JP2006124684A - Photocatalytic coating and method for producing photocatalytic film using the same - Google Patents

Photocatalytic coating and method for producing photocatalytic film using the same Download PDF

Info

Publication number
JP2006124684A
JP2006124684A JP2005283621A JP2005283621A JP2006124684A JP 2006124684 A JP2006124684 A JP 2006124684A JP 2005283621 A JP2005283621 A JP 2005283621A JP 2005283621 A JP2005283621 A JP 2005283621A JP 2006124684 A JP2006124684 A JP 2006124684A
Authority
JP
Japan
Prior art keywords
film
photocatalyst
glass substrate
photocatalytic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283621A
Other languages
Japanese (ja)
Inventor
Masanori Sugino
真紀 杉野
Hiroki Hirata
寛樹 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005283621A priority Critical patent/JP2006124684A/en
Publication of JP2006124684A publication Critical patent/JP2006124684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic coating excellent in coating film hardness and photocatalytic activity, to provide a method for producing photocatalytic film using the coating, also to provide such a photocatalytic coating with high adsorptive effect of the resulting coating film, and to provide a method for producing photocatalytic film using the above coating. <P>SOLUTION: The photocatalytic coating is a modification of a photocatalytic coating comprising titanium oxide powder, a binder and an organic solvent. This modified photocatalytic coating also contains a methacrylic ester monomer as an additive. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、膜硬度及び光触媒活性に優れた光触媒塗料及び該塗料を用いた光触媒膜の製造方法に関するものである。   The present invention relates to a photocatalyst paint excellent in film hardness and photocatalytic activity, and a method for producing a photocatalyst film using the paint.

この種の光触媒膜を得る方法として、チタンのアルコキシドとアルコールアミン類から調製されたチタニアゾルを基板にコーティングした後、焼成することにより光触媒膜を形成する方法が知られている(例えば、特許文献1参照。)。また、基板の保護及び酸化チタン層との密着性向上のために、基板と酸化チタン層との間にアンダーコート膜を設けた2層コートタイプの塗膜の製造方法も知られている。
このうち、チタニアゾルを用いて焼成する方法では、高温で焼成処理しなければならないため、得られた光触媒膜の透明性が低下するおそれがあるだけでなく、焼成炉を必要とするためコストが高くなる問題があった。
また、低温で処理できる2層コートタイプでは、2回塗り及び乾燥が必要であるため、処理工程が多くなり、簡便な方法とはいえなかった。この2層コートタイプでは光触媒の活性を十分に引き出すために、酸化チタンの含有量を80重量%以上としなければならないため、成膜した膜の透明性が十分に得られないだけでなく、基板との密着性が十分に得られず安定した膜が形成できなくなるという問題があった。
As a method for obtaining this type of photocatalyst film, a method of forming a photocatalyst film by coating a titania sol prepared from an alkoxide of titanium and an alcoholamine on a substrate and then firing the substrate is known (for example, Patent Document 1). reference.). Also known is a method for producing a two-layer coat type coating film in which an undercoat film is provided between a substrate and a titanium oxide layer in order to protect the substrate and improve adhesion to the titanium oxide layer.
Of these, the method of firing using titania sol requires firing at a high temperature, which not only reduces the transparency of the resulting photocatalyst film, but also requires a firing furnace, resulting in high costs. There was a problem.
In addition, the two-layer coating type that can be processed at a low temperature requires two coatings and drying, so that the number of processing steps is increased, which is not a simple method. In this two-layer coating type, the titanium oxide content must be 80% by weight or more in order to sufficiently bring out the activity of the photocatalyst. There was a problem that a sufficient film could not be formed and a stable film could not be formed.

上記諸問題を解決する方策として本出願人は、一次粒子の平均粒径0.01〜0.1μmの超微粒子アナターゼ型酸化チタン、有機溶媒、β-ジケトン、チタネート系又はアルミネート系カップリング剤とシリカゾルからなる光触媒塗料を提案した(例えば、特許文献2参照。)。この公報に示された光触媒塗料を用いることにより、透明性、触媒活性、塗膜強度に優れた光触媒塗膜を形成することができる。
特開平7−100378号公報 特開平10−195341号公報
As a measure for solving the above-mentioned problems, the present applicant has proposed an ultrafine particulate anatase-type titanium oxide having an average primary particle size of 0.01 to 0.1 μm, an organic solvent, a β-diketone, a titanate-based or aluminate-based coupling agent. And a photocatalytic coating material composed of silica sol was proposed (for example, see Patent Document 2). By using the photocatalyst paint disclosed in this publication, a photocatalyst coating film excellent in transparency, catalytic activity, and coating film strength can be formed.
Japanese Patent Application Laid-Open No. 7-100378 JP-A-10-195341

しかし、上記特許文献2に示された光触媒塗料を用いて塗膜を形成することにより、従来の光触媒薄膜と比べて高い透明性、光触媒活性、膜強度に優れた塗膜が得られるが、光触媒の用途の拡大とともに、より高い透明性を有する塗膜を形成し得る光触媒塗料の開発が要望されている。   However, by forming a coating film using the photocatalyst paint disclosed in Patent Document 2, a coating film having higher transparency, photocatalytic activity, and film strength than a conventional photocatalytic thin film can be obtained. With the expansion of applications, development of a photocatalyst coating that can form a coating film having higher transparency is demanded.

一方、酸化チタン粉末の用途として、酸化チタンが有する光触媒機能を利用した有機物や有害物質の分解や、酸化チタンが有する親水性機能を利用した塗布表面の防汚又は防曇等に効果があることが知られている。近年、住宅の高気密化が進み、建材や壁紙等の内装材から放出された化学物質により室内の空気が汚染され、居住者がシックハウス症候群(化学物質過敏症)を発症するケースが多発しており、このような有害化学物質を分解することにも酸化チタンの光触媒機能を利用することができる。また、掃除がこまめにできないような場所に酸化チタンを塗布することでセルフクリーニング効果により防汚効果を賦与することができる。しかし、これまでに開発された従来の光触媒膜は、光触媒効果は高いが透明性が低いものや、膜硬度が低いため、傷が付いたり、えぐれてしまう等の不具合を生じていた。   On the other hand, the use of titanium oxide powder is effective in decomposing organic substances and harmful substances using the photocatalytic function of titanium oxide, and antifouling or antifogging of the coated surface using the hydrophilic function of titanium oxide. It has been known. In recent years, airtightness of houses has progressed, and indoor air is polluted by chemical substances released from interior materials such as building materials and wallpaper, and residents often develop sick house syndrome (chemical sensitivity). In addition, the photocatalytic function of titanium oxide can be used to decompose such harmful chemical substances. Moreover, the antifouling effect can be imparted by a self-cleaning effect by applying titanium oxide to a place where cleaning is not possible frequently. However, conventional photocatalyst films that have been developed so far have high photocatalytic effects but low transparency, and low film hardness, resulting in defects such as scratches and erosion.

本発明の目的は、膜硬度及び光触媒活性に優れた光触媒塗料及び該塗料を用いた光触媒膜の製造方法を提供することにある。
本発明の別の目的は、膜の吸着作用が高い光触媒塗料及び該塗料を用いた光触媒膜の製造方法を提供することにある。
An object of the present invention is to provide a photocatalyst paint excellent in film hardness and photocatalytic activity and a method for producing a photocatalyst film using the paint.
Another object of the present invention is to provide a photocatalyst paint having a high film adsorption action and a method for producing a photocatalyst film using the paint.

請求項1に係る発明は、酸化チタン粉末、バインダ及び有機溶剤をそれぞれ含む光触媒塗料の改良であり、その特徴ある構成は、添加剤としてメタクリル酸エステルモノマーを更に含むところにある。
請求項1に係る発明では、光触媒塗料に添加剤としてメタクリル酸エステルモノマーを含むことで、この塗料を塗布した基板を焼成した際に、添加剤であるメタクリル酸エステルが塗膜内から焼飛んで、この焼飛んだ箇所が膜中に膜表層に連通する連通孔(ポア)として形成される。その結果、通常の光触媒塗料を塗布焼成した光触媒膜に比べて、膜の下側に埋もれて有機物の分解等に寄与していなかった酸化チタンも有機物の分解に利用することができるため、膜の表面積が大幅に増大し、優れた光触媒活性が得られる。
The invention according to claim 1 is an improvement of the photocatalyst coating material each containing titanium oxide powder, a binder, and an organic solvent, and a characteristic configuration thereof is that it further includes a methacrylic acid ester monomer as an additive.
In the invention according to claim 1, by including a methacrylic acid ester monomer as an additive in the photocatalyst paint, when the substrate coated with the paint is baked, the methacrylic acid ester as the additive is burned out from the inside of the coating film. The burned-out portion is formed as a communication hole (pore) communicating with the film surface layer in the film. As a result, compared with the photocatalyst film coated and baked with a normal photocatalyst paint, titanium oxide that was buried under the film and did not contribute to the decomposition of the organic substance can also be used for the decomposition of the organic substance. The surface area is greatly increased, and excellent photocatalytic activity can be obtained.

請求項2に係る発明は、請求項1に係る発明であって、酸化チタン粉末がルチル型結晶構造及びアナターゼ型結晶構造をそれぞれ含む光触媒塗料である。
請求項3に係る発明は、請求項1又は2に係る発明であって、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450Å〜3.562Åの範囲を満たす光触媒塗料である。
請求項3に係る発明では、このような物性を有する酸化チタン粉末を塗料中に分散することにより、硬度及び分解性能に優れた光触媒塗料が得られる。
The invention according to claim 2 is the invention according to claim 1, wherein the titanium oxide powder is a photocatalyst paint containing a rutile crystal structure and an anatase crystal structure.
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the (101) plane spacing d value obtained from the half-value width of the (101) plane of the anatase crystal is 3.450 Å It is a photocatalyst coating material that satisfies the range of 3.562 mm.
In the invention which concerns on Claim 3, the photocatalyst coating material excellent in hardness and decomposition | disassembly performance is obtained by disperse | distributing the titanium oxide powder which has such a physical property in a coating material.

請求項4に係る発明は、請求項1に係る発明であって、メタクリル酸エステルモノマーの含有割合が塗料100重量%に対して1〜30重量%である光触媒塗料である。
請求項5に係る発明は、請求項1ないし4いずれか1項に係る発明であって、多孔質物質を更に含有する光触媒塗料である。
請求項5に係る発明では、光触媒塗料に多孔質物質を更に含有することで、膜の吸着作用が高い光触媒膜が得られる。
The invention according to claim 4 is the photocatalyst paint according to claim 1, wherein the content of the methacrylic acid ester monomer is 1 to 30% by weight with respect to 100% by weight of the paint.
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the photocatalyst coating material further contains a porous substance.
In the invention which concerns on Claim 5, the photocatalyst film | membrane with a high adsorption | suction effect | action of a film | membrane is obtained by further containing a porous substance in a photocatalyst coating material.

請求項6に係る発明は、請求項5に係る発明であって、多孔質物質の含有割合が塗料100重量%に対して1〜50重量%である光触媒塗料である。
請求項7に係る発明は、請求項5又は6に係る発明であって、多孔質物質が粘土鉱物、ゼオライト、アパタイト又はケイ酸カルシウムである光触媒塗料である。
The invention according to claim 6 is the photocatalyst paint according to claim 5, wherein the content ratio of the porous material is 1 to 50% by weight with respect to 100% by weight of the paint.
The invention according to claim 7 is the invention according to claim 5 or 6, wherein the porous material is a clay mineral, zeolite, apatite or calcium silicate.

請求項8に係る発明は、請求項1ないし7いずれか1項に記載の光触媒塗料を基材に塗布する工程と、塗料を塗布した基材を20℃〜50℃で仮焼成する工程と、仮焼成した基材を塗料に含まれる添加剤の沸点以上基材の融点以下で本焼成する工程とを含むことを特徴とする光触媒膜の製造方法である。
請求項9に係る発明は、基材を20℃〜50℃で仮焼成する工程と、請求項1ないし7いずれか1項に記載の光触媒塗料を仮焼成した基材に塗布する工程と、塗料を塗布した基材を塗料に含まれる添加剤の沸点以上基材の融点以下で本焼成する工程とを含むことを特徴とする光触媒膜の製造方法である。
請求項8又は9に係る発明では、上記工程を経ることで、膜硬度及び光触媒活性に優れた光触媒膜を製造することができる。
The invention according to claim 8 is a step of applying the photocatalyst paint according to any one of claims 1 to 7 to a base material, a step of pre-baking the base material coated with the paint at 20 ° C to 50 ° C, And a step of subjecting the temporarily fired base material to a main firing temperature not lower than the boiling point of the additive contained in the paint and not higher than the melting point of the base material.
The invention according to claim 9 includes a step of calcining the substrate at 20 ° C. to 50 ° C., a step of applying the photocatalyst paint according to any one of claims 1 to 7 to the calcined substrate, and a paint And a step of subjecting the base material coated with baked to a temperature not lower than the boiling point of the additive contained in the paint and not higher than the melting point of the base material.
In the invention which concerns on Claim 8 or 9, the photocatalyst film excellent in film | membrane hardness and photocatalytic activity can be manufactured by passing through the said process.

本発明の光触媒塗料は、添加剤としてメタクリル酸エステルモノマーを含むことで、この塗料を塗布した基板を焼成した際に、添加剤であるメタクリル酸エステルが塗膜内から焼飛んで、この焼飛んだ箇所が膜中に膜表層に連通する連通孔(ポア)として形成される。その結果、通常の光触媒塗料を塗布焼成した膜に比べて、膜の下側に埋もれて有機物の分解等に寄与していなかった酸化チタンも有機物の分解に利用することができるため、膜の表面積が大幅に増大し、優れた光触媒活性が得られる。また、本発明の光触媒塗料は、酸化チタン粉末がルチル型結晶構造及びアナターゼ型結晶構造をそれぞれ含み、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450Å〜3.562Åの範囲を満たす光触媒塗料である。このような物性を有する酸化チタン粉末を塗料中に分散することにより、透明性、硬度及び分解性能に優れた光触媒塗料が得られる。また、本発明の光触媒塗料は、多孔質物質を更に含有することで、膜の吸着作用が高い光触媒膜が得られる。
本発明の光触媒膜の製造方法は、前述した本発明の光触媒塗料を基材に塗布し、塗料を塗布した基材を仮焼成した後に、この仮焼成した基材を塗料に含まれる添加剤の沸点以上基材の融点以下で本焼成するか、基材を仮焼成した後に、前述した本発明の光触媒塗料を仮焼成した基材に塗布し、塗料を塗布した基材を塗料に含まれる添加剤の沸点以上基材の融点以下で本焼成することで、膜硬度及び光触媒活性に優れた光触媒膜を製造することができる。
The photocatalyst coating material of the present invention contains a methacrylic acid ester monomer as an additive, so that when the substrate coated with the coating material is baked, the methacrylic acid ester as an additive is burned out from the coating film, The gap is formed as a communication hole (pore) communicating with the membrane surface layer in the membrane. As a result, the surface area of the film can be used for the decomposition of the organic matter because titanium oxide that has been buried under the film and has not contributed to the decomposition of the organic substance can be used for the decomposition of the organic substance as compared with the film obtained by applying and baking an ordinary photocatalyst paint. Significantly increases, and excellent photocatalytic activity is obtained. In the photocatalyst paint of the present invention, the titanium oxide powder includes a rutile type crystal structure and an anatase type crystal structure, respectively, and the (101) plane spacing d determined from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal. It is a photocatalyst coating material that satisfies the value range of 3.450 to 3.562. By dispersing the titanium oxide powder having such physical properties in the paint, a photocatalyst paint excellent in transparency, hardness and decomposition performance can be obtained. Moreover, the photocatalyst coating material of this invention can obtain a photocatalyst film | membrane with a high adsorption | suction effect | action of a film | membrane by further containing a porous substance.
The method for producing a photocatalyst film of the present invention comprises applying the above-described photocatalyst paint of the present invention to a base material, pre-baking the base material coated with the paint, and then adding the pre-baked base material to the additive contained in the paint. After firing at the boiling point or more and below the melting point of the base material, or after pre-baking the base material, the photocatalyst paint of the present invention described above is applied to the pre-fired base material, and the base material coated with the paint is added to the paint. By carrying out the main baking at a temperature not lower than the boiling point of the agent and not higher than the melting point of the base material, a photocatalytic film excellent in film hardness and photocatalytic activity can be produced.

次に本発明を実施するための最良の形態を説明する。
本発明の光触媒塗料は、酸化チタン粉末、バインダ及び有機溶剤をそれぞれ含む光触媒塗料の改良であり、その特徴ある構成は、添加剤としてメタクリル酸エステルモノマーを更に含むところにある。光触媒塗料に添加剤としてメタクリル酸エステルモノマーを含むことで、この塗料を塗布した基板を焼成した際に、添加剤であるメタクリル酸エステルが塗膜内から焼飛んで、この焼飛んだ箇所が膜中に膜表層に連通する連通孔(ポア)として形成される。その結果、通常の光触媒塗料を塗布焼成した膜に比べて、従来膜の下側に埋もれて有機物の分解等に寄与していなかった酸化チタンも有機物の分解に利用することができるため、膜の表面積が大幅に増大し、優れた光触媒活性が得られる。
Next, the best mode for carrying out the present invention will be described.
The photocatalyst paint of the present invention is an improvement of the photocatalyst paint containing titanium oxide powder, a binder and an organic solvent, respectively, and the characteristic constitution thereof is that it further contains a methacrylic acid ester monomer as an additive. By including a methacrylic acid ester monomer as an additive in the photocatalyst paint, when the substrate coated with this paint is baked, the methacrylic acid ester as an additive burns out from the coating film, and the burned-out portion is a film. It is formed as a communication hole (pore) communicating with the membrane surface layer. As a result, compared with a film obtained by applying and baking an ordinary photocatalyst paint, titanium oxide that has been buried under the film and has not contributed to the decomposition of the organic substance can also be used for the decomposition of the organic substance. The surface area is greatly increased, and excellent photocatalytic activity can be obtained.

本発明の光触媒塗料で添加剤として添加されるメタクリル酸エステルモノマーを例示すると、メタクリル酸メチルモノマー、メタクリル酸エチルモノマー、メタクリル酸ノルマルブチルモノマー、メタクリル酸セカンダリーブチルモノマー、メタクリル酸ターシャリーブチルモノマー、メタクリル酸イソブチルモノマー、メタクリル酸アリルモノマー、フェニルメタクリレートモノマー、ベンジルメタクリレートモノマー等が挙げられる。
本発明で添加剤として使用されるメタクリル酸エステルモノマーの沸点を次の表1にそれぞれ示す。
Examples of the methacrylic acid ester monomer added as an additive in the photocatalyst coating material of the present invention include methyl methacrylate monomer, ethyl methacrylate monomer, normal butyl methacrylate monomer, secondary butyl methacrylate monomer, tertiary butyl methacrylate monomer, methacrylic acid Examples include acid isobutyl monomer, allyl methacrylate monomer, phenyl methacrylate monomer, and benzyl methacrylate monomer.
The boiling points of methacrylic acid ester monomers used as additives in the present invention are shown in the following Table 1, respectively.

Figure 2006124684
Figure 2006124684

本発明の酸化チタン粉末はルチル型結晶構造及びアナターゼ型結晶構造をそれぞれ含むことが好ましい。この場合、酸化チタン粉末が次の式(1)で示されるアナターゼ含有量を70%〜95%の割合で満たすように構成されることが好適である。
アナターゼ含有量(%)=100/(1+1.265×IR/IA) …(1)
上記式(1)においてIRはルチル型強度、IAはアナターゼ型強度である。酸化チタン粉末をX線回折により測定し、2θが24.0deg〜26.5degの間に存在するアナターゼ型を示す(101)面の回折ピークの強度と2θが27.0deg〜28.0degの間に存在するルチル型を示す(110)面の回折ピークの強度を求め、これらの測定値を上記式(1)に当てはめたとき、アナターゼ含有量が70%〜95%の割合を満たすように構成される。アナターゼ含有量は75%〜85%が特に好ましい。アナターゼ含有量が下限値未満であると触媒活性が低下する不具合を生じ、上限値を越えた酸化チタン粉末は気相法では製造が困難である。
The titanium oxide powder of the present invention preferably contains a rutile crystal structure and an anatase crystal structure. In this case, it is preferable that the titanium oxide powder is configured to satisfy the anatase content represented by the following formula (1) at a ratio of 70% to 95%.
Anatase content (%) = 100 / (1 + 1.265 × I R / I A ) (1)
I R rutile intensity in the above formula (1), the I A anatase strength. Titanium oxide powder is measured by X-ray diffraction, and the intensity of the diffraction peak on the (101) plane, which shows anatase type in which 2θ is between 24.0 deg and 26.5 deg, and 2θ is between 27.0 deg and 28.0 deg. The intensity of the diffraction peak of the (110) plane showing the rutile type present in the above is determined, and when these measured values are applied to the above formula (1), the anatase content satisfies the ratio of 70% to 95%. Is done. The anatase content is particularly preferably 75% to 85%. If the anatase content is less than the lower limit, the catalyst activity is reduced, and titanium oxide powder exceeding the upper limit is difficult to produce by the gas phase method.

また、このアナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450Å〜3.562Åの範囲を満たすと、硬度及び分解性能に優れた塗膜を形成することができる。具体的には塗料に含ませる酸化チタン粉末をX線回折により測定し、2θが24.0deg〜26.5degの間に存在する(101)面の回折ピークの半値幅から、次の式(2)に示されるブラッグの法則式を用いて結晶格子の面間隔d値を求める。ここでλはX線の波長、nは定数である。
2dsinθ=nλ ……(2)
上記式(2)から求めた面間隔d値が3.450Å〜3.562Åの範囲を満たす酸化チタン粉末を塗料中に分散することにより、硬度及び分解性能に優れた光触媒塗料が得られる。(101)面の面間隔d値は下限値が3.450Å〜3.504Å、上限値が3.531Å〜3.562Åの範囲を満たすことが好ましい。またルチル型結晶の(110)面の面間隔d値は下限値が3.200Å〜3.243Å、上限値が3.255Å〜3.280Åの範囲を満たすことが好ましい。
In addition, when the surface separation d value of the (101) plane obtained from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal satisfies the range of 3.450 mm to 3.562 mm, the coating having excellent hardness and decomposition performance is obtained. A film can be formed. Specifically, titanium oxide powder to be included in the paint is measured by X-ray diffraction, and from the half width of the diffraction peak of (101) plane where 2θ is between 24.0 deg and 26.5 deg, the following formula (2 The interplanar spacing d value of the crystal lattice is obtained using Bragg's law formula shown in FIG. Here, λ is the wavelength of the X-ray and n is a constant.
2 dsin θ = nλ (2)
A photocatalyst coating material excellent in hardness and decomposition performance can be obtained by dispersing titanium oxide powder satisfying the surface spacing d value obtained from the above formula (2) in the range of 3.450 to 3.562 中 in the coating material. The (101) plane spacing d value preferably satisfies a lower limit of 3.450 to 3.504 and an upper limit of 3.531 to 3.562. Further, it is preferable that the d-spacing d value of the (110) plane of the rutile crystal satisfies the lower limit value of 3.200 to 3.243 and the upper limit of 3.255 to 3.280.

本発明の光触媒塗料における添加剤であるメタクリル酸エステルモノマーの含有割合は、塗料100重量%に対して1〜30重量%が好ましい。塗料100重量%に対して1重量%未満であると、添加剤を混合した効果が得られず、30重量%を越えると、光触媒塗料を塗布した後に焼成して得られる光触媒膜に形成される連通孔が多くなりすぎてしまい、膜の強度が低下する不具合を生じる。また、光触媒塗料を塗布した後に焼成したとしても、塗料中に含まれるメタクリル酸エステルモノマーの一部が膜中に残留してしまい、光触媒活性が低下してしまうおそれがある。添加剤であるメタクリル酸エステルモノマーの含有割合は、塗料100重量%に対して8.0〜30重量%が特に好ましい。   The content of the methacrylic acid ester monomer as an additive in the photocatalyst coating material of the present invention is preferably 1 to 30% by weight with respect to 100% by weight of the coating material. If the amount is less than 1% by weight with respect to 100% by weight of the paint, the effect of mixing the additives cannot be obtained, and if it exceeds 30% by weight, a photocatalyst film obtained by baking after applying the photocatalyst paint is formed. There will be a problem that the number of communication holes will increase and the strength of the film will decrease. Even if the photocatalyst coating material is applied and baked, a part of the methacrylic acid ester monomer contained in the coating material may remain in the film and the photocatalytic activity may be lowered. As for the content rate of the methacrylic acid ester monomer which is an additive, 8.0 to 30 weight% is especially preferable with respect to 100 weight% of coating materials.

本発明の光触媒塗料に含まれるバインダとしては、ポリエステル系、酢酸ビニル系、ポリウレタン系、メラミン系、尿素系、アルキド系、アクリル系及びフェノール系からなる群より選ばれた非水系バインダ、酢酸ビニルエマルジョン、アクリルエマルジョン、ポリオレフィン系エマルジョン及びシリカゾルからなる群より選ばれた水系バインダ、セルロース誘導体及びポリビニルアルコールからなる群より選ばれた水溶性バインダが挙げられる。バインダとしてシリカゾルを用いた場合、シリカゾルにはアルキルシリケートの加水分解物又は部分加水分解物が使用される。シリカゾルを用いることにより、シリカゾルの均一混合作用により透明度を低下させることがなく、充分な触媒活性を得ることが出来、更にシリカゾルの作用で基材との密着性が一層向上する。   As the binder contained in the photocatalyst paint of the present invention, a non-aqueous binder selected from the group consisting of polyester, vinyl acetate, polyurethane, melamine, urea, alkyd, acrylic and phenol, vinyl acetate emulsion And an aqueous binder selected from the group consisting of acrylic emulsion, polyolefin emulsion and silica sol, and a water-soluble binder selected from the group consisting of cellulose derivatives and polyvinyl alcohol. When silica sol is used as the binder, a hydrolyzate or partial hydrolyzate of alkyl silicate is used for the silica sol. By using the silica sol, the transparency can not be lowered by the uniform mixing action of the silica sol, and sufficient catalytic activity can be obtained, and the adhesion to the substrate is further improved by the action of the silica sol.

本発明の光触媒塗料に含まれる有機溶剤としては、混合アルコール、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコールが挙げられる。混合アルコールには、メチルアルコールとエチルアルコールからなる混合液が好適である。この混合アルコールの含有割合はメチルアルコールが4〜15重量%、エチルアルコールが96〜85重量%である。メチルアルコールの含有割合が4重量%未満の場合、極めて透明な光触媒薄膜が得られず、15重量%を越えても更なる効果は得られない。光触媒塗料に含まれる溶媒の量は、塗布に適した粘度が得られればよく、特に制限されない。   Examples of the organic solvent contained in the photocatalyst coating material of the present invention include mixed alcohols, methanol, ethanol, n-propyl alcohol, and iso-propyl alcohol. As the mixed alcohol, a mixed liquid composed of methyl alcohol and ethyl alcohol is suitable. The content ratio of the mixed alcohol is 4 to 15% by weight of methyl alcohol and 96 to 85% by weight of ethyl alcohol. When the content ratio of methyl alcohol is less than 4% by weight, a very transparent photocatalytic thin film cannot be obtained, and even if the content exceeds 15% by weight, no further effect can be obtained. The amount of the solvent contained in the photocatalyst coating is not particularly limited as long as a viscosity suitable for application can be obtained.

また、本発明の光触媒塗料には分散剤を更に含ませてもよい。分散剤としてはポリリン酸、ケイ酸又はポリアクリル酸のナトリウム塩、シランカップリング剤、アルミキレート、アルキルチタネート系材料、β-ジケトン類からなる群より選ばれた1種類以上の材料が挙げられる。分散剤としてβ-ジケトンを用いた場合、β-ジケトンの含有量は酸化チタン粉末に対して0.5〜10重量%である。このβ-ジケトンは、極性官能基(ケトン基)が、酸化チタン粉末及び基材表面に存在する極性基(水酸基や酸素基)に作用して、焼付け中に縮合することにより、酸化チタン粉末の最密充填が起こり、粉末間及び粉末-基板間を結合させ膜形成剤として作用し密着性を上げるのではないかと考えられる。
β-ジケトンとしては、2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、3-イソプロピル-2,4-ペンタンジオン、2,2-ジメチル-3,5-ヘキサンジオン等が挙げられる。β-ジケトンの含有量は、酸化チタン粉末に対して1.0〜5.0重量%の割合で含有させることが好ましい。β-ジケトンの含有量が0.5重量%未満では、十分な分散性が得られず、10.0重量%を越えても更なる分散性の向上にはならない。
Moreover, you may further contain a dispersing agent in the photocatalyst coating material of this invention. Examples of the dispersant include one or more materials selected from the group consisting of polyphosphoric acid, sodium salt of silicic acid or polyacrylic acid, silane coupling agents, aluminum chelates, alkyl titanate materials, and β-diketones. When β-diketone is used as the dispersant, the content of β-diketone is 0.5 to 10% by weight with respect to the titanium oxide powder. In this β-diketone, the polar functional group (ketone group) acts on the titanium oxide powder and the polar group (hydroxyl group and oxygen group) present on the surface of the base material, and condenses during baking. It is considered that close packing occurs and bonds between the powder and between the powder and the substrate to act as a film-forming agent to improve the adhesion.
Examples of β-diketones include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-isopropyl-2,4-pentanedione, 2,2-dimethyl-3,5-hexanedione, and the like. It is done. The content of β-diketone is preferably 1.0 to 5.0% by weight with respect to the titanium oxide powder. If the content of β-diketone is less than 0.5% by weight, sufficient dispersibility cannot be obtained, and if it exceeds 10.0% by weight, no further improvement in dispersibility is obtained.

また、本発明の光触媒塗料中にチタネート系カップリング剤を更に含むことが好ましい。カップリング剤は低ヘイズ化剤として作用する。カップリング剤を添加することにより、膜構造に二次凝集群を形成せず、均一な最密充填化と表面の平滑精度がより一層高められるためにヘイズが低下(透明性が向上する)すると推測される。
カップリング剤としては、下記化学式(1)〜化学式(5)に示されるようなジアルキルパイロホスフェート基やジアルキルホスファイト基を含有するチタネート系カップリング剤等が挙げられ、1種又は2種以上を使用することができる。
Moreover, it is preferable that a titanate coupling agent is further included in the photocatalyst coating material of the present invention. The coupling agent acts as a low haze agent. By adding a coupling agent, the secondary aggregate group is not formed in the film structure, and the haze is lowered (transparency is improved) because uniform close-packing and surface smoothness accuracy are further enhanced. Guessed.
Examples of the coupling agent include titanate coupling agents containing a dialkyl pyrophosphate group or a dialkyl phosphite group as shown in the following chemical formulas (1) to (5). Can be used.

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

チタネート系カップリング剤は酸化チタン粉末に対して0.1〜5重量%の割合で含有させる。0.5〜2.0重量%の割合で含有させることが好ましい。カップリング剤の含有量が0.1重量%未満では分散性及びヘイズ低下の効果が得られず、5.0重量%を越えても更なるヘイズ低下や分散性の向上にはならない。 The titanate coupling agent is contained in a proportion of 0.1 to 5% by weight with respect to the titanium oxide powder. It is preferable to make it contain in the ratio of 0.5 to 2.0 weight%. If the content of the coupling agent is less than 0.1% by weight, the effects of dispersibility and haze reduction cannot be obtained, and if it exceeds 5.0% by weight, further haze reduction and dispersibility cannot be improved.

また、本発明の光触媒塗料は、多孔質物質を更に含有することが好ましい。光触媒塗料に多孔質物質を更に含有することで、膜の吸着作用が高い光触媒膜が得られる。また、多孔質物質の含有割合を変動させるによって所望の膜硬度を得ることができるため、本発明の光触媒塗料で得られる光触媒膜は様々な用途に適応することができる。多孔質物質の含有割合は塗料100重量%に対して1〜50重量%が好ましい。塗料100重量%に対して1重量%未満であると、多孔質物質を混合する効果が得られず、50重量%を越えると、膜硬度が低下する不具合を生じる。多孔質物質の含有割合は、塗料100重量%に対して12〜30重量%が特に好ましい。多孔質物質としては粘土鉱物、ゼオライト、アパタイト、ケイ酸カルシウムが挙げられる。   Moreover, it is preferable that the photocatalyst coating material of this invention further contains a porous substance. By further containing a porous substance in the photocatalyst paint, a photocatalyst film having a high film adsorption action can be obtained. In addition, since the desired film hardness can be obtained by changing the content ratio of the porous material, the photocatalyst film obtained by the photocatalyst paint of the present invention can be adapted to various uses. The content of the porous material is preferably 1 to 50% by weight with respect to 100% by weight of the paint. If the amount is less than 1% by weight with respect to 100% by weight of the paint, the effect of mixing the porous material cannot be obtained, and if it exceeds 50% by weight, the film hardness is lowered. The content of the porous material is particularly preferably 12 to 30% by weight with respect to 100% by weight of the coating material. Examples of the porous material include clay mineral, zeolite, apatite, and calcium silicate.

次に、本発明の第1の光触媒膜の製造方法を説明する。
先ず、前述した本発明の光触媒塗料を基材に塗布する。塗布方法としては、スピンコート法、ディッピング法、スプレー法等により施すことができるが、特に塗布方法は限定されない。本発明の基材に使用される材質には、ガラス、プラスチック、金属、木材、タイルを含むセラミック、セメント、コンクリート、石、繊維、紙及び皮革からなる群より選ばれる。ガラスとしては、蛍光灯、窓等の室内環境浄化(汚染物質分解)ガラス、水槽、生け簀等の水質浄化ガラス、車の防曇ガラス、CRT(ブラウン管ディスプレイ)、LCD(液晶ディスプレイ)、PDP(プラズマディスプレイパネル)画面、窓、鏡、眼鏡等の防汚ガラス、カメラ、光学機器の防汚、防黴レンズ等がある。プラスチックとしては、AV機器、コンピューター、マウス、キーボード、リモコン、フロッピーディスク、等の機器及びその周辺製品、車の内装品、家具、キッチン、風呂、洗面所等で使用する家庭用品等の使用する防汚、抗菌、防黴プラスチック等がある。金属としては、物干し台、物干し竿、キッチン、実験室等の作業台や洗い場、換気扇等に使用する防汚、抗菌、防黴ステンレス、防汚、抗菌処理ドアノブ等がある。木材の用途としては、防汚家具、公園の抗菌遊技施設等がある。タイルを含むセラミック、セメント、コンクリート、石等の建材としては、防汚処理した外壁材、屋根、床材等、室内環境浄化(汚染物質分解)性を持つ内壁材、防汚、抗菌、防黴処理した各種内装品等がある。紙としては、抗菌処理文房具等に使用できる。フィルム等の繊維としては、食品包装用透明抗菌フィルム、野菜保存用透明エチレンガス分解フィルム、環境、水質浄化用フィルム等がある。このように各種基材は、防汚、環境浄化、抗菌、防黴の効果を有するので、太陽光や蛍光灯等から発せられる紫外線の照射が可能な条件であれば、例示した以外でも多くの用途に使用することができる。無機質の下地層としてはシリカ、アルミナ等が挙げられる。本発明のコーティング材により表面被覆を行った石材加工品、壁材又は硝子は硬度に優れるとともに高い分解性能を示す。
Next, the manufacturing method of the 1st photocatalyst film | membrane of this invention is demonstrated.
First, the photocatalyst coating material of the present invention described above is applied to a substrate. As the coating method, spin coating, dipping, spraying, etc. can be used, but the coating method is not particularly limited. The material used for the substrate of the present invention is selected from the group consisting of glass, plastic, metal, wood, ceramic including tile, cement, concrete, stone, fiber, paper, and leather. Glasses include fluorescent lamps, windows and other indoor environment purification (pollutant decomposition) glass, water tanks, water purification glass such as sacrifices, car antifogging glass, CRT (CRT display), LCD (Liquid Crystal Display), PDP (Plasma) Display panel) Antifouling glass such as screens, windows, mirrors, and glasses, cameras, antifouling of optical equipment, antifouling lenses, etc. Plastics include AV equipment, computers, mice, keyboards, remote controls, floppy disks, etc. and peripheral products, car interiors, furniture, kitchens, bathrooms, household items used in bathrooms, etc. There are dirt, antibacterial, anti-bacterial plastic and so on. Examples of the metal include clothes racks, clothes racks, kitchen benches, laboratory benches and antifouling, antibacterial, antibacterial stainless steel, antifouling and antibacterial door knobs used for ventilation fans. Wood applications include antifouling furniture and park antibacterial amusement facilities. As building materials such as ceramics, cement, concrete and stone including tiles, anti-stain-treated outer wall materials, roofs, floor materials, etc., interior wall materials with indoor environment purification (contaminant decomposition), anti-fouling, antibacterial, anti-fouling There are various interior items that have been processed. As paper, it can be used for antibacterial treatment stationery and the like. Examples of the fiber such as a film include a transparent antibacterial film for food packaging, a transparent ethylene gas decomposition film for preservation of vegetables, a film for environmental and water purification, and the like. As described above, since various base materials have antifouling, environmental purification, antibacterial, and antifungal effects, there are many other than those exemplified as long as they can be irradiated with ultraviolet rays emitted from sunlight or fluorescent lamps. Can be used for applications. Examples of the inorganic underlayer include silica and alumina. The processed stone material, wall material or glass subjected to surface coating with the coating material of the present invention has excellent hardness and high decomposition performance.

本発明の光触媒塗膜を形成可能な基材として、車両、車両用及び道路用ミラー、車両用ガラス、車両用照明灯とそのカバー、レンズ、照明用蛍光灯とそのカバー、ガラス、トンネル用内装材及び照明灯とそのカバー、プラスチックフィルム及びシート、プラスチック成形体、各種建材、内装材及び建物付属物、食器、換気扇、眼鏡、鏡、天然及び合成繊維及び布帛、紙、ブラウン管、カバーガラス、ゴーグル、マスクシールド、標識、看板、金属板、家電製品のハウジング、燒結金属フィルター、ガードレール、ビニールハウス、調理レンジとそのフード、流し台、衛生器具、浴槽、家具、屋外照明用固定材、室内もしくは屋外展示物と表示物、屋外用家具と遊具、屋外固定構造物、石材加工品等が挙げられる。   As a substrate on which the photocatalytic coating film of the present invention can be formed, vehicles, vehicle and road mirrors, glass for vehicles, vehicle illumination lamps and their covers, lenses, fluorescent lamps for illumination and their covers, glass, interiors for tunnels Materials and lighting lamps and covers, plastic films and sheets, plastic moldings, various building materials, interior materials and building accessories, tableware, ventilation fans, glasses, mirrors, natural and synthetic fibers and fabrics, paper, CRT, cover glass, goggles , Mask shields, signs, signboards, metal plates, home appliance housings, sintered metal filters, guardrails, greenhouses, cooking ranges and hoods, sinks, sanitary equipment, bathtubs, furniture, outdoor lighting fixtures, indoor or outdoor displays And display items, outdoor furniture and playground equipment, outdoor fixed structures, processed stone products, and the like.

次に、本発明の光触媒塗料を塗布した基材を20℃〜50℃で仮焼成する。この仮焼成工程を施さないと、添加剤と有機溶剤が同時に蒸発してしまい、塗膜にポアを形成することができない。続いて、仮焼成した基材を塗料に含まれる添加剤の沸点以上基材の融点以下で本焼成する。本焼成の温度が添加剤の沸点未満では、添加剤が十分に焼飛ばないため、形成される光触媒膜に残留してしまう不具合を生じ、本焼成の温度が基材の融点を越えると、光触媒膜は形成されるが、成型加工した基材の形状を保持することができないため好ましくない。この本焼成を施すことで、光触媒膜が形成されるとともに、添加剤であるメタクリル酸エステルが塗膜表層から焼飛んで、この焼飛んだ箇所が膜中に膜表層に連通する連通孔(ポア)として形成される。形成された連通孔により、膜の下側に埋もれて有機物の分解等に寄与していなかった酸化チタンも有機物の分解に利用することができるため、膜の表面積が大幅に増大する。このように上記工程を経ることで、膜硬度及び光触媒活性に優れた光触媒膜を製造することができる。   Next, the base material to which the photocatalyst coating material of the present invention is applied is temporarily fired at 20 ° C to 50 ° C. If this pre-baking step is not performed, the additive and the organic solvent are evaporated simultaneously, and pores cannot be formed in the coating film. Subsequently, the temporarily fired base material is finally fired at the boiling point of the additive contained in the paint or higher and below the melting point of the base material. If the firing temperature is lower than the boiling point of the additive, the additive is not burned out sufficiently, resulting in a problem that it remains in the formed photocatalyst film. If the firing temperature exceeds the melting point of the substrate, the photocatalyst Although a film is formed, it is not preferable because the shape of the molded base material cannot be maintained. By performing this main baking, a photocatalyst film is formed, and the methacrylate ester as an additive is burned off from the surface of the coating film, and the burned-out portion communicates with the film surface layer in the film (pores). ). Due to the formed communication holes, titanium oxide that has been buried under the film and has not contributed to the decomposition of the organic substance can also be used for the decomposition of the organic substance, so that the surface area of the film is greatly increased. Thus, a photocatalyst film excellent in film hardness and photocatalytic activity can be produced through the above steps.

また、本発明の第2の光触媒膜の製造方法では、先ず、基材を20℃〜50℃で仮焼成する。次に、前述した本発明の光触媒塗料を仮焼成した基材に塗布する。この後に続く工程は、前述した本発明の第1の光触媒膜の製造方法と同様である。   In the second method for producing a photocatalytic film of the present invention, first, the base material is temporarily fired at 20 ° C to 50 ° C. Next, the photocatalyst coating material of the present invention described above is applied to a temporarily fired substrate. The subsequent steps are the same as those in the first photocatalyst film production method of the present invention described above.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
市販されている酸化チタンコーティング剤(商品名:ST−K211;石原産業社製)を用意した。このST−K211の上記式(1)におけるアナターゼ含有量は77%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値は、3.358〜3.598Åであった。この酸化チタンコーティング剤に添加剤としてメタクリル酸アリルモノマーを2重量部添加し、よく混合して塗布液を調製した。調製した塗布液をスピンコーターでガラス基板に塗布し、40℃で1.5時間仮焼成し、続いて180℃で0.5時間本焼成することにより、ガラス基板上に光触媒膜を形成した。
<実施例2>
添加剤であるメタクリル酸アリルモノマーの混合割合を10重量部とし、ガラス基板を150℃で0.5時間本焼成した以外は実施例1と同様にしてガラス基板上に光触媒膜を形成した。
<実施例3>
添加剤であるメタクリル酸アリルモノマーの混合割合を20重量部とし、ガラス基板を175℃で0.5時間本焼成した以外は実施例1と同様にしてガラス基板上に光触媒膜を形成した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
A commercially available titanium oxide coating agent (trade name: ST-K211; manufactured by Ishihara Sangyo Co., Ltd.) was prepared. The anatase content in the above formula (1) of ST-K211 is 77%, and the d-spacing value of the (101) plane obtained from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal is 3.358-3. 598cm. To this titanium oxide coating agent, 2 parts by weight of allyl methacrylate monomer was added as an additive and mixed well to prepare a coating solution. The prepared coating solution was applied to a glass substrate with a spin coater, pre-baked at 40 ° C. for 1.5 hours, and then main-baked at 180 ° C. for 0.5 hours to form a photocatalytic film on the glass substrate.
<Example 2>
A photocatalytic film was formed on the glass substrate in the same manner as in Example 1 except that the mixing ratio of the allyl methacrylate monomer as an additive was 10 parts by weight and the glass substrate was calcined at 150 ° C. for 0.5 hour.
<Example 3>
A photocatalytic film was formed on the glass substrate in the same manner as in Example 1 except that the mixing ratio of the allyl methacrylate monomer as the additive was 20 parts by weight and the glass substrate was baked at 175 ° C. for 0.5 hour.

<比較例1>
添加剤であるメタクリル酸アリルモノマーを添加混合しない以外は実施例1と同様にしてガラス基板上に光触媒膜を形成した。
<比較例2>
添加剤としてメタクリル酸アリルモノマーの代わりにメタクリル酸アリルポリマーを20重量部添加した以外は実施例1と同様にしてガラス基板上に光触媒膜を形成した。
<Comparative Example 1>
A photocatalytic film was formed on the glass substrate in the same manner as in Example 1 except that the additive, allyl methacrylate monomer, was not added and mixed.
<Comparative example 2>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 1 except that 20 parts by weight of allyl methacrylate polymer was added as an additive instead of allyl methacrylate monomer.

<比較試験1>
実施例1〜3及び比較例1,2で得られた光触媒膜形成物について、光触媒膜の鉛筆硬度及び光触媒活性をそれぞれ測定した。なお、光触媒活性は、以下に示す手順により求めた除去率を光触媒活性の指標とした。先ず、光触媒薄膜を塗布したガラス基板を1Lのガラス(パイレックス)製容器に入れて密閉した。次いで容器内に350ppm(初期濃度)のアセトアルデヒドを導入した。次に、容器を照射量1.2mW/cm2の紫外線ランプで1時間照射した。照射後の容器内部のアセトアルデヒド濃度をガス検知管(ガステック社製)で測定し、下記に示す式に基づいて除去率を求めた。
除去率[%]=[(初期濃度−光照射後の濃度)÷初期濃度]×100
実施例1〜3及び比較例1,2で得られた光触媒膜形成物について測定した結果を表2にそれぞれ示す。
<Comparison test 1>
About the photocatalyst film | membrane formation obtained in Examples 1-3 and Comparative Examples 1 and 2, the pencil hardness and photocatalytic activity of the photocatalyst film were measured, respectively. In addition, the photocatalytic activity used the removal rate calculated | required by the procedure shown below as a parameter | index of photocatalytic activity. First, the glass substrate coated with the photocatalytic thin film was placed in a 1 L glass (pyrex) container and sealed. Next, 350 ppm (initial concentration) of acetaldehyde was introduced into the container. Next, the container was irradiated with an ultraviolet lamp having an irradiation amount of 1.2 mW / cm 2 for 1 hour. The acetaldehyde concentration inside the container after irradiation was measured with a gas detector tube (manufactured by Gastec Corporation), and the removal rate was determined based on the formula shown below.
Removal rate [%] = [(initial density−density after light irradiation) ÷ initial density] × 100
Table 2 shows the measurement results of the photocatalyst film formation products obtained in Examples 1 to 3 and Comparative Examples 1 and 2.

Figure 2006124684
Figure 2006124684

表2より明らかなように、光触媒塗料に添加剤が含まれていない比較例1で形成した光触媒膜、光触媒塗料にポリマーが含まれた比較例2で形成した光触媒膜は、光触媒活性の指標としたアセトアルデヒド除去率が低い結果となった。これに対して、本発明の光触媒塗料を用いた実施例1〜3で形成した光触媒膜は、比較例1及び2で形成した光触媒膜に比べてアセトアルデヒド除去率が高い結果が得られた。   As is clear from Table 2, the photocatalyst film formed in Comparative Example 1 in which no additive is contained in the photocatalyst paint, and the photocatalyst film formed in Comparative Example 2 in which the polymer is contained in the photocatalyst paint As a result, the acetaldehyde removal rate was low. In contrast, the photocatalyst films formed in Examples 1 to 3 using the photocatalyst paint of the present invention had a higher acetaldehyde removal rate than the photocatalyst films formed in Comparative Examples 1 and 2.

<実施例4>
有機溶媒に4.7重量%のメチルアルコールと95.3重量%のエチルアルコールの混合アルコール200g、β-ジケトンに2,4-ペンタンジオン0.25g、上記化学式(1)に示されるチタネート系カップリング剤0.25g、酸化チタン粉末10gを混合し、ジルコニアビーズ100gにより16時間ペイントシェーカーにて分散させた。この分散液に10重量%のシリカゾル溶液11gを混合し、酸化チタンアルコール分散液を調製した。使用した酸化チタン粉末の上記式(1)におけるアナターゼ含有量は100%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値は、3.456〜3.537Åであった。この酸化チタンアルコール分散液に添加剤としてフェニルメタクリレートモノマーを1.5重量部添加し、よく混合して本発明の光触媒塗料を調製した。この光触媒塗料をスピンコーターでガラス基板に塗布し、30℃で6時間仮焼成した。続いて300℃で0.75時間本焼成することにより、ガラス基板上に光触媒膜を形成した。
<実施例5>
添加剤であるフェニルメタクリレートモノマーの混合割合を8重量部とし、ガラス基板を25℃で2.5時間仮焼成し、続いてガラス基板を220℃で1時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例6>
添加剤であるフェニルメタクリレートモノマーの混合割合を15重量部とし、ガラス基板を40℃で1.5時間仮焼成し、続いてガラス基板を235℃で0.75時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<Example 4>
200 g of mixed alcohol of 4.7 wt% methyl alcohol and 95.3% wt ethyl alcohol in organic solvent, 0.25 g of 2,4-pentanedione in β-diketone, titanate cup represented by the above chemical formula (1) 0.25 g of a ring agent and 10 g of titanium oxide powder were mixed and dispersed with a paint shaker for 16 hours using 100 g of zirconia beads. This dispersion was mixed with 11 g of a 10 wt% silica sol solution to prepare a titanium oxide alcohol dispersion. The anatase content in the above formula (1) of the titanium oxide powder used is 100%, and the (101) plane spacing d value determined from the half-value width of the (101) plane of the anatase crystal is 3.456 to It was 3.537cm. 1.5 parts by weight of phenyl methacrylate monomer as an additive was added to this titanium oxide alcohol dispersion and mixed well to prepare the photocatalyst coating material of the present invention. This photocatalyst paint was applied to a glass substrate with a spin coater and pre-baked at 30 ° C. for 6 hours. Subsequently, main baking was performed at 300 ° C. for 0.75 hour to form a photocatalytic film on the glass substrate.
<Example 5>
Example 4 except that the mixing ratio of the phenyl methacrylate monomer as an additive was 8 parts by weight, the glass substrate was pre-baked at 25 ° C. for 2.5 hours, and then the glass substrate was main-baked at 220 ° C. for 1 hour. Thus, a photocatalytic film was formed on the glass substrate.
<Example 6>
Example 4 except that the mixing ratio of the phenyl methacrylate monomer as an additive was 15 parts by weight, the glass substrate was temporarily fired at 40 ° C. for 1.5 hours, and then the glass substrate was finally fired at 235 ° C. for 0.75 hours. In the same manner, a photocatalytic film was formed on a glass substrate.

<実施例7>
酸化チタンアルコール分散液に添加剤としてベンジルメタクリレートモノマーを1重量部添加し、ガラス基板を50℃で1時間仮焼成し、続いてガラス基板を350℃で0.5時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例8>
添加剤であるベンジルメタクリレートモノマーの混合割合を5重量部とし、ガラス基板を50℃で0.5時間仮焼成し、続いてガラス基板を270℃で0.5時間本焼成した以外は実施例7と同様にしてガラス基板上に光触媒膜を形成した。
<実施例9>
添加剤であるベンジルメタクリレートモノマーの混合割合を18重量部とし、ガラス基板を25℃で3時間仮焼成し、続いてガラス基板を250℃で1時間本焼成した以外は実施例7と同様にしてガラス基板上に光触媒膜を形成した。
<Example 7>
Example 1 except that 1 part by weight of benzyl methacrylate monomer is added as an additive to the titanium oxide alcohol dispersion, the glass substrate is temporarily fired at 50 ° C. for 1 hour, and then the glass substrate is finally fired at 350 ° C. for 0.5 hour. 4 was used to form a photocatalytic film on the glass substrate.
<Example 8>
Example 7 except that the mixing ratio of the benzyl methacrylate monomer as the additive was 5 parts by weight, the glass substrate was calcined at 50 ° C. for 0.5 hour, and then the glass substrate was calcined at 270 ° C. for 0.5 hour. In the same manner, a photocatalytic film was formed on a glass substrate.
<Example 9>
The mixture ratio of the additive benzyl methacrylate monomer was 18 parts by weight, the glass substrate was pre-baked at 25 ° C. for 3 hours, and then the glass substrate was main-fired at 250 ° C. for 1 hour, as in Example 7. A photocatalytic film was formed on a glass substrate.

<実施例10>
酸化チタンアルコール分散液に添加剤としてメタクリル酸イソブチルモノマーを3重量部添加し、ガラス基板を40℃で5時間仮焼成し、続いてガラス基板を160℃で0.5時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例11>
添加剤であるメタクリル酸イソブチルモノマーの混合割合を12重量部とし、ガラス基板を30℃で2時間仮焼成し、続いてガラス基板を230℃で1時間本焼成した以外は実施例10と同様にしてガラス基板上に光触媒膜を形成した。
<実施例12>
添加剤であるメタクリル酸イソブチルモノマーの混合割合を19重量部とし、ガラス基板を30℃で1.5時間仮焼成し、続いてガラス基板を180℃で1時間本焼成した以外は実施例10と同様にしてガラス基板上に光触媒膜を形成した。
<Example 10>
Implemented except that 3 parts by weight of isobutyl methacrylate monomer was added as an additive to the titanium oxide alcohol dispersion, the glass substrate was pre-fired at 40 ° C. for 5 hours, and then the glass substrate was finally fired at 160 ° C. for 0.5 hours. A photocatalytic film was formed on a glass substrate in the same manner as in Example 4.
<Example 11>
The mixing ratio of the isobutyl methacrylate monomer as an additive was 12 parts by weight, the glass substrate was calcined at 30 ° C. for 2 hours, and then the glass substrate was calcined at 230 ° C. for 1 hour, as in Example 10. A photocatalytic film was formed on the glass substrate.
<Example 12>
Example 10 except that the mixing ratio of the isobutyl methacrylate monomer as an additive was 19 parts by weight, the glass substrate was temporarily fired at 30 ° C. for 1.5 hours, and then the glass substrate was finally fired at 180 ° C. for 1 hour. Similarly, a photocatalytic film was formed on the glass substrate.

<実施例13>
酸化チタンアルコール分散液に添加剤としてメタクリル酸ターシャリーブチルモノマーを4重量部添加し、ガラス基板を40℃で1.5時間仮焼成し、続いてガラス基板を145℃で0.5時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例14>
添加剤であるメタクリル酸ターシャリーブチルモノマーの混合割合を8重量部とし、ガラス基板を50℃で1時間仮焼成し、続いてガラス基板を150℃で0.5時間本焼成した以外は実施例13と同様にしてガラス基板上に光触媒膜を形成した。
<実施例15>
添加剤であるメタクリル酸ターシャリーブチルモノマーの混合割合を14重量部とし、ガラス基板を25℃で5時間仮焼成し、続いてガラス基板を135℃で0.75時間本焼成した以外は実施例13と同様にしてガラス基板上に光触媒膜を形成した。
<Example 13>
Add 4 parts by weight of tertiary butyl methacrylate monomer as an additive to the titanium oxide alcohol dispersion, pre-fire the glass substrate at 40 ° C. for 1.5 hours, then fire the glass substrate at 145 ° C. for 0.5 hour. A photocatalytic film was formed on a glass substrate in the same manner as in Example 4 except that.
<Example 14>
Example except that the mixing ratio of the tertiary butyl methacrylate monomer as an additive was 8 parts by weight, the glass substrate was temporarily fired at 50 ° C. for 1 hour, and then the glass substrate was finally fired at 150 ° C. for 0.5 hour. In the same manner as in 13, a photocatalytic film was formed on a glass substrate.
<Example 15>
Example except that the mixing ratio of the tertiary butyl methacrylate monomer as an additive was 14 parts by weight, the glass substrate was pre-fired at 25 ° C. for 5 hours, and then the glass substrate was main-fired at 135 ° C. for 0.75 hour. In the same manner as in 13, a photocatalytic film was formed on a glass substrate.

<実施例16>
酸化チタンアルコール分散液に添加剤としてメタクリル酸セカンダリーブチルモノマーを6重量部添加し、ガラス基板を40℃で1時間仮焼成し、続いてガラス基板を150℃で1時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例17>
添加剤であるメタクリル酸セカンダリーブチルモノマーの混合割合を13重量部とし、ガラス基板を50℃で1時間仮焼成し、続いてガラス基板を165℃で0.5時間本焼成した以外は実施例16と同様にしてガラス基板上に光触媒膜を形成した。
<実施例18>
添加剤であるメタクリル酸セカンダリーブチルモノマーの混合割合を17重量部とし、ガラス基板を35℃で1.5時間仮焼成し、続いてガラス基板を140℃で1時間本焼成した以外は実施例16と同様にしてガラス基板上に光触媒膜を形成した。
<Example 16>
Example except that 6 parts by weight of secondary butyl methacrylate monomer was added as an additive to the titanium oxide alcohol dispersion, the glass substrate was temporarily fired at 40 ° C. for 1 hour, and then the glass substrate was finally fired at 150 ° C. for 1 hour. 4 was used to form a photocatalytic film on the glass substrate.
<Example 17>
Example 16 except that the mixing ratio of the secondary butyl methacrylate monomer as the additive was 13 parts by weight, the glass substrate was temporarily fired at 50 ° C. for 1 hour, and then the glass substrate was finally fired at 165 ° C. for 0.5 hour. In the same manner, a photocatalytic film was formed on a glass substrate.
<Example 18>
Example 16 except that the mixing ratio of the secondary butyl methacrylate monomer as an additive was 17 parts by weight, the glass substrate was temporarily fired at 35 ° C. for 1.5 hours, and then the glass substrate was finally fired at 140 ° C. for 1 hour. In the same manner, a photocatalytic film was formed on a glass substrate.

<実施例19>
酸化チタンアルコール分散液に添加剤としてメタクリル酸ノルマルブチルモノマーを5重量部添加し、ガラス基板を40℃で1時間仮焼成し、続いてガラス基板を200℃で0.5時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例20>
添加剤であるメタクリル酸ノルマルブチルモノマーの混合割合を8重量部とし、ガラス基板を50℃で1時間仮焼成し、続いてガラス基板を170℃で1時間本焼成した以外は実施例19と同様にしてガラス基板上に光触媒膜を形成した。
<実施例21>
添加剤であるメタクリル酸ノルマルブチルモノマーの混合割合を20重量部とし、ガラス基板を30℃で3時間仮焼成し、続いてガラス基板を185℃で0.75時間本焼成した以外は実施例19と同様にしてガラス基板上に光触媒膜を形成した。
<Example 19>
Except for adding 5 parts by weight of normal butyl methacrylate monomer as an additive to the titanium oxide alcohol dispersion, pre-baking the glass substrate at 40 ° C. for 1 hour, and subsequently baking the glass substrate at 200 ° C. for 0.5 hour. A photocatalytic film was formed on a glass substrate in the same manner as in Example 4.
<Example 20>
Example 19 except that the mixing ratio of the normal butyl methacrylate monomer as an additive was 8 parts by weight, the glass substrate was temporarily fired at 50 ° C. for 1 hour, and then the glass substrate was finally fired at 170 ° C. for 1 hour. Thus, a photocatalytic film was formed on the glass substrate.
<Example 21>
Example 19 except that the mixing ratio of the normal butyl methacrylate monomer as an additive was 20 parts by weight, the glass substrate was temporarily fired at 30 ° C. for 3 hours, and then the glass substrate was finally fired at 185 ° C. for 0.75 hour. In the same manner, a photocatalytic film was formed on a glass substrate.

<実施例22>
酸化チタンアルコール分散液に添加剤としてメタクリル酸エチルモノマーを6重量部添加し、ガラス基板を35℃で1.5時間仮焼成し、続いてガラス基板を140℃で1時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例23>
添加剤であるメタクリル酸エチルモノマーの混合割合を9重量部とし、ガラス基板を40℃で1時間仮焼成し、続いてガラス基板を120℃で1時間本焼成した以外は実施例22と同様にしてガラス基板上に光触媒膜を形成した。
<実施例24>
添加剤であるメタクリル酸ノルマルブチルモノマーの混合割合を12重量部とし、ガラス基板を50℃で1時間仮焼成し、続いてガラス基板を160℃で0.5時間本焼成した以外は実施例22と同様にしてガラス基板上に光触媒膜を形成した。
<Example 22>
Except for adding 6 parts by weight of ethyl methacrylate monomer as an additive to the titanium oxide alcohol dispersion, pre-baking the glass substrate at 35 ° C for 1.5 hours, and then baking the glass substrate at 140 ° C for 1 hour. A photocatalytic film was formed on a glass substrate in the same manner as in Example 4.
<Example 23>
The mixing ratio of the ethyl methacrylate monomer as an additive was 9 parts by weight, the glass substrate was temporarily fired at 40 ° C. for 1 hour, and then the glass substrate was finally fired at 120 ° C. for 1 hour, as in Example 22. A photocatalytic film was formed on the glass substrate.
<Example 24>
Example 22 except that the mixing ratio of the normal butyl methacrylate monomer as the additive was 12 parts by weight, the glass substrate was temporarily fired at 50 ° C. for 1 hour, and then the glass substrate was finally fired at 160 ° C. for 0.5 hour. In the same manner, a photocatalytic film was formed on a glass substrate.

<実施例25>
酸化チタンアルコール分散液に添加剤としてメタクリル酸メチルモノマーを7重量部添加し、ガラス基板を50℃で1時間仮焼成し、続いてガラス基板を125℃で0.5時間本焼成した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例26>
添加剤であるメタクリル酸メチルモノマーの混合割合を11重量部とし、ガラス基板を40℃で1時間仮焼成し、続いてガラス基板を200℃で0.5時間本焼成した以外は実施例25と同様にしてガラス基板上に光触媒膜を形成した。
<実施例27>
添加剤であるメタクリル酸メチルモノマーの混合割合を16重量部とし、ガラス基板を50℃で0.5時間仮焼成し、続いてガラス基板を145℃で1時間本焼成した以外は実施例25と同様にしてガラス基板上に光触媒膜を形成した。
<Example 25>
Except for adding 7 parts by weight of methyl methacrylate monomer as an additive to the titanium oxide alcohol dispersion, pre-baking the glass substrate at 50 ° C. for 1 hour, and subsequently baking the glass substrate at 125 ° C. for 0.5 hour. A photocatalytic film was formed on a glass substrate in the same manner as in Example 4.
<Example 26>
Example 25 except that the mixing ratio of methyl methacrylate monomer as an additive was 11 parts by weight, the glass substrate was temporarily fired at 40 ° C. for 1 hour, and then the glass substrate was finally fired at 200 ° C. for 0.5 hour. Similarly, a photocatalytic film was formed on the glass substrate.
<Example 27>
Example 25 except that the mixing ratio of methyl methacrylate monomer as an additive was 16 parts by weight, the glass substrate was calcined at 50 ° C. for 0.5 hour, and then the glass substrate was calcined at 145 ° C. for 1 hour. Similarly, a photocatalytic film was formed on the glass substrate.

<比較例3>
添加剤を添加混合しない以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<比較例4>
添加剤としてフェニルメタクリレートモノマーの代わりにフェニルメタクリレートポリマーを8重量部添加した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<比較例5>
添加剤としてベンジルメタクリレートモノマーの代わりにベンジルメタクリレートポリマーを5重量部添加した以外は実施例7と同様にしてガラス基板上に光触媒膜を形成した。
<比較例6>
添加剤としてメタクリル酸イソブチルモノマーの代わりにメタクリル酸イソブチルポリマーを12重量部添加した以外は実施例10と同様にしてガラス基板上に光触媒膜を形成した。
<比較例7>
添加剤としてメタクリル酸t-ブチルモノマーの代わりにメタクリル酸t-ブチルポリマーを8重量部添加した以外は実施例13と同様にしてガラス基板上に光触媒膜を形成した。
<比較例8>
添加剤としてメタクリル酸sec-ブチルモノマーの代わりにメタクリル酸sec-ブチルポリマーを13重量部添加した以外は実施例16と同様にしてガラス基板上に光触媒膜を形成した。
<比較例9>
添加剤としてメタクリル酸n-ブチルモノマーの代わりにメタクリル酸n-ブチルポリマーを8重量部添加した以外は実施例19と同様にしてガラス基板上に光触媒膜を形成した。
<比較例10>
添加剤としてメタクリル酸エチルモノマーの代わりにメタクリル酸エチルポリマーを9重量部添加した以外は実施例22と同様にしてガラス基板上に光触媒膜を形成した。
<比較例11>
添加剤としてメタクリル酸メチルモノマーの代わりにメタクリル酸メチルポリマーを11重量部添加した以外は実施例25と同様にしてガラス基板上に光触媒膜を形成した。
<Comparative Example 3>
A photocatalytic film was formed on the glass substrate in the same manner as in Example 4 except that the additive was not added and mixed.
<Comparative example 4>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 4 except that 8 parts by weight of phenyl methacrylate polymer was added as an additive instead of phenyl methacrylate monomer.
<Comparative Example 5>
A photocatalytic film was formed on the glass substrate in the same manner as in Example 7 except that 5 parts by weight of benzyl methacrylate polymer was added as an additive instead of benzyl methacrylate monomer.
<Comparative Example 6>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 10 except that 12 parts by weight of isobutyl methacrylate polymer was added as an additive instead of isobutyl methacrylate monomer.
<Comparative Example 7>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 13, except that 8 parts by weight of t-butyl methacrylate polymer was added as an additive instead of t-butyl methacrylate monomer.
<Comparative Example 8>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 16 except that 13 parts by weight of a sec-butyl methacrylate polymer was added as an additive instead of the sec-butyl methacrylate monomer.
<Comparative Example 9>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 19 except that 8 parts by weight of n-butyl methacrylate polymer was added as an additive instead of n-butyl methacrylate.
<Comparative Example 10>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 22 except that 9 parts by weight of an ethyl methacrylate polymer was added as an additive instead of the ethyl methacrylate monomer.
<Comparative Example 11>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 25 except that 11 parts by weight of methyl methacrylate polymer was added as an additive instead of methyl methacrylate monomer.

<実施例28>
多孔質物質であるバーミキュライトを1重量部添加して光触媒塗料を調製した以外は実施例4と同様にしてガラス基板上に光触媒膜を形成した。
<実施例29>
多孔質物質であるバーミキュライトの混合割合を16重量部とした以外は実施例28と同様にしてガラス基板上に光触媒膜を形成した。
<実施例30>
多孔質物質であるバーミキュライトの混合割合を42重量部とした以外は実施例28と同様にしてガラス基板上に光触媒膜を形成した。
<Example 28>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 4 except that 1 part by weight of vermiculite, which is a porous material, was added to prepare a photocatalytic coating.
<Example 29>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 28 except that the mixing ratio of the porous material vermiculite was 16 parts by weight.
<Example 30>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 28 except that the mixing ratio of the porous material vermiculite was 42 parts by weight.

<実施例31>
多孔質物質であるカオリナイトを2重量部添加して光触媒塗料を調製した以外は実施例8と同様にしてガラス基板上に光触媒膜を形成した。
<実施例32>
多孔質物質であるカオリナイトの混合割合を20重量部とした以外は実施例31と同様にしてガラス基板上に光触媒膜を形成した。
<実施例33>
多孔質物質であるカオリナイトの混合割合を50重量部とした以外は実施例31と同様にしてガラス基板上に光触媒膜を形成した。
<Example 31>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 8 except that 2 parts by weight of kaolinite, which is a porous material, was added to prepare a photocatalytic coating.
<Example 32>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 31 except that the mixing ratio of kaolinite, which is a porous material, was 20 parts by weight.
<Example 33>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 31 except that the mixing ratio of kaolinite, which is a porous material, was 50 parts by weight.

<実施例34>
多孔質物質であるスメクタイトを5重量部添加して光触媒塗料を調製した以外は実施例10と同様にしてガラス基板上に光触媒膜を形成した。
<実施例35>
多孔質物質であるスメクタイトの混合割合を13重量部とした以外は実施例34と同様にしてガラス基板上に光触媒膜を形成した。
<実施例36>
多孔質物質であるスメクタイトの混合割合を40重量部とした以外は実施例34と同様にしてガラス基板上に光触媒膜を形成した。
<Example 34>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 10 except that 5 parts by weight of smectite, which is a porous material, was added to prepare a photocatalytic coating.
<Example 35>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 34 except that the mixing ratio of smectite, which is a porous material, was 13 parts by weight.
<Example 36>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 34 except that the mixing ratio of smectite, which is a porous material, was 40 parts by weight.

<実施例37>
多孔質物質であるタルクを6重量部添加して光触媒塗料を調製した以外は実施例14と同様にしてガラス基板上に光触媒膜を形成した。
<実施例38>
多孔質物質であるタルクの混合割合を30重量部とした以外は実施例37と同様にしてガラス基板上に光触媒膜を形成した。
<実施例39>
多孔質物質であるタルクの混合割合を45重量部とした以外は実施例37と同様にしてガラス基板上に光触媒膜を形成した。
<Example 37>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 14 except that 6 parts by weight of talc, which is a porous material, was added to prepare a photocatalytic coating.
<Example 38>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 37 except that the mixing ratio of talc, which is a porous material, was 30 parts by weight.
<Example 39>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 37 except that the mixing ratio of talc, which is a porous material, was 45 parts by weight.

<実施例40>
多孔質物質であるゼオライトを4重量部添加して光触媒塗料を調製した以外は実施例16と同様にしてガラス基板上に光触媒膜を形成した。
<実施例41>
多孔質物質であるゼオライトの混合割合を16重量部とした以外は実施例40と同様にしてガラス基板上に光触媒膜を形成した。
<実施例42>
多孔質物質であるゼオライトの混合割合を33重量部とした以外は実施例40と同様にしてガラス基板上に光触媒膜を形成した。
<Example 40>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 16 except that 4 parts by weight of zeolite, which is a porous material, was added to prepare a photocatalytic coating.
<Example 41>
A photocatalyst film was formed on a glass substrate in the same manner as in Example 40 except that the mixing ratio of the porous material zeolite was 16 parts by weight.
<Example 42>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 40 except that the mixing ratio of the zeolite, which is a porous material, was 33 parts by weight.

<実施例43>
多孔質物質であるアパタイトを3重量部添加して光触媒塗料を調製した以外は実施例22と同様にしてガラス基板上に光触媒膜を形成した。
<実施例44>
多孔質物質であるアパタイトの混合割合を12重量部とした以外は実施例43と同様にしてガラス基板上に光触媒膜を形成した。
<実施例45>
多孔質物質であるアパタイトの混合割合を36重量部とした以外は実施例43と同様にしてガラス基板上に光触媒膜を形成した。
<Example 43>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 22 except that 3 parts by weight of apatite which is a porous material was added to prepare a photocatalytic coating.
<Example 44>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 43 except that the mixing ratio of the apatite, which is a porous material, was 12 parts by weight.
<Example 45>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 43 except that the mixing ratio of the apatite, which was a porous material, was 36 parts by weight.

<実施例46>
多孔質物質であるケイ酸カルシウムを6重量部添加して光触媒塗料を調製した以外は実施例25と同様にしてガラス基板上に光触媒膜を形成した。
<実施例47>
多孔質物質であるケイ酸カルシウムの混合割合を17重量部とした以外は実施例46と同様にしてガラス基板上に光触媒膜を形成した。
<実施例48>
多孔質物質であるケイ酸カルシウムの混合割合を45重量部とした以外は実施例46と同様にしてガラス基板上に光触媒膜を形成した。
<Example 46>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 25 except that 6 parts by weight of calcium silicate as a porous material was added to prepare a photocatalytic coating.
<Example 47>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 46 except that the mixing ratio of calcium silicate as a porous material was 17 parts by weight.
<Example 48>
A photocatalytic film was formed on a glass substrate in the same manner as in Example 46 except that the mixing ratio of calcium silicate as a porous material was 45 parts by weight.

<比較試験2>
実施例4〜48及び比較例3〜11で得られた光触媒膜形成物について、光触媒膜の鉛筆硬度及び光触媒活性をそれぞれ測定した。なお、光触媒活性は、以下に示す手順により求めた除去率を光触媒活性の指標とした。先ず、光触媒薄膜を塗布したガラス基板を1Lのガラス(パイレックス)製容器に入れて密閉した。次いで容器内に350ppm(初期濃度)のアセトアルデヒドを導入した。次に、容器を照射量1.2mW/cm2の紫外線ランプで1時間照射した。照射後の容器内部のアセトアルデヒド濃度をガス検知管(ガステック社製)で測定し、下記に示す式に基づいて除去率を求めた。
除去率[%]=[(初期濃度−光照射後の濃度)÷初期濃度]×100
実施例4〜48及び比較例3〜11で得られた光触媒膜形成物について測定した結果を表3〜表5にそれぞれ示す。
<Comparison test 2>
About the photocatalyst film | membrane formation obtained in Examples 4-48 and Comparative Examples 3-11, the pencil hardness and photocatalytic activity of the photocatalyst film | membrane were measured, respectively. In addition, the photocatalytic activity used the removal rate calculated | required by the procedure shown below as a parameter | index of photocatalytic activity. First, the glass substrate coated with the photocatalytic thin film was placed in a 1 L glass (pyrex) container and sealed. Next, 350 ppm (initial concentration) of acetaldehyde was introduced into the container. Next, the container was irradiated with an ultraviolet lamp having an irradiation amount of 1.2 mW / cm 2 for 1 hour. The acetaldehyde concentration inside the container after irradiation was measured with a gas detector tube (manufactured by Gastec Corporation), and the removal rate was determined based on the formula shown below.
Removal rate [%] = [(initial density−density after light irradiation) ÷ initial density] × 100
The measurement results for the photocatalyst film formed products obtained in Examples 4 to 48 and Comparative Examples 3 to 11 are shown in Tables 3 to 5, respectively.

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

表3〜表5より明らかなように、光触媒塗料に添加剤が含まれていない比較例3で形成した光触媒膜、光触媒塗料にポリマーが含まれた比較例4〜11で形成した光触媒膜は、光触媒活性の指標としたアセトアルデヒド除去率が低い結果となった。これに対して、本発明の光触媒塗料を用いた実施例4〜48で形成した光触媒膜は、アセトアルデヒド除去率が100%と優れた光触媒活性効果が得られた。また、添加剤を焼飛ばすことにより、形成した光触媒膜表層に連通する連通孔を形成したにもかかわらず、本発明の実施例1〜27で形成した光触媒膜は、従来の光触媒膜と同様の鉛筆硬度を有しており、実用上十分な膜硬度を有していることが判った。更に、本発明の実施例28〜48で形成した光触媒膜は、多孔質物質の含有割合を変動させることによって様々な硬さの膜が得られていることが判る。このような本発明の光触媒塗料で得られる光触媒膜は様々な用途に適応することができる。   As is clear from Tables 3 to 5, the photocatalyst film formed in Comparative Example 3 in which no additive is contained in the photocatalyst paint, and the photocatalyst film formed in Comparative Examples 4 to 11 in which the polymer is contained in the photocatalyst paint, The acetaldehyde removal rate as an index of photocatalytic activity was low. In contrast, the photocatalyst films formed in Examples 4 to 48 using the photocatalyst paint of the present invention had an excellent photocatalytic activity effect with an acetaldehyde removal rate of 100%. Moreover, the photocatalyst film formed in Examples 1 to 27 of the present invention is the same as the conventional photocatalyst film in spite of forming the communication hole communicating with the formed photocatalyst film surface layer by burning the additive. It has a pencil hardness and has been found to have a practically sufficient film hardness. Furthermore, it can be seen that the photocatalytic films formed in Examples 28 to 48 of the present invention have various hardness films obtained by varying the content ratio of the porous material. Such a photocatalyst film obtained with the photocatalyst coating material of the present invention can be applied to various applications.

<実施例49〜51>
上記式(1)におけるアナターゼ含有量が65%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.480〜3.549Åである酸化チタン粉末を使用した以外は実施例7〜9と同様にしてガラス基板上に光触媒膜を形成した。
<実施例52〜54>
上記式(1)におけるアナターゼ含有量が0%である酸化チタン粉末を使用した以外は実施例10〜12と同様にしてガラス基板上に光触媒膜を形成した。なお、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値はアナターゼ型結晶が含まれていないため、測定不能であった。
<実施例55〜57>
上記式(1)におけるアナターゼ含有量が72%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450〜3.546Åである酸化チタン粉末を使用した以外は実施例13〜15と同様にしてガラス基板上に光触媒膜を形成した。
<実施例58〜60>
上記式(1)におけるアナターゼ含有量が85%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.460〜3.554Åである酸化チタン粉末を使用した以外は実施例16〜18と同様にしてガラス基板上に光触媒膜を形成した。
<実施例61〜63>
上記式(1)におけるアナターゼ含有量が92%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.465〜3.599Åである酸化チタン粉末を使用した以外は実施例19〜21と同様にしてガラス基板上に光触媒膜を形成した。
<実施例64〜66>
上記式(1)におけるアナターゼ含有量が82%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.488〜3.562Åである酸化チタン粉末を使用した以外は実施例22〜24と同様にしてガラス基板上に光触媒膜を形成した。
<実施例67〜69>
上記式(1)におけるアナターゼ含有量が76%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.463〜3.552Åである酸化チタン粉末を使用した以外は実施例25〜27と同様にしてガラス基板上に光触媒膜を形成した。
<Examples 49 to 51>
Titanium oxide in which the anatase content in the above formula (1) is 65% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal is 3.480 to 3.549Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 7 to 9 except that powder was used.
<Examples 52 to 54>
A photocatalytic film was formed on a glass substrate in the same manner as in Examples 10 to 12 except that titanium oxide powder having anatase content of 0% in the above formula (1) was used. In addition, since the anatase type crystal | crystallization was not contained, the d-spacing d value of the (101) plane calculated | required from the half value width of the diffraction peak of the (101) plane of the anatase type crystal was not measurable.
<Examples 55-57>
Titanium oxide in which the anatase content in the above formula (1) is 72% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.450 to 3.546Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 13 to 15 except that powder was used.
<Examples 58 to 60>
Titanium oxide in which the anatase content in the above formula (1) is 85% and the (101) plane spacing d value determined from the half-value width of the (101) plane of the anatase crystal is 3.460 to 3.554 A photocatalytic film was formed on a glass substrate in the same manner as in Examples 16 to 18 except that powder was used.
<Examples 61 to 63>
Titanium oxide in which the anatase content in the above formula (1) is 92% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal is 3.465 to 3.599Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 19 to 21 except that powder was used.
<Examples 64-66>
Titanium oxide in which the anatase content in the above formula (1) is 82% and the (101) plane spacing d value obtained from the (101) plane half-value width of the anatase type crystal is 3.488 to 3.562 ア ナA photocatalytic film was formed on a glass substrate in the same manner as in Examples 22 to 24 except that powder was used.
<Examples 67 to 69>
Titanium oxide in which the anatase content in the above formula (1) is 76% and the (101) plane spacing d value determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.463 to 3.552Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 25 to 27 except that powder was used.

<実施例70〜72>
上記式(1)におけるアナターゼ含有量が65%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.480〜3.549Åである酸化チタン粉末を使用した以外は実施例31〜33と同様にしてガラス基板上に光触媒膜を形成した。
<実施例73〜75>
上記式(1)におけるアナターゼ含有量が0%である酸化チタン粉末を使用した以外は実施例34〜36と同様にしてガラス基板上に光触媒膜を形成した。なお、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値はアナターゼ型結晶が含まれていないため、測定不能であった。
<実施例76〜78>
上記式(1)におけるアナターゼ含有量が72%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450〜3.546Åである酸化チタン粉末を使用した以外は実施例37〜39と同様にしてガラス基板上に光触媒膜を形成した。
<実施例79〜81>
上記式(1)におけるアナターゼ含有量が85%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.460〜3.554Åである酸化チタン粉末を使用した以外は実施例40〜42と同様にしてガラス基板上に光触媒膜を形成した。
<実施例82〜84>
上記式(1)におけるアナターゼ含有量が82%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.488〜3.562Åである酸化チタン粉末を使用した以外は実施例43〜45と同様にしてガラス基板上に光触媒膜を形成した。
<実施例85〜87>
上記式(1)におけるアナターゼ含有量が76%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.463〜3.552Åである酸化チタン粉末を使用した以外は実施例46〜48と同様にしてガラス基板上に光触媒膜を形成した。
<Examples 70 to 72>
Titanium oxide in which the anatase content in the above formula (1) is 65% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal is 3.480 to 3.549Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 31 to 33 except that powder was used.
<Examples 73 to 75>
A photocatalytic film was formed on a glass substrate in the same manner as in Examples 34 to 36 except that the titanium oxide powder having an anatase content of 0% in the above formula (1) was used. In addition, since the anatase type crystal | crystallization was not contained, the d-spacing d value of the (101) plane calculated | required from the half value width of the diffraction peak of the (101) plane of the anatase type crystal was impossible to measure.
<Examples 76 to 78>
Titanium oxide in which the anatase content in the above formula (1) is 72% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.450 to 3.546Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 37 to 39 except that powder was used.
<Examples 79 to 81>
Titanium oxide in which the anatase content in the above formula (1) is 85% and the (101) plane spacing d value determined from the half-value width of the (101) plane of the anatase crystal is 3.460 to 3.554 A photocatalytic film was formed on a glass substrate in the same manner as in Examples 40 to 42 except that powder was used.
<Examples 82 to 84>
Titanium oxide in which the anatase content in the above formula (1) is 82% and the (101) plane spacing d value obtained from the (101) plane half-value width of the anatase type crystal is 3.488 to 3.562 ア ナA photocatalytic film was formed on a glass substrate in the same manner as in Examples 43 to 45 except that powder was used.
<Examples 85-87>
Titanium oxide in which the anatase content in the above formula (1) is 76% and the (101) plane spacing d value determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.463 to 3.552Å A photocatalytic film was formed on a glass substrate in the same manner as in Examples 46 to 48 except that powder was used.

<比較例12>
上記式(1)におけるアナターゼ含有量が76%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.463〜3.552Åである酸化チタン粉末を使用した以外は比較例3と同様にしてガラス基板上に光触媒膜を形成した。
<比較例13>
上記式(1)におけるアナターゼ含有量が82%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.488〜3.562Åである酸化チタン粉末を使用した以外は比較例4と同様にしてガラス基板上に光触媒膜を形成した。
<比較例14>
上記式(1)におけるアナターゼ含有量が72%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450〜3.546Åである酸化チタン粉末を使用した以外は比較例5と同様にしてガラス基板上に光触媒膜を形成した。
<比較例15>
上記式(1)におけるアナターゼ含有量が85%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.460〜3.554Åである酸化チタン粉末を使用した以外は比較例6と同様にしてガラス基板上に光触媒膜を形成した。
<比較例16>
上記式(1)におけるアナターゼ含有量が76%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.463〜3.552Åである酸化チタン粉末を使用した以外は比較例7と同様にしてガラス基板上に光触媒膜を形成した。
<比較例17>
上記式(1)におけるアナターゼ含有量が85%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.460〜3.554Åである酸化チタン粉末を使用した以外は比較例8と同様にしてガラス基板上に光触媒膜を形成した。
<比較例18>
上記式(1)におけるアナターゼ含有量が72%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450〜3.546Åである酸化チタン粉末を使用した以外は比較例9と同様にしてガラス基板上に光触媒膜を形成した。
<比較例19>
上記式(1)におけるアナターゼ含有量が76%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.463〜3.552Åである酸化チタン粉末を使用した以外は比較例10と同様にしてガラス基板上に光触媒膜を形成した。
<比較例20>
上記式(1)におけるアナターゼ含有量が82%、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.488〜3.562Åである酸化チタン粉末を使用した以外は比較例11と同様にしてガラス基板上に光触媒膜を形成した。
<Comparative Example 12>
Titanium oxide in which the anatase content in the above formula (1) is 76% and the (101) plane spacing d value determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.463 to 3.552Å A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 3 except that powder was used.
<Comparative Example 13>
Titanium oxide in which the anatase content in the above formula (1) is 82% and the (101) plane spacing d value obtained from the (101) plane half-value width of the anatase type crystal is 3.488 to 3.562 ア ナA photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 4 except that powder was used.
<Comparative example 14>
Titanium oxide in which the anatase content in the above formula (1) is 72% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.450 to 3.546Å A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 5 except that powder was used.
<Comparative Example 15>
Titanium oxide in which the anatase content in the above formula (1) is 85% and the (101) plane spacing d value determined from the half-value width of the (101) plane of the anatase crystal is 3.460 to 3.554 A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 6 except that powder was used.
<Comparative Example 16>
Titanium oxide in which the anatase content in the above formula (1) is 76% and the (101) plane spacing d value determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.463 to 3.552Å A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 7 except that powder was used.
<Comparative Example 17>
Titanium oxide in which the anatase content in the above formula (1) is 85% and the (101) plane spacing d value determined from the half-value width of the (101) plane of the anatase crystal is 3.460 to 3.554 A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 8 except that powder was used.
<Comparative Example 18>
Titanium oxide in which the anatase content in the above formula (1) is 72% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase crystal is 3.450 to 3.546Å A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 9 except that powder was used.
<Comparative Example 19>
Titanium oxide in which the anatase content in the above formula (1) is 76%, and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal is 3.463 to 3.552Å A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 10 except that powder was used.
<Comparative Example 20>
Titanium oxide in which the anatase content in the above formula (1) is 82% and the interplanar spacing d value of the (101) plane determined from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal is 3.488 to 3.562Å A photocatalytic film was formed on a glass substrate in the same manner as in Comparative Example 11 except that powder was used.

<比較試験3>
実施例49〜87及び比較例12〜20で得られた光触媒膜形成物について、光触媒膜の鉛筆硬度及び光触媒活性をそれぞれ測定した。なお、光触媒活性は、以下に示す手順により求めた除去率を光触媒活性の指標とした。先ず、光触媒薄膜を塗布したガラス基板を1Lのガラス(パイレックス)製容器に入れて密閉した。次いで容器内に350ppm(初期濃度)のアセトアルデヒドを導入した。次に、容器を照射量1.2mW/cm2の紫外線ランプで実施例49〜51、実施例55〜72、実施例76〜87及び比較例12〜20については45分間照射し、実施例52〜54及び実施例73〜75については1時間照射した。照射後の容器内部のアセトアルデヒド濃度をガス検知管(ガステック社製)で測定し、下記に示す式に基づいて除去率を求めた。
除去率[%]=[(初期濃度−光照射後の濃度)÷初期濃度]×100
実施例49〜87及び比較例12〜20で得られた光触媒膜形成物について測定した結果を表6〜表8にそれぞれ示す。
<Comparison test 3>
About the photocatalyst film | membrane formation thing obtained in Examples 49-87 and Comparative Examples 12-20, the pencil hardness and photocatalytic activity of the photocatalyst film | membrane were measured, respectively. In addition, the photocatalytic activity used the removal rate calculated | required by the procedure shown below as a parameter | index of photocatalytic activity. First, the glass substrate coated with the photocatalytic thin film was placed in a 1 L glass (pyrex) container and sealed. Next, 350 ppm (initial concentration) of acetaldehyde was introduced into the container. Next, the container was irradiated with an ultraviolet lamp with an irradiation amount of 1.2 mW / cm 2 for 45 minutes for Examples 49 to 51, Examples 55 to 72, Examples 76 to 87, and Comparative Examples 12 to 20, and Example 52 -54 and Examples 73-75 were irradiated for 1 hour. The acetaldehyde concentration inside the container after irradiation was measured with a gas detector tube (manufactured by Gastec Corporation), and the removal rate was determined based on the formula shown below.
Removal rate [%] = [(initial density−density after light irradiation) ÷ initial density] × 100
The results of measurement on the photocatalyst film-formed products obtained in Examples 49 to 87 and Comparative Examples 12 to 20 are shown in Tables 6 to 8, respectively.

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

Figure 2006124684
Figure 2006124684

表6〜表8より明らかなように、実施例49〜51、実施例55〜72、実施例76〜87で形成した光触媒膜は、ルチル型結晶構造及びアナターゼ型結晶構造をそれぞれ含み、かつアナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450Å〜3.562Åの範囲を満たした酸化チタン粉末を用いているため、紫外線照射時間が45分間と短いにも係わらず、アセトアルデヒド除去率が100%と優れた光触媒活性効果が得られていた。また実施例52〜54及び実施例73〜75で形成した光触媒膜は、アナターゼが含まれていない酸化チタン粉末を用いた例であるが、1時間の紫外線照射で75〜90%と高い除去率が得られた。
また光触媒塗料に添加剤が含まれていない比較例12で形成した光触媒膜、光触媒塗料にポリマーが含まれた比較例13〜20で形成した光触媒膜は、ルチル型結晶構造及びアナターゼ型結晶構造をそれぞれ含み、アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450Å〜3.562Åの範囲を満たす酸化チタン粉末を用いているため、紫外線照射時間が45分間と短いにも係わらず、前述した比較例3〜11の結果と同等の分解性能が得られたが、未だ実用上十分とは言えない結果となった。
As is apparent from Tables 6 to 8, the photocatalytic films formed in Examples 49 to 51, Examples 55 to 72, and Examples 76 to 87 each include a rutile crystal structure and an anatase crystal structure, and anatase. Since the titanium oxide powder satisfying the (101) plane spacing d value obtained from the half-width of the diffraction peak of the (101) plane of the type crystal satisfies the range of 3.450 to 3.562 mm, the ultraviolet irradiation time is used. In spite of being as short as 45 minutes, an excellent photocatalytic activity effect with an acetaldehyde removal rate of 100% was obtained. Moreover, although the photocatalyst film | membrane formed in Examples 52-54 and Examples 73-75 is an example using the titanium oxide powder which does not contain anatase, it is a removal rate as high as 75-90% by ultraviolet irradiation for 1 hour. was gotten.
The photocatalyst film formed in Comparative Example 12 in which no additive is contained in the photocatalyst paint, and the photocatalyst film formed in Comparative Examples 13 to 20 in which the polymer is contained in the photocatalyst paint have a rutile crystal structure and an anatase crystal structure. Since each of the titanium oxide powders includes a (101) plane spacing d value obtained from the half-value width of the diffraction peak of the (101) plane of the anatase type crystal and satisfies the range of 3.450 to 3.562 mm, ultraviolet rays are used. Although the irradiation time was as short as 45 minutes, the decomposition performance equivalent to the results of Comparative Examples 3 to 11 was obtained, but the results were still not practically sufficient.

Claims (9)

酸化チタン粉末、バインダ及び有機溶剤をそれぞれ含む光触媒塗料において、
添加剤としてメタクリル酸エステルモノマーを更に含むことを特徴とする光触媒塗料。
In photocatalyst paints each containing titanium oxide powder, binder and organic solvent,
A photocatalytic coating material further comprising a methacrylic acid ester monomer as an additive.
酸化チタン粉末がルチル型結晶構造及びアナターゼ型結晶構造をそれぞれ含む請求項1記載の光触媒塗料。   The photocatalyst coating material according to claim 1, wherein the titanium oxide powder includes a rutile type crystal structure and an anatase type crystal structure. アナターゼ型結晶の(101)面の回折ピーク半値幅から求めた(101)面の面間隔d値が3.450Å〜3.562Åの範囲を満たす請求項1又は2記載の光触媒塗料。   The photocatalyst paint according to claim 1 or 2, wherein the (101) plane spacing d value obtained from the half-value width of the diffraction peak of the (101) plane of the anatase crystal satisfies a range of 3.450 to 3.562. メタクリル酸エステルモノマーの含有割合が塗料100重量%に対して1〜30重量%である請求項1記載の光触媒塗料。   The photocatalyst coating material according to claim 1, wherein the content of the methacrylic acid ester monomer is 1 to 30% by weight with respect to 100% by weight of the coating material. 多孔質物質を更に含有する請求項1ないし4いずれか1項に記載の光触媒塗料。   The photocatalyst coating material according to any one of claims 1 to 4, further comprising a porous substance. 多孔質物質の含有割合が塗料100重量%に対して1〜50重量%である請求項5記載の光触媒塗料。   The photocatalyst coating material according to claim 5, wherein the content of the porous material is 1 to 50% by weight with respect to 100% by weight of the coating material. 多孔質物質が粘土鉱物、ゼオライト、アパタイト又はケイ酸カルシウムである請求項5又は6記載の光触媒塗料。   The photocatalyst coating material according to claim 5 or 6, wherein the porous material is clay mineral, zeolite, apatite, or calcium silicate. 請求項1ないし7いずれか1項に記載の光触媒塗料を基材に塗布する工程と、
前記塗料を塗布した基材を20℃〜50℃で仮焼成する工程と、
前記仮焼成した基材を塗料に含まれる添加剤の沸点以上前記基材の融点以下で本焼成する工程と
を含むことを特徴とする光触媒膜の製造方法。
Applying the photocatalyst paint according to any one of claims 1 to 7 to a substrate;
A step of pre-baking the substrate coated with the paint at 20 ° C. to 50 ° C .;
And a step of subjecting the temporarily fired base material to a main firing temperature not lower than the boiling point of the additive contained in the paint and not higher than the melting point of the base material.
基材を20℃〜50℃で仮焼成する工程と、
請求項1ないし7いずれか1項に記載の光触媒塗料を前記仮焼成した基材に塗布する工程と、
前記塗料を塗布した基材を塗料に含まれる添加剤の沸点以上前記基材の融点以下で本焼成する工程と
を含むことを特徴とする光触媒膜の製造方法。
A step of calcining the substrate at 20 ° C. to 50 ° C .;
Applying the photocatalyst paint according to any one of claims 1 to 7 to the temporarily fired substrate;
And a step of subjecting the base material coated with the paint to a main baking at a temperature not lower than the boiling point of the additive contained in the paint and not higher than the melting point of the base material.
JP2005283621A 2004-09-30 2005-09-29 Photocatalytic coating and method for producing photocatalytic film using the same Pending JP2006124684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283621A JP2006124684A (en) 2004-09-30 2005-09-29 Photocatalytic coating and method for producing photocatalytic film using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004286706 2004-09-30
JP2005283621A JP2006124684A (en) 2004-09-30 2005-09-29 Photocatalytic coating and method for producing photocatalytic film using the same

Publications (1)

Publication Number Publication Date
JP2006124684A true JP2006124684A (en) 2006-05-18

Family

ID=36719715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283621A Pending JP2006124684A (en) 2004-09-30 2005-09-29 Photocatalytic coating and method for producing photocatalytic film using the same

Country Status (1)

Country Link
JP (1) JP2006124684A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217599A (en) * 2006-02-17 2007-08-30 Hiroshima Pref Gov Coating material for food packaging material, method for producing coating film and food packaging material
JP2016501289A (en) * 2012-11-13 2016-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for producing a silica-containing self-dispersing pigment
JP2016505654A (en) * 2012-11-13 2016-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Self-dispersing pigment
JP2016506421A (en) * 2012-11-13 2016-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for preparing self-dispersing pigments
JP2016507593A (en) * 2012-11-13 2016-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Silica-containing self-dispersing pigment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315223A (en) * 1997-12-16 1999-11-16 Leben Utility Kk Coating composition for building material, coating film therefrom, and building material coated therewith
JP2002075982A (en) * 2000-08-29 2002-03-15 Clariant (Japan) Kk Low dielectric constant porous silica film, semiconductor device and coating composition
JP2003146773A (en) * 2001-11-13 2003-05-21 Ngk Spark Plug Co Ltd Porous ceramic and method of manufacturing the same
JP2004002856A (en) * 2003-05-12 2004-01-08 National Institute Of Advanced Industrial & Technology Method for production of photocatalyst coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315223A (en) * 1997-12-16 1999-11-16 Leben Utility Kk Coating composition for building material, coating film therefrom, and building material coated therewith
JP2002075982A (en) * 2000-08-29 2002-03-15 Clariant (Japan) Kk Low dielectric constant porous silica film, semiconductor device and coating composition
JP2003146773A (en) * 2001-11-13 2003-05-21 Ngk Spark Plug Co Ltd Porous ceramic and method of manufacturing the same
JP2004002856A (en) * 2003-05-12 2004-01-08 National Institute Of Advanced Industrial & Technology Method for production of photocatalyst coating composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217599A (en) * 2006-02-17 2007-08-30 Hiroshima Pref Gov Coating material for food packaging material, method for producing coating film and food packaging material
JP2016501289A (en) * 2012-11-13 2016-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for producing a silica-containing self-dispersing pigment
JP2016505654A (en) * 2012-11-13 2016-02-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Self-dispersing pigment
JP2016506421A (en) * 2012-11-13 2016-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for preparing self-dispersing pigments
JP2016507593A (en) * 2012-11-13 2016-03-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Silica-containing self-dispersing pigment
US10316209B2 (en) 2012-11-13 2019-06-11 The Chemours Company Fc, Llc Self-dispersing pigments

Similar Documents

Publication Publication Date Title
US9079155B2 (en) Photocatalyst coated body and photocatalyst coating liquid
US20060099397A1 (en) Ceramic moulded body comprising a photocatalytic coating and method for producing the same
CN106867283B (en) Photocatalyst-coated body
MXPA06013795A (en) Multi-layer coatings and related methods.
JP5742837B2 (en) Photocatalyst-coated body and photocatalyst coating liquid
KR20150028979A (en) Coating composition and uses thereof
JP3291563B2 (en) Photocatalytic paint and its production method and use
JP2006124684A (en) Photocatalytic coating and method for producing photocatalytic film using the same
JP4525041B2 (en) Photocatalyst coating material, method for producing the same, photocatalytic coating film having a photocatalytic function obtained by applying the coating material, and multilayer photocatalytic coating film
JP4238551B2 (en) Hydrophilic film-forming coating liquid and method for producing the same, method of using the coating liquid, and film-coated substrate formed using the coating liquid
JP4352721B2 (en) Functional inorganic paint and its coating composition
JP5244258B2 (en) Plate-shaped cured body
JP3291561B2 (en) Photocatalytic paint, method for producing the same, photocatalytic film coated with the same, and base material having the photocatalytic film
JP2016150329A (en) Organic substrate having photocatalyst layer
JPH11323188A (en) Photocatalytic film, method for forming it and photocatalytic coating
JP4710919B2 (en) Method for producing photocatalyst paint
JP3291560B2 (en) Photocatalytic film formation method and paint used for it
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JPH11319709A (en) Formation of photocatalyst film on organic substrate and its use
JP4110799B2 (en) Photocatalyst paint and coating material having photocatalytic function obtained by applying the paint
JPH10212120A (en) Production of titanium dioxide film and titanium dioxide dispersion liquid composition
JP3291559B2 (en) Photocatalytic film formation method and paint used for it
JP2007261082A (en) Coating article with visual contamination reduced
JP2012193523A (en) Building material and method for manufacturing the same
JP2011072935A (en) Photocatalyst-coated object and photocatalyst coating liquid therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220