JP2003253156A - Photocatalytic coating and its manufacturing method, and coated material exhibiting photocatalytic function obtained by applying coating - Google Patents

Photocatalytic coating and its manufacturing method, and coated material exhibiting photocatalytic function obtained by applying coating

Info

Publication number
JP2003253156A
JP2003253156A JP2002053408A JP2002053408A JP2003253156A JP 2003253156 A JP2003253156 A JP 2003253156A JP 2002053408 A JP2002053408 A JP 2002053408A JP 2002053408 A JP2002053408 A JP 2002053408A JP 2003253156 A JP2003253156 A JP 2003253156A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
oxide powder
coating
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053408A
Other languages
Japanese (ja)
Other versions
JP4110799B2 (en
Inventor
Hiroki Hirata
寛樹 平田
Yukiya Yamashita
行也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002053408A priority Critical patent/JP4110799B2/en
Publication of JP2003253156A publication Critical patent/JP2003253156A/en
Application granted granted Critical
Publication of JP4110799B2 publication Critical patent/JP4110799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic coating excellent in transparency, hardness and decomposing performances, a manufacturing method of the same and a coated material exhibiting photocatalytic functions obtained by applying the coating. <P>SOLUTION: The improved photocatalytic coating comprises an anatase type titanium oxide powder, a mixed alcohol, a β-diketone, a titanate-based coupling agent and silica sol. It is featured in that the anatase type titanium oxide powder has a primary particle size of 0.01-0.03 μm and an apparent specific gravity of 50-200 g/L and comprises the primary particles and a secondary particle comprising agglomerated or flocculated primary particles. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒活性、透明
性に優れた酸化チタン系光触媒塗料及びその製造方法並
びに該塗料を塗布して得られた光触媒機能を有するコー
ティング材に関するものである。
TECHNICAL FIELD The present invention relates to a titanium oxide photocatalyst paint having excellent photocatalytic activity and transparency, a method for producing the same, and a coating material having a photocatalytic function obtained by applying the paint.

【0002】[0002]

【従来の技術】この種の光触媒薄膜を得る方法として、
特開平7−100378号公報に記載されているよう
に、チタンのアルコキシドとアルコールアミン類から調
製されたチタニアゾルを基板にコーティングした後、焼
成することにより光触媒薄膜を形成する方法が知られて
いる。また、基板の保護及び酸化チタン層との密着性向
上のために、基板と酸化チタン層との間にアンダーコー
ト膜を設けた2層コートタイプの塗膜の製造方法も知ら
れている。
2. Description of the Related Art As a method for obtaining this type of photocatalytic thin film,
As described in JP-A-7-100378, there is known a method of forming a photocatalytic thin film by coating a substrate with a titania sol prepared from a titanium alkoxide and an alcohol amine and then baking the coated film. In addition, a method for producing a two-layer coat type coating film in which an undercoat film is provided between the substrate and the titanium oxide layer in order to protect the substrate and improve the adhesion to the titanium oxide layer is also known.

【0003】このうち、チタニアゾルを用いて焼成する
方法では、高温で焼成処理しなければならないため、得
られた光触媒薄膜の透明性が低下するおそれがあるだけ
でなく、焼成炉を必要とするためコストが高くなる問題
があった。また、低温で処理できる2層コートタイプで
は、2回塗り及び乾燥が必要であるため、処理工程が多
くなり、簡便な方法とはいえなかった。この2層コート
タイプでは光触媒の活性を十分に引き出すために、酸化
チタンの含有量を80重量%以上としなければならない
ため、成膜した膜の透明性が十分に得られないだけでな
く、基板との密着性が十分に得られず安定した膜が形成
できなくなるという問題があった。
Of these, in the method of firing using titania sol, since the firing treatment must be performed at a high temperature, not only the transparency of the obtained photocatalytic thin film may decrease, but also a firing furnace is required. There was a problem of high cost. Further, the two-layer coat type which can be treated at a low temperature requires two coatings and drying, so that the number of treatment steps is increased and it cannot be said that it is a simple method. In this two-layer coating type, the content of titanium oxide must be 80% by weight or more in order to sufficiently bring out the activity of the photocatalyst, so that not only the transparency of the formed film cannot be obtained but also the substrate There was a problem that a stable film could not be formed due to insufficient adhesion with

【0004】上記諸問題を解決する方策として本出願人
は、一次粒子の平均粒径0.01〜0.1μmの超微粒
子アナターゼ型酸化チタン、有機溶媒、β-ジケトン、
チタネート系又はアルミネート系カップリング剤とシリ
カゾルからなる光触媒塗料を提案した(特開平10−1
95341号)。この公報に示された光触媒塗料を用い
ることにより、透明性、触媒活性、塗膜強度に優れた光
触媒塗膜を形成することができる。
As a measure for solving the above problems, the present applicant has found that ultrafine anatase-type titanium oxide having an average primary particle size of 0.01 to 0.1 μm, an organic solvent, β-diketone,
A photocatalyst coating composed of a titanate-based or aluminate-based coupling agent and silica sol has been proposed (JP-A-10-1).
95341). By using the photocatalyst coating material disclosed in this publication, a photocatalyst coating film having excellent transparency, catalytic activity and coating film strength can be formed.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平10−
195341号公報に示された光触媒塗料を用いて塗膜
を形成することにより、従来の光触媒薄膜と比べて高い
透明性、光触媒活性、膜強度に優れた塗膜が得られる
が、光触媒の用途の拡大とともに、より高い透明性を有
する塗膜を形成し得る光触媒塗料の開発が要望されてい
る。
However, JP-A-10-
By forming a coating film using the photocatalyst paint disclosed in Japanese Patent No. 195341 gazette, a coating film having higher transparency, photocatalytic activity and film strength than the conventional photocatalyst thin film can be obtained. With the expansion, development of a photocatalytic paint capable of forming a coating film having higher transparency is desired.

【0006】本発明の目的は、透明性、硬度及び分解性
能に優れた光触媒塗料及びその製造方法並びに該塗料を
塗布して得られた光触媒機能を有するコーティング材を
提供することにある。
An object of the present invention is to provide a photocatalyst coating having excellent transparency, hardness and decomposition performance, a method for producing the same, and a coating material having a photocatalytic function obtained by applying the coating.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
アナターゼ型酸化チタン粉末と混合アルコールとβ-ジ
ケトンとチタネート系カップリング剤とシリカゾルを含
む光触媒塗料の改良である。その特徴ある構成は、アナ
ターゼ型酸化チタン粉末はその一次粒子径が0.01〜
0.03μm及びその見掛比重が50〜200g/Lで
あって、一次粒子及び一次粒子が凝集又は集塊した二次
粒子からなる光触媒塗料である。請求項1に係る発明で
は、このような物性を有するアナターゼ型酸化チタン粉
末を塗料中に分散することにより、透明性、硬度及び分
解性能に優れた光触媒塗料が得られる。
The invention according to claim 1 is
This is an improvement of a photocatalytic paint containing anatase type titanium oxide powder, mixed alcohol, β-diketone, titanate coupling agent and silica sol. Its characteristic constitution is that the anatase type titanium oxide powder has a primary particle diameter of 0.01-
It is a photocatalyst coating material having 0.03 μm and an apparent specific gravity of 50 to 200 g / L and composed of primary particles and secondary particles in which primary particles are aggregated or agglomerated. In the invention according to claim 1, by dispersing the anatase-type titanium oxide powder having such physical properties in the coating material, a photocatalytic coating material having excellent transparency, hardness and decomposition performance can be obtained.

【0008】請求項2に係る発明は、請求項1に係る発
明であって、アナターゼ型酸化チタン粉末はBET比表
面積が30〜100m2/gであり、この一次粒子及び
一次粒子が凝集又は集塊した二次粒子の粒子同士が0.
01〜0.3μmの間隔をあけて塗料中に分散している
光触媒塗料である。請求項3に係る発明は、請求項1又
は2に係る発明であって、酸化チタン粉末の含有量が
0.5〜20重量%である光触媒塗料である。請求項4
に係る発明は、請求項1ないし3いずれかに係る発明で
あって、β-ジケトンの含有量が酸化チタン粉末に対し
て0.5〜10重量%である光触媒塗料である。請求項
5に係る発明は、請求項1ないし4いずれかに係る発明
であって、チタネート系カップリング剤の添加量が酸化
チタン粉末に対して0.1〜5重量%である光触媒塗料
である。請求項6に係る発明は、請求項1ないし5いず
れかに係る発明であって、混合アルコールが4〜15重
量%のメチルアルコールと96〜85重量%のエチルア
ルコールの混合液である光触媒塗料である。請求項7に
係る発明は、請求項1ないし6いずれかに係る発明であ
って、シリカゾルがエチルシリケートの加水分解物又は
部分加水分解物である光触媒塗料である。
The invention according to claim 2 is the invention according to claim 1, wherein the anatase type titanium oxide powder has a BET specific surface area of 30 to 100 m 2 / g, and the primary particles and the primary particles are aggregated or collected. The agglomeration of secondary particles is 0.
The photocatalyst paint is dispersed in the paint at intervals of 01 to 0.3 μm. The invention according to claim 3 is the invention according to claim 1 or 2, wherein the content of the titanium oxide powder is 0.5 to 20% by weight. Claim 4
The invention according to claim 1 is the invention according to any one of claims 1 to 3, wherein the photocatalyst paint has a β-diketone content of 0.5 to 10% by weight based on the titanium oxide powder. The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the addition amount of the titanate coupling agent is 0.1 to 5% by weight with respect to the titanium oxide powder. . The invention according to claim 6 is the invention according to any one of claims 1 to 5, which is a photocatalyst paint in which the mixed alcohol is a mixed liquid of 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol. is there. The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the silica sol is a hydrolyzate or a partial hydrolyzate of ethyl silicate.

【0009】請求項2〜7に記載された構成にすること
により、より一層透明性、硬度及び分解性能に優れた光
触媒塗料が得られる。
With the structures described in claims 2 to 7, it is possible to obtain a photocatalyst coating which is further excellent in transparency, hardness and decomposition performance.

【0010】請求項8に係る発明は、アナターゼ型酸化
チタン粉末をβ-ジケトンとチタネート系カップリング
剤の存在下で溶媒である混合アルコール中に均一に分散
させた後、シリカゾルを混合することを特徴とする光触
媒塗料の製造方法である。請求項9に係る発明は、請求
項8に係る発明であって、アナターゼ型酸化チタン粉末
が四塩化チタンを高温気相中で加水分解反応させ、反応
生成物を急速冷却することにより得られる製造方法であ
る。
In the invention according to claim 8, the anatase type titanium oxide powder is uniformly dispersed in a mixed alcohol which is a solvent in the presence of a β-diketone and a titanate coupling agent, and then a silica sol is mixed. A method for producing a characteristic photocatalyst paint. The invention according to claim 9 is the invention according to claim 8, wherein the anatase type titanium oxide powder is obtained by subjecting titanium tetrachloride to a hydrolysis reaction in a high temperature gas phase and rapidly cooling the reaction product. Is the way.

【0011】請求項10に係る発明は、請求項1ないし
7いずれか記載の光触媒塗料又は請求項8又は9記載の
製造方法により得られた光触媒塗料を基材表面に塗布し
て形成させたことを特徴とする光触媒機能を有するコー
ティング材である。請求項11に係る発明は、請求項1
0に係る発明であって、基材表面に無機質の下地層と、
この下地層の上に光触媒塗料から形成された光触媒膜と
を有するコーティング材である。請求項12に係る発明
は、請求項10又は11に係る発明であって、基材がガ
ラス、プラスチック、金属、木材、タイルを含むセラミ
ック、セメント、コンクリート、石、繊維、紙及び皮革
からなる群より選ばれた材質であるコーティング材であ
る。請求項13に係る発明は、請求項11に係る発明で
あって、無機質の下地層がシリカ又はアルミナからなる
コーティング材である。
The invention according to claim 10 is formed by applying the photocatalyst paint according to any one of claims 1 to 7 or the photocatalyst paint obtained by the manufacturing method according to claim 8 or 9 on the surface of a substrate. Is a coating material having a photocatalytic function. The invention according to claim 11 is claim 1
The invention according to 0, wherein an inorganic underlayer is provided on the surface of the substrate,
A coating material having a photocatalyst film formed from a photocatalyst paint on the underlayer. The invention according to claim 12 is the invention according to claim 10 or 11, wherein the substrate comprises glass, plastic, metal, wood, ceramic including tile, cement, concrete, stone, fiber, paper and leather. It is a coating material that is a more selected material. The invention according to claim 13 is the invention according to claim 11, wherein the inorganic base layer is a coating material made of silica or alumina.

【0012】請求項14に係る発明は、請求項10ない
し13いずれか記載のコーティング材により表面被覆を
行った石材加工品である。請求項15に係る発明は、請
求項10ないし13いずれか記載のコーティング材によ
り表面被覆を行った壁材である。請求項16に係る発明
は、請求項10ないし13いずれか記載のコーティング
材により表面被覆を行った硝子である。
A fourteenth aspect of the present invention is a processed stone product, the surface of which is coated with the coating material according to any one of the tenth to thirteenth aspects. The invention according to claim 15 is a wall material, the surface of which is coated with the coating material according to any one of claims 10 to 13. The invention according to claim 16 is a glass whose surface is coated with the coating material according to any one of claims 10 to 13.

【0013】[0013]

【発明の実施の形態】次に本発明の実施の形態を説明す
る。本発明者らは、その一次粒子径が0.01〜0.0
3μm及びその見掛比重が50〜200g/Lであっ
て、一次粒子及び一次粒子が凝集又は集塊した二次粒子
からなることを特徴とするアナターゼ型酸化チタン粉末
をβ-ジケトン、チタネート系カップリング剤存在下
で、有機溶媒である混合アルコール中に均一に分散させ
た後、この分散液にシリカゾルを混合して得られる塗料
は、より高い透明性を有し、硬度及び分解性能に優れた
塗膜を形成することができるとの知見を得、本発明に至
った。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. The present inventors have found that the primary particle diameter is 0.01 to 0.0.
Β-diketone, titanate-based cups of anatase-type titanium oxide powder characterized by having a particle size of 3 μm and an apparent specific gravity of 50 to 200 g / L and comprising primary particles and secondary particles in which primary particles are aggregated or agglomerated. A coating obtained by uniformly dispersing in a mixed alcohol, which is an organic solvent, in the presence of a ring agent, and then mixing this dispersion with silica sol has higher transparency and is excellent in hardness and decomposition performance. The inventors of the present invention have obtained the knowledge that a coating film can be formed, and have reached the present invention.

【0014】一次粒子径が0.01〜0.03μm及び
見掛比重が50〜200g/Lの一次粒子及び一次粒子
が凝集又は集塊した二次粒子からなるアナターゼ型酸化
チタン粉末が、溶媒である混合アルコールとβ-ジケト
ンとチタネート系カップリング剤からなる液体中で、一
次粒子に近い状態まで均一で高度に分散する。酸化チタ
ン粉末は一次粒子径が0.01μm未満のものは入手が
困難であり、0.03μmを越えると光触媒塗料の透明
度が低下する。見掛比重が50g/L未満であると均一
に分散することができず、見掛比重が200g/Lを越
えると塗膜の透明性において不具合を生じる。一次粒子
と二次粒子の割合は個数比で一次粒子/二次粒子が1.
0〜3.0であることが好ましい。一次粒子/二次粒子
が下限値未満、即ち二次粒子が一次粒子に対して多くな
ると透明度が低下し易くなり、上限値を越えると製造が
困難である。
Anatase type titanium oxide powder consisting of primary particles having a diameter of 0.01 to 0.03 μm and an apparent specific gravity of 50 to 200 g / L and secondary particles obtained by aggregating or agglomerating the primary particles is used as a solvent. In a liquid consisting of a mixed alcohol, a β-diketone and a titanate coupling agent, it is evenly and highly dispersed to a state close to primary particles. It is difficult to obtain titanium oxide powder having a primary particle size of less than 0.01 μm, and if it exceeds 0.03 μm, the transparency of the photocatalyst coating composition is lowered. If the apparent specific gravity is less than 50 g / L, the particles cannot be uniformly dispersed, and if the apparent specific gravity exceeds 200 g / L, a problem occurs in the transparency of the coating film. The ratio of primary particles to secondary particles is a number ratio of primary particles / secondary particles to 1.
It is preferably 0 to 3.0. If the primary particles / secondary particles are less than the lower limit value, that is, if the number of secondary particles is larger than that of the primary particles, the transparency tends to decrease, and if it exceeds the upper limit value, the production is difficult.

【0015】この分散液に適量のシリカゾルを均一混合
することにより、塗料中にアナターゼ型酸化チタン粉末
が極めて一次粒子に近い状態まで均一で高度に分散した
透明性、硬度及び分解性能に優れた光触媒塗料が得られ
る。
By uniformly mixing an appropriate amount of silica sol with this dispersion, a photocatalyst excellent in transparency, hardness and decomposing performance in which anatase type titanium oxide powder is uniformly and highly dispersed in a paint to a state very close to primary particles. A paint is obtained.

【0016】アナターゼ型酸化チタン粉末はそのBET
比表面積が30〜100m2/gであることが好まし
い。BET比表面積を30〜100m2/gとしたの
は、下限値未満では十分な触媒活性が得られず、上限値
を越えると分散性が低下するからである。一次粒子及び
一次粒子が凝集又は集塊した二次粒子の粒子同士は0.
01〜0.3μmの間隔をあけて塗料中に分散させるこ
とが好ましい。このように酸化チタンの粒子同士が0.
01〜0.3μmの間隔をあけることにより塗膜の透明
度が低下しない。酸化チタンの粒子同士の間隔は0.0
2〜0.15μmが好ましい。この光触媒塗料を基材上
に塗布することにより薄く均一な塗布が可能であり、か
つβ-ジケトンとチタネート系カップリング剤更には、
シリカゾルの作用により酸化チタン粒子間、及び基材と
の密着性が向上し、安定した光触媒薄膜が形成できる。
The anatase type titanium oxide powder has a BET
The specific surface area is preferably 30 to 100 m 2 / g. The reason why the BET specific surface area is set to 30 to 100 m 2 / g is that sufficient catalytic activity is not obtained below the lower limit and dispersibility deteriorates above the upper limit. The particles of the primary particles and the secondary particles obtained by aggregating or agglomerating the primary particles are 0.
It is preferable to disperse it in the paint at intervals of 01 to 0.3 μm. In this way, the particles of titanium oxide are less than 0.
The spacing of 01 to 0.3 μm does not reduce the transparency of the coating film. The spacing between titanium oxide particles is 0.0
2 to 0.15 μm is preferable. By applying this photocatalyst paint on a substrate, thin and uniform coating is possible, and β-diketone and titanate coupling agent
By the action of the silica sol, the adhesion between the titanium oxide particles and the substrate is improved, and a stable photocatalytic thin film can be formed.

【0017】酸化チタン粉末の含有量は0.5〜20重
量%である。1.0〜10.0重量%の割合で含有させ
ることが好ましい。酸化チタン粉末の含有量が0.5重
量%未満では十分な触媒活性が得られず、20重量%を
越えると酸化チタンの分散性が低下し、形成する光触媒
薄膜のヘイズが悪化する不具合を生じる。
The content of titanium oxide powder is 0.5 to 20% by weight. It is preferable to contain it in a ratio of 1.0 to 10.0% by weight. When the content of the titanium oxide powder is less than 0.5% by weight, sufficient catalytic activity cannot be obtained, and when it exceeds 20% by weight, the dispersibility of titanium oxide is lowered and the haze of the formed photocatalytic thin film is deteriorated. .

【0018】β-ジケトンは、極性官能基(ケトン基)
が、酸化チタン微粉末及び基材表面に存在する極性基
(水酸基や酸素基)に作用して、焼付け中に縮合するこ
とにより、酸化チタン粉末の最密充填が起こり、粉末間
及び粉末-基板間を結合させ膜形成剤として作用し密着
性を上げたのではないかと考えられる。β-ジケトンと
しては、2,4-ペンタンジオン、3-メチル-2,4-ペン
タンジオン、3-イソプロピル-2,4-ペンタンジオン、
2,2-ジメチル-3,5-ヘキサンジオン等が挙げられ
る。β-ジケトンは酸化チタン粉末に対して0.5〜1
0重量%の割合で含有させる。1.0〜5.0重量%の
割合で含有させることが好ましい。β-ジケトンの含有
量が0.5重量%未満では、十分な分散性が得られず、
10.0重量%を越えても更なる分散性の向上にはなら
ない。
Β-diketone is a polar functional group (ketone group)
On the titanium oxide fine powder and the polar groups (hydroxyl groups and oxygen groups) existing on the surface of the base material and condensing during baking, resulting in close packing of the titanium oxide powder, and between the powder and the powder-substrate. It is presumed that the adhesiveness was improved by binding the gaps and acting as a film forming agent. As β-diketone, 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-isopropyl-2,4-pentanedione,
2,2-dimethyl-3,5-hexanedione and the like can be mentioned. β-diketone is 0.5 to 1 with respect to titanium oxide powder
The content is 0% by weight. It is preferable to contain it in a ratio of 1.0 to 5.0% by weight. If the content of β-diketone is less than 0.5% by weight, sufficient dispersibility cannot be obtained,
Even if it exceeds 10.0% by weight, the dispersibility is not further improved.

【0019】カップリング剤は低ヘイズ化剤として作用
する。カップリング剤を添加することにより、膜構造に
二次凝集群を形成せず、均一な最密充填化と表面の平滑
精度がより一層高められるためにヘイズが低下(透明性
が向上する)すると推測される。カップリング剤として
は、下記式(1)〜式(5)に示されるようなジアルキ
ルパイロホスフェート基やジアルキルホスファイト基を
含有するチタネート系カップリング剤等が挙げられ、1
種又は2種以上を使用することができる。
The coupling agent acts as a low haze agent. When a coupling agent is added, haze is reduced (transparency is improved) because a secondary aggregated group is not formed in the film structure and uniform close packing and surface smoothness are further enhanced. Guessed. Examples of the coupling agent include titanate-based coupling agents containing a dialkylpyrophosphate group or a dialkylphosphite group as represented by the following formulas (1) to (5).
One kind or two or more kinds can be used.

【0020】[0020]

【化1】 [Chemical 1]

【0021】[0021]

【化2】 [Chemical 2]

【0022】[0022]

【化3】 [Chemical 3]

【0023】[0023]

【化4】 [Chemical 4]

【0024】[0024]

【化5】 [Chemical 5]

【0025】チタネート系カップリング剤は酸化チタン
粉末に対して0.1〜5重量%の割合で含有させる。
0.5〜2.0重量%の割合で含有させることが好まし
い。カップリング剤の含有量が0.1重量%未満では分
散性及びヘイズ低下の効果が得られず、5.0重量%を
越えても更なるヘイズ低下や分散性の向上にはならな
い。
The titanate coupling agent is contained in the titanium oxide powder in an amount of 0.1 to 5% by weight.
It is preferable to contain 0.5 to 2.0% by weight. If the content of the coupling agent is less than 0.1% by weight, the effect of lowering the dispersibility and haze cannot be obtained, and if it exceeds 5.0% by weight, the haze and the dispersibility cannot be further improved.

【0026】溶媒として用いられる混合アルコールとし
ては、メチルアルコールとエチルアルコールからなる混
合液が好適である。この混合アルコールの含有割合はメ
チルアルコールが4〜15重量%、エチルアルコールが
96〜85重量%である。メチルアルコールの含有割合
が4重量%未満の場合、極めて透明な光触媒薄膜が得ら
れず、15重量%を越えても更なる効果は得られない。
光触媒塗料に含まれる溶媒の量は、塗布に適した粘度が
得られればよく、特に制限されない。
As the mixed alcohol used as the solvent, a mixed liquid of methyl alcohol and ethyl alcohol is preferable. The content ratio of this mixed alcohol is 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol. If the content of methyl alcohol is less than 4% by weight, a very transparent photocatalytic thin film cannot be obtained, and if it exceeds 15% by weight, no further effect can be obtained.
The amount of the solvent contained in the photocatalyst paint is not particularly limited as long as the viscosity suitable for coating can be obtained.

【0027】また、シリカゾルの均一混合作用により透
明度を低下させることがなく、充分な触媒活性を得るこ
とが出来、更にシリカゾルの作用で基材との密着性が一
層向上する。シリカゾルとしてはエチルシリケートの加
水分解物又は部分加水分解物が挙げられる。
Further, the uniform mixing action of the silica sol does not lower the transparency and a sufficient catalytic activity can be obtained, and the action of the silica sol further improves the adhesion to the substrate. Examples of the silica sol include a hydrolyzate or a partial hydrolyzate of ethyl silicate.

【0028】次に、光触媒塗料の製造方法について説明
する。先ずその一次粒子径が0.01〜0.03μm、
その見掛比重が50〜200g/L及びそのBET比表
面積が30〜100m2/gの範囲内の物性を有し、一
次粒子及び一次粒子が凝集又は集塊した二次粒子からな
るアナターゼ型酸化チタン粉末を所定量用意する。この
アナターゼ型酸化チタン粉末は四塩化チタンを高温気相
中で加水分解反応させ、反応生成物を急速冷却すること
により得られる。次いでこの酸化チタン粉末を混合アル
コールとβ-ジケトンとチタネート系カップリング剤か
らなる液体に混合し、例えばジルコニアビーズの所定量
により、所定時間ペイントシェーカーにて均一に分散さ
せる。次に、この分散液に所定濃度のシリカゾル溶液を
適量加えて均一混合することにより、本発明の光触媒塗
料を製造することができる。この光触媒塗料を例えばス
ピンコーターにより所定の基材表面に塗布し、乾燥する
ことにより、その表面に光触媒塗膜を有するコーティン
グ材が得られる。
Next, a method for producing the photocatalytic coating material will be described. First, the primary particle diameter is 0.01 to 0.03 μm,
Anatase-type oxidation having an apparent specific gravity of 50 to 200 g / L and a BET specific surface area of 30 to 100 m 2 / g, and composed of primary particles and secondary particles in which primary particles are aggregated or agglomerated. A predetermined amount of titanium powder is prepared. This anatase type titanium oxide powder is obtained by hydrolyzing titanium tetrachloride in a high temperature gas phase and rapidly cooling the reaction product. Next, this titanium oxide powder is mixed with a liquid consisting of mixed alcohol, β-diketone and titanate coupling agent, and is dispersed uniformly with a predetermined amount of zirconia beads for a predetermined time on a paint shaker. Next, the photocatalyst coating material of the present invention can be manufactured by adding an appropriate amount of a silica sol solution having a predetermined concentration to this dispersion and mixing them uniformly. A coating material having a photocatalytic coating film on the surface thereof can be obtained by applying the photocatalyst coating material to the surface of a predetermined base material with, for example, a spin coater and drying the surface.

【0029】また基材表面に無機質の下地層を形成し、
この下地層の上に光触媒塗料を塗布、乾燥して光触媒膜
を形成して光触媒機能を有するコーティング材を得るこ
ともできる。本発明の光触媒塗料を用いた基材への塗布
方法としては、スピンコート法、ディッピング法、スプ
レー法等により施すことができるが、特に塗布方法は限
定されない。
Further, an inorganic underlayer is formed on the surface of the base material,
It is also possible to obtain a coating material having a photocatalytic function by applying a photocatalyst coating material on the base layer and drying it to form a photocatalyst film. As a method of applying the photocatalyst coating material of the present invention to a substrate, a spin coating method, a dipping method, a spray method, or the like can be applied, but the application method is not particularly limited.

【0030】本発明の基材に使用される材質には、ガラ
ス、プラスチック、金属、木材、タイルを含むセラミッ
ク、セメント、コンクリート、石、繊維、紙及び皮革か
らなる群より選ばれる。ガラスとしては、蛍光灯、窓等
の室内環境浄化(汚染物質分解)ガラス、水槽、生け簀
等の水質浄化ガラス、車の防曇ガラス、CRT、LCD
画面、窓、鏡、眼鏡等の防汚ガラス、カメラ、光学機器
の防汚、防黴レンズ等がある。プラスチックとしては、
AV機器、コンピューター、マウス、キーボード、リモ
コン、フロッピー(登録商標)ディスク、等の機器及び
その周辺製品、車の内装品、家具、キッチン、風呂、洗
面所等で使用する家庭用品等の使用する防汚、抗菌、防
黴プラスチック等がある。金属としては、物干し台、物
干し竿、キッチン、実験室等の作業台や洗い場、換気扇
等に使用する防汚、抗菌、防黴ステンレス、防汚、抗菌
処理ドアノブ等がある。木材の用途としては、防汚家
具、公園の抗菌遊技施設等がある。タイルを含むセラミ
ック、セメント、コンクリート、石等の建材としては、
防汚処理した外壁材、屋根、床材等、室内環境浄化(汚
染物質分解)性を持つ内壁材、防汚、抗菌、防黴処理し
た各種内装品等がある。紙としては、抗菌処理文房具等
に使用できる。フィルム等の繊維としては、食品包装用
透明抗菌フィルム、野菜保存用透明エチレンガス分解フ
ィルム、環境、水質浄化用フィルム等がある。このよう
に各種基材は、防汚、環境浄化、抗菌、防黴の効果を有
するので、太陽光や蛍光灯等から発せられる紫外線の照
射が可能な条件であれば、例示した以外でも多くの用途
に使用することができる。無機質の下地層としてはシリ
カ、アルミナ等が挙げられる。本発明のコーティング材
により表面被覆を行った石材加工品、壁材又は硝子は透
明性及び硬度に優れるとともに高い分解性能を示す。
The material used for the substrate of the present invention is selected from the group consisting of glass, plastic, metal, wood, ceramics including tile, cement, concrete, stone, fiber, paper and leather. Examples of the glass include fluorescent lamps, windows for cleaning the indoor environment (decomposing pollutants), water tanks, water purification glasses for cages, car anti-fog glass, CRTs, LCDs.
There are antifouling glass for screens, windows, mirrors, glasses, etc., antifouling for cameras, optical devices, antifungal lenses, etc. As for plastic,
Equipment such as AV equipment, computers, mice, keyboards, remote controls, floppy (registered trademark) disks and peripheral products, car interior parts, furniture, kitchen appliances, household appliances used in bathrooms, washrooms, etc. There are stains, antibacterial and antifungal plastics. Examples of the metal include an antifouling, antibacterial, antifungal, stainless, antifouling, and antibacterial doorknob used for a clothes table, a clothesline, a kitchen, a work table such as a laboratory, a washing place, and a ventilation fan. Applications of wood include antifouling furniture and antibacterial game facilities in parks. As building materials such as ceramics including tile, cement, concrete, stone,
There are various kinds of interior materials such as outer wall materials, roofs, floor materials, etc. that have been subjected to antifouling treatment, interior wall materials that have an indoor environment purification (decomposition of pollutants), antifouling, antibacterial, and antifungal treatments. The paper can be used for antibacterial stationery and the like. Fibers such as films include a transparent antibacterial film for food packaging, a transparent ethylene gas decomposition film for storing vegetables, a film for purifying environment and water, and the like. As described above, various base materials have the effects of antifouling, environmental purification, antibacterial, and antifungal, so that many conditions other than the ones listed below can be used as long as they can be irradiated with ultraviolet rays emitted from sunlight or fluorescent lamps. It can be used for various purposes. Examples of the inorganic underlayer include silica and alumina. A processed stone material, a wall material or a glass surface-coated with the coating material of the present invention is excellent in transparency and hardness and exhibits high decomposition performance.

【0031】[0031]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>有機溶媒に4.7重量%のメチルアルコー
ルと95.3重量%のエチルアルコールの混合アルコー
ル40g、β-ジケトンに2,4-ペンタンジオン0.2
5g、上記化学式(1)に示されるチタネート系カップ
リング剤0.25g、一次粒子径0.021μm、見掛
比重130g/L、BET比表面積50m2/gのアナ
ターゼ型酸化チタン10gを混合し、ジリコニアビーズ
100gにより16時間ペイントシェーカーにて分散さ
せた。この分散液に10重量%シリカゾル溶液11gを
混合し、光触媒塗料を調製した。調製した光触媒塗料を
スピンコーターでガラス基板に塗布し、125℃で1時
間乾燥させることにより、ガラス基板表面に光触媒薄膜
が形成されたコーティング材を得た。得られた光触媒塗
料の酸化チタン粉末の形態について透過型電子顕微鏡で
測定したところ、粒子同士が0.02〜0.3μmの間
隔をあけて塗料中に分散していることを確認した。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> 40 g of a mixed alcohol of 4.7% by weight of methyl alcohol and 95.3% by weight of ethyl alcohol in an organic solvent and 0.2 of 2,4-pentanedione in β-diketone.
5 g, a titanate coupling agent represented by the chemical formula (1) 0.25 g, a primary particle diameter 0.021 μm, an apparent specific gravity 130 g / L, and an anatase type titanium oxide 10 g having a BET specific surface area of 50 m 2 / g are mixed, 100 g of zirconia beads were dispersed in a paint shaker for 16 hours. 11 g of a 10 wt% silica sol solution was mixed with this dispersion liquid to prepare a photocatalyst paint. The prepared photocatalyst coating material was applied to a glass substrate with a spin coater and dried at 125 ° C. for 1 hour to obtain a coating material having a photocatalyst thin film formed on the surface of the glass substrate. The morphology of the titanium oxide powder of the obtained photocatalyst paint was measured by a transmission electron microscope, and it was confirmed that the particles were dispersed in the paint at intervals of 0.02 to 0.3 μm.

【0032】<実施例2>有機溶媒に10.2重量%の
メチルアルコールと89.8重量%のエチルアルコール
の混合アルコール150g、上記化学式(1)に示され
るチタネート系カップリング剤0.1gを用いた以外は
実施例1と同様にして光触媒塗料を調製し、実施例1と
同様の方法でガラス基板表面に光触媒薄膜を形成した。
得られた光触媒塗料の酸化チタン粉末の形態について透
過型電子顕微鏡で測定したところ、粒子同士が0.01
〜0.15μmの間隔をあけて塗料中に分散しているこ
とを確認した。 <実施例3>有機溶媒に4.7重量%のメチルアルコー
ルと95.3重量%のエチルアルコールの混合アルコー
ル150g、上記化学式(2)に示されるチタネート系
カップリング剤0.1gを用いた以外は実施例1と同様
にして光触媒塗料を調製し、実施例1と同様の方法でガ
ラス基板表面に光触媒薄膜を形成した。得られた光触媒
塗料の酸化チタン粉末の形態について透過型電子顕微鏡
で測定したところ、粒子同士が0.02〜0.15μm
の間隔をあけて塗料中に分散していることを確認した。 <実施例4>有機溶媒に10.2重量%のメチルアルコ
ールと89.8重量%のエチルアルコールの混合アルコ
ール40g、β-ジケトンに3-メチル-2,4-ペンタン
ジオン0.5g、上記化学式(3)に示されるチタネー
ト系カップリング剤0.5gを用いた以外は実施例1と
同様にして光触媒塗料を調製し、実施例1と同様の方法
でガラス基板表面に光触媒薄膜を形成した。得られた光
触媒塗料の酸化チタン粉末の形態について透過型電子顕
微鏡で測定したところ、粒子同士が0.05〜0.20
μmの間隔をあけて塗料中に分散していることを確認し
た。
Example 2 150 g of a mixed alcohol of 10.2% by weight of methyl alcohol and 89.8% by weight of ethyl alcohol in an organic solvent, and 0.1 g of the titanate coupling agent represented by the above chemical formula (1). A photocatalyst coating material was prepared in the same manner as in Example 1 except that it was used, and a photocatalyst thin film was formed on the surface of the glass substrate by the same method as in Example 1.
The morphology of the titanium oxide powder of the obtained photocatalytic coating was measured by a transmission electron microscope, and it was found that the particles were 0.01
It was confirmed that the pigment was dispersed in the paint at intervals of 0.15 μm. <Example 3> 150 g of a mixed alcohol of 4.7% by weight of methyl alcohol and 95.3% by weight of ethyl alcohol was used as the organic solvent, and 0.1 g of the titanate coupling agent represented by the above chemical formula (2) was used. A photocatalyst coating material was prepared in the same manner as in Example 1, and a photocatalyst thin film was formed on the glass substrate surface by the same method as in Example 1. The morphology of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope to find that the particles were 0.02 to 0.15 μm.
It was confirmed that they were dispersed in the paint at intervals. Example 4 40 g of a mixed alcohol of 10.2% by weight of methyl alcohol and 89.8% by weight of ethyl alcohol in an organic solvent, 0.5 g of 3-methyl-2,4-pentanedione in β-diketone, the above chemical formula A photocatalyst coating material was prepared in the same manner as in Example 1 except that 0.5 g of the titanate coupling agent shown in (3) was used, and a photocatalyst thin film was formed on the glass substrate surface by the same method as in Example 1. When the morphology of the titanium oxide powder of the obtained photocatalyst paint was measured by a transmission electron microscope, the particles were 0.05 to 0.20.
It was confirmed that they were dispersed in the paint at intervals of μm.

【0033】<実施例5>有機溶媒に10.2重量%の
メチルアルコールと89.8重量%のエチルアルコール
の混合アルコール150g、β-ジケトンに3-メチル-
2,4-ペンタンジオン0.5g、上記化学式(4)に示
されるチタネート系カップリング剤0.25g、10重
量%シリカゾル溶液43gを用いた以外は実施例1と同
様にして光触媒塗料を調製し、実施例1と同様の方法で
ガラス基板表面に光触媒薄膜を形成した。得られた光触
媒塗料の酸化チタン粉末の形態について透過型電子顕微
鏡で測定したところ、粒子同士が0.05〜0.10μ
mの間隔をあけて塗料中に分散していることを確認し
た。 <実施例6>有機溶媒に4.7重量%のメチルアルコー
ルと95.3重量%のエチルアルコールの混合アルコー
ル40g、β-ジケトンに3-イソプロピル-2,4-ペン
タンジオン1.0g、上記化学式(5)に示されるチタ
ネート系カップリング剤0.4g、10重量%シリカゾ
ル溶液43gを用いた以外は実施例1と同様にして光触
媒塗料を調製し、実施例1と同様の方法でガラス基板表
面に光触媒薄膜を形成した。得られた光触媒塗料の酸化
チタン粉末の形態について透過型電子顕微鏡で測定した
ところ、粒子同士が0.05〜0.25μmの間隔をあ
けて塗料中に分散していることを確認した。
Example 5 150 g of a mixed alcohol of 10.2% by weight of methyl alcohol and 89.8% by weight of ethyl alcohol in an organic solvent, and β-diketone in 3-methyl-
A photocatalyst coating material was prepared in the same manner as in Example 1 except that 0.5 g of 2,4-pentanedione, 0.25 g of the titanate coupling agent represented by the chemical formula (4) and 43 g of a 10 wt% silica sol solution were used. A photocatalytic thin film was formed on the surface of the glass substrate in the same manner as in Example 1. The morphology of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope to find that the particles were 0.05 to 0.10 μm.
It was confirmed that they were dispersed in the paint at intervals of m. Example 6 40 g of a mixed alcohol of 4.7% by weight of methyl alcohol and 95.3% by weight of ethyl alcohol in an organic solvent, 1.0 g of 3-isopropyl-2,4-pentanedione in β-diketone, the above chemical formula A photocatalyst coating material was prepared in the same manner as in Example 1 except that 0.4 g of the titanate coupling agent shown in (5) was used and 43 g of a 10 wt% silica sol solution, and the glass substrate surface was prepared in the same manner as in Example 1. A photocatalytic thin film was formed on. When the morphology of the titanium oxide powder of the obtained photocatalyst paint was measured with a transmission electron microscope, it was confirmed that the particles were dispersed in the paint at intervals of 0.05 to 0.25 μm.

【0034】<比較例1>有機溶媒にエチルアルコール
40g、上記化学式(1)に示されるチタネート系カッ
プリング剤0.1gを用いた以外は実施例1と同様にし
て光触媒塗料を調製し、実施例1と同様の方法でガラス
基板表面に光触媒薄膜を形成した。得られた光触媒塗料
の酸化チタン粉末の形態について透過型電子顕微鏡で測
定したところ、粒子同士が0.1〜0.4μmの間隔を
あけて塗料中に分散していることを確認した。 <比較例2>有機溶媒にエチルアルコール40g、上記
化学式(2)に示されるチタネート系カップリング剤
0.4gを用い、β-ジケトンを添加しない以外は実施
例1と同様にして光触媒塗料を調製し、実施例1と同様
の方法でガラス基板表面に光触媒薄膜を形成した。得ら
れた光触媒塗料の酸化チタン粉末の形態について透過型
電子顕微鏡で測定したところ、粒子同士が0.2〜0.
5μmの間隔をあけて塗料中に分散していることを確認
した。
Comparative Example 1 A photocatalyst coating material was prepared in the same manner as in Example 1 except that 40 g of ethyl alcohol and 0.1 g of the titanate coupling agent represented by the above chemical formula (1) were used as the organic solvent. A photocatalytic thin film was formed on the surface of the glass substrate by the same method as in Example 1. The morphology of the titanium oxide powder of the obtained photocatalytic paint was measured by a transmission electron microscope, and it was confirmed that the particles were dispersed in the paint with an interval of 0.1 to 0.4 μm. <Comparative Example 2> A photocatalyst coating material was prepared in the same manner as in Example 1 except that 40 g of ethyl alcohol and 0.4 g of the titanate coupling agent represented by the above chemical formula (2) were used as the organic solvent and no β-diketone was added. Then, a photocatalytic thin film was formed on the surface of the glass substrate in the same manner as in Example 1. When the morphology of the titanium oxide powder of the obtained photocatalyst paint was measured by a transmission electron microscope, the particles had a particle size of 0.2 to 0.
It was confirmed that the pigment was dispersed in the paint at intervals of 5 μm.

【0035】<比較例3>有機溶媒にエチルアルコール
40g、β-ジケトンに2,4-ペンタンジオン0.5
g、10重量%シリカゾル溶液43gを用い、チタネー
トカップリング剤を添加しない以外は実施例1と同様に
して光触媒塗料を調製し、実施例1と同様の方法でガラ
ス基板表面に光触媒薄膜を形成した。得られた光触媒塗
料の酸化チタン粉末の形態について透過型電子顕微鏡で
測定したところ、粒子同士が0.2〜0.5μmの間隔
をあけて塗料中に分散していることを確認した。 <比較例4>酸化チタンに一次粒子径0.04μm、見
掛比重250g/L、BET比表面積25m2/gのア
ナターゼ型酸化チタン10gを用いた以外は実施例1と
同様にして光触媒塗料を調製し、実施例1と同様の方法
でガラス基板表面に光触媒薄膜を形成した。得られた光
触媒塗料の酸化チタン粉末の形態について透過型電子顕
微鏡で測定したところ、粒子同士が0.2〜0.4μm
の間隔をあけて塗料中に分散していることを確認した。
<Comparative Example 3> 40 g of ethyl alcohol as an organic solvent and 0.5 of 2,4-pentanedione as a β-diketone.
g, a photocatalyst coating material was prepared in the same manner as in Example 1 except that 43 g of a 10 wt% silica sol solution was not added and a titanate coupling agent was not added, and a photocatalyst thin film was formed on the glass substrate surface by the same method as in Example 1. . The morphology of the titanium oxide powder of the obtained photocatalyst paint was measured by a transmission electron microscope, and it was confirmed that the particles were dispersed in the paint at intervals of 0.2 to 0.5 μm. Comparative Example 4 A photocatalyst coating material was prepared in the same manner as in Example 1 except that 10 g of anatase type titanium oxide having a primary particle diameter of 0.04 μm, an apparent specific gravity of 250 g / L and a BET specific surface area of 25 m 2 / g was used as titanium oxide. A photocatalytic thin film was prepared and formed on the surface of a glass substrate in the same manner as in Example 1. The morphology of the titanium oxide powder of the obtained photocatalyst paint was measured by a transmission electron microscope, and the particles were 0.2 to 0.4 μm.
It was confirmed that they were dispersed in the paint at intervals.

【0036】<比較試験及び評価>実施例1〜6及び比
較例1〜4で得られたコーティング材の光触媒薄膜につ
いて光触媒薄膜のヘイズ、鉛筆硬度及び光触媒活性をそ
れぞれ測定した。なお、ヘイズ測定には、スガ試験機社
製ヘイズコンピューターHGM−3Dを用いた。また光
触媒活性は、以下に示す手順により求めた除去率を光触
媒活性の指標とした。先ず、光触媒薄膜を塗布したガラ
ス基板を1Lのガラス(パイレックス(登録商標))製
容器に入れて密閉した。次いで容器内に350ppm
(初期濃度)のアセトアルデヒドを導入した。次に、容
器を照射量1.2mW/cm2の紫外線ランプで2時間
照射した。照射後の容器内部のアセトアルデヒド濃度を
ガス検知管(ガステック社製)で測定し、下記に示す式
に基づいて除去率を求めた。
<Comparative Test and Evaluation> The photocatalytic thin films of the coating materials obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were measured for haze, pencil hardness and photocatalytic activity. A haze computer HGM-3D manufactured by Suga Test Instruments Co., Ltd. was used for the haze measurement. For the photocatalytic activity, the removal rate obtained by the procedure shown below was used as an index of the photocatalytic activity. First, the glass substrate coated with the photocatalytic thin film was placed in a 1 L glass (Pyrex (registered trademark)) container and sealed. Then 350ppm in the container
(Initial concentration) acetaldehyde was introduced. Next, the container was irradiated with an ultraviolet lamp having an irradiation dose of 1.2 mW / cm 2 for 2 hours. The acetaldehyde concentration inside the container after irradiation was measured with a gas detector tube (manufactured by Gastec Co.), and the removal rate was calculated based on the formula shown below.

【0037】除去率[%]=[(初期濃度−光照射後の濃
度)÷初期濃度]×100 実施例1〜6及び比較例1〜4で得られたコーティング
材の光触媒薄膜について測定した結果を表1にそれぞれ
示す。
Removal rate [%] = [(initial concentration-concentration after light irradiation) / initial concentration] × 100 Results of measurement on photocatalyst thin films of coating materials obtained in Examples 1 to 6 and Comparative Examples 1 to 4 Are shown in Table 1, respectively.

【0038】[0038]

【表1】 [Table 1]

【0039】表1より明らかなように、有機溶媒にエチ
ルアルコールを用いた比較例1〜3では、ヘイズが高く
透明性に劣り、鉛筆による硬度でもH〜3Hと柔らか
く、アセトアルデヒド除去率も75〜90%と低い数値
を示している。また物性が本発明の範囲外である酸化チ
タンを用いた比較例4でも、ヘイズ値が高く、鉛筆硬
度、アセトアルデヒド除去率ともに低くなった。これに
対して実施例1〜6ではヘイズが極めて低く、鉛筆によ
る硬度も3H〜4Hと硬く、アセトアルデヒド除去率は
85〜95%と高い除去率を示した。
As is clear from Table 1, in Comparative Examples 1 to 3 in which ethyl alcohol was used as the organic solvent, haze was high, transparency was poor, pencil hardness was H to 3H, and acetaldehyde removal rate was 75 to. It shows a low value of 90%. Also in Comparative Example 4 using titanium oxide having physical properties outside the scope of the present invention, the haze value was high, and both the pencil hardness and the acetaldehyde removal rate were low. On the other hand, in Examples 1 to 6, the haze was extremely low, the pencil hardness was as hard as 3H to 4H, and the acetaldehyde removal rate was as high as 85 to 95%.

【0040】[0040]

【発明の効果】以上述べたように、本発明によれば、そ
の一次粒子径が0.01〜0.03μm及びその見掛比
重が50〜200g/Lであって、一次粒子及び一次粒
子が凝集又は集塊した二次粒子からなるアナターゼ型酸
化チタン粉末をβ-ジケトンとチタネート系カップリン
グ剤の存在下で溶媒である混合アルコール中に均一に分
散させた後、シリカゾルを混合することにより、アナタ
ーゼ型酸化チタン粉末が極めて一次粒子に近い状態まで
均一で高度に分散した透明性、硬度及び分解性能に優れ
た光触媒塗料が得られる。
As described above, according to the present invention, the primary particle diameter is 0.01 to 0.03 μm and the apparent specific gravity is 50 to 200 g / L. After uniformly dispersing the anatase-type titanium oxide powder consisting of agglomerated or agglomerated secondary particles in a mixed alcohol that is a solvent in the presence of a β-diketone and a titanate coupling agent, by mixing a silica sol, It is possible to obtain a photocatalyst coating excellent in transparency, hardness, and decomposition performance in which anatase-type titanium oxide powder is uniformly and highly dispersed to a state very close to primary particles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 行也 東京都千代田区大手町1丁目5番1号 三 菱マテリアル株式会社先端製品カンパニー 内 Fターム(参考) 4D075 AE03 BB16X CA02 CA34 CA45 CB06 DA04 DA06 DB01 DB12 DB13 DB14 DB16 DB18 DB20 DB21 DB31 DC02 DC05 DC11 DC18 DC24 DC27 DC38 EA12 EB43 EC02 EC07 EC30 EC45 EC51 EC53 EC54 4G069 AA03 AA08 BA02A BA02B BA04A BA04B BA48A CA10 DA06 EA08 EB18X EB19 4J038 AA011 HA216 HA441 JA19 JA23 JA34 JC32 KA03 KA04 KA20 NA01 NA11 NA27 PC01 PC02 PC03 PC04 PC06 PC08 PC09 PC10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yukiya Yamashita             3-5-1 Otemachi, Chiyoda-ku, Tokyo             Ryo Materials Co., Ltd. Advanced Products Company             Within F-term (reference) 4D075 AE03 BB16X CA02 CA34                       CA45 CB06 DA04 DA06 DB01                       DB12 DB13 DB14 DB16 DB18                       DB20 DB21 DB31 DC02 DC05                       DC11 DC18 DC24 DC27 DC38                       EA12 EB43 EC02 EC07 EC30                       EC45 EC51 EC53 EC54                 4G069 AA03 AA08 BA02A BA02B                       BA04A BA04B BA48A CA10                       DA06 EA08 EB18X EB19                 4J038 AA011 HA216 HA441 JA19                       JA23 JA34 JC32 KA03 KA04                       KA20 NA01 NA11 NA27 PC01                       PC02 PC03 PC04 PC06 PC08                       PC09 PC10

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 アナターゼ型酸化チタン粉末と混合アル
コールとβ-ジケトンとチタネート系カップリング剤と
シリカゾルを含む光触媒塗料において、 前記アナターゼ型酸化チタン粉末はその一次粒子径が
0.01〜0.03μm及びその見掛比重が50〜20
0g/Lであって、前記一次粒子及び前記一次粒子が凝
集又は集塊した二次粒子からなることを特徴とする光触
媒塗料。
1. A photocatalyst paint containing anatase-type titanium oxide powder, mixed alcohol, β-diketone, titanate coupling agent and silica sol, wherein the anatase-type titanium oxide powder has a primary particle diameter of 0.01 to 0.03 μm. And its apparent specific gravity is 50 to 20
The photocatalyst coating material is 0 g / L and is composed of the primary particles and secondary particles in which the primary particles are aggregated or agglomerated.
【請求項2】 アナターゼ型酸化チタン粉末はBET比
表面積が30〜100m2/gであり、一次粒子及び前
記一次粒子が凝集又は集塊した二次粒子の粒子同士が
0.01〜0.3μmの間隔をあけて塗料中に分散して
いる請求項1記載の光触媒塗料。
2. The anatase-type titanium oxide powder has a BET specific surface area of 30 to 100 m 2 / g, and primary particles and secondary particles obtained by aggregating or agglomerating the primary particles have a particle diameter of 0.01 to 0.3 μm. The photocatalyst paint according to claim 1, wherein the photocatalyst paint is dispersed at intervals.
【請求項3】 酸化チタン粉末の含有量が0.5〜20
重量%である請求項1又は2記載の光触媒塗料。
3. The content of titanium oxide powder is 0.5 to 20.
The photocatalyst coating composition according to claim 1 or 2, which is contained in a weight percentage.
【請求項4】 β-ジケトンの含有量が酸化チタン粉末
に対して0.5〜10重量%である請求項1ないし3い
ずれか記載の光触媒塗料。
4. The photocatalyst coating composition according to claim 1, wherein the content of β-diketone is 0.5 to 10% by weight based on the titanium oxide powder.
【請求項5】 チタネート系カップリング剤の添加量が
酸化チタン粉末に対して0.1〜5重量%である請求項
1ないし4いずれか記載の光触媒塗料。
5. The photocatalyst coating composition according to claim 1, wherein the titanate coupling agent is added in an amount of 0.1 to 5% by weight based on the titanium oxide powder.
【請求項6】 混合アルコールが4〜15重量%のメチ
ルアルコールと96〜85重量%のエチルアルコールの
混合液である請求項1ないし5いずれか記載の光触媒塗
料。
6. The photocatalyst coating composition according to claim 1, wherein the mixed alcohol is a mixed solution of 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol.
【請求項7】 シリカゾルがエチルシリケートの加水分
解物又は部分加水分解物である請求項1ないし6いずれ
か記載の光触媒塗料。
7. The photocatalyst coating composition according to claim 1, wherein the silica sol is a hydrolyzate or a partial hydrolyzate of ethyl silicate.
【請求項8】 アナターゼ型酸化チタン粉末をβ-ジケ
トンとチタネート系カップリング剤の存在下で溶媒であ
る混合アルコール中に均一に分散させた後、シリカゾル
を混合することを特徴とする光触媒塗料の製造方法。
8. A photocatalyst coating composition, which comprises uniformly dispersing an anatase type titanium oxide powder in a mixed alcohol which is a solvent in the presence of a β-diketone and a titanate coupling agent, and then mixing a silica sol. Production method.
【請求項9】 アナターゼ型酸化チタン粉末が四塩化チ
タンを高温気相中で加水分解反応させ、反応生成物を急
速冷却することにより得られる請求項8記載の製造方
法。
9. The method according to claim 8, wherein the anatase type titanium oxide powder is obtained by subjecting titanium tetrachloride to a hydrolysis reaction in a high temperature gas phase and rapidly cooling the reaction product.
【請求項10】 請求項1ないし7いずれか記載の光触
媒塗料又は請求項8又は9記載の製造方法により得られ
た光触媒塗料を基材表面に塗布して形成させたことを特
徴とする光触媒機能を有するコーティング材。
10. A photocatalytic function, characterized in that the photocatalyst paint according to any one of claims 1 to 7 or the photocatalyst paint obtained by the manufacturing method according to claim 8 or 9 is applied to the surface of a substrate. Coating material having.
【請求項11】 基材表面に無機質の下地層と、前記下
地層の上に光触媒塗料から形成された光触媒膜とを有す
る請求項10記載のコーティング材。
11. The coating material according to claim 10, which has an inorganic underlayer on the surface of the base material, and a photocatalytic film formed from a photocatalytic coating on the underlayer.
【請求項12】 基材がガラス、プラスチック、金属、
木材、タイルを含むセラミック、セメント、コンクリー
ト、石、繊維、紙及び皮革からなる群より選ばれた材質
である請求項10又は11記載のコーティング材。
12. The base material is glass, plastic, metal,
The coating material according to claim 10 or 11, which is a material selected from the group consisting of wood, ceramics including tiles, cement, concrete, stone, fibers, paper and leather.
【請求項13】 無機質の下地層がシリカ又はアルミナ
からなる請求項11記載のコーティング材。
13. The coating material according to claim 11, wherein the inorganic underlayer is made of silica or alumina.
【請求項14】 請求項10ないし13いずれか記載の
コーティング材により表面被覆を行った石材加工品。
14. A processed stone material, the surface of which is coated with the coating material according to claim 10.
【請求項15】 請求項10ないし13いずれか記載の
コーティング材により表面被覆を行った壁材。
15. A wall material having a surface coated with the coating material according to claim 10.
【請求項16】 請求項10ないし13いずれか記載の
コーティング材により表面被覆を行った硝子。
16. A glass whose surface is coated with the coating material according to claim 10.
JP2002053408A 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint Expired - Fee Related JP4110799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053408A JP4110799B2 (en) 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053408A JP4110799B2 (en) 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008042490A Division JP4710919B2 (en) 2008-02-25 2008-02-25 Method for producing photocatalyst paint

Publications (2)

Publication Number Publication Date
JP2003253156A true JP2003253156A (en) 2003-09-10
JP4110799B2 JP4110799B2 (en) 2008-07-02

Family

ID=28664845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053408A Expired - Fee Related JP4110799B2 (en) 2002-02-28 2002-02-28 Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint

Country Status (1)

Country Link
JP (1) JP4110799B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104035A (en) * 2011-11-16 2013-05-30 Daicel Corp Titanium oxide coating liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104035A (en) * 2011-11-16 2013-05-30 Daicel Corp Titanium oxide coating liquid

Also Published As

Publication number Publication date
JP4110799B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
KR100318109B1 (en) Photocatalyst Coating Composition and Photocatalyst Support Structure
JP3559892B2 (en) Photocatalytic film and method for forming the same
CN102105303B (en) Object with photo-catalyst coating
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP5784481B2 (en) Coating composition and use thereof
JP2005290369A (en) Titanium oxide-coating agent, and forming method for titanium oxide-coating film
WO2012014877A1 (en) Photocatalyst coated body and photocatalyst coating liquid
JP2014098542A (en) Refrigerator
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
JP4525041B2 (en) Photocatalyst coating material, method for producing the same, photocatalytic coating film having a photocatalytic function obtained by applying the coating material, and multilayer photocatalytic coating film
JP2000273355A (en) Photocatalytic coating, its preparation and its use
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
JP3300940B2 (en) Method of forming underlayer for photocatalytic film
JP2006124684A (en) Photocatalytic coating and method for producing photocatalytic film using the same
JP2010005611A (en) Article coated with photocatalyst
JP3346278B2 (en) Method of forming photocatalytic film on organic base material and its use
JP4710919B2 (en) Method for producing photocatalyst paint
JP2003253156A (en) Photocatalytic coating and its manufacturing method, and coated material exhibiting photocatalytic function obtained by applying coating
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JPWO2010131690A1 (en) Coating composition, film forming method, and article having the film
JP2004083832A (en) Photocatalytic coating material, method for forming film by using the same, and coated material having photocatalytic function by applying the same material
JPH10259320A (en) Photocatalytic coating material, production thereof, and coating film formed therefrom
JP3291558B2 (en) Photocatalytic paint, method for producing the same, and coating film coated with the same
JPH10259324A (en) Photocatalytic coating material, production thereof, and coating film formed therefrom
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees