Examples of the inorganic underlayer include silica and alumina. A processed stone material, wall material or glass which has been surface-coated with the coating material of the present invention is excellent in transparency and hardness and exhibits high decomposition performance.
[0031]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
40 g of mixed alcohol of 4.7% by weight methyl alcohol and 95.3% by weight ethyl alcohol in organic solvent, 0.25 g of 2,4-pentanedione in β-diketone, titanate cup represented by the above chemical formula (1) 10 g of anatase-type titanium oxide having a ring agent of 0.25 g, a primary particle diameter of 0.021 μm, an apparent specific gravity of 130 g / L, and a BET specific surface area of 50 m 2 / g are mixed and dispersed with 100 g of zirconia beads in a paint shaker for 16 hours. It was. 11 g of a 10 wt% silica sol solution was mixed with this dispersion to prepare a photocatalyst paint. The prepared photocatalyst coating material was applied to a glass substrate with a spin coater and dried at 125 ° C. for 1 hour to obtain a coating material in which a photocatalytic thin film was formed on the glass substrate surface. When the form of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint with an interval of 0.02 to 0.3 μm.
[0032]
<Example 2>
Example 1 except that 150 g of a mixed alcohol of 10.2 wt% methyl alcohol and 89.8 wt% ethyl alcohol and 0.1 g of a titanate coupling agent represented by the above chemical formula (1) were used as the organic solvent. Similarly, a photocatalyst paint was prepared, and a photocatalyst thin film was formed on the glass substrate surface in the same manner as in Example 1. When the form of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint with an interval of 0.01 to 0.15 μm.
<Example 3>
Example 1 except that 150 g of a mixed alcohol of 4.7% by weight methyl alcohol and 95.3% by weight ethyl alcohol and 0.1 g of the titanate coupling agent represented by the above chemical formula (2) were used as the organic solvent. Similarly, a photocatalyst paint was prepared, and a photocatalyst thin film was formed on the glass substrate surface in the same manner as in Example 1. When the form of the titanium oxide powder of the obtained photocatalyst coating material was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the coating material with an interval of 0.02 to 0.15 μm.
<Example 4>
40g of mixed alcohol of 10.2% by weight methyl alcohol and 89.8% by weight ethyl alcohol in organic solvent, 0.5g of 3-methyl-2,4-pentanedione in β-diketone, shown in the above chemical formula (3) A photocatalyst paint was prepared in the same manner as in Example 1 except that 0.5 g of the titanate coupling agent was used, and a photocatalytic thin film was formed on the glass substrate surface in the same manner as in Example 1. When the form of the titanium oxide powder of the obtained photocatalyst coating material was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the coating material with an interval of 0.05 to 0.20 μm.
[0033]
<Example 5>
150 g of mixed alcohol of 10.2 wt% methyl alcohol and 89.8 wt% ethyl alcohol in organic solvent, 0.5 g of 3-methyl-2,4-pentanedione in β-diketone, as shown in the above chemical formula (4) A photocatalyst paint was prepared in the same manner as in Example 1 except that 0.25 g of titanate coupling agent and 43 g of 10 wt% silica sol solution were used, and a photocatalytic thin film was formed on the glass substrate surface in the same manner as in Example did. When the form of the titanium oxide powder of the obtained photocatalyst coating material was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the coating material with an interval of 0.05 to 0.10 μm.
<Example 6>
40 g of mixed alcohol of 4.7% by weight methyl alcohol and 95.3% by weight ethyl alcohol in an organic solvent, 1.0 g of 3-isopropyl-2,4-pentanedione in β-diketone, as shown in the above chemical formula (5) A photocatalyst paint was prepared in the same manner as in Example 1 except that 0.4 g of titanate coupling agent and 43 g of 10 wt% silica sol solution were used, and a photocatalytic thin film was formed on the glass substrate surface in the same manner as in Example 1. did. When the form of the titanium oxide powder of the obtained photocatalyst coating material was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the coating material with an interval of 0.05 to 0.25 μm.
[0034]
<Comparative Example 1>
A photocatalyst paint was prepared in the same manner as in Example 1 except that 40 g of ethyl alcohol and 0.1 g of the titanate coupling agent represented by the above chemical formula (1) were used as the organic solvent. A photocatalytic thin film was formed on the substrate surface. When the form of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint with an interval of 0.1 to 0.4 μm.
<Comparative example 2>
A photocatalyst paint was prepared in the same manner as in Example 1 except that 40 g of ethyl alcohol and 0.4 g of the titanate coupling agent represented by the above chemical formula (2) were used as the organic solvent, and no β-diketone was added. A photocatalytic thin film was formed on the surface of the glass substrate by the same method. When the form of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint with an interval of 0.2 to 0.5 μm.
[0035]
<Comparative Example 3>
A photocatalyst paint was prepared in the same manner as in Example 1 except that 40 g of ethyl alcohol was used as the organic solvent, 0.5 g of 2,4-pentanedione was used as the β-diketone, and 43 g of a 10 wt% silica sol solution was added, and no titanate coupling agent was added. Then, a photocatalytic thin film was formed on the surface of the glass substrate by the same method as in Example 1. When the form of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint with an interval of 0.2 to 0.5 μm.
<Comparative example 4>
A photocatalytic coating was prepared in the same manner as in Example 1 except that 10 g of anatase-type titanium oxide having a primary particle size of 0.04 μm, an apparent specific gravity of 250 g / L, and a BET specific surface area of 25 m 2 / g was used as titanium oxide. 1 was used to form a photocatalytic thin film on the surface of the glass substrate. When the form of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint with an interval of 0.2 to 0.4 μm.
[0036]
<Comparison test and evaluation>
About the photocatalyst thin film of the coating material obtained in Examples 1-6 and Comparative Examples 1-4, the haze, pencil hardness, and photocatalytic activity of the photocatalyst thin film were measured, respectively. For haze measurement, a haze computer HGM-3D manufactured by Suga Test Instruments Co., Ltd. was used. In addition, the photocatalytic activity was determined using the removal rate obtained by the following procedure as an index of photocatalytic activity. First, the glass substrate coated with the photocatalytic thin film was placed in a 1 L glass (pyrex) container and sealed. Next, 350 ppm (initial concentration) of acetaldehyde was introduced into the container. Next, the container was irradiated with an ultraviolet lamp having an irradiation amount of 1.2 mW / cm 2 for 2 hours. The acetaldehyde concentration inside the container after irradiation was measured with a gas detector tube (manufactured by Gastec Corporation), and the removal rate was determined based on the formula shown below.
[0037]
Removal rate [%] = [(initial density−density after light irradiation) ÷ initial density] × 100
Table 1 shows the measurement results of the photocatalytic thin films of the coating materials obtained in Examples 1 to 6 and Comparative Examples 1 to 4.
[0038]
[Table 1]
Figure 0004110799
[0039]
As is clear from Table 1, in Comparative Examples 1 to 3 using ethyl alcohol as the organic solvent, the haze is high and the transparency is poor, the hardness with a pencil is as soft as H to 3H, and the acetaldehyde removal rate is 75 to 90%. It shows a low number. Moreover, also in Comparative Example 4 using titanium oxide whose physical properties were outside the scope of the present invention, the haze value was high, and both the pencil hardness and the acetaldehyde removal rate were low. On the other hand, in Examples 1-6, the haze was extremely low, the hardness by pencil was as hard as 3H-4H, and the acetaldehyde removal rate was as high as 85-95%.
[0040]
【The invention's effect】
As described above, according to the present invention, the primary particle diameter is 0.01 to 0.03 μm and the apparent specific gravity is 50 to 200 g / L, and the primary particles and the primary particles are aggregated or agglomerated. the anatase type titanium oxide powder comprising secondary particles β- diketone and a mixed alcohol comprising a 4-15 wt% of methyl alcohol and 96 to 85 wt% of ethyl alcohol as a solvent in the presence of a titanate coupling agent After uniformly dispersing, the silica sol is mixed to obtain a photocatalyst coating material excellent in transparency, hardness and decomposition performance in which the anatase-type titanium oxide powder is uniformly and highly dispersed to a state close to primary particles.

Claims (13)

アナターゼ型酸化チタン粉末と混合アルコールとβ-ジケトンとチタネート系カップリング剤とシリカゾルを含む光触媒塗料において、
前記混合アルコールが4〜15重量%のメチルアルコールと96〜85重量%のエチルアルコールの混合液であり、
前記アナターゼ型酸化チタン粉末はその一次粒子径が0.01〜0.03μm及びその見掛比重が50〜200g/Lであって、前記一次粒子及び前記一次粒子が凝集又は集塊した二次粒子からなることを特徴とする光触媒塗料。
In photocatalyst paint containing anatase type titanium oxide powder, mixed alcohol, β-diketone, titanate coupling agent and silica sol,
The mixed alcohol is a mixed solution of 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol;
The anatase-type titanium oxide powder has a primary particle diameter of 0.01 to 0.03 μm and an apparent specific gravity of 50 to 200 g / L, and the primary particles and the primary particles are agglomerated or agglomerated secondary particles. A photocatalytic coating material comprising:
アナターゼ型酸化チタン粉末はBET比表面積が30〜100m2/gであり、一次粒子及び前記一次粒子が凝集又は集塊した二次粒子の粒子同士が0.01〜0.3μmの間隔をあけて塗料中に分散している請求項1記載の光触媒塗料。The anatase-type titanium oxide powder has a BET specific surface area of 30 to 100 m 2 / g, and the primary particles and the secondary particles in which the primary particles are aggregated or agglomerated are spaced apart by 0.01 to 0.3 μm. The photocatalyst coating material according to claim 1, which is dispersed in the coating material. 酸化チタン粉末の含有量が0.5〜20重量%である請求項1又は2記載の光触媒塗料。  The photocatalyst coating material according to claim 1 or 2, wherein the content of the titanium oxide powder is 0.5 to 20% by weight. β-ジケトンの含有量が酸化チタン粉末に対して0.5〜10重量%である請求項1ないし3いずれか記載の光触媒塗料。  The photocatalyst coating material according to any one of claims 1 to 3, wherein the content of β-diketone is 0.5 to 10% by weight based on the titanium oxide powder. チタネート系カップリング剤の添加量が酸化チタン粉末に対して0.1〜5重量%である請求項1ないし4いずれか記載の光触媒塗料。  The photocatalyst coating material according to any one of claims 1 to 4, wherein the addition amount of the titanate coupling agent is 0.1 to 5% by weight with respect to the titanium oxide powder. シリカゾルがエチルシリケートの加水分解物又は部分加水分解物である請求項1ないし5いずれか記載の光触媒塗料 6. The photocatalytic coating material according to claim 1, wherein the silica sol is a hydrolyzate or partial hydrolyzate of ethyl silicate . 請求項1ないし6いずれか記載の光触媒塗料を基材表面に塗布して形成させたことを特徴とする光触媒機能を有するコーティング材。Coating material having a photocatalytic function, characterized in that according the claim 1 to 6 photocatalytic paint according to any one was formed by applying to the substrate surface. 基材表面に無機質の下地層と、前記下地層の上に光触媒塗料から形成された光触媒膜とを有する請求項記載のコーティング材。The coating material of Claim 7 which has an inorganic base layer on the base-material surface, and the photocatalyst film | membrane formed from the photocatalyst coating material on the said base layer. 基材がガラス、プラスチック、金属、木材、タイルを含むセラミック、セメント、コンクリート、石、繊維、紙及び皮革からなる群より選ばれた材質である請求項又は記載のコーティング材。The coating material according to claim 7 or 8 , wherein the base material is a material selected from the group consisting of glass, plastic, metal, wood, ceramics including tile, cement, concrete, stone, fiber, paper, and leather. 無機質の下地層がシリカ又はアルミナからなる請求項記載のコーティング材。The coating material according to claim 8, wherein the inorganic underlayer is made of silica or alumina. 請求項ないし10いずれか記載のコーティング材により表面被覆を行った石材加工品。Claims 7 to stone workpiece was subjected to a surface coated with a 10 coating material according to any one. 請求項ないし10いずれか記載のコーティング材により表面被覆を行った壁材。Wall material subjected to surface coating with a coating material according to any one claims 7 to 10. 請求項ないし10いずれか記載のコーティング材により表面被覆を行った硝子。Glass subjected to surface coating with a coating material according to any one claims 7 to 10.
JP2002053408A 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint Expired - Fee Related JP4110799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053408A JP4110799B2 (en) 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053408A JP4110799B2 (en) 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008042490A Division JP4710919B2 (en) 2008-02-25 2008-02-25 Method for producing photocatalyst paint

Publications (2)

Publication Number Publication Date
JP2003253156A JP2003253156A (en) 2003-09-10
JP4110799B2 true JP4110799B2 (en) 2008-07-02

Family

ID=28664845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053408A Expired - Fee Related JP4110799B2 (en) 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint

Country Status (1)

Country Link
JP (1) JP4110799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869846B2 (en) * 2011-11-16 2016-02-24 株式会社ダイセル Titanium oxide coating solution

Also Published As

Publication number Publication date
JP2003253156A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4995428B2 (en) Titanium oxide coating formation method
KR101176247B1 (en) Titanium oxide coating agent, and method for titanium oxide coating film formation
JP5766778B2 (en) refrigerator
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
WO2012014877A1 (en) Photocatalyst coated body and photocatalyst coating liquid
JP4525041B2 (en) Photocatalyst coating material, method for producing the same, photocatalytic coating film having a photocatalytic function obtained by applying the coating material, and multilayer photocatalytic coating film
US9012354B2 (en) Photocatalytic film, method for forming photocatalytic film and photocatalytic film coated product
JP2016507455A (en) Transparent substrate coated with at least one at least bifunctional porous layer, in particular a glass substrate, its production method and use
JP2006124684A (en) Photocatalytic coating and method for producing photocatalytic film using the same
JP4110799B2 (en) Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint
JP4710919B2 (en) Method for producing photocatalyst paint
JPH09328336A (en) Coating film having photocatalyst activity and composition forming the same coating film
JP3300940B2 (en) Method of forming underlayer for photocatalytic film
JP3346278B2 (en) Method of forming photocatalytic film on organic base material and its use
JP2004083832A (en) Photocatalytic coating material, method for forming film by using the same, and coated material having photocatalytic function by applying the same material
JPH10259320A (en) Photocatalytic coating material, production thereof, and coating film formed therefrom
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JPH10259324A (en) Photocatalytic coating material, production thereof, and coating film formed therefrom
Cai et al. Preparation and characterization of SiO2–TiO2 superhydrophilic coatings with photocatalytic activity induced by low temperature
JP3291558B2 (en) Photocatalytic paint, method for producing the same, and coating film coated with the same
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP6695417B2 (en) Photocatalyst structure and manufacturing method thereof
JP2012193251A (en) Coating material, and method for manufacturing coated object
JP3291560B2 (en) Photocatalytic film formation method and paint used for it
JPH11323188A (en) Photocatalytic film, method for forming it and photocatalytic coating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees