JP3617258B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP3617258B2
JP3617258B2 JP17994597A JP17994597A JP3617258B2 JP 3617258 B2 JP3617258 B2 JP 3617258B2 JP 17994597 A JP17994597 A JP 17994597A JP 17994597 A JP17994597 A JP 17994597A JP 3617258 B2 JP3617258 B2 JP 3617258B2
Authority
JP
Japan
Prior art keywords
input
shaft
side disk
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17994597A
Other languages
Japanese (ja)
Other versions
JPH1122800A (en
Inventor
尚 今西
宣晶 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP17994597A priority Critical patent/JP3617258B2/en
Priority to US09/108,174 priority patent/US6174257B1/en
Priority to DE1998129631 priority patent/DE19829631B4/en
Priority to DE19861362A priority patent/DE19861362B4/en
Publication of JPH1122800A publication Critical patent/JPH1122800A/en
Application granted granted Critical
Publication of JP3617258B2 publication Critical patent/JP3617258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係るトロイダル型無段変速機は、例えば自動車用の自動変速機として利用する。
【0002】
【従来の技術】
自動車用変速機として、図4〜5に略示する様なトロイダル型無段変速機を使用する事が研究されている。このトロイダル型無段変速機は、例えば実開昭62−71465号公報に開示されている様に、入力軸1と同心に入力側ディスク2を支持し、この入力軸1と同心に配置された出力軸3の端部に出力側ディスク4を固定している。トロイダル型無段変速機を収めたケーシングの内側には、上記入力軸1並びに出力軸3に対し捻れの位置にある枢軸5、5を中心として揺動するトラニオン6、6を設けている。
【0003】
これら各トラニオン6、6は、両端部外側面に上記枢軸5、5を設けている。又、これら各トラニオン6、6の中心部には変位軸7、7の基端部を支持し、上記各枢軸5、5を中心として上記各トラニオン6、6を揺動させる事により、上記各変位軸7、7の傾斜角度の調節を自在としている。上記各トラニオン6、6に支持した変位軸7、7の周囲には、それぞれパワーローラ8、8を回転自在に支持している。そして、これら各パワーローラ8、8を、上記入力側、出力側両ディスク2、4の間に挟持している。これら入力側、出力側両ディスク2、4の互いに対向する内側面2a、4aは、それぞれ断面が、上記枢軸5を中心とする円弧を、上記入力軸1及び出力軸3を中心に回転させて得られる凹面をなしている。そして、球状凸面に形成された各パワーローラ8、8の周面8a、8aは、上記内側面2a、4aに当接させている。
【0004】
上記入力軸1と入力側ディスク2との間には、ローディングカム式の押圧装置9を設け、この押圧装置9によって、上記入力側ディスク2を出力側ディスク4に向け、弾性的に押圧している。この押圧装置9は、入力軸1と共に回転するカム板10と、保持器11により保持された複数個(例えば4個)のローラ12、12とから構成している。上記カム板10の片側面(図4〜5の左側面)には、円周方向に亙る凹凸面であるカム面13を形成し、上記入力側ディスク2の外側面(図4〜5の右側面)にも、同様のカム面14を形成している。そして、上記複数個のローラ12、12を、上記入力軸1の中心に対して放射方向の軸を中心とする回転自在に支持している。
【0005】
上述の様に構成するトロイダル型無段変速機の使用時、入力軸1の回転に伴ってカム板10が回転すると、カム面13が複数個のローラ12、12を、入力側ディスク2外側面のカム面14に押圧する。この結果、上記入力側ディスク2が、上記各パワーローラ8、8に押圧されると同時に、上記1対のカム面13、14と複数個のローラ12、12との押し付け合いに基づいて、上記入力側ディスク2が回転する。そして、この入力側ディスク2の回転が、上記各パワーローラ8、8を介して出力側ディスク4に伝わり、この出力側ディスク4に固定の出力軸3を回転させる。
【0006】
入力軸1と出力軸3との回転速度比(変速比)を変える場合で、先ず入力軸1と出力軸3との間で減速を行なう場合には、枢軸5、5を中心として各トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図4に示す様に、入力側ディスク2の内側面2aの中心寄り部分と出力側ディスク4の内側面4aの外周寄り部分とにそれぞれ当接する様に、各変位軸7、7を傾斜させる。反対に、増速を行なう場合には、上記枢軸5、5を中心として上記各トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図5に示す様に、入力側ディスク2の内側面2aの外周寄り部分と出力側ディスク4の内側面4aの中心寄り部分とに、それぞれ当接する様に、各変位軸7、7を傾斜させる。各変位軸7、7の傾斜角度を図4と図5との中間にすれば、入力軸1と出力軸3との間で、中間の変速比を得られる。
【0007】
更に、図6〜7は、実願昭63−69293号(実開平1−173552号)のマイクロフィルムに記載された、より具体化されたトロイダル型無段変速機を示している。入力側ディスク2と出力側ディスク4とは入力軸15の周囲に、それぞれニードル軸受16、16を介して回転自在に支持している。又、カム板10は上記入力軸15の端部(図6の左端部)外周面にスプライン係合し、鍔部17により、上記入力側ディスク2から離れる方向への移動を阻止している。そして、このカム板10とローラ12、12とにより、上記入力軸15の回転に基づいて上記入力側ディスク2を、出力側ディスク4に向け押圧しつつ回転させる、ローディングカム式の押圧装置9を構成している。上記出力側ディスク4には出力歯車18を、キー19、19により結合し、これら出力側ディスク4と出力歯車18とが同期して回転する様にしている。この出力歯車18、並びにこの出力歯車18と噛合した図示しない歯車等が、請求項1に記載した、出力ディスクの回転を取り出す為の動力取り出し手段を構成する。
【0008】
1対のトラニオン6、6の両端部に設けた枢軸5、5は1対の支持ポスト20、20に、揺動並びに軸方向(図6の表裏方向、図7の左右方向)に亙る変位自在に支持している。上記1対の支持ポスト20、20は、十分な剛性を有する金属板状で、中央部に形成した円孔21を、ケーシング22の内面若しくはこのケーシング22内に設けたシリンダケース23の側面に固設した支持ピン24a、24bに外嵌する事により、上記ケーシング22の内側に、揺動並びに上記各枢軸5、5の軸方向に亙る変位自在に支持している。又、上記各支持ポスト20、20の両端部には、それぞれ円形の支持孔25、25を形成しており、これら各支持孔25、25に、それぞれ上記各枢軸5、5を、それぞれが外輪26、26を備えたラジアルニードル軸受27、27により、支持している。これらの構成に基づいて上記各トラニオン6、6を、上記各枢軸5、5を中心とする揺動並びにこれら各枢軸5、5の軸方向に亙る変位を自在として、上記ケーシング22内に支持している。
【0009】
上述の様にして上記ケーシング22内に支持した、上記各トラニオン6、6の中間部に形成した円孔52、52部分に、変位軸7、7を支持している。これら各変位軸7、7は、互いに平行で且つ偏心した支持軸部28、28と枢支軸部29、29とを、それぞれ有する。このうちの各支持軸部28、28を上記各円孔52、52の内側に、ラジアルニードル軸受30、30を介して、揺動自在に支持している。又、上記各枢支軸部29、29の周囲にパワーローラ8、8を、ラジアルニードル軸受31、31等のラジアル転がり軸受を介して、回転自在に支持している。
【0010】
尚、上記1対の変位軸7、7は、前記入力軸15を中心として、180度反対側位置に設けている。又、これら各変位軸7、7の各枢支軸部29、29が各支持軸部28、28に対し偏心している方向は、上記入力側、出力側両ディスク2、4の回転方向に関し同方向(図7で左右逆方向)としている。又、偏心方向は、上記入力軸15の配設方向(図6の左右方向、図7の表裏方向)に対しほぼ直交する方向としている。従って上記各パワーローラ8、8は、上記入力軸15の配設方向に亙る若干の変位自在に支持される。この結果、構成各部品の寸法精度のばらつき、或は動力伝達時の弾性変形等に起因して、上記各パワーローラ8、8が上記入力軸15の軸方向(図6の左右方向、図7の表裏方向)に変位する傾向となった場合でも、構成各部品に無理な力を加える事なく、この変位を吸収できる。
【0011】
又、上記各パワーローラ8、8の外側面と上記各トラニオン6、6の中間部内側面との間には、パワーローラ8、8の外側面の側から順に、スラスト玉軸受32、32等のスラスト転がり軸受と、次述する外輪33、33に加わるスラスト荷重を支承するスラストニードル軸受34、34等のスラスト軸受とを設けている。このうちのスラスト玉軸受32、32は、上記各パワーローラ8、8に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ8、8の回転を許容する。又、上記各スラストニードル軸受34、34は、上記各パワーローラ8、8から上記各スラスト玉軸受32、32の外輪33、33に加わるスラスト荷重を支承しつつ、上記枢支軸部29、29及び上記外輪33、33が上記支持軸部28、28を中心に揺動する事を許容する。
【0012】
又、上記各トラニオン6、6の一端部(図7の左端部)には、それぞれ駆動ロッド35、35を結合し、各駆動ロッド35、35の中間部外周面に駆動ピストン36、36を固設している。そして、これら各駆動ピストン36、36をそれぞれ、前記シリンダケース23内に設けた駆動シリンダ37、37内に油密に嵌装している。更に、前記ケーシング22内に設けた支持壁38と前記入力軸15との間には1対の転がり軸受39、39を設けて、上記入力軸15を上記ケーシング22内に回転自在に支持している。
【0013】
上述の様に構成するトロイダル型無段変速機の場合には、入力軸15の回転を押圧装置9を介して入力側ディスク2に伝える。そして、この入力側ディスク2の回転を、1対のパワーローラ8、8を介して出力側ディスク4に伝達し、更にこの出力側ディスク4の回転を、前記出力歯車18より取り出す。上記入力軸15と出力歯車18との間の回転速度比を変える場合には、前記1対の駆動ピストン36、36を互いに逆方向に変位させる。これら各駆動ピストン36、36の変位に伴って上記1対のトラニオン6、6が、それぞれ逆方向に変位し、例えば図7の下側のパワーローラ8が同図の右側に、同図の上側のパワーローラ8が同図の左側に、それぞれ変位する。この結果、これら各パワーローラ8、8の周面8a、8aと上記入力側ディスク2及び出力側ディスク4の内側面2a、4aとの当接部に作用する、接線方向の力の向きが変化する。そして、この力の向きの変化に伴って上記各トラニオン6、6が、支持ポスト20、20に枢支された枢軸5、5を中心として、図6で互いに逆方向に揺動する。この結果、前述の図4〜5に示した様に、上記各パワーローラ8、8の周面8a、8aと上記各内側面2a、4aとの当接位置が変化し、上記入力軸15と出力歯車18との間の回転速度比が変化する。
【0014】
尚、動力伝達時に構成各部品が弾性変形する結果、上記各パワーローラ8、8が上記入力軸15の軸方向に変位すると、これら各パワーローラ8、8を枢支している上記各変位軸7、7が、前記各支持軸部28、28を中心として僅かに揺動する。この揺動の結果、前記各スラスト玉軸受32、32の外輪33、33の外側面と上記各トラニオン6、6の内側面とが相対変位する。これら外側面と内側面との間には、前記各スラストニードル軸受34、34が存在する為、この相対変位に要する力は小さい。従って、上述の様に各変位軸7、7の傾斜角度を変化させる為の力が小さくて済む。
【0015】
【発明が解決しようとする課題】
上述の様に構成され作用するトロイダル型無段変速機の場合、伝達すべきトルクが過大になると、各トラニオン6、6の弾性変形に基づき、各スラスト玉軸受32、32を構成する外輪33、33の耐久性を確保できない可能性がある。即ち、トロイダル型無段変速機の運転時に上記各トラニオン6、6の中間部内側面(上記入力軸15に対向する面)には、各トラニオン6、6に支持した各パワーローラ8、8から大きなスラスト荷重が加わる。そして、トロイダル型無段変速機の運転時にこのスラスト荷重に基づいて上記各トラニオン6、6が、図8に誇張して示す様に、それぞれの内側面側が凹面となる方向に湾曲する。
【0016】
この様な湾曲が生じると、上記各スラスト玉軸受32、32を構成するそれぞれ複数個ずつの玉40、40の転動面と、上記各外輪33、33の内側面に形成した外輪軌道41、41及び上記各パワーローラ8、8の外側面に形成した内輪軌道42、42との接触圧が不均一になる。具体的には、上記各トラニオン6、6の長さ方向両端寄り部分に存在する、図7〜8の左右両側部分に存在する玉40、40の転動面と上記外輪軌道41、41及び内輪軌道42、42との接触圧が大きくなる。反対に、上記各トラニオン6、6の幅方向両端寄り部分に存在する、図6の左右両側部分に存在する玉40、40の転動面と上記外輪軌道41、41及び内輪軌道42、42との接触圧が小さくなる。
【0017】
上記各パワーローラ8、8及び玉40、40は、トロイダル型無段変速機の運転に伴って回転若しくは公転する為、上記転動面及び内輪軌道42、42は、ほぼまんべんなく荷重を受ける。従って、これら転動面及び内輪軌道42、42の疲労が局部的に進む事はない。これに対して上記各外輪33、33は、変位軸7の中間部で支持軸部28と枢支軸部29との連続部分に外嵌固定して回転しない。この為、上記各外輪軌道41、41は、常に同じ部分(図7〜8の左右両端近傍部分)に大きな接触圧が加わり、当該部分の疲労が局部的に進行する。この結果、上記各スラスト玉軸受32、32の転がり疲れ寿命が短くなり、トロイダル型無段変速機の耐久性を確保する上で好ましくない。
本発明のトロイダル型無段変速機は、上述の様な不都合を解消すべく発明したものである。
【0018】
【課題を解決するための手段】
本発明のトロイダル型無段変速機は、前述した従来から知られているトロイダル型無段変速機と同様に、入力軸と、この入力軸と共に回転自在な入力側ディスクと、この入力側ディスクと同心に配置され、且つこの入力側ディスクに対する回転自在に支持された出力側ディスクと、この出力側ディスクの回転を取り出す為の動力取り出し手段と、上記入力側、出力側両ディスクの中心軸に対し捻れの位置に配置されて当該位置で揺動する複数のトラニオンと、これら各トラニオンに支持された変位軸に回転自在に支持され、入力側、出力側両ディスクの間に挟持された複数のパワーローラと、これら各パワーローラの外側面と上記各トラニオンの内側面との間に設けられて上記各パワーローラに加わるスラスト荷重を支承しつつこれら各パワーローラの回転を許容するスラスト転がり軸受とから構成する。そして、入力側、出力側両ディスクの互いに対向する内側面を、それぞれ断面が円弧形の凹面とし、上記各パワーローラの周面を球面状の凸面として、これら各周面と上記内側面とを当接させている。
特に、本発明のトロイダル型無段変速機に於いては、上記各スラスト転がり軸受を構成する円環状の外輪を上記各変位軸の中間部周囲に、これら各変位軸を中心とする回転自在に支持している。
【0019】
【作用】
上述の様に構成する本発明のトロイダル型無段変速機により、入力側ディスクと出力側ディスクとの間で回転力の伝達を行なう際の作用、並びにこれら両ディスク同士の間での変速比を変える際の作用は、前述した従来のトロイダル型無段変速機の場合と同様である。
特に、本発明のトロイダル型無段変速機の場合には、各スラスト転がり軸受を構成する外輪を、変位軸の周囲に回転自在に支持している為、外輪軌道のうち、転動体から大きなスラスト荷重を受ける部分(転動面との接触圧が大きな部分)が常に変化する。この結果、上記外輪軌道が局部的に疲労する事がなくなり(外輪軌道の疲労が全周に亙ってまんべんなく進行し)、上記外輪軌道の転がり疲れ寿命の延長を図れる。
【0020】
【発明の実施の形態】
図1〜3は、本発明の実施の形態の1例を示している。尚、本発明の特徴は、それぞれがスラスト転がり軸受であるスラスト玉軸受32、32(図6〜8参照)を構成する外輪33を変位軸7に対して回転自在に支持する事により、この外輪33の内側面(図1の上面)に形成した外輪軌道41の転がり疲れ寿命の延長を図る点にある。その他の部分の構造及び作用は、前述した従来構造の場合と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
【0021】
上記各スラスト玉軸受32を構成する円環状(円輪状)の外輪33は上記変位軸7の中間部で支持軸部28と枢支軸部29との連続部の周囲に、この変位軸7を中心とする回転自在に支持している。この為、上記外輪33の中心部に、大径部43と小径部44とを段部45で連続させた、円形の中心孔46を形成している。そして、この中心孔46の大径部43を、上記変位軸7の中間部に形成した外向フランジ状で円形の鍔部47に、隙間嵌で外嵌している。この為、上記大径部43の内径を上記鍔部47の外径よりも僅かに大きくしている。又、上記小径部44の内径は、上記枢支軸部29の基端部(図1の下端部)の外径よりも十分に大きくし、この枢支軸部29の基端部の外周面と上記小径部44の内周面との間に、ラジアルニードル軸受48、或は銅系合金を使用したラジアル滑り軸受等のラジアル軸受を設けている。
【0022】
尚、上記外輪33の外側面(図1〜2の下面)とトラニオン6(図6〜8参照)の内側面との間にはスラストニードル軸受34(図3及び図6〜8参照)を設けているので、上記外輪33に加わるスラスト荷重に拘らず、上記変位軸7の周囲での上記外輪33の回転が円滑に行なわれる。尚、この回転を円滑に行なわせる為には、図3に示す様に、上記スラストニードル軸受34を構成する複数本のニードル49、49のうち、上記外輪33の外側面に当接するニードル49、49を、上記支持軸部28を中心とする放射方向に配置する事が好ましい。この様に上記各ニードル49、49を配置すれば、上記支持軸部28を中心とする外輪33の回転時にこれら各ニードル49、49が円滑に転動し、上記変位軸7の周囲での上記外輪33の回転を円滑に行わせる事ができる。尚、上記各ニードル49、49の配列方向と上記支持軸部28を中心とする放射方向とは、上記変位軸7が中立位置(図3に示した位置)に存在する状態で一致すれば良い。
【0023】
又、前記ラジアルニードル軸受48と上記スラストニードル軸受34とにより、上記変位軸7の中間部周囲に上記外輪33を回転自在に支持した状態で、上記段部45と上記鍔部47の片側面(図1〜2の上面)とは当接若しくは近接する。これら両面並びに上記大径部43の内周面と上記鍔部47の外周面とは平滑にして、これら互いに対向する面同士が当接した場合でも、上記変位軸7の周囲での上記外輪33の回転が円滑に行なわれる様にする。但し、上記変位軸7に対する外輪33の回転速度が速くなり過ぎると、上記段部45と上記鍔部47の片側面との当接部の摩耗が進行し易くなる等、耐久性の面から問題が生じる。即ち、本発明は、上記変位軸7に対して外輪33を回転させる事により、この外輪33の内側面に設けた外輪軌道41の耐久性増大を図るものであるが、上記変位軸7に対する外輪33の回転速度は、回転が安定して行なわれる限り、なるべく遅い(例えば1〜数r.p.m.程度)事が好ましい。そこで、上記段部45と上記鍔部47の片側面との当接部、更に必要とすれば上記大径部43の内周面と上記鍔部47の外周面との当接部に、適当な摩擦抵抗を与えて、上記変位軸7に対する外輪33の回転速度を調整する。尚、必要とすれば、上記各当接部の一方又は双方に、所望の摩擦係数を有する摩擦調整部材を挟持しても良い。
【0024】
又、上記段部45と上記鍔部47の片側面との当接部、更に必要とすれば上記大径部43の内周面と上記鍔部47の外周面との当接部には、これら各当接部を構成する各面の摩耗を防止する為の処理を施す事が好ましい。この様な処理としては、上記変位軸7(のうち特に鍔部47)や外輪33(のうち特に内径側部分)を優れた耐摩耗性を有する材料で構成したり、或は当接部を構成する表面に、窒化処理等、耐摩耗性を有する表面処理を施す事が考えられる。
【0025】
上述の様に構成する本発明のトロイダル型無段変速機の場合には、各スラスト玉軸受32、32を構成する外輪33を、変位軸7の中間部周囲に回転自在に支持している為、上記外輪33が、スラスト玉軸受32、32の転がり抵抗に基づいて回転する。この為上記外輪33の内側面に設けた外輪軌道41のうち、転動体である玉40、40(図6〜8参照)から大きなスラスト荷重を受ける部分(転動面との接触圧が大きな部分)が常に変化する。従って、上記外輪軌道41が局部的に疲労する事がなくなる。言い換えれば、上記外輪軌道41の疲労が全周に亙ってまんべんなく進行する。この結果、上記外輪軌道41全体としての転がり疲れ寿命の延長を図れる。
【0026】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、スラスト転がり軸受の外輪の耐久性を向上させて、この外輪を組み込んだトロイダル型無段変速機の信頼性及び耐久性の向上に寄与できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す、変位軸と外輪とを取り出して示す部分切断面図。
【図2】図1のA部拡大図。
【図3】スラスト玉軸受及びスラストニードル軸受を組み込んだトラニオンの内側面部分の透視図。
【図4】トロイダル型無段変速機の基本構成を、最大減速時の状態で示す略側面図。
【図5】同じく最大増速時の状態で示す略側面図。
【図6】従来から知られている具体的構造の1例を示す要部断面図。
【図7】図6のB−B断面図。
【図8】運転時に作用するスラスト荷重に基づいてトラニオンが弾性変形した状態を誇張して示す、図7と同方向から見た略側面図。
【符号の説明】
1 入力軸
2 入力側ディスク
2a 内側面
3 出力軸
4 出力側ディスク
4a 内側面
5 枢軸
6 トラニオン
7 変位軸
8 パワーローラ
8a 周面
9 押圧装置
10 カム板
11 保持器
12 ローラ
13、14 カム面
15 入力軸
16 ニードル軸受
17 鍔部
18 出力歯車
19 キー
20 支持ポスト
21 円孔
22 ケーシング
23 シリンダケース
24a、24b 支持ピン
25 支持孔
26 外輪
27 ラジアルニードル軸受
28 支持軸部
29 枢支軸部
30、31 ラジアルニードル軸受
32 スラスト玉軸受
33 外輪
34 スラストニードル軸受
35 駆動ロッド
36 駆動ピストン
37 駆動シリンダ
38 支持壁
39 転がり軸受
40 玉
41 外輪軌道
42 内輪軌道
43 大径部
44 小径部
45 段部
46 中心孔
47 鍔部
48 ラジアルニードル軸受
49 ニードル
[0001]
BACKGROUND OF THE INVENTION
The toroidal type continuously variable transmission according to the present invention is used as an automatic transmission for automobiles, for example.
[0002]
[Prior art]
The use of a toroidal continuously variable transmission as schematically shown in FIGS. 4 to 5 has been studied as a transmission for automobiles. This toroidal type continuously variable transmission supports an input disk 2 concentrically with an input shaft 1 and is arranged concentrically with the input shaft 1 as disclosed in, for example, Japanese Utility Model Publication No. 62-71465. An output side disk 4 is fixed to the end of the output shaft 3. On the inner side of the casing containing the toroidal-type continuously variable transmission, trunnions 6 and 6 are provided that swing about pivots 5 and 5 that are twisted with respect to the input shaft 1 and the output shaft 3.
[0003]
Each of these trunnions 6 and 6 is provided with the pivots 5 and 5 on the outer side surfaces of both ends. Further, by supporting the base ends of the displacement shafts 7 and 7 at the center of the trunnions 6 and 6, and by swinging the trunnions 6 and 6 about the pivots 5 and 5, The inclination angle of the displacement shafts 7 and 7 can be adjusted freely. Power rollers 8 and 8 are rotatably supported around the displacement shafts 7 and 7 supported by the trunnions 6 and 6, respectively. The power rollers 8 and 8 are sandwiched between the input side and output side disks 2 and 4. The inner side surfaces 2a and 4a of the input side and output side discs 2 and 4 facing each other are each rotated by rotating a circular arc around the pivot shaft 5 around the input shaft 1 and the output shaft 3 respectively. The resulting concave surface. And the peripheral surfaces 8a and 8a of each power roller 8 and 8 formed in the spherical convex surface are made to contact | abut to the said inner surface 2a and 4a.
[0004]
A loading cam type pressing device 9 is provided between the input shaft 1 and the input side disk 2, and the pressing device 9 elastically presses the input side disk 2 toward the output side disk 4. Yes. The pressing device 9 includes a cam plate 10 that rotates together with the input shaft 1 and a plurality of (for example, four) rollers 12 and 12 held by a cage 11. A cam surface 13 that is an uneven surface extending in the circumferential direction is formed on one side surface (left side surface in FIGS. 4 to 5) of the cam plate 10, and the outer side surface (right side in FIGS. 4 to 5) of the input side disk 2 is formed. The same cam surface 14 is also formed on the surface). The plurality of rollers 12 and 12 are supported so as to be rotatable about a radial axis with respect to the center of the input shaft 1.
[0005]
When the toroidal type continuously variable transmission configured as described above is used, when the cam plate 10 rotates as the input shaft 1 rotates, the cam surface 13 causes the rollers 12 and 12 to move to the outer surface of the input side disk 2. The cam surface 14 is pressed. As a result, the input side disk 2 is pressed against the power rollers 8 and 8 and at the same time, based on the pressing between the pair of cam surfaces 13 and 14 and the plurality of rollers 12 and 12, The input side disk 2 rotates. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through the power rollers 8 and 8, and the output shaft 3 fixed to the output side disk 4 is rotated.
[0006]
When the rotational speed ratio (transmission ratio) between the input shaft 1 and the output shaft 3 is changed, and when first decelerating between the input shaft 1 and the output shaft 3, each trunnion 6 is centered on the pivot shafts 5 and 5. 6, and the peripheral surfaces 8 a, 8 a of the power rollers 8, 8 are located near the center of the inner surface 2 a of the input disk 2 and the outer periphery of the inner surface 4 a of the output disk 4 as shown in FIG. The displacement shafts 7 and 7 are inclined so as to abut against the offset portions. On the other hand, when increasing the speed, the trunnions 6 and 6 are swung around the pivot shafts 5 and 5 so that the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are as shown in FIG. The displacement shafts 7 and 7 are inclined so as to abut the outer peripheral portion of the inner side surface 2a of the input side disc 2 and the central portion of the inner side surface 4a of the output side disc 4 respectively. If the inclination angle of each of the displacement shafts 7 and 7 is set intermediate between those shown in FIGS. 4 and 5, an intermediate gear ratio can be obtained between the input shaft 1 and the output shaft 3.
[0007]
6 to 7 show a more specific toroidal type continuously variable transmission described in the microfilm of Japanese Utility Model Application No. 63-69293 (Japanese Utility Model Laid-Open No. 1-173552). The input side disk 2 and the output side disk 4 are rotatably supported around the input shaft 15 via needle bearings 16 and 16, respectively. Further, the cam plate 10 is spline-engaged with the outer peripheral surface of the end portion (left end portion in FIG. 6) of the input shaft 15, and the flange portion 17 prevents movement in the direction away from the input side disk 2. Then, a loading cam type pressing device 9 that rotates the input side disk 2 while pressing the input side disk 2 toward the output side disk 4 based on the rotation of the input shaft 15 by the cam plate 10 and the rollers 12 and 12. It is composed. An output gear 18 is coupled to the output side disk 4 by means of keys 19, 19, so that the output side disk 4 and the output gear 18 rotate in synchronization. The output gear 18 and a gear (not shown) meshed with the output gear 18 constitute the power take-out means for taking out the rotation of the output disk.
[0008]
The pivots 5, 5 provided at both ends of the pair of trunnions 6, 6 are swingable on the pair of support posts 20, 20 and can be displaced in the axial direction (front and back direction in FIG. 6, left and right direction in FIG. 7). I support it. The pair of support posts 20, 20 is a metal plate having sufficient rigidity, and a circular hole 21 formed in the center is fixed to the inner surface of the casing 22 or the side surface of the cylinder case 23 provided in the casing 22. By being externally fitted to the provided support pins 24a and 24b, it is supported inside the casing 22 so as to be swingable and displaceable in the axial direction of the pivots 5 and 5. In addition, circular support holes 25 and 25 are formed at both ends of the support posts 20 and 20, respectively. The pivots 5 and 5 are respectively connected to the support holes 25 and 25, respectively. It is supported by radial needle bearings 27, 27 having 26, 26. Based on these configurations, the trunnions 6 and 6 are supported in the casing 22 such that the trunnions 6 and 6 are freely swingable around the pivots 5 and 5 and displaced in the axial direction of the pivots 5 and 5. ing.
[0009]
The displacement shafts 7 and 7 are supported in the circular holes 52 and 52 formed in the middle part of the trunnions 6 and 6 supported in the casing 22 as described above. Each of these displacement shafts 7 and 7 has support shaft portions 28 and 28 and pivot shaft portions 29 and 29 that are parallel to each other and eccentric, respectively. Of these, the support shaft portions 28 and 28 are supported inside the circular holes 52 and 52 so as to be swingable through radial needle bearings 30 and 30. Further, power rollers 8 and 8 are rotatably supported around the pivot shaft portions 29 and 29 through radial rolling bearings such as radial needle bearings 31 and 31.
[0010]
The pair of displacement shafts 7 and 7 are provided at 180 ° opposite positions with the input shaft 15 as the center. The direction in which the pivot shafts 29 and 29 of the displacement shafts 7 and 7 are eccentric with respect to the support shafts 28 and 28 is the same with respect to the rotation direction of the input side and output side disks 2 and 4. It is set as the direction (left-right reverse direction in FIG. 7). Further, the eccentric direction is a direction substantially orthogonal to the arrangement direction of the input shaft 15 (the left-right direction in FIG. 6 and the front-back direction in FIG. 7). Accordingly, the power rollers 8 and 8 are supported so as to be slightly displaceable in the direction in which the input shaft 15 is disposed. As a result, due to variations in dimensional accuracy of the constituent parts or elastic deformation at the time of power transmission, the power rollers 8 and 8 are moved in the axial direction of the input shaft 15 (left and right direction in FIG. 6, FIG. 7). Even when it tends to be displaced in the direction of the front and back), this displacement can be absorbed without applying excessive force to each component.
[0011]
Further, between the outer surface of each of the power rollers 8 and 8 and the inner surface of the intermediate portion of each of the trunnions 6 and 6, thrust ball bearings 32 and 32, etc. in order from the outer surface side of the power rollers 8 and 8. A thrust rolling bearing and thrust bearings such as thrust needle bearings 34 and 34 for supporting a thrust load applied to the outer rings 33 and 33 described below are provided. Of these, the thrust ball bearings 32, 32 allow the power rollers 8, 8 to rotate while supporting a load in the thrust direction applied to the power rollers 8, 8. The thrust needle roller bearings 34, 34 support the thrust load applied to the outer rings 33, 33 of the thrust ball bearings 32, 32 from the power rollers 8, 8, while supporting the pivot shafts 29, 29. The outer rings 33 and 33 are allowed to swing around the support shafts 28 and 28.
[0012]
Further, driving rods 35 and 35 are coupled to one end portions (left end portions in FIG. 7) of the trunnions 6 and 6 respectively, and driving pistons 36 and 36 are fixed to the outer peripheral surfaces of the intermediate portions of the driving rods 35 and 35, respectively. Has been established. The drive pistons 36 and 36 are oil-tightly fitted in drive cylinders 37 and 37 provided in the cylinder case 23, respectively. Further, a pair of rolling bearings 39, 39 are provided between the support wall 38 provided in the casing 22 and the input shaft 15, and the input shaft 15 is rotatably supported in the casing 22. Yes.
[0013]
In the case of the toroidal type continuously variable transmission configured as described above, the rotation of the input shaft 15 is transmitted to the input side disk 2 via the pressing device 9. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 via a pair of power rollers 8 and 8, and the rotation of the output side disk 4 is further taken out from the output gear 18. When changing the rotational speed ratio between the input shaft 15 and the output gear 18, the pair of drive pistons 36, 36 are displaced in opposite directions. As the drive pistons 36 and 36 are displaced, the pair of trunnions 6 and 6 are displaced in the opposite directions. For example, the lower power roller 8 in FIG. The power rollers 8 are displaced to the left in the figure. As a result, the direction of the tangential force acting on the contact portion between the peripheral surfaces 8a, 8a of the power rollers 8, 8 and the inner side surfaces 2a, 4a of the input side disk 2 and the output side disk 4 changes. To do. As the force changes, the trunnions 6 and 6 swing in directions opposite to each other in FIG. 6 about the pivots 5 and 5 pivotally supported by the support posts 20 and 20. As a result, as shown in FIGS. 4 to 5 described above, the contact position between the peripheral surfaces 8a and 8a of the power rollers 8 and 8 and the inner surfaces 2a and 4a changes, and the input shaft 15 and The rotational speed ratio with the output gear 18 changes.
[0014]
When the power rollers 8 and 8 are displaced in the axial direction of the input shaft 15 as a result of elastic deformation of the constituent parts during power transmission, the displacement shafts pivotally supporting the power rollers 8 and 8 are used. 7 and 7 slightly swing around the support shafts 28 and 28. As a result of this swinging, the outer side surfaces of the outer rings 33, 33 of the thrust ball bearings 32, 32 and the inner side surfaces of the trunnions 6, 6 are relatively displaced. Since the thrust needle bearings 34, 34 exist between the outer surface and the inner surface, the force required for this relative displacement is small. Therefore, as described above, the force for changing the inclination angle of each displacement shaft 7, 7 can be small.
[0015]
[Problems to be solved by the invention]
In the case of the toroidal type continuously variable transmission configured and operated as described above, if the torque to be transmitted becomes excessive, the outer ring 33 constituting each thrust ball bearing 32, 32 based on the elastic deformation of each trunnion 6, 6; The durability of 33 may not be ensured. That is, when the toroidal continuously variable transmission is operated, the inner side surface of each trunnion 6, 6 (the surface facing the input shaft 15) is larger than the power rollers 8, 8 supported on each trunnion 6, 6. Thrust load is applied. Then, when the toroidal continuously variable transmission is operated, the trunnions 6 and 6 are curved in a direction in which the inner side surfaces thereof become concave as shown in an exaggerated manner in FIG. 8 based on this thrust load.
[0016]
When such bending occurs, the outer ring raceway 41 formed on the rolling surface of each of the plurality of balls 40, 40 constituting the thrust ball bearings 32, 32 and the inner surface of the outer rings 33, 33, 41 and the inner ring raceways 42 and 42 formed on the outer surfaces of the power rollers 8 and 8 become non-uniform. Specifically, the rolling surfaces of the balls 40, 40, the outer ring raceways 41, 41, and the inner ring, which are present on the left and right sides of FIGS. The contact pressure with the tracks 42, 42 increases. On the contrary, the rolling surfaces of the balls 40, 40 present on the left and right side portions in FIG. 6 and the outer ring raceways 41, 41 and the inner ring raceways 42, 42, which are present in the width direction both ends of each trunnion 6, 6, The contact pressure of becomes smaller.
[0017]
The power rollers 8 and 8 and the balls 40 and 40 rotate or revolve in accordance with the operation of the toroidal continuously variable transmission, so that the rolling surfaces and the inner ring raceways 42 and 42 receive loads almost evenly. Therefore, fatigue of the rolling surfaces and the inner ring raceways 42 and 42 does not proceed locally. On the other hand, the outer rings 33, 33 do not rotate by being externally fitted and fixed to a continuous portion of the support shaft portion 28 and the pivot shaft portion 29 at the intermediate portion of the displacement shaft 7. For this reason, in each of the outer ring raceways 41, 41, a large contact pressure is always applied to the same portion (a portion in the vicinity of both left and right ends in FIGS. 7 to 8), and fatigue of the portion progresses locally. As a result, the rolling fatigue life of the thrust ball bearings 32, 32 is shortened, which is not preferable for ensuring the durability of the toroidal type continuously variable transmission.
The toroidal continuously variable transmission of the present invention has been invented to eliminate the above-mentioned disadvantages.
[0018]
[Means for Solving the Problems]
The toroidal-type continuously variable transmission of the present invention includes an input shaft, an input-side disk rotatable with the input shaft, and the input-side disk, as in the above-described conventionally known toroidal-type continuously variable transmission. An output side disk arranged concentrically and supported rotatably with respect to the input side disk, power take-out means for taking out the rotation of the output side disk, and center axes of both the input side and output side disks A plurality of trunnions arranged at a twisted position and swinging at the positions, and a plurality of powers that are rotatably supported by displacement shafts supported by the trunnions and are sandwiched between both the input and output disks. These powers are mounted while supporting the thrust load applied to the power rollers provided between the rollers and the outer surfaces of the power rollers and the inner surfaces of the trunnions. It consists thrust rolling bearing to permit rotation of the roller. Then, the inner side surfaces of both the input side and output side discs facing each other are each a concave surface having a circular cross section, and the peripheral surface of each power roller is a spherical convex surface. Are in contact.
In particular, in the toroidal type continuously variable transmission according to the present invention, the annular outer ring constituting each thrust rolling bearing is rotatable around the middle portion of each displacement shaft and is rotatable around each displacement shaft. I support it.
[0019]
[Action]
With the toroidal-type continuously variable transmission of the present invention configured as described above, the operation when the rotational force is transmitted between the input side disk and the output side disk, and the gear ratio between these two disks are obtained. The action at the time of changing is the same as that of the conventional toroidal type continuously variable transmission described above.
In particular, in the case of the toroidal-type continuously variable transmission according to the present invention, the outer ring constituting each thrust rolling bearing is rotatably supported around the displacement shaft. The part that receives the load (the part where the contact pressure with the rolling surface is large) always changes. As a result, the outer ring raceway is not locally fatigued (the fatigue of the outer ring raceway proceeds evenly over the entire circumference), and the rolling fatigue life of the outer ring raceway can be extended.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an example of an embodiment of the present invention. The feature of the present invention is that the outer ring 33 constituting the thrust ball bearings 32 and 32 (see FIGS. 6 to 8), each of which is a thrust rolling bearing, is rotatably supported with respect to the displacement shaft 7. This is to extend the rolling fatigue life of the outer ring raceway 41 formed on the inner side surface 33 (upper surface in FIG. 1). Since the structure and operation of the other parts are the same as in the case of the above-described conventional structure, the illustration and description of the equivalent parts are omitted or simplified, and the following description will focus on the characteristic parts of the present invention.
[0021]
An annular (annular) outer ring 33 constituting each of the thrust ball bearings 32 is arranged in the middle of the displacement shaft 7 around the continuous portion of the support shaft portion 28 and the pivot shaft portion 29. It is supported rotatably around the center. For this reason, a circular center hole 46 in which the large diameter portion 43 and the small diameter portion 44 are continuously connected by the step portion 45 is formed in the center portion of the outer ring 33. The large-diameter portion 43 of the center hole 46 is externally fitted to the outward flange-like circular flange portion 47 formed in the intermediate portion of the displacement shaft 7 with a gap fit. For this reason, the inner diameter of the large-diameter portion 43 is slightly larger than the outer diameter of the flange portion 47. Further, the inner diameter of the small-diameter portion 44 is sufficiently larger than the outer diameter of the base end portion (lower end portion in FIG. 1) of the pivot shaft portion 29, and the outer peripheral surface of the base end portion of the pivot shaft portion 29. And a radial bearing such as a radial needle bearing 48 or a radial sliding bearing using a copper alloy is provided between the inner peripheral surface of the small-diameter portion 44.
[0022]
A thrust needle bearing 34 (see FIGS. 3 and 6-8) is provided between the outer surface of the outer ring 33 (the lower surface in FIGS. 1-2) and the inner surface of the trunnion 6 (see FIGS. 6-8). Therefore, the outer ring 33 is smoothly rotated around the displacement shaft 7 regardless of the thrust load applied to the outer ring 33. In order to perform this rotation smoothly, as shown in FIG. 3, among the plurality of needles 49, 49 constituting the thrust needle bearing 34, the needle 49 abutting on the outer surface of the outer ring 33, 49 is preferably arranged in the radial direction with the support shaft portion 28 as the center. If the needles 49 and 49 are arranged in this way, the needles 49 and 49 roll smoothly when the outer ring 33 rotates around the support shaft portion 28, and the needles around the displacement shaft 7. The outer ring 33 can be smoothly rotated. It should be noted that the arrangement direction of the needles 49, 49 and the radial direction centered on the support shaft portion 28 may coincide with each other in a state where the displacement shaft 7 exists at the neutral position (position shown in FIG. 3). .
[0023]
In addition, with the radial needle bearing 48 and the thrust needle bearing 34, the outer ring 33 is rotatably supported around the intermediate portion of the displacement shaft 7, and one side surface of the step portion 45 and the flange portion 47 ( The upper surface of FIGS. These outer surfaces and the inner peripheral surface of the large-diameter portion 43 and the outer peripheral surface of the flange portion 47 are made smooth so that the outer ring 33 around the displacement shaft 7 can be obtained even when the opposing surfaces contact each other. So that the rotation is smooth. However, if the rotational speed of the outer ring 33 with respect to the displacement shaft 7 becomes too fast, there is a problem in terms of durability, such as the wear of the contact portion between the stepped portion 45 and one side surface of the flange portion 47 easily progresses. Occurs. That is, the present invention aims to increase the durability of the outer ring raceway 41 provided on the inner surface of the outer ring 33 by rotating the outer ring 33 with respect to the displacement shaft 7. The rotation speed of 33 is preferably as slow as possible (for example, about 1 to several rpm) as long as the rotation is performed stably. In view of this, the contact portion between the step portion 45 and one side surface of the flange portion 47 and, if necessary, the contact portion between the inner peripheral surface of the large-diameter portion 43 and the outer peripheral surface of the flange portion 47 are suitably used. Thus, the rotational speed of the outer ring 33 with respect to the displacement shaft 7 is adjusted. If necessary, a friction adjusting member having a desired friction coefficient may be sandwiched between one or both of the contact portions.
[0024]
Further, the contact portion between the step portion 45 and one side surface of the flange portion 47, and if necessary, the contact portion between the inner peripheral surface of the large diameter portion 43 and the outer peripheral surface of the flange portion 47, It is preferable to perform a process for preventing wear of each surface constituting each of the contact portions. As such processing, the displacement shaft 7 (particularly the flange 47) and the outer ring 33 (particularly the inner diameter part) are made of a material having excellent wear resistance, or the contact part is formed. It can be considered that the surface to be constructed is subjected to a surface treatment having wear resistance such as nitriding treatment.
[0025]
In the case of the toroidal type continuously variable transmission of the present invention configured as described above, the outer ring 33 constituting each thrust ball bearing 32, 32 is rotatably supported around the intermediate portion of the displacement shaft 7. The outer ring 33 rotates based on the rolling resistance of the thrust ball bearings 32 and 32. For this reason, in the outer ring raceway 41 provided on the inner surface of the outer ring 33, a part that receives a large thrust load from the balls 40, 40 (see FIGS. 6 to 8) that are rolling elements (a part that has a large contact pressure with the rolling surface). ) Always changes. Therefore, the outer ring raceway 41 is not locally fatigued. In other words, the fatigue of the outer ring raceway 41 proceeds evenly over the entire circumference. As a result, the rolling fatigue life of the outer ring raceway 41 as a whole can be extended.
[0026]
【The invention's effect】
Since the present invention is configured and operates as described above, it is possible to improve the durability of the outer ring of the thrust rolling bearing and contribute to the improvement of the reliability and durability of the toroidal type continuously variable transmission incorporating this outer ring. .
[Brief description of the drawings]
FIG. 1 is a partial cutaway view showing a displacement shaft and an outer ring taken out, showing an example of an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a perspective view of an inner surface portion of a trunnion incorporating a thrust ball bearing and a thrust needle bearing.
FIG. 4 is a schematic side view showing a basic configuration of a toroidal-type continuously variable transmission in a state of maximum deceleration.
FIG. 5 is a schematic side view showing the maximum speed increase state.
FIG. 6 is a cross-sectional view of an essential part showing an example of a specific structure conventionally known.
7 is a cross-sectional view taken along line BB in FIG.
8 is a schematic side view exaggeratingly showing a state in which the trunnion is elastically deformed based on a thrust load acting during operation, as viewed from the same direction as FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Input side disk 2a Inner side surface 3 Output shaft 4 Output side disk 4a Inner side surface 5 Pivot 6 Trunnion 7 Displacement shaft 8 Power roller 8a Circumferential surface 9 Pressing device 10 Cam plate 11 Retainer 12 Rollers 13, 14 Cam surface 15 Input shaft 16 Needle bearing 17 collar 18 output gear 19 key 20 support post 21 circular hole 22 casing 23 cylinder case 24a, 24b support pin 25 support hole 26 outer ring 27 radial needle bearing 28 support shaft 29 pivot shaft 30,30 Radial needle bearing 32 Thrust ball bearing 33 Outer ring 34 Thrust needle bearing 35 Drive rod 36 Drive piston 37 Drive cylinder 38 Support wall 39 Rolling bearing 40 Ball 41 Outer ring raceway 42 Inner ring raceway 43 Large diameter portion 44 Small diameter portion 45 Step portion 46 Center hole 47 Collar 48 radial needle bearing 49 needle

Claims (1)

入力軸と、この入力軸と共に回転自在な入力側ディスクと、この入力側ディスクと同心に配置され、且つこの入力側ディスクに対する回転自在に支持された出力側ディスクと、この出力側ディスクの回転を取り出す為の動力取り出し手段と、上記入力側、出力側両ディスクの中心軸に対し捻れの位置に配置されて当該位置で揺動する複数のトラニオンと、これら各トラニオンに支持された変位軸に回転自在に支持され、入力側、出力側両ディスクの間に挟持された複数のパワーローラと、これら各パワーローラの外側面と上記各トラニオンの内側面との間に設けられて上記各パワーローラに加わるスラスト荷重を支承しつつこれら各パワーローラの回転を許容するスラスト転がり軸受とから構成し、入力側、出力側両ディスクの互いに対向する内側面を、それぞれ断面が円弧形の凹面とし、上記各パワーローラの周面を球面状の凸面として、これら各周面と上記内側面とを当接させたトロイダル型無段変速機に於いて、上記各スラスト転がり軸受を構成する円環状の外輪を上記各変位軸の中間部周囲に、これら各変位軸を中心とする回転自在に支持した事を特徴とするトロイダル型無段変速機。An input shaft, an input side disk that is rotatable together with the input shaft, an output side disk that is arranged concentrically with the input side disk and is rotatably supported with respect to the input side disk, and rotation of the output side disk Power take-out means for taking out, a plurality of trunnions arranged at a twisted position with respect to the center axis of both the input side and output side discs, and rotating about a displacement shaft supported by each trunnion A plurality of power rollers supported freely and sandwiched between both the input and output disks, and provided between the outer surface of each of the power rollers and the inner surface of each of the trunnions. It consists of a thrust rolling bearing that supports the rotation of each power roller while supporting the applied thrust load, and both the input and output side disks face each other. In the toroidal continuously variable transmission in which the inner surface is a concave surface having an arc-shaped cross section and the peripheral surface of each power roller is a spherical convex surface, the peripheral surface is in contact with the inner surface. A toroidal-type continuously variable transmission characterized in that an annular outer ring constituting each thrust rolling bearing is supported around an intermediate portion of each displacement shaft so as to be rotatable around each displacement shaft.
JP17994597A 1997-07-04 1997-07-04 Toroidal continuously variable transmission Expired - Fee Related JP3617258B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17994597A JP3617258B2 (en) 1997-07-04 1997-07-04 Toroidal continuously variable transmission
US09/108,174 US6174257B1 (en) 1997-07-04 1998-07-01 Toroidal type continuously variable transmission
DE1998129631 DE19829631B4 (en) 1997-07-04 1998-07-02 Continuously adjustable toroidal transmission
DE19861362A DE19861362B4 (en) 1997-07-04 1998-07-02 Continually-adjustable toroidal gear for automotive automatic gear - has outer bearing ring forming part of ball bearing, and rotates with sliding shaft to constantly shift load-bearing surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17994597A JP3617258B2 (en) 1997-07-04 1997-07-04 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH1122800A JPH1122800A (en) 1999-01-26
JP3617258B2 true JP3617258B2 (en) 2005-02-02

Family

ID=16074700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17994597A Expired - Fee Related JP3617258B2 (en) 1997-07-04 1997-07-04 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3617258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899745B2 (en) 1999-10-19 2007-03-28 日本精工株式会社 Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JPH1122800A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP4135249B2 (en) Half toroidal continuously variable transmission
JP3617267B2 (en) Toroidal continuously variable transmission
JP3617258B2 (en) Toroidal continuously variable transmission
JP3899745B2 (en) Toroidal continuously variable transmission
JP4069573B2 (en) Toroidal continuously variable transmission
JP3638303B2 (en) Thrust ball bearing for half toroidal type continuously variable transmission
JP3849409B2 (en) Half toroidal continuously variable transmission
JP3539062B2 (en) Toroidal type continuously variable transmission
JP4016514B2 (en) Toroidal continuously variable transmission
JP3326950B2 (en) Thrust ball bearing for half toroidal type continuously variable transmission
JP3503393B2 (en) Toroidal type continuously variable transmission
JP3941275B2 (en) Toroidal continuously variable transmission
JP3617235B2 (en) Toroidal continuously variable transmission
JP3663851B2 (en) Toroidal continuously variable transmission
JP2001050360A (en) Toroidal continuously variable transmission
JP4240688B2 (en) Toroidal continuously variable transmission
JP3293306B2 (en) Toroidal type continuously variable transmission
JP4089085B2 (en) Toroidal continuously variable transmission
JP3617265B2 (en) Toroidal continuously variable transmission
JP3820978B2 (en) Toroidal continuously variable transmission
JP4013369B2 (en) Toroidal type continuously variable transmission assembly method
JP4051791B2 (en) Half toroidal continuously variable transmission
JP4089081B2 (en) Toroidal continuously variable transmission
JPH094689A (en) Toroidal type continuously variable transmission
JPH07229546A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees