JP4110645B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP4110645B2
JP4110645B2 JP34544698A JP34544698A JP4110645B2 JP 4110645 B2 JP4110645 B2 JP 4110645B2 JP 34544698 A JP34544698 A JP 34544698A JP 34544698 A JP34544698 A JP 34544698A JP 4110645 B2 JP4110645 B2 JP 4110645B2
Authority
JP
Japan
Prior art keywords
trunnion
continuously variable
variable transmission
toroidal
trunnions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34544698A
Other languages
Japanese (ja)
Other versions
JP2000170862A (en
Inventor
尚 今西
寛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP34544698A priority Critical patent/JP4110645B2/en
Publication of JP2000170862A publication Critical patent/JP2000170862A/en
Application granted granted Critical
Publication of JP4110645B2 publication Critical patent/JP4110645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば自動車用の変速機として利用するトロイダル型無段変速機の改良に関し、構成部材に無理な応力が加わる事を防止して、十分な耐久性を有する構造を実現するものである。
【0002】
【従来の技術】
自動車用変速機として、図8〜9に略示する様なトロイダル型無段変速機を使用する事が研究されている。このトロイダル型無段変速機は、例えば実開昭62−71465号公報に開示されている様に、入力軸1と同心に入力側ディスク2を支持し、この入力軸1と同心に配置した出力軸3の端部に出力側ディスク4を固定している。トロイダル型無段変速機を納めたケーシングの内側で上記入力側、出力側両ディスク2、4の軸方向中間位置には、枢軸5、5を中心に揺動するトラニオン6、6を設けている。これら各枢軸5、5は、上記入力軸1並びに出力軸3の中心軸の方向に対して直角方向でこの中心軸とは交差しない捻れの位置にある
【0003】
即ち、これら各トラニオン6、6は、それぞれの両端部外面に上記枢軸5、5を、互いに同心に設けている。又、これら各トラニオン6、6の中間部には変位軸7、7の基端部を支持し、上記枢軸5、5を中心として上記各トラニオン6、6を揺動させる事により、上記各変位軸7、7の傾斜角度の調節を自在としている。上記各トラニオン6、6に支持した変位軸7、7の周囲には、それぞれパワーローラ8、8を回転自在に支持している。そして、これら各パワーローラ8、8を、上記入力側、出力側両ディスク2、4の、互いに対向する内側面2a、4a同士の間に挟持している。これら各内側面2a、4aは、それぞれ断面が、上記枢軸5を中心とする円弧を回転させて得られる凹面をなしている。そして、球状凸面に形成した上記各パワーローラ8、8の周面8a、8aを、上記内側面2a、4aに当接させている。
【0004】
上記入力軸1と入力側ディスク2との間には、ローディングカム式の押圧装置9を設け、この押圧装置9によって、上記入力側ディスク2を出力側ディスク4に向け弾性的に押圧自在としている。この押圧装置9は、入力軸1と共に回転するカム板10と、保持器11により転動自在に保持した複数個(例えば4個)のローラ12、12とから構成している。上記カム板10の片側面(図8〜9の右側面)には、円周方向に亙る凹凸であるカム面13を形成し、上記入力側ディスク2の外側面(図8〜9の左側面)にも、同様の形状を有するカム面14を形成している。そして、上記複数個のローラ12、12を、上記入力軸1の中心に関し放射方向の軸を中心とする回転自在に支持している。
【0005】
上述の様に構成するトロイダル型無段変速機の使用時、入力軸1の回転に伴ってカム板10が回転すると、カム面13が複数個のローラ12、12を、入力側ディスク2の外側面に形成したカム面14に押圧する。この結果、上記入力側ディスク2が、上記複数のパワーローラ8、8に押圧されると同時に、上記両カム面13、14と複数個のローラ12、12との押し付け合いに基づいて、上記入力側ディスク2が回転する。そして、この入力側ディスク2の回転が、前記複数のパワーローラ8、8を介して出力側ディスク4に伝達され、この出力側ディスク4に固定の出力軸3が回転する。
【0006】
入力軸1と出力軸3との回転速度比(変速比)を変える場合で、先ず入力軸1と出力軸3との間で減速を行なう場合には、前記各枢軸5、5を中心として前記各トラニオン6、6を所定方向に揺動させる。そして、上記各パワーローラ8、8の周面8a、8aが図8に示す様に、入力側ディスク2の内側面2aの中心寄り部分と出力側ディスク4の内側面4aの外周寄り部分とにそれぞれ当接する様に、前記各変位軸7、7を傾斜させる。反対に、増速を行なう場合には、上記枢軸5、5を中心として上記各トラニオン6、6を反対方向に揺動させる。そして、上記各パワーローラ8、8の周面8a、8aが図9に示す様に、入力側ディスク2の内側面2aの外周寄り部分と出力側ディスク4の内側面4aの中心寄り部分とに、それぞれ当接する様に、上記各変位軸7、7を傾斜させる。各変位軸7、7の傾斜角度を図8と図9との中間にすれば、入力軸1と出力軸3との間で、中間の変速比を得られる。
【0007】
又、図10〜11は、実願昭63−69293号(実開平1−173552号)のマイクロフィルムに記載された、より具体化されたトロイダル型無段変速機の1例を示している。入力側ディスク2と出力側ディスク4とは円管状の入力軸15の周囲に、それぞれニードル軸受16、16を介して、回転自在に支持している。又、カム板10は上記入力軸15の端部(図10の左端部)外周面にスプライン係合させ、鍔部17により上記入力側ディスク2から離れる方向への移動を阻止している。そして、このカム板10とローラ12、12とにより、上記入力軸15の回転に基づいて上記入力側ディスク2を、上記出力側ディスク4に向け押圧しつつ回転させる押圧装置9を構成している。上記出力側ディスク4には出力歯車18を、キー19、19により結合し、これら出力側ディスク4と出力歯車18とが同期して回転する様にしている。
【0008】
1対のトラニオン6、6の両端部に設けた枢軸5、5はそれぞれ1対の支持板20、20に、揺動並びに軸方向(図10の表裏方向、図11の左右方向)に亙る変位自在に支持している。そして、上記各トラニオン6、6の中間部に形成した円孔21、21部分に、変位軸7、7を支持している。これら各変位軸7、7は、互いに平行で且つ偏心した支持軸部22、22と枢支軸部23、23とを、それぞれ有する。このうちの各支持軸部22、22を上記各円孔21、21の内側に、ラジアルニードル軸受24、24を介して、回転自在に支持している。又、上記各枢支軸部23、23の周囲にパワーローラ8、8を、別のラジアルニードル軸受25、25を介して、回転自在に支持している。
【0009】
尚、上記1対の変位軸7、7は、上記入力軸15に対して180度反対側位置に設けている。又、これら各変位軸7、7の各枢支軸部23、23が各支持軸部22、22に対し偏心している方向は、上記入力側、出力側両ディスク2、4の回転方向に関し同方向(図11で左右逆方向)としている。又、偏心方向は、上記入力軸15の配設方向に対しほぼ直交する方向としている。従って、上記各パワーローラ8、8は、上記入力軸15の軸方向(図10の左右方向、図11の表裏方向)に亙る若干の変位自在に支持される。この結果、回転力の伝達状態で構成各部材に加わる大きな荷重に基づく、これら構成各部材の弾性変形に起因して、上記各パワーローラ8、8が上記入力軸15の軸方向に変位する傾向となった場合でも、上記構成各部品に無理な力を加える事なく、この変位を吸収できる。
【0010】
又、上記各パワーローラ8、8の外側面と上記各トラニオン6、6の中間部内側面との間には、パワーローラ8、8の外側面の側から順に、スラスト玉軸受26、26とスラストニードル軸受27、27とを設けている。このうちのスラスト玉軸受26、26は、上記各パワーローラ8、8に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ8、8の回転を許容するものである。又、上記各スラストニードル軸受27、27は、上記各パワーローラ8、8から上記各スラスト玉軸受26、26を構成する外輪28、28に加わるスラスト荷重を支承しつつ、前記各枢支軸部23、23及び上記外輪28、28が、前記支持軸部22、22を中心に揺動する事を許容する。
【0011】
更に、上記各トラニオン6、6の一端部(図11の左端部)にはそれぞれ駆動ロッド29、29を結合し、これら各駆動ロッド29、29の中間部外周面に駆動ピストン30、30を固設している。そして、これら各駆動ピストン30、30を、それぞれ駆動シリンダ31、31内に油密に嵌装している。
【0012】
上述の様に構成するトロイダル型無段変速機の場合には、入力軸15の回転は、押圧装置9を介して入力側ディスク2に伝わる。そして、この入力側ディスク2の回転が、1対のパワーローラ8、8を介して出力側ディスク4に伝わり、更にこの出力側ディスク4の回転が、出力歯車18より取り出される。入力軸15と出力歯車18との間の回転速度比を変える場合には、上記1対の駆動ピストン30、30を互いに逆方向に変位させる。これら各駆動ピストン30、30の変位に伴って上記1対のトラニオン6、6が、それぞれ逆方向に変位し、例えば図11の下側のパワーローラ8が同図の右側に、同図の上側のパワーローラ8が同図の左側に、それぞれ変位する。この結果、これら各パワーローラ8、8の周面8a、8aと上記入力側ディスク2及び出力側ディスク4の内側面2a、4aとの当接部に作用する、接線方向の力の向きが変化する。そして、この力の向きの変化に伴って上記各トラニオン6、6が、支持板20、20に枢支された枢軸5、5を中心として、互いに逆方向に揺動する。この結果、前述の図8〜9に示した様に、上記各パワーローラ8、8の周面8a、8aと上記各内側面2a、4aとの当接位置が変化し、上記入力軸15と出力歯車18との間の回転速度比が変化する。
【0013】
尚、この様に上記入力軸15と出力歯車18との間で回転力の伝達を行なう際には、構成各部材の弾性変形に基づいて上記各パワーローラ8、8が、上記入力軸15の軸方向に変位し、これら各パワーローラ8、8を枢支している前記各変位軸7、7が、前記各支持軸部22、22を中心として僅かに回動する。この回動の結果、前記各スラスト玉軸受26、26の外輪28、28の外側面と上記各トラニオン6、6の内側面とが相対変位する。これら外側面と内側面との間には、前記各スラストニードル軸受27、27が存在する為、この相対変位に要する力は小さい。従って、上述の様に各変位軸7、7の傾斜角度を変化させる為の力が小さくて済む。
【0014】
【発明が解決しようとする課題】
従来のトロイダル型無段変速機の場合には、各枢軸5、5の中心軸方向に対し直角方向に広がる面での各トラニオン6、6の断面(図10に示した断面)の面積を、特にこれらトラニオン6、6の剛性を考慮して決定してはいなかった。図12は、従来一般的に考えられていたトラニオンの形状の1例を示している。このトラニオン6の中間部、即ち、上記各枢軸5、5を形成する為、両端部に形成した折れ曲がり部32、32同士の間部分で、パワーローラ8(図10〜11)の外側面と対向する部分及びその近傍部分の断面積を、各枢軸5、5の軸方向に関して一定としていた。
【0015】
一方、上記各パワーローラ8、8に加わるスラスト荷重に基づいて上記各トラニオン6、6に加わる曲げ応力は、力の作用点である上記各パワーローラ8、8から離れるに従って大きくなる。従って、上記スラスト荷重に拘らず、上記各トラニオン6、6が曲がり方向に弾性変形するのを防止する為には、これら各トラニオン6、6の断面係数を、上記各枢軸5、5に近い両端寄り部分程大きくする事が好ましい。これに対して従来は、上述した通り、上記中間部の断面積を上記各枢軸5、5の軸方向に亙り同じとしていた為、各部の曲げ剛性を最適なものに設定できなかった。即ち、両端部の曲げ剛性を十分に確保しようとした場合には、中央部の曲げ剛性が過大になり、しかも肉厚の為に、この中央部で上記各トラニオン6、6と入力側ディスク2或は出力側ディスク4とが干渉し易くなるだけでなく、トラニオン6、6の重量が徒に嵩む。これに対して、中央部の曲げ剛性を適正値に抑え、この中央部が入力側ディスク2或は出力側ディスク4と干渉しない様に上記中間部の肉厚を小さくすると、両端寄り部分の曲げ剛性が不足し、上記スラスト荷重に基づく上記各トラニオン6、6の弾性変形量が過大になり、トロイダル型無段変速機の性能維持が難しくなる。
【0016】
即ち、上記各トラニオン6、6の弾性変形量が過大になると、これら各トラニオン6、6自体の耐久性が損なわれるだけでなく、上記各パワーローラ8、8の位置が不安定になり、意図する変速比を実現できなくなる。又、これら各パワーローラ8、8を回転自在に支持する為のスラスト玉軸受26、26に加わるスラスト荷重が円周方向に亙り不均一になり、軌道面の一部に過大な面圧が作用して、上記各スラスト玉軸受26、26の耐久性を損なう原因となる。
【0017】
トラニオンの形状に関する発明としては、特開平8−178007号公報、実開平4−96654号公報、同6−14603号公報に記載されたものがあるが、上述の様な問題を解決するものではない。即ち、実開平4−96654号公報に記載されたものは、トラニオンの放熱性向上を考慮したものであって、軽量化と剛性確保との両立に就いては考慮していない。又、特開平8−178007号公報及び実開平6−14603号公報に記載されたものは、トラニオンの中間部全体の剛性向上を考慮したものであって、剛性が過大になる事を防止し、軽量化と剛性確保との両立に就いて考慮したものではない。
本発明のトロイダル型無段変速機は、この様な事情に鑑みて、トラニオンの軽量化と剛性確保との両立を図るべく発明したものである。
【0018】
【課題を解決する為の手段】
本発明のトロイダル型無段変速機は、前述した従来のトロイダル型無段変速機と同様に、互いに同心に、且つ互いに独立した回転自在に支持された入力側、出力側両ディスクと、これら入力側、出力側両ディスクの中心軸の方向に対して直角方向でこの中心軸とは交差しない捻れの位置にある、互いに同心の1対の枢軸を中心として揺動する複数個のトラニオンと、これら各トラニオン毎に支持された変位軸と、これら各変位軸に回転自在に支持され、上記入力側、出力側両ディスクの内側面同士の間に挟持されたパワーローラと、これら各パワーローラの外側面と上記各トラニオンの内側面との間に設けたスラスト軸受とを備える。そして、上記入力側、出力側両ディスクの互いに対向する内側面を、それぞれ断面が円弧形の凹面とし、上記各パワーローラの周面を球面状の凸面として、これら各周面と上記各内側面とを当接させて成る。
特に、本発明のトロイダル型無段変速機に於いては、上記各枢軸の中心軸方向に対し直角方向に広がる面での上記各トラニオンの中間部の断面を考え、これら各トラニオンが内部に円孔や通油孔を設けていない充実構造であると仮定した場合に、これら各トラニオンの中央部分で上記各変位軸の近傍部分での断面積が、これら各トラニオンの両端寄り部分で上記各枢軸に近い部分の断面積よりも小さい。
【0019】
【作用】
上述の様に構成する本発明のトロイダル型無段変速機により、入力側ディスクと出力側ディスクとの間で回転力の伝達を行なわせる作用、並びにこれら両ディスク同士の間の変速比を変化させる作用は、前述した様な従来から知られているトロイダル型無段変速機の場合と同様である。
特に、本発明のトロイダル型無段変速機の場合には、トラニオンの中間部の断面積を、枢軸の軸方向に亙り異ならせているので、この中間部の断面係数を、必要とする曲げ剛性に対して最適値にできる。この為、上記トラニオンの重量を増大する事なく、このトラニオンの弾性変形を抑えて、トロイダル型無段変速機に必要とする性能を発揮させる事ができる。
【0020】
【発明の実施の形態】
図1〜7は、本発明の実施の形態の1例を示している。尚、本発明の特徴は、枢軸5、5の軸方向に亙るトラニオン6aの剛性を、何れの部分でも最適値にする事により、このトラニオン6aの重量を増大する事なく、しかも、このトラニオン6aと入力側ディスク2及び出力側ディスク4とが干渉し易くする事なく、このトラニオン6aの弾性変形を抑える為の構造にある。その他の部分の構造及び作用は、前述した従来構造を含め、従来から知られ、或は考えられている各種トロイダル型無段変速機と同様であるから、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
【0021】
鋼に鍛造加工を施して成るトラニオン6aは、中間部33の両端部に、同方向に折れ曲がった折れ曲がり部32、32を形成しており、これら両折れ曲がり部32、32の外側面に枢軸5、5を、互いに同心に一体形成している。そして、これら各枢軸5、5の中心軸方向に対し直角方向に広がる面での上記トラニオン6aの中間部33の断面形状を考えた場合に、中央部分の断面積と両端寄り部分の断面積とを異ならせている。即ち、本発明のトロイダル型無段変速機を構成するトラニオン6aの場合には、このトラニオン6aの中央部分の断面積が、このトラニオン6aの両端寄り部分の断面積よりも小さい。尚、このトラニオン6aの中央部分には、変位軸7の支持軸部22(図10〜11)を枢支する為の円孔21を形成しているが、本発明を規定する場合に於ける断面積とは、この円孔21を形成する以前の状態、言い換えれば、この円孔21部分が充実構造である状態で言う。又、各部を潤滑する為に、上記トラニオン6a内に形成した通油孔34に就いても、この通油孔34を形成する以前の状態(当該部分が充実構造であると仮定した状態)で言う。
【0022】
この為に図示の例では、上記トラニオン6aの中央部分の両側面に、それぞれ凹部35、35を形成し、これら各凹部35、35の断面積分だけ、上記中央部分の断面積を両端寄り部分の断面積よりも小さくしている。上記各凹部35、35の形状並びに形成位置は、次の様に規制している。即ち、上記トラニオン6aをトロイダル型無段変速機に組み付けてこのトロイダル型無段変速機を運転し、変速の為に上記トラニオン6aを前記各枢軸5、5を中心として揺動変位させた場合に、入力側、出力側両ディスク2、4(図10)の外周縁部に近づく部分に、上記各凹部35、35を形成している。これら各凹部35、35は、これら両ディスク2、4の外周縁部と上記トラニオン6aとの干渉を防止する為、これら両ディスク2、4の外周縁部とほぼ同じ形状に形成している。
【0023】
この様な凹部35、35は、上記入力側、出力側両ディスク2、4の外周縁部とほぼ同じ形状を有する刃物を回転させつつ、上記トラニオン6aの両側面に形成する。即ち、この刃物をこのトラニオン6aに対し、トロイダル型無段変速機の運転時に於ける上記両ディスク2、4と同じ位置関係で近づける。更に言えば、上記各枢軸5、5を中心とするこのトラニオン6aの揺動変位に伴ってこのトラニオン6aと上記両ディスク2、4の外周縁部とが近づき合う方向に、上記刃物を回転させつつ、上記両側面に近づけ、更に切削加工を施す。この様にして上記各凹部35、35を形成すれば、比較的複雑な形状となる、これら各凹部35、35の加工を容易に行なえる。
【0024】
上述の様に構成する本発明のトロイダル型無段変速機の場合には、上記トラニオン6aの中間部33の断面積を、上記各枢軸5、5の軸方向に亙り異ならせているので、この中間部33の断面係数を、必要とする曲げ剛性に対して最適値にできる。即ち、各パワーローラ8、8(図10〜11)に加わるスラスト荷重に基づいて大きな曲げ応力が加わる両端寄り部分の断面係数を大きくし、比較的小さな曲げ応力しか加わらない中央部分の断面係数を比較的小さくできる。この為、上記トラニオン6aの重量を増大する事なく、このトラニオン6aの弾性変形を抑えて、トロイダル型無段変速機に必要とする性能を発揮させる事ができる。
【0025】
又、図示の例の様に、上記トラニオン6aの両側面に、上記両ディスク2、4の外周縁部との干渉を防止する為の凹部35、35を形成する事により、上記トラニオン6aの断面積の調整を行なう様にすれば、空間の有効利用により、このトラニオン6aを組み込んだトロイダル型無段変速機の小型・軽量化を、より有効に図れる。即ち、図6に示す様に、トロイダル型無段変速機の変速比を大きくすべく、上記トラニオン6aを大きく揺動変位させた場合でも、このトラニオン6aと入力側ディスク2(又は出力側ディスク4)の外周縁部とが干渉する事がない。この為、上記トラニオン6aの曲げ剛性確保の為、幅寸法を大きくして厚さ寸法を小さくし、その分、他の部材同士の間隔を狭める等、トロイダル型無段変速機の設計の自由度が向上して、上述の様な小型・軽量化の余地が生じる。
【0026】
更に、本発明の必須要件ではないが、上記凹部35、35を形成する事により、図1に鎖線で、更に図7に示す様に、上記トラニオン6aの中央部の幅寸法を、両端寄り部分の幅寸法よりも大きくする事もできる。但し、この場合でも、上記凹部35、35を形成する事により、更に必要に応じて中央部分の厚さを両端寄り部分の厚さよりも小さくする事により、中央部分の断面積を両端寄り部分の断面積よりも小さくする。
【0027】
何れにしても、上記トラニオン6aの中央部の幅寸法を大きくすれば、前記各パワーローラ8、8を支承する為のスラスト玉軸受26、26を構成する外輪28、28(図10〜11)の外側面を有効にバックアップして、これら各外輪28、28の耐久性向上を図れる。即ち、上記各凹部35、35を形成する事なく、トラニオン6(次述する図13参照)と上記両ディスク2、4の外周縁部との干渉を防止する為には、このトラニオン6の幅全体を、干渉防止を図れる程度に小さくしなければならない。この為、図13に示す様に、上記スラスト玉軸受26を構成する玉のピッチ円の一部が、上記トラニオン6の両側縁からはみ出す。この様な状態では、上記外輪28の一部でこのトラニオン6、6の両側縁に対向する部分に大きな曲げ応力が加わり、この外輪28の耐久性を悪化させる可能性がある。これに対して、上述の様な凹部35、35を形成する事により上記トラニオン6aの中央部の幅寸法を大きくし、スラスト玉軸受26を構成する玉のピッチ円を、上記トラニオン6aの両側縁同士の間に配置して、このピッチ円の一部が上記トラニオン6aの両側縁からはみ出さない様にバックアップすれば、上記外輪28に曲げ応力が加わる事を防止して、この外輪28の耐久性向上を図れる。
【0028】
【発明の効果】
本発明は以上に述べた通り構成され作用する為、トラニオンの軽量化と剛性確保との両立を図って、小型且つ軽量で、しかも優れた耐久性を有するトロイダル型無段変速機を実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を構成するトラニオンを内側面側から見た図。
【図2】円孔及び通油孔を形成しない状態での図1のA−A断面図。
【図3】同B−B断面図。
【図4】円孔及び通油孔を形成した状態での図1のC−C断面図。
【図5】一部を省略して示す、トラニオンの斜視図。
【図6】トロイダル型無段変速機への組み付け状態で、ディスクとトラニオンとの関係を示す図。
【図7】同じくトラニオンとパワーローラ及びスラスト玉軸受との関係を示す、トラニオンの内側面側から見た略図。
【図8】従来から知られているトロイダル型無段変速機の基本的構成を、最大減速時の状態で示す側面図。
【図9】同じく最大増速時の状態で示す側面図。
【図10】トロイダル型無段変速機の具体的構造の1例を示す断面図。
【図11】図10のD−D断面図。
【図12】従来のトラニオンの1例を、一部を省略して示す斜視図。
【図13】従来構造の場合を示す、図7と同様の図。
【符号の説明】
1 入力軸
2 入力側ディスク
2a 内側面
3 出力軸
4 出力側ディスク
4a 内側面
5 枢軸
6、6a トラニオン
7 変位軸
8 パワーローラ
8a 周面
9 押圧装置
10 カム板
11 保持器
12 ローラ
13、14 カム面
15 入力軸
16 ニードル軸受
17 鍔部
18 出力歯車
19 キー
20 支持板
21 円孔
22 支持軸部
23 枢支軸部
24、25 ラジアルニードル軸受
26 スラスト玉軸受
27 スラストニードル軸受
28 外輪
29 駆動ロッド
30 駆動ピストン
31 駆動シリンダ
32 折れ曲がり部
33 中間部
34 通油孔
35 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a toroidal-type continuously variable transmission used as a transmission for an automobile, for example, and prevents a stress from being applied to a component member, thereby realizing a structure having sufficient durability. .
[0002]
[Prior art]
The use of a toroidal continuously variable transmission as schematically shown in FIGS. This toroidal continuously variable transmission, for example, as disclosed in Japanese Utility Model Laid-Open No. 62-71465, supports an input side disk 2 concentrically with an input shaft 1, and outputs arranged concentrically with the input shaft 1. An output side disk 4 is fixed to the end of the shaft 3. Trunnions 6 and 6 swinging around the pivot shafts 5 and 5 are provided at intermediate positions in the axial direction of the input side and output side discs 2 and 4 inside the casing containing the toroidal type continuously variable transmission. . Each of the pivots 5 and 5 is in a twisted position perpendicular to the direction of the center axis of the input shaft 1 and the output shaft 3 and not intersecting with the center axis.
That is, these trunnions 6 and 6 are provided with the pivots 5 and 5 concentrically with each other on the outer surfaces of both ends. In addition, the base portions of the displacement shafts 7 and 7 are supported at intermediate portions of the trunnions 6 and 6, and the trunnions 6 and 6 are swung around the pivot shafts 5 and 5, so that the respective displacements are displaced. The inclination angle of the shafts 7 and 7 can be freely adjusted. Power rollers 8 and 8 are rotatably supported around the displacement shafts 7 and 7 supported by the trunnions 6 and 6, respectively. Each of these power rollers 8 and 8 is sandwiched between inner surfaces 2a and 4a of the input side and output side disks 2 and 4 facing each other. Each of these inner side surfaces 2a, 4a has a concave surface obtained by rotating a circular arc with the pivot axis 5 as the center. And the peripheral surfaces 8a and 8a of each said power roller 8 and 8 formed in the spherical convex surface are made to contact | abut to the said inner surface 2a and 4a.
[0004]
A loading cam type pressing device 9 is provided between the input shaft 1 and the input side disc 2, and the pressing device 9 allows the input side disc 2 to be elastically pressed toward the output side disc 4. . The pressing device 9 includes a cam plate 10 that rotates together with the input shaft 1 and a plurality of (for example, four) rollers 12 and 12 that are rotatably held by a cage 11. On one side surface (right side surface in FIGS. 8 to 9) of the cam plate 10, a cam surface 13 that is uneven in the circumferential direction is formed, and the outer side surface of the input side disk 2 (left side surface in FIGS. 8 to 9). ) Also has a cam surface 14 having a similar shape. The plurality of rollers 12 and 12 are supported so as to be rotatable about the radial axis with respect to the center of the input shaft 1.
[0005]
When the toroidal type continuously variable transmission configured as described above is used, when the cam plate 10 rotates with the rotation of the input shaft 1, the cam surface 13 moves the rollers 12, 12 to the outside of the input side disk 2. The cam surface 14 formed on the side surface is pressed. As a result, the input-side disk 2 is pressed against the plurality of power rollers 8 and 8 and at the same time, based on the pressing force between the cam surfaces 13 and 14 and the plurality of rollers 12 and 12, the input disk 2 is pressed. The side disk 2 rotates. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through the plurality of power rollers 8, 8, and the output shaft 3 fixed to the output side disk 4 rotates.
[0006]
When changing the rotational speed ratio (transmission ratio) between the input shaft 1 and the output shaft 3, and when first decelerating between the input shaft 1 and the output shaft 3, the pivots 5 and 5 are used as the centers. Each trunnion 6, 6 is swung in a predetermined direction. As shown in FIG. 8, the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are formed on a portion near the center of the inner surface 2a of the input side disc 2 and a portion near the outer periphery of the inner surface 4a of the output side disc 4, respectively. The displacement shafts 7 and 7 are inclined so as to contact each other. On the other hand, when increasing the speed, the trunnions 6 and 6 are swung in the opposite directions around the pivots 5 and 5. The peripheral surfaces 8a and 8a of the power rollers 8 and 8 are formed on the outer peripheral portion of the inner side surface 2a of the input side disc 2 and the central portion of the inner side surface 4a of the output side disc 4 as shown in FIG. The displacement shafts 7 and 7 are inclined so as to contact each other. If the inclination angle of each of the displacement shafts 7 and 7 is set intermediate between those shown in FIGS. 8 and 9, an intermediate transmission ratio can be obtained between the input shaft 1 and the output shaft 3.
[0007]
FIGS. 10 to 11 show an example of a more specific toroidal type continuously variable transmission described in the microfilm of Japanese Utility Model Application No. 63-69293 (Japanese Utility Model Laid-Open No. 1-173552). The input side disk 2 and the output side disk 4 are rotatably supported around needle-shaped input shafts 15 via needle bearings 16 and 16, respectively. Further, the cam plate 10 is spline-engaged with the outer peripheral surface of the end portion (left end portion in FIG. 10) of the input shaft 15 and the movement of the cam plate 10 in the direction away from the input side disk 2 is prevented by the flange portion 17. The cam plate 10 and the rollers 12 and 12 constitute a pressing device 9 that rotates the input side disk 2 while pressing the input side disk 2 toward the output side disk 4 based on the rotation of the input shaft 15. . An output gear 18 is coupled to the output side disk 4 by means of keys 19, 19, so that the output side disk 4 and the output gear 18 rotate in synchronization.
[0008]
The pivots 5, 5 provided at both ends of the pair of trunnions 6, 6 are respectively oscillated and displaced in the axial direction (front and back direction in FIG. 10, left and right direction in FIG. 11) on the pair of support plates 20, 20. Supports freely. The displacement shafts 7 and 7 are supported in the circular holes 21 and 21 formed in the intermediate portions of the trunnions 6 and 6. These displacement shafts 7 and 7 have support shaft portions 22 and 22 and pivot shaft portions 23 and 23 that are parallel to each other and eccentric, respectively. Of these, the support shaft portions 22 and 22 are rotatably supported inside the circular holes 21 and 21 via radial needle bearings 24 and 24. Further, power rollers 8 and 8 are rotatably supported around the pivot shaft portions 23 and 23 via other radial needle bearings 25 and 25, respectively.
[0009]
The pair of displacement shafts 7 and 7 are provided at positions opposite to the input shaft 15 by 180 degrees. The direction in which the pivot shafts 23 and 23 of the displacement shafts 7 and 7 are eccentric with respect to the support shafts 22 and 22 is the same with respect to the rotational directions of the input side and output side disks 2 and 4. It is set as the direction (left-right reverse direction in FIG. 11). The eccentric direction is a direction substantially perpendicular to the direction in which the input shaft 15 is disposed. Accordingly, the power rollers 8 and 8 are supported so as to be slightly displaceable along the axial direction of the input shaft 15 (the left-right direction in FIG. 10 and the front-back direction in FIG. 11). As a result, the power rollers 8 and 8 tend to be displaced in the axial direction of the input shaft 15 due to elastic deformation of the constituent members based on a large load applied to the constituent members in the state of transmission of rotational force. Even in such a case, this displacement can be absorbed without applying an excessive force to each component.
[0010]
Further, the thrust ball bearings 26 and 26 and the thrust are arranged between the outer surface of each of the power rollers 8 and 8 and the inner surface of the intermediate portion of each of the trunnions 6 and 6 in order from the outer surface of the power rollers 8 and 8. Needle bearings 27 and 27 are provided. Of these, the thrust ball bearings 26, 26 allow the power rollers 8, 8 to rotate while supporting a load in the thrust direction applied to the power rollers 8, 8. The thrust needle bearings 27, 27 support the thrust load applied to the outer rings 28, 28 constituting the thrust ball bearings 26, 26 from the power rollers 8, 8, respectively. 23 and 23 and the outer rings 28 and 28 are allowed to swing around the support shaft portions 22 and 22.
[0011]
Further, driving rods 29 and 29 are respectively coupled to one end portions (left end portions in FIG. 11) of the trunnions 6 and 6, and driving pistons 30 and 30 are fixed to the outer peripheral surfaces of the intermediate portions of the driving rods 29 and 29. Has been established. The drive pistons 30 and 30 are oil-tightly fitted in the drive cylinders 31 and 31, respectively.
[0012]
In the case of the toroidal type continuously variable transmission configured as described above, the rotation of the input shaft 15 is transmitted to the input side disk 2 via the pressing device 9. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through a pair of power rollers 8, 8, and the rotation of the output side disk 4 is taken out from the output gear 18. When changing the rotational speed ratio between the input shaft 15 and the output gear 18, the pair of drive pistons 30, 30 are displaced in opposite directions. As the drive pistons 30 and 30 are displaced, the pair of trunnions 6 and 6 are respectively displaced in the opposite directions. For example, the lower power roller 8 in FIG. The power rollers 8 are displaced to the left in the figure. As a result, the direction of the tangential force acting on the contact portion between the peripheral surfaces 8a, 8a of the power rollers 8, 8 and the inner side surfaces 2a, 4a of the input side disk 2 and the output side disk 4 changes. To do. The trunnions 6 and 6 swing in opposite directions around the pivots 5 and 5 pivotally supported by the support plates 20 and 20 in accordance with the change in the direction of the force. As a result, as shown in FIGS. 8 to 9 described above, the contact position between the peripheral surfaces 8a and 8a of the power rollers 8 and 8 and the inner surfaces 2a and 4a is changed. The rotational speed ratio with the output gear 18 changes.
[0013]
When the rotational force is transmitted between the input shaft 15 and the output gear 18 in this way, the power rollers 8 and 8 are connected to the input shaft 15 based on the elastic deformation of the constituent members. The displacement shafts 7 and 7 that are displaced in the axial direction and pivotally support the power rollers 8 and 8 are slightly rotated around the support shaft portions 22 and 22. As a result of this rotation, the outer surfaces of the outer rings 28, 28 of the thrust ball bearings 26, 26 and the inner surfaces of the trunnions 6, 6 are relatively displaced. Since the thrust needle bearings 27, 27 exist between the outer surface and the inner surface, the force required for this relative displacement is small. Therefore, as described above, the force for changing the inclination angle of each displacement shaft 7, 7 can be small.
[0014]
[Problems to be solved by the invention]
In the case of the conventional toroidal-type continuously variable transmission, the area of the cross section (cross section shown in FIG. 10) of each trunnion 6, 6 in a plane extending in a direction perpendicular to the central axis direction of each pivot 5, 5 is In particular, the trunnions 6 and 6 were not determined in consideration of the rigidity. FIG. 12 shows an example of a trunnion shape that has been generally considered. An intermediate portion of the trunnion 6, that is, a portion between the bent portions 32, 32 formed at both ends in order to form the pivots 5, 5, is opposed to the outer surface of the power roller 8 (FIGS. 10 to 11). The cross-sectional area of the portion to be performed and the vicinity thereof is constant with respect to the axial directions of the pivots 5 and 5.
[0015]
On the other hand, the bending stress applied to each trunnion 6, 6 based on the thrust load applied to each power roller 8, 8 increases as the distance from each power roller 8, 8, which is the force application point, increases. Therefore, in order to prevent the trunnions 6 and 6 from being elastically deformed in the bending direction regardless of the thrust load, the section modulus of the trunnions 6 and 6 is set to the both ends close to the pivots 5 and 5. It is preferable to enlarge the closer part. On the other hand, conventionally, as described above, since the cross-sectional area of the intermediate portion is the same over the axial directions of the pivots 5 and 5, the bending rigidity of each portion cannot be set to an optimum value. That is, when it is intended to ensure sufficient bending rigidity at both ends, the bending rigidity at the center becomes excessive, and because of the wall thickness, the trunnions 6 and 6 and the input side disk 2 are formed at the center. Or not only does it easily interfere with the output-side disk 4, but the weight of the trunnions 6, 6 increases. On the other hand, if the bending rigidity of the central portion is suppressed to an appropriate value and the thickness of the intermediate portion is made small so that the central portion does not interfere with the input side disk 2 or the output side disk 4, the bending at the ends near both ends is reduced. Rigidity is insufficient, and the amount of elastic deformation of the trunnions 6 and 6 based on the thrust load becomes excessive, making it difficult to maintain the performance of the toroidal continuously variable transmission.
[0016]
That is, if the amount of elastic deformation of each trunnion 6, 6 is excessive, not only the durability of each trunnion 6, 6 itself is impaired, but the position of each power roller 8, 8 becomes unstable, and It becomes impossible to realize the transmission ratio. Further, the thrust load applied to the thrust ball bearings 26 and 26 for rotatably supporting the power rollers 8 and 8 becomes uneven in the circumferential direction, and an excessive surface pressure acts on a part of the raceway surface. As a result, the durability of the thrust ball bearings 26, 26 is impaired.
[0017]
As inventions related to the shape of the trunnion, there are those described in JP-A-8-178007, JP-A-4-96654, and 6-14603, but they do not solve the above-mentioned problems. . That is, what is described in Japanese Utility Model Laid-Open No. 4-96654 considers the improvement of the heat dissipation of the trunnion, and does not consider the balance between weight reduction and securing of rigidity. Further, those described in JP-A-8-178007 and JP-A-6-14603 are intended to improve the rigidity of the entire intermediate portion of the trunnion, and prevent the rigidity from becoming excessive. It is not a consideration for achieving both weight reduction and rigidity.
In view of such circumstances, the toroidal continuously variable transmission of the present invention has been invented to achieve both reduction in weight of the trunnion and securing of rigidity.
[0018]
[Means for solving the problems]
The toroidal-type continuously variable transmission of the present invention is similar to the above-described conventional toroidal-type continuously variable transmission, and both input side and output side disks are supported concentrically and independently of each other, and these input disks. A plurality of trunnions swinging around a pair of concentric axes that are concentric with each other, at a twisted position perpendicular to the direction of the center axis of both the discs on the side and output side, and not intersecting with the center axis; A displacement shaft supported by each trunnion, a power roller rotatably supported by each displacement shaft, and sandwiched between the inner surfaces of both the input side and output side disks, and an outer side of each of these power rollers A thrust bearing provided between the side surface and the inner side surface of each trunnion. The inner side surfaces of the input side and output side disks facing each other are concave surfaces each having a circular arc cross section, and the peripheral surfaces of the power rollers are spherical convex surfaces. It is made to contact the side.
In particular, in the toroidal-type continuously variable transmission of the present invention, a cross section of an intermediate portion of each trunnion in a plane extending in a direction perpendicular to the central axis direction of each pivot is considered . Assuming a solid structure with no holes or oil passage holes , the cross-sectional area of each trunnion in the vicinity of each displacement axis at the center of each trunnion is It is smaller than the cross-sectional area of the portion close to the pivot axis.
[0019]
[Action]
With the toroidal continuously variable transmission of the present invention configured as described above, the action of transmitting rotational force between the input side disk and the output side disk and the speed ratio between these two disks are changed. The operation is the same as that of the conventional toroidal type continuously variable transmission as described above.
In particular, in the case of the toroidal-type continuously variable transmission according to the present invention, the cross-sectional area of the intermediate portion of the trunnion is varied in the axial direction of the pivot. Can be optimized. For this reason, the elastic deformation of the trunnion can be suppressed without increasing the weight of the trunnion, and the performance required for the toroidal type continuously variable transmission can be exhibited.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1 to 7 show an example of an embodiment of the present invention. The feature of the present invention is that the rigidity of the trunnion 6a extending in the axial direction of the pivot shafts 5 and 5 is set to an optimum value in any portion, so that the weight of the trunnion 6a is not increased, and the trunnion 6a The input side disk 2 and the output side disk 4 do not easily interfere with each other, and the trunnion 6a has a structure for suppressing elastic deformation. Since the structure and operation of other parts are the same as those of various toroidal-type continuously variable transmissions that have been known or considered, including the conventional structure described above, illustration and description of equivalent parts are omitted or simplified. In the following, the characteristic part of the present invention will be mainly described.
[0021]
The trunnion 6a formed by forging steel is formed with bent portions 32, 32 bent in the same direction at both end portions of the intermediate portion 33, and the pivot shaft 5 on the outer surface of both bent portions 32, 32, 5 are integrally formed concentrically with each other. Then, when considering the cross-sectional shape of the intermediate portion 33 of the trunnion 6a in a plane extending in a direction perpendicular to the central axis direction of each of the pivot shafts 5 and 5, Are different. That is, in the case of the trunnion 6a constituting the toroidal type continuously variable transmission of the present invention, the cross-sectional area of the central portion of the trunnion 6a is smaller than the cross-sectional area of the portion near both ends of the trunnion 6a. A circular hole 21 for pivotally supporting the support shaft portion 22 (FIGS. 10 to 11) of the displacement shaft 7 is formed in the central portion of the trunnion 6a. However, in the case of defining the present invention. The cross-sectional area means a state before the circular hole 21 is formed, in other words, a state in which the circular hole 21 has a solid structure. Further, in order to lubricate each part, the oil passage hole 34 formed in the trunnion 6a is in a state before the oil passage hole 34 is formed (a state in which the part is assumed to be a solid structure). To tell.
[0022]
For this reason, in the illustrated example, concave portions 35 are formed on both side surfaces of the central portion of the trunnion 6a, respectively, and the cross-sectional area of the central portion is set at the portion near both ends by the cross-sectional integral of the concave portions 35, 35. It is smaller than the cross-sectional area. The shape and formation position of each of the recesses 35 and 35 are regulated as follows. That is, when the trunnion 6a is assembled to a toroidal continuously variable transmission and the toroidal continuously variable transmission is operated, and the trunnion 6a is oscillated and displaced about the pivots 5 and 5 for shifting. The concave portions 35, 35 are formed in portions close to the outer peripheral edge portions of the input side and output side discs 2, 4 (FIG. 10). These concave portions 35 and 35 are formed in substantially the same shape as the outer peripheral edge portions of both disks 2 and 4 in order to prevent interference between the outer peripheral edge portions of both disks 2 and 4 and the trunnion 6a.
[0023]
Such recesses 35, 35 are formed on both side surfaces of the trunnion 6a while rotating a blade having substantially the same shape as the outer peripheral edge portions of the input side and output side discs 2, 4. That is, the blade is brought closer to the trunnion 6a in the same positional relationship as the disks 2 and 4 when the toroidal continuously variable transmission is operated. More specifically, the cutter is rotated in a direction in which the trunnion 6a and the outer peripheral edges of the disks 2 and 4 approach each other as the trunnion 6a swings around the pivots 5 and 5. In the meantime, it is brought closer to the both side surfaces and further cut. If the concave portions 35 and 35 are formed in this manner, the concave portions 35 and 35 having a relatively complicated shape can be easily processed.
[0024]
In the case of the toroidal-type continuously variable transmission of the present invention configured as described above, the cross-sectional area of the intermediate portion 33 of the trunnion 6a is varied in the axial direction of the pivot shafts 5 and 5. The section modulus of the intermediate portion 33 can be set to an optimum value for the required bending rigidity. That is, based on the thrust load applied to each of the power rollers 8 and 8 (FIGS. 10 to 11), the section modulus of the portion near both ends where a large bending stress is applied is increased, and the section coefficient of the center portion where only a relatively small bending stress is applied. Can be relatively small. For this reason, without increasing the weight of the trunnion 6a, the elastic deformation of the trunnion 6a can be suppressed and the performance required for the toroidal continuously variable transmission can be exhibited.
[0025]
Further, as in the example shown in the figure, the trunnions 6a are cut off by forming recesses 35, 35 on both sides of the trunnions 6a to prevent interference with the outer peripheral edges of the discs 2, 4. If the area is adjusted, the toroidal continuously variable transmission incorporating the trunnion 6a can be more effectively reduced in size and weight by effectively using the space. That is, as shown in FIG. 6, even when the trunnion 6a is greatly swung and displaced in order to increase the transmission ratio of the toroidal type continuously variable transmission, the trunnion 6a and the input side disk 2 (or the output side disk 4). ) Does not interfere with the outer periphery. For this reason, in order to ensure the bending rigidity of the trunnion 6a, the degree of freedom in designing the toroidal continuously variable transmission, such as increasing the width dimension and decreasing the thickness dimension, and correspondingly reducing the distance between the other members. As a result, there is room for reduction in size and weight as described above.
[0026]
Further, although not an essential requirement of the present invention, by forming the concave portions 35, 35, the width dimension of the central portion of the trunnion 6a is changed to a portion closer to both ends as shown by a chain line in FIG. It can also be larger than the width dimension. However, even in this case, by forming the concave portions 35, the thickness of the central portion is made smaller than the thickness of the portion near both ends as necessary, so that the cross-sectional area of the center portion is reduced at the portions near the both ends. Make it smaller than the cross-sectional area.
[0027]
In any case, if the width of the central portion of the trunnion 6a is increased, the outer rings 28 and 28 constituting the thrust ball bearings 26 and 26 for supporting the power rollers 8 and 8 (FIGS. 10 to 11). The outer surface of the outer ring 28 can be effectively backed up, and the durability of the outer rings 28 can be improved. That is, in order to prevent interference between the trunnion 6 (see FIG. 13 to be described below) and the outer peripheral edge portions of both the disks 2 and 4 without forming the concave portions 35 and 35, the width of the trunnion 6 is used. The whole must be made small enough to prevent interference. For this reason, as shown in FIG. 13, part of the pitch circle of the balls constituting the thrust ball bearing 26 protrudes from both side edges of the trunnion 6. In such a state, a large bending stress is applied to a portion of the outer ring 28 facing the both side edges of the trunnions 6, 6, which may deteriorate the durability of the outer ring 28. On the other hand, by forming the concave portions 35 and 35 as described above, the width dimension of the central portion of the trunnion 6a is increased, and the pitch circles of the balls constituting the thrust ball bearing 26 are arranged on both side edges of the trunnion 6a. If it backs up so that a part of this pitch circle may not be protruded from the both side edges of the trunnion 6a, it is possible to prevent bending stress from being applied to the outer ring 28 and to improve the durability of the outer ring 28. To improve performance.
[0028]
【The invention's effect】
Since the present invention is configured and operates as described above, it is possible to realize a toroidal-type continuously variable transmission that is compact and lightweight and has excellent durability, while achieving both weight reduction and rigidity securing of the trunnion.
[Brief description of the drawings]
FIG. 1 is a view of a trunnion constituting an example of an embodiment of the present invention as viewed from an inner surface side.
FIG. 2 is a cross-sectional view taken along line AA of FIG. 1 in a state where a circular hole and an oil passage hole are not formed.
FIG. 3 is a sectional view taken along the line BB in FIG.
4 is a cross-sectional view taken along the line CC of FIG. 1 in a state where a circular hole and an oil passage hole are formed.
FIG. 5 is a perspective view of a trunnion, a part of which is omitted.
FIG. 6 is a view showing a relationship between a disc and a trunnion in an assembled state in a toroidal type continuously variable transmission.
FIG. 7 is a schematic view showing the relationship between the trunnion, the power roller, and the thrust ball bearing, as viewed from the inner surface side of the trunnion.
FIG. 8 is a side view showing a basic configuration of a conventionally known toroidal type continuously variable transmission in a state of maximum deceleration.
FIG. 9 is a side view showing the same state at the maximum speed increase.
FIG. 10 is a sectional view showing an example of a specific structure of a toroidal-type continuously variable transmission.
11 is a sectional view taken along the line DD of FIG. 10;
FIG. 12 is a perspective view showing an example of a conventional trunnion with a part thereof omitted.
13 is a view similar to FIG. 7, showing a case of a conventional structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Input side disk 2a Inner side surface 3 Output shaft 4 Output side disk 4a Inner side surface 5 Pivot 6, 6a Trunnion 7 Displacement shaft 8 Power roller 8a Peripheral surface 9 Pressing device 10 Cam plate 11 Cage 12 Roller 13, 14 Cam Surface 15 Input shaft 16 Needle bearing 17 collar 18 output gear 19 key 20 support plate 21 circular hole 22 support shaft 23 pivot shaft 24, 25 radial needle bearing 26 thrust ball bearing 27 thrust needle bearing 28 outer ring 29 drive rod 30 Drive piston 31 Drive cylinder 32 Bent part 33 Intermediate part 34 Oil passage hole 35 Concave part

Claims (4)

互いに同心に、且つ互いに独立した回転自在に支持された入力側、出力側両ディスクと、これら入力側、出力側両ディスクの中心軸の方向に対して直角方向でこの中心軸とは交差しない捻れの位置にある、互いに同心の1対の枢軸を中心として揺動する複数個のトラニオンと、これら各トラニオン毎に支持された変位軸と、これら各変位軸に回転自在に支持され、上記入力側、出力側両ディスクの内側面同士の間に挟持されたパワーローラと、これら各パワーローラの外側面と上記各トラニオンの内側面との間に設けたスラスト軸受とを備え、上記入力側、出力側両ディスクの互いに対向する内側面を、それぞれ断面が円弧形の凹面とし、上記各パワーローラの周面を球面状の凸面として、これら各周面と上記各内側面とを当接させて成るトロイダル型無段変速機に於いて、上記各枢軸の中心軸方向に対し直角方向に広がる面での上記各トラニオンの中間部の断面を考え、これら各トラニオンが内部に円孔や通油孔を設けていない充実構造であると仮定した場合に、これら各トラニオンの中央部分で上記各変位軸の近傍部分での断面積が、これら各トラニオンの両端寄り部分で上記各枢軸に近い部分の断面積よりも小さい事を特徴とするトロイダル型無段変速機。The input side and output side disks supported concentrically and independently of each other, and the torsion that does not intersect the center axis in a direction perpendicular to the direction of the center axis of both the input side and output side disks. A plurality of trunnions swinging around a pair of concentric axes that are concentric with each other, a displacement shaft supported for each trunnion, and rotatably supported by each of these displacement shafts, the input side A power roller sandwiched between the inner side surfaces of the output side discs, and a thrust bearing provided between the outer side surface of each power roller and the inner side surface of each trunnion. The inner side surfaces of the both side disks facing each other are concave surfaces each having a circular arc cross section, and the peripheral surfaces of the respective power rollers are spherical convex surfaces, and these peripheral surfaces and the respective inner side surfaces are brought into contact with each other. Become In Idar type continuously variable transmission, consider the cross section of the middle portion of each trunnion of a plane extending perpendicular to the center axis of the respective pivot, the trunnions is inside the circular holes and oil passing hole If it is assumed that the solid structure is not provided , the cross-sectional area of the central portion of each trunnion in the vicinity of each of the displacement axes is a portion of the trunnion near both ends of each trunnion. A toroidal-type continuously variable transmission characterized by being smaller than the area. 各トラニオンの中央部分の両側面で、各枢軸を中心とするこれら各トラニオンの揺動変位に伴って入力側、出力側両ディスクの外周縁部に近づく部分に、これら両ディスクの外周縁部と上記各トラニオンとの干渉を防止する為の凹部を形成している、請求項1に記載したトロイダル型無段変速機。On both sides of the central part of each trunnion, the outer peripheral edge part of these two disks is placed on the part approaching the outer peripheral edge part of both the input side and output side disks as the trunnion swings about each pivot axis. The toroidal continuously variable transmission according to claim 1, wherein a recess is formed to prevent interference with each of the trunnions. 凹部は、入力側、出力側両ディスクの外周縁部とほぼ同じ形状を有する刃物を各トラニオンに対し、各枢軸を中心とするこれら各トラニオンの揺動変位に伴ってこれら各トラニオンと上記両ディスクの外周縁部とが近づき合う方向に近づける事により形成したものである、請求項2に記載したトロイダル型無段変速機。The recess has a blade having substantially the same shape as the outer peripheral edge of both the input and output discs, and each trunnion and the both discs as the trunnions swing around the pivots with respect to each trunnion. The toroidal-type continuously variable transmission according to claim 2, wherein the toroidal-type continuously variable transmission is formed by approaching in a direction in which the outer peripheral edge portion approaches each other. 各トラニオンの中央部の幅寸法を両端寄り部分の幅寸法よりも大きくし、各パワーローラに加わるスラスト荷重を支承する為のスラスト玉軸受を構成する玉のピッチ円を、上記トラニオンの両側縁同士の間に配置した、請求項2〜3の何れかに記載したトロイダル型無段変速機。The width of the central part of each trunnion is made larger than the width of the part near both ends, and the pitch circle of the ball constituting the thrust ball bearing for supporting the thrust load applied to each power roller is The toroidal type continuously variable transmission according to any one of claims 2 to 3, which is disposed between the two.
JP34544698A 1998-12-04 1998-12-04 Toroidal continuously variable transmission Expired - Fee Related JP4110645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34544698A JP4110645B2 (en) 1998-12-04 1998-12-04 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34544698A JP4110645B2 (en) 1998-12-04 1998-12-04 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2000170862A JP2000170862A (en) 2000-06-23
JP4110645B2 true JP4110645B2 (en) 2008-07-02

Family

ID=18376654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34544698A Expired - Fee Related JP4110645B2 (en) 1998-12-04 1998-12-04 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4110645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248702A (en) * 2000-03-03 2001-09-14 Nsk Ltd Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP2000170862A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP4003122B2 (en) Power roller unit for toroidal type continuously variable transmission
JP4110645B2 (en) Toroidal continuously variable transmission
JP3651929B2 (en) Toroidal continuously variable transmission
JP3899745B2 (en) Toroidal continuously variable transmission
JP3870594B2 (en) Toroidal continuously variable transmission
JPH1151135A (en) Toroidal type continuously variable transmission
JP4069573B2 (en) Toroidal continuously variable transmission
JP3743147B2 (en) Toroidal continuously variable transmission
JP3486992B2 (en) Toroidal type continuously variable transmission
JP4016514B2 (en) Toroidal continuously variable transmission
JP4894178B2 (en) Toroidal continuously variable transmission
JP3617235B2 (en) Toroidal continuously variable transmission
US5380256A (en) Toroidal type continuously variable transmission
JP3503370B2 (en) Toroidal type continuously variable transmission
JP3820978B2 (en) Toroidal continuously variable transmission
JP4032549B2 (en) Toroidal continuously variable transmission
JP4587119B2 (en) Toroidal continuously variable transmission
JP4362858B2 (en) Ball spline of toroidal type continuously variable transmission
JPH07229546A (en) Toroidal type continuously variable transmission
JP3617265B2 (en) Toroidal continuously variable transmission
JP4013369B2 (en) Toroidal type continuously variable transmission assembly method
JP4026237B2 (en) Toroidal continuously variable transmission
JP4280963B2 (en) Toroidal continuously variable transmission
JP3617258B2 (en) Toroidal continuously variable transmission
JP4144166B2 (en) Continuously variable transmission for pumping pump or generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees