JP3638303B2 - Thrust ball bearing for half toroidal type continuously variable transmission - Google Patents

Thrust ball bearing for half toroidal type continuously variable transmission Download PDF

Info

Publication number
JP3638303B2
JP3638303B2 JP00974994A JP974994A JP3638303B2 JP 3638303 B2 JP3638303 B2 JP 3638303B2 JP 00974994 A JP00974994 A JP 00974994A JP 974994 A JP974994 A JP 974994A JP 3638303 B2 JP3638303 B2 JP 3638303B2
Authority
JP
Japan
Prior art keywords
ring raceway
outer ring
continuously variable
ball bearing
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00974994A
Other languages
Japanese (ja)
Other versions
JPH07217661A (en
Inventor
高信 佐藤
浩年 高田
良 五位野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP00974994A priority Critical patent/JP3638303B2/en
Publication of JPH07217661A publication Critical patent/JPH07217661A/en
Application granted granted Critical
Publication of JP3638303B2 publication Critical patent/JP3638303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove

Description

【0001】
【産業上の利用分野】
この発明に係るハーフトロイダル型無段変速機用スラスト玉軸受は、ハーフトロイダル型無段変速機を構成するパワーローラに加わるスラスト荷重を支承するのに利用する。
【0002】
【従来の技術】
自動車用変速機、或は各種産業機械用の変速機として、図4〜5に略示する様なトロイダル型無段変速機を使用する事が研究されている。このトロイダル型無段変速機は、例えば実開昭62−71465号公報に開示されている様に、入力軸1と同心に入力側ディスク2を支持し、出力軸3の端部に出力側ディスク4を固定している。トロイダル型無段変速機を納めたケーシングの内面、或はこのケーシング内に設けられた支持ブラケットには、前記入力軸1並びに出力軸3に対して捻れの位置にある枢軸5、5を中心として揺動するトラニオン6、6が設けられている。
【0003】
各トラニオン6、6は、両端部外側面に前記枢軸5、5を設けている。又、各トラニオン6、6の中心部には変位軸7、7の基端部を支持し、上記枢軸5、5を中心として各トラニオン6、6を揺動させる事により、各変位軸7、7の傾斜角度の調節を自在としている。各トラニオン6、6に支持された変位軸7、7の周囲には、それぞれパワーローラ8、8を回転自在に支持している。そして、各パワーローラ8、8を、前記入力側、出力側両ディスク2、4の間に挟持している。
【0004】
入力側、出力側両ディスク2、4の互いに対向する内側面2a、4aは、それぞれ断面形状が、ほぼ上記枢軸5を中心とする円弧形の凹面をなしている。そして、球面状の凸面に形成された各パワーローラ8、8の周面8a、8aは、前記内側面2a、4aに当接させている。
【0005】
前記入力軸1と入力側ディスク2との間には、ローディングカム式の押圧装置9を設け、この押圧装置9によって、前記入力側ディスク2を出力側ディスク4に向け、弾性的に押圧している。この押圧装置9は、入力軸1と共に回転するカム板10と、保持器11により保持された複数個(例えば4個)のローラ12、12とから構成されている。前記カム板10の片側面(図4〜5の左側面)には、円周方向に関する凹凸面であるカム面13を形成し、又、前記入力側ディスク2の外側面(図4〜5の右側面)にも、同様のカム面14を形成している。そして、前記複数個のローラ12、12を、前記入力軸1の中心に対して放射状に配置している。
【0006】
上述の様に構成されるトロイダル型無段変速機の使用時、入力軸1の回転に伴ってカム板10が回転すると、カム面13によって複数個のローラ12、12が、入力側ディスク2の外側面に形成したカム面14に押圧される。この結果、前記入力側ディスク2が前記複数のパワーローラ8、8に押圧されると同時に、前記1対のカム面13、14と複数個のローラ12、12との噛合に基づいて、前記入力側ディスク2が回転する。そして、この入力側ディスク2の回転が、前記複数のパワーローラ8、8を介して出力側ディスク4に伝達され、この出力側ディスク4に固定の出力軸3が回転する。
【0007】
入力軸1と出力軸3との回転速度を変える場合で、先ず入力軸1と出力軸3との間で減速を行なう場合には、枢軸5、5を中心として各トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図4に示す様に、入力側ディスク2の内側面2aの中心寄り部分と出力側ディスク4の内側面4aの外周寄り部分とにそれぞれ当接する様に、各変位軸7、7を傾斜させる。
【0008】
反対に、増速を行なう場合には、各パワーローラ8、8の周面8a、8aが図5に示す様に、入力側ディスク2の内側面2aの外周寄り部分と出力側ディスク4の内側面4aの中心寄り部分とに、それぞれ当接する様に、各変位軸7、7を傾斜させる。各変位軸7、7の傾斜角度を、図4と図5との中間にすれば、入力軸1と出力軸3との間で、中間の変速比を得る事ができる。
【0009】
図4〜5には、トロイダル型無段変速機の基本構造のみを示しているが、自動車用変速機等としてより具体化した構造も、例えば実願昭61−87523号(実開昭62−199557号)のマイクロフィルムに記載されている様に、従来から種々知られている。
【0010】
ところで、上述の様なトロイダル型無段変速機の運転時に上記各パワーローラ8、8は、入力側ディスク2及び出力側ディスク4からのスラスト荷重を受けつつ、高速で回転する。この為、これら各パワーローラ8、8と前記各トラニオン6、6との間には、図6に示す様にスラスト玉軸受15を設けている。
【0011】
上記スラスト玉軸受15は、第二の軌道輪である内輪としての機能を兼ね備える上記パワーローラ8と、複数の玉16、16と、これら複数の玉16、16を転動自在に保持する為の保持器20と、上記パワーローラ8と同じ中心軸αを有する、第一の軌道輪である外輪17とから構成されている。尚、上記パワーローラ8、玉16、16、外輪17は、それぞれ軸受鋼、浸炭鋼等の軸受用鋼、或はセラミックにより形成されている。又、上記パワーローラ8の軸方向片面(図6の上面)には第二の軌道である内輪軌道18を、上記外輪17の軸方向片面(図6の下面)で上記内輪軌道18と対向する部分には第一の軌道である外輪軌道19を、それぞれ形成している。これら各軌道18、19は、それぞれ断面形状が円弧形で全体が円環状とされている。上記各玉16、16の転動面は、これら内輪軌道18と外輪軌道19とに転がり接触する。
【0012】
又、前記保持器20は、金属或は合成樹脂により円輪状に造られた主体21を有する。この主体21の直径方向中間部で円周方向等間隔位置には、円形のポケット22、22を形成し、これら各ポケット22、22に上記玉16、16を、1個ずつ、転動自在に保持している。更に、外輪17は、やはり円輪状に形成されたスペーサ23を介して、前記各トラニオン6の内側面に突き当てられている。トロイダル型無段変速機の運転時に、この様なスラスト玉軸受15は、前記各パワーローラ8、8に加わるスラスト荷重を支承しつつ、高速で回転する。尚、24は、スラスト玉軸受15に潤滑油を供給する給油孔である。
【0013】
ところで、上述の様なトロイダル型無段変速機に組み込まれるスラスト玉軸受15には、次の▲1▼▲2▼の様な機能を要求される。
▲1▼ 入力側ディスク2と出力側ディスク4との間での動力伝達のロスを小さくすべく(伝達効率を向上させる)、回転トルクが小さい事。
▲2▼ 十分な耐久性を確保すべく、各玉16、16の転動面、並びに内輪軌道18、外輪軌道19の寿命を長くする事。
【0014】
スラスト玉軸受の場合、上記▲1▼の条件を満たす為には、上記内輪軌道18及び外輪軌道19の断面形状の曲率半径を大きくして、上記玉の転動面と内輪軌道18及び外輪軌道19との接触幅を狭くし、玉16、16の転がり抵抗を小さくする必要がある。これに対して、上記▲2▼の条件を満たす為には、上記内輪軌道18及び外輪軌道19の断面形状の曲率半径(玉16、16の半径より大きい)を小さくして、上記転動面と内輪軌道18及び外輪軌道19との接触幅を広くし、上記転動面と内輪軌道18及び外輪軌道19との接触面圧を低くする必要がある。
【0015】
この様に、スラスト玉軸受15には、相反する要求がある。この為従来は、実用上満足できる程度の耐久性を確保しつつ、やはり実用上満足できる程度の伝達効率を確保できる程度に、上記内輪軌道18及び外輪軌道19の断面形状の曲率半径を規制していた。より具体的には、例えば図7に示す様に、パワーローラ8の軸方向片面に形成した内輪軌道18の断面形状の曲率半径r18と、上記外輪17の軸方向片面に形成した外輪軌道19の断面形状の曲率半径r19とを互いに等しい適当な単一曲面(途中で曲率が変化しない曲面)としていた。
【0016】
【発明が解決しようとする課題】
ところが、実際にトロイダル型無段変速機に組み込まれてパワーローラ8を支承するスラスト玉軸受の場合には、内輪軌道18及び外輪軌道19を単一曲面とした場合には、必ずしも十分な(設計値通りの)耐久性を得られない可能性がある事が実験により確認され、この原因の主要因は上記パワーローラ8に加わるラジアル荷重による事が解った。
【0017】
即ち、トロイダル型無段変速機、特に入力側、出力側両ディスク2、4の内側面2a、4aの断面形状が四分の一円弧形である所謂ハーフトロイダル型無段変速機の場合、運転時に上記パワーローラ8には、スラスト荷重だけでなくラジアル荷重が加わった複雑な力(荷重)が作用する。この様なラジアル荷重は、ディスク2、4とパワーローラ8との接触部に加わるトラクション力や、パワーローラ8を支持しているトラニオン6が変速比変更に伴って傾斜したり、或は構成各部材の組み立て精度、或は自重に基づく偏荷重により発生する。しかも、この様なラジアル荷重に結び付く偏荷重が発生する方向や発生した場合の大きさは、変速比や回転速度等によりまちまちである。
【0018】
この様な偏荷重に基づくラジアル荷重は、スラスト荷重に比べて遥かに小さい(1/10以下)が、スラスト玉軸受15を構成するパワーローラ8と外輪17とを直径方向に亙って相対変位させてしまう。即ち、従来のハーフトロイダル型無段変速機用スラスト玉軸受は、(ラジアル荷重を含まない)純粋なスラスト荷重を支承する事を前提に考えられていた為、比較的小さなラジアル荷重を受けただけで、上記パワーローラ8と外輪17とが、無視できない程相対変位する。この様にパワーローラ8と外輪17とが相対変位した状態のまま、上記パワーローラ8が大きなスラスト荷重を支承しつつ回転すると、玉16、16がスラスト玉軸受本来の運動とは異なる複雑な運動をする。この場合には、各玉16、16の転動面と上記内輪軌道18及び外輪軌道19との間の摩擦状態に、転がり摩擦だけでなく滑り摩擦も加わる。
【0019】
この結果、内輪軌道18と外輪軌道19との一部、即ちラジアル荷重を受けた状態で上記各玉16、16の転動面が接触する部分(各軌道の幅方向中央部から直径方向にずれた部分)に、フレーキング等の損傷が生じ易くなり、スラスト玉軸受15の耐久性が損なわれる。特に上記外輪17は、ハーフトロイダル型無段変速機の小型軽量化を図る為、パワーローラ8に比べて薄肉に形成されており、必ずしも十分な剛性を確保できない為、耐久性が不足しがちとなる。
【0020】
上述の様な理由に基づいてスラスト玉軸受の寿命が低下する事を防止する為には、上記各曲率半径r18、r19を小さくして玉16、16の半径(D16/2)に近づける事が考えられる。この様に各曲率半径r18、r19を小さくすると、各玉16、16の転動面と上記各軌道18、19との接触面積が広くなり、接触面圧が小さくなる。同時に、パワーローラ8がラジアル荷重を受けた場合に、このパワーローラ8と外輪17とが直径方向に相対変位する事を防止(変位量を少なく)して、軸受寿命を延長する(耐久性を向上させる)事ができる。
【0021】
ところが、単に内輪軌道18の断面形状の曲率半径r18と外輪軌道19の断面形状の曲率半径r19とを小さくした場合、これら両軌道18、19と玉16、16との転がり抵抗が増大して、スラスト玉軸受の回転トルクが増大する。この結果、前記パワーローラ8の回転に要する力が増大し、スラスト玉軸受を組み込んだハーフトロイダル型無段変速機の性能を低下させる原因となる為、好ましくない。本発明のハーフトロイダル型無段変速機用スラスト玉軸受は、この様な事情に鑑みて発明したものである。
【0022】
【課題を解決する為の手段】
本発明のハーフトロイダル型無段変速機用スラスト玉軸受は、入力側ディスクの内側面と出力側ディスクの内側面との間に挟持したパワーローラをトラニオンの内側面に回転自在に支持する為、これらパワーローラとトラニオンとの間に設けられて、このパワーローラに加わるスラスト荷重の他、このスラスト荷重に比べて小さなラジアル荷重が作用する状態で使用される。
【0023】
この様な状態で使用される本発明のハーフトロイダル型無段変速機用スラスト玉軸受は、上記トラニオンの内側面にスペーサを介して突き当てられた、軸方向に関する厚さ寸法が上記パワーローラの軸方向に関する厚さ寸法よりも小さい外輪と、この外輪の軸方向内側面に形成された、断面形状が円弧状で全体が円環状の外輪軌道と、上記外輪と同心に配置された上記パワーローラの軸方向外側面でこの外輪軌道と対向する部分に形成された、断面形状が円弧状で全体が円環状の内輪軌道と、それぞれの転動面をこれら外輪軌道と内輪軌道とに当接させた複数の玉とを備える。そして、これら外輪軌道と内輪軌道との少なくとも外輪軌道の断面形状の曲率半径を、上記各玉の半径以上の範囲で、当該軌道の幅方向中央部よりも幅方向両側で小さくしている。
【0024】
【作用】
上述の様に構成される本発明のハーフトロイダル型無段変速機用スラスト玉軸受の場合には、回転トルクの増大を抑えつつ、耐久性の向上を図る事ができる。
【0025】
即ち、ラジアル荷重を受けず(又はラジアル荷重が無視できる程度に小さく)、外輪とパワーローラとの間で直径方向に亙る相対変位が生じていない場合には、複数の玉の転動面は、外輪軌道と内輪軌道との幅方向中央部に当接する。各軌道の幅方向中央部の断面形状の曲率半径は比較的大きいので、上記転動面と各軌道との接触幅は狭く、玉の転がり抵抗が小さくなって、ハーフトロイダル型無段変速機用スラスト玉軸受の回転トルクが小さくなる。
【0026】
又、ラジアル荷重が加わり外輪とパワーローラとが直径方向に相対変位すると、複数個の玉の転動面が上記各軌道に、当該軌道の幅方向片側に寄った部分で当接する。少なくとも外輪軌道に関しては、この部分の断面形状の曲率半径は小さいので、上記転動面とこの外輪軌道との接触幅が広くなり、上記転動面とこの外輪軌道との接触面圧が低くなる。この結果、ラジアル荷重を受けた状態でも、この外輪軌道に加わる応力が過大とはならず、この外輪軌道を含めたハーフトロイダル型無段変速機用スラスト玉軸受の耐久性向上を図れる。
【0027】
【実施例】
図1〜2は、請求項1〜3に対応する、本発明の第一実施例を示している。尚、本実施例のハーフトロイダル型無段変速機用スラスト玉軸受の特徴は、回転トルクの増大を抑えつつパワーローラ8A及び外輪17aの寿命延長を図るべく、内輪軌道18a及び外輪軌道19aの断面形状を工夫した点にあり、その他の構成及び作用は、例えば前述したトロイダル型無段変速機に組み込まれている様な、従来から知られたハーフトロイダル型無段変速機用スラスト玉軸受と同様である。よって、重複する説明を省略し、本発明の特徴部分を中心に説明する。
【0028】
外輪軌道19a及び内輪軌道18aは何れも、単一曲面ではなく、曲率半径の異なる複数の曲面を滑らかに連続させる事で構成されている。即ち、上記両軌道19a、18aの断面形状は、幅方向中央部分の曲率半径R19a 、R18a を大きく、幅方向両側部分の曲率半径r19a 、r18a を小さく(R19a >r19a 、R18a >r18a )している。
【0029】
即ち、曲率半径R19a 、r19a 、R18a 、r18a のうち、上記各軌道19a、18aの幅方向中央部分の曲率半径R19a 、R18a は、従来のハーフトロイダル型無段変速機用スラスト玉軸受の場合と同様の値、或はその値よりも大きくしているのに対して、上記各軌道19a、18aの断面形状の幅方向両側部分の曲率半径r19a 、r18a は、上記R19a 、R18a より玉16の外径D16の二分の一(半径)に近づけている。
【0030】
上記外輪軌道19aの断面形状と内輪軌道18aの断面形状とは同じ(該当部分の曲率半径を同じとする)でも良いが、異ならせる事もできる。異ならせる場合には、外輪軌道19aの断面形状の曲率半径を内輪軌道18aの断面形状の曲率半径よりも小さくする事が好ましい。この理由は、外輪17aの厚さ寸法がパワーローラ8Aの厚さ寸法よりも小さく、外輪17aの剛性を必ずしも十分に確保できず、上記外輪軌道19aの寿命が内輪軌道18aの寿命よりも短くなる傾向がある為である。
【0031】
尚、これら各寸法の関係は、例えば次の様に規制する事が適当である。
19a −r19a =(0.01〜0.2)D16
18a −r18a =(0.01〜0.2)D16
【0032】
上述の様に構成される本発明のハーフトロイダル型無段変速機用スラスト玉軸受の場合には、回転トルクの増大を抑えつつ、耐久性の向上を図る事ができる。
【0033】
即ち、ラジアル荷重を受けず(又はラジアル荷重が無視できる程度に小さく)、パワーローラ8Aと外輪17aとの間で直径方向に関する相対変位が生じていない場合に複数の玉16、16の転動面は、図1に示す様に、外輪軌道19a及び内輪軌道18aの幅方向中央部に当接する。上述の様に、各軌道19a、18aの幅方向中央部の断面形状の曲率半径R19a 、R18a は比較的大きいので、上記転動面と各軌道19a、18aとの接触幅lは狭くなる。
【0034】
従って、玉16、16の転がり抵抗が小さくなって、スラスト玉軸受15の回転トルクが小さくなる。この結果、このスラスト玉軸受15を組み込んだトロイダル型無段変速機の伝達効率が十分に高くなる。この際、上記転動面と各軌道19a、18aとの接触面圧の最大値Pmax が大きくなるが、これら転動面と各軌道19a、18aとの接触状態は、純転がり接触に近い状態となり、滑り摩擦は殆ど生じない。従って、上記最大値Pmax が大きくなっても、上記転動面並びに各軌道19a、18aの耐久性が実用上問題となる程低下する事はない。
【0035】
又、ラジアル荷重が加わって上記パワーローラ8Aと外輪17aとが直径方向に相対変位すると、図2に示す様に上記複数個の玉16、16の転動面が、上記各軌道19a、18aに、これら各軌道19a、18aの幅方向片側に寄った部分で当接する。この部分の断面形状の曲率半径r19a 、r18a は小さいので、上記転動面とこれら両軌道19a、18aとの接触幅Lが広くなり、上記転動面と各軌道19a、18aとの接触面圧の最大値P´max が低くなる(<Pmax )。この結果、ラジアル荷重を受けた状態でも、上記転動面及び各軌道19a、18aに加わる応力が過大とはならず、これら転動面及び各軌道19a、18aを含めたハーフトロイダル型無段変速機用スラスト玉軸受の耐久性向上を図れる。
【0036】
即ち、上述の様にパワーローラ8Aと外輪17aとが直径方向に相対変位した場合には、上記転動面とこれら両軌道19a、18aとの接触部分に転がり摩擦だけでなく滑り摩擦が作用するが、本発明のハーフトロイダル型無段変速機用スラスト玉軸受の場合には、接触面圧の最大値が小さくなる分だけ、外輪軌道19a及び内輪軌道18aの弾性変形量が少なくなる。この結果、ハーフトロイダル型無段変速機用スラスト玉軸受の使用に伴って上記外輪軌道19a及び内輪軌道18aに繰り返し加わる応力歪が小さくなり、これら外輪軌道19a及び内輪軌道18aを含むパワーローラ8A及び外輪17aの寿命延長を図れる。
【0037】
又、外輪軌道19a及び内輪軌道18aの断面形状の曲率半径が幅方向両側で小さくなっている分、これら各軌道19a、18aに対して玉16、16がラジアル方向に変位しにくくなる。この結果上記外輪軌道19a及び内輪軌道18aに、玉16、16の変位に基づく偏荷重が加わりにくくなって、やはり上記パワーローラ8A及び外輪17の寿命延長を図れる。
【0038】
即ち、上記パワーローラ8Aと外輪17aとがラジアル方向に相対変位した場合には、変位量に応じた大きさの偏荷重が上記各玉16、16の転動面と上記内輪軌道18a及び外輪軌道19aとの当接部に加わり易くなる。これに対して本発明のハーフトロイダル型無段変速機用スラスト玉軸受の場合には、上記変位量を少なく抑えられる為、上記偏荷重を小さくして、ハーフトロイダル型無段変速機用スラスト玉軸受の寿命延長を図れる。
【0039】
次に、図3は、請求項1にのみ対応する、本発明の第二実施例を示している。本実施例の場合には、外輪軌道19aのみを、単一曲面ではなく、曲率の異なる曲面を滑らかに連続させる事で構成している。即ち、上記外輪軌道19aの断面形状を、幅方向中央部分の曲率半径R19a より幅方向両側部分の曲率半径r19a が小さい、複合曲面としている。一方、パワーローラ8Aに形成した内輪軌道18は、断面形状の曲率半径R18が比較的大きな(R18≒R19a )単一曲面としている。
【0040】
本実施例の場合には、剛性が低く、振動によりパワーローラ8に比べて耐久性に関して悪影響を受け易い外輪17aの外輪軌道19aの断面形状を工夫する事により、この外輪17aの耐久性向上を図ったものである。本実施例の場合、前述した第一実施例の場合に比べて、耐久性向上効果が少し劣るが、従来のハーフトロイダル型無段変速機用スラスト玉軸受に比べた場合には、十分に耐久性向上を図れる。しかも、内輪軌道18の加工が容易になる為、製作費を余り高くする事なく、実用上十分な性能を発揮するハーフトロイダル型無段変速機用スラスト玉軸受を得られる。
【0041】
尚、上述の各実施例の場合には、各軌道19a、18aの幅方向両側部分を曲率半径r19a 、r18a を有する単一の曲面としたが、この両側部分を2種類以上の曲率半径を有する円弧を連続させた複合曲面とする事もできる。この場合には、幅方向端縁に向かう程曲率半径が小さくなる様にするのが好ましい。尚、軌道19a、18aの断面形状は、幅方向中央部と幅方向両側との少なくとも一方が、いくつかの円弧の連続から成る円弧状でも良い。又、外輪軌道19a及び内輪軌道18aの少なくとも一方は断面形状がいくつかの円弧の連続から成る円弧状でも良い。
【0042】
【発明の効果】
本発明のハーフトロイダル型無段変速機用スラスト玉軸受は、以上に述べた通り構成され作用する為、回転トルクの増大を防止し、耐久性並びに信頼性の向上を図れる。
【図面の簡単な説明】
【図1】本発明の第一実施例を、スラスト荷重のみを受けている状態で示す半部断面図。
【図2】パワーローラにラジアル荷重が加わった状態を示す、図1と同様の断面図。
【図3】本発明の第二実施例を示す、図1と同様の図。
【図4】スラスト玉軸受を組み込んだハーフトロイダル型無段変速機の基本的構成を、最大減速時の状態で示す側面図。
【図5】同じく最大増速時の状態で示す側面図。
【図6】スラスト玉軸受並びにその潤滑装置部分の断面図。
【図7】スラスト玉軸受のみを取り出して示す断面図。
【符号の説明】
1 入力軸
2 入力側ディスク
2a 内側面
3 出力軸
4 出力側ディスク
4a 内側面
5 枢軸
6 トラニオン
7 変位軸
8、8A パワーローラ
8a 周面
9 押圧装置
10 カム板
11 保持器
12 ローラ
13、14 カム面
15 スラスト玉軸受
16 玉
17、17a 外輪
18、18a 内輪軌道
19、19a 外輪軌道
20 保持器
21 主体
22 ポケット
23 スぺーサ
24 給油孔
[0001]
[Industrial application fields]
The thrust ball bearing half toroidal type continuously variable transmission according to the present invention is utilized to support the thrust load applied to the power rollers constituting the toroidal type continuously variable transmission.
[0002]
[Prior art]
The use of a toroidal continuously variable transmission as schematically shown in FIGS. 4 to 5 has been studied as a transmission for automobiles or various industrial machines. This toroidal-type continuously variable transmission supports an input side disk 2 concentrically with the input shaft 1 as disclosed in, for example, Japanese Utility Model Publication No. 62-71465, and an output side disk at the end of the output shaft 3. 4 is fixed. The inner surface of the casing containing the toroidal-type continuously variable transmission, or the support bracket provided in the casing, is centered on the pivot shafts 5 and 5 that are twisted with respect to the input shaft 1 and the output shaft 3. Swing trunnions 6 and 6 are provided.
[0003]
Each trunnion 6, 6 is provided with the pivots 5, 5 on the outer side surfaces of both ends. Further, by supporting the base ends of the displacement shafts 7 and 7 at the center of the trunnions 6 and 6, and by swinging the trunnions 6 and 6 around the pivot shafts 5 and 5, 7 tilt angle can be adjusted freely. Power rollers 8 and 8 are rotatably supported around the displacement shafts 7 and 7 supported by the trunnions 6 and 6, respectively. The power rollers 8 and 8 are sandwiched between the input side and output side disks 2 and 4.
[0004]
Inner side surfaces 2a and 4a of the input side and output side discs 2 and 4 facing each other have a substantially arcuate concave surface with the cross-sectional shape being substantially centered on the pivot 5. And the peripheral surfaces 8a and 8a of each power roller 8 and 8 formed in the spherical convex surface are made to contact | abut to the said inner surface 2a and 4a.
[0005]
A loading cam type pressing device 9 is provided between the input shaft 1 and the input side disc 2, and the pressing device 9 elastically presses the input side disc 2 toward the output side disc 4. Yes. The pressing device 9 includes a cam plate 10 that rotates together with the input shaft 1 and a plurality of (for example, four) rollers 12 and 12 held by a cage 11. A cam surface 13 that is a concavo-convex surface in the circumferential direction is formed on one side surface (the left side surface in FIGS. 4 to 5) of the cam plate 10, and the outer surface of the input side disk 2 (in FIGS. 4 to 5). A similar cam surface 14 is also formed on the right side surface). The plurality of rollers 12 and 12 are arranged radially with respect to the center of the input shaft 1.
[0006]
When the toroidal-type continuously variable transmission configured as described above is used, when the cam plate 10 rotates with the rotation of the input shaft 1, the plurality of rollers 12, 12 are moved by the cam surface 13 to the input side disk 2. It is pressed by the cam surface 14 formed on the outer surface. As a result, the input side disk 2 is pressed against the plurality of power rollers 8, 8, and at the same time, based on the engagement between the pair of cam surfaces 13, 14 and the plurality of rollers 12, 12, the input disk 2 is pressed. The side disk 2 rotates. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through the plurality of power rollers 8, 8, and the output shaft 3 fixed to the output side disk 4 rotates.
[0007]
When the rotational speed of the input shaft 1 and the output shaft 3 is changed, and when the deceleration is first performed between the input shaft 1 and the output shaft 3, the trunnions 6 and 6 are swung around the pivot shafts 5 and 5. As shown in FIG. 4, the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are respectively formed on a portion near the center of the inner surface 2a of the input side disk 2 and a portion near the outer periphery of the inner surface 4a of the output side disk 4. The displacement shafts 7 and 7 are inclined so as to contact each other.
[0008]
On the contrary, when the speed is increased, the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are located near the outer periphery of the inner surface 2a of the input side disk 2 and the inner side of the output side disk 4 as shown in FIG. The displacement shafts 7 and 7 are inclined so as to abut against the center portion of the side surface 4a. If the inclination angles of the displacement shafts 7 and 7 are set intermediate between those shown in FIGS. 4 and 5, an intermediate speed ratio can be obtained between the input shaft 1 and the output shaft 3.
[0009]
4 to 5 show only the basic structure of the toroidal-type continuously variable transmission, but a more specific structure as an automobile transmission or the like is also disclosed in, for example, Japanese Utility Model Application No. 61-87523 (Japanese Utility Model Application No. 62-62). As described in the microfilm of No. 1995557), various types are conventionally known.
[0010]
By the way, when the toroidal type continuously variable transmission as described above is operated, the power rollers 8 and 8 rotate at high speed while receiving a thrust load from the input side disk 2 and the output side disk 4. Therefore, a thrust ball bearing 15 is provided between the power rollers 8 and 8 and the trunnions 6 and 6 as shown in FIG.
[0011]
The thrust ball bearing 15 is configured to hold the power roller 8 having a function as an inner ring which is a second race ring, a plurality of balls 16 and 16, and the plurality of balls 16 and 16 so as to roll freely. The cage 20 includes an outer ring 17 which is the first race ring and has the same central axis α as that of the power roller 8. The power roller 8, balls 16, 16 and outer ring 17 are made of bearing steel, bearing steel such as carburized steel, or ceramic, respectively. Further, the inner ring raceway 18 as the second raceway is opposed to the one side surface (upper surface in FIG. 6) of the power roller 8 and the inner ring raceway 18 is opposed to the inner ring raceway 18 on the one side surface (lower surface in FIG. 6) of the outer ring 17. An outer ring raceway 19 that is a first raceway is formed in each part. Each of the tracks 18 and 19 has an arc shape in cross section and an annular shape as a whole. The rolling surfaces of the balls 16, 16 are in rolling contact with the inner ring raceway 18 and the outer ring raceway 19.
[0012]
The cage 20 has a main body 21 made of a metal or a synthetic resin in a ring shape. Circular pockets 22 and 22 are formed at circumferentially equally spaced positions in the diameter direction intermediate portion of the main body 21, and the balls 16 and 16 can be rolled one by one in the pockets 22 and 22, respectively. keeping. Further, the outer ring 17 is abutted against the inner side surface of each trunnion 6 via a spacer 23 also formed in an annular shape. During operation of the toroidal-type continuously variable transmission, such a thrust ball bearing 15 rotates at high speed while supporting a thrust load applied to each of the power rollers 8 and 8. Reference numeral 24 denotes an oil supply hole for supplying lubricating oil to the thrust ball bearing 15.
[0013]
Incidentally, the thrust ball bearing 15 incorporated in the toroidal type continuously variable transmission as described above is required to have the following functions (1) and (2).
(1) In order to reduce the loss of power transmission between the input side disk 2 and the output side disk 4 (to improve transmission efficiency), the rotational torque must be small.
(2) Extend the life of the rolling surfaces of the balls 16, 16 and the inner ring raceway 18 and the outer ring raceway 19 in order to ensure sufficient durability.
[0014]
In the case of a thrust ball bearing, in order to satisfy the condition (1), the curvature radii of the cross-sectional shapes of the inner ring raceway 18 and the outer ring raceway 19 are increased, and the ball rolling surfaces, the inner ring raceway 18 and the outer ring raceway are increased. It is necessary to reduce the contact width with the ball 19 and reduce the rolling resistance of the balls 16 and 16. On the other hand, in order to satisfy the condition (2), the radius of curvature of the cross-sectional shape of the inner ring raceway 18 and the outer ring raceway 19 (larger than the radius of the balls 16, 16) is reduced to reduce the rolling surface. It is necessary to widen the contact width between the inner ring raceway 18 and the outer ring raceway 19 and lower the contact surface pressure between the rolling surface and the inner ring raceway 18 and the outer ring raceway 19.
[0015]
Thus, the thrust ball bearing 15 has conflicting requirements. For this reason, conventionally, the radius of curvature of the cross-sectional shapes of the inner ring raceway 18 and the outer ring raceway 19 is regulated to such a degree that the transmission efficiency can be ensured to the extent that it can be practically satisfied while ensuring the durability that is practically satisfactory. It was. More specifically, for example, as shown in FIG. 7, the curvature radius r 18 of the cross-sectional shape of the inner ring raceway 18 formed on one axial surface of the power roller 8 and the outer ring raceway 19 formed on one axial side surface of the outer ring 17. An appropriate single curved surface (a curved surface whose curvature does not change on the way) equal to each other is used as the curvature radius r 19 of the cross-sectional shape.
[0016]
[Problems to be solved by the invention]
However, in the case of a thrust ball bearing that is actually incorporated in a toroidal-type continuously variable transmission and supports the power roller 8, the inner ring raceway 18 and the outer ring raceway 19 are not necessarily sufficient if they are formed as a single curved surface (design). It was confirmed by experiment that there was a possibility that durability could not be obtained (as valued), and it was found that the main cause of this was due to the radial load applied to the power roller 8.
[0017]
That is, in the case of a so-called half-toroidal continuously variable transmission in which the cross-sectional shape of the inner side surfaces 2a, 4a of both the input side and output side disks 2, 4 is a quarter arc shape, During operation, the power roller 8 is subjected to a complex force (load) in addition to a thrust load and a radial load. Such a radial load may be caused by the traction force applied to the contact portion between the disks 2, 4 and the power roller 8, the trunnion 6 supporting the power roller 8 may be inclined as the gear ratio is changed, It is generated by the unbalanced load based on the assembly accuracy of the member or its own weight. In addition, the direction in which such an unbalanced load associated with the radial load is generated and the magnitude of the uneven load vary depending on the gear ratio, the rotational speed, and the like.
[0018]
The radial load based on such an unbalanced load is much smaller than the thrust load (1/10 or less), but the relative displacement of the power roller 8 constituting the thrust ball bearing 15 and the outer ring 17 in the diametrical direction. I will let you. In other words, the conventional thrust ball bearings for half-toroidal continuously variable transmissions were designed on the premise of supporting pure thrust loads (not including radial loads), so only received relatively small radial loads. Thus, the power roller 8 and the outer ring 17 are relatively displaced so as not to be ignored. When the power roller 8 rotates while supporting a large thrust load while the power roller 8 and the outer ring 17 are relatively displaced in this way, the balls 16 and 16 are complicated movements different from the original movements of the thrust ball bearings. do. In this case, not only rolling friction but also sliding friction is added to the friction state between the rolling surfaces of the balls 16 and 16 and the inner ring raceway 18 and the outer ring raceway 19.
[0019]
As a result, a part of the inner ring raceway 18 and the outer ring raceway 19, that is, a portion where the rolling surfaces of the balls 16 and 16 are in contact with each other in a state of receiving a radial load (displacement in the diametrical direction from the center in the width direction of each raceway And the like, and the durability of the thrust ball bearing 15 is impaired. In particular, the outer ring 17 is formed thinner than the power roller 8 in order to reduce the size and weight of the half- toroidal continuously variable transmission, and sufficient rigidity cannot be ensured. Become.
[0020]
For the life of the thrust ball bearing is prevented from being reduced on the basis of such reasons described above, the radius (D 16/2) of the ball 16, 16 by reducing the above-described radius of curvature r 18, r 19 It can be considered to approach. When such a decrease the respective radii of curvature r 18, r 19, the contact area between the rolling surface and the respective track 18, 19 of the balls 16, 16 becomes wider, the contact surface pressure is reduced. At the same time, when the power roller 8 receives a radial load, the power roller 8 and the outer ring 17 are prevented from being displaced relative to each other in the diameter direction (the amount of displacement is reduced), and the bearing life is extended (durability is increased). Can be improved).
[0021]
However, when simply having a small radius of curvature r 19 of the cross-sectional shape of radius of curvature r 18 and the outer ring raceway 19 of the cross-sectional shape of the inner ring raceway 18, the rolling resistance of these two trajectories 18 and 19 and balls 16, 16 is increased As a result, the rotational torque of the thrust ball bearing increases. As a result, the force required for the rotation of the power roller 8 is increased, which causes a decrease in the performance of the half-toroidal continuously variable transmission incorporating a thrust ball bearing . The thrust ball bearing for a half toroidal type continuously variable transmission of the present invention has been invented in view of such circumstances.
[0022]
[Means for solving the problems]
The thrust ball bearing for the half toroidal type continuously variable transmission of the present invention is configured to rotatably support the power roller sandwiched between the inner side surface of the input side disk and the inner side surface of the output side disc on the inner side surface of the trunnion. It is provided between the power roller and the trunnion, and is used in a state where a radial load smaller than the thrust load acts in addition to the thrust load applied to the power roller.
[0023]
The thrust ball bearing for a half toroidal type continuously variable transmission according to the present invention used in such a state has a thickness dimension in the axial direction that is abutted against the inner surface of the trunnion via a spacer, and is the same as that of the power roller. An outer ring smaller than a thickness dimension in the axial direction, an outer ring raceway having an arcuate cross-sectional shape formed on the axial inner side surface of the outer ring, and the power roller disposed concentrically with the outer ring The inner ring raceway, which is formed in a portion facing the outer ring raceway on the outer surface in the axial direction, has an arcuate cross section and a ring shape as a whole, and the respective rolling surfaces abut against the outer ring raceway and the inner ring raceway. A plurality of balls. The radius of curvature of the cross-sectional shape of at least the outer ring raceway between the outer ring raceway and the inner ring raceway is made smaller on both sides in the width direction than the central portion in the width direction of the raceway in a range equal to or larger than the radius of each ball .
[0024]
[Action]
In the case of the thrust ball bearing for a half-toroidal continuously variable transmission according to the present invention configured as described above, durability can be improved while suppressing an increase in rotational torque.
[0025]
That is, when the radial load is not received (or the radial load is small enough to be ignored) and no relative displacement in the diametrical direction occurs between the outer ring and the power roller , the rolling surfaces of the balls are The outer ring raceway and the inner ring raceway are in contact with the center in the width direction. Since the radius of curvature of the cross-sectional shape at the center in the width direction of each track is relatively large, the contact width between the rolling surface and each track is narrow, the ball rolling resistance is reduced, and it is for half-toroidal continuously variable transmissions. The rotational torque of the thrust ball bearing is reduced.
[0026]
In addition, when a radial load is applied and the outer ring and the power roller are relatively displaced in the diametrical direction, the rolling surfaces of a plurality of balls come into contact with each of the tracks at a portion close to one side in the width direction of the track. At least for the outer ring raceway, since the radius of curvature of the cross-sectional shape of this portion is small, the contact width between the rolling surface and the outer ring raceway is widened, and the contact surface pressure between the rolling surface and the outer ring raceway is reduced. . As a result, even when a radial load is applied, the stress applied to the outer ring raceway does not become excessive, and the durability of the thrust ball bearing for a half toroidal type continuously variable transmission including the outer ring raceway can be improved.
[0027]
【Example】
1 and 2 show a first embodiment of the present invention corresponding to claims 1 to 3 . The thrust ball bearing for the half toroidal type continuously variable transmission according to the present embodiment is characterized by the cross sections of the inner ring raceway 18a and the outer ring raceway 19a in order to extend the life of the power roller 8A and the outer ring 17a while suppressing an increase in rotational torque. The other features and functions are the same as the conventional thrust ball bearings for half-toroidal continuously variable transmissions , such as those incorporated in the above-described toroidal continuously variable transmissions. It is. Therefore, the description which overlaps is abbreviate | omitted and it demonstrates centering on the characteristic part of this invention.
[0028]
Each of the outer ring raceway 19a and the inner ring raceway 18a is not a single curved surface, but is configured by smoothly continuing a plurality of curved surfaces having different curvature radii. In other words, the cross-sectional shapes of both the tracks 19a and 18a are such that the radii of curvature R 19a and R 18a at the central portion in the width direction are large and the radii of curvature r 19a and r 18a at both sides in the width direction are small (R 19a > r 19a 18a > r18a ).
[0029]
That is, of the radii of curvature R 19a , r 19a , R 18a , r 18a , the radii of curvature R 19a , R 18a at the center in the width direction of the tracks 19a , 18a are the thrusts for the conventional half-toroidal continuously variable transmission. The radius of curvature r 19a , r 18a of both side portions in the width direction of the cross-sectional shape of each of the raceways 19a, 18a is the same as that of the ball bearing or larger than that value. It is closer to one half (radius) of the outer diameter D 16 of the ball 16 than 19a and R 18a .
[0030]
The cross-sectional shape of the outer ring raceway 19a and the cross-sectional shape of the inner ring raceway 18a may be the same (the radius of curvature of the corresponding part is the same), but may be different. When making it different, it is preferable to make the curvature radius of the cross-sectional shape of the outer ring raceway 19a smaller than the curvature radius of the cross-sectional shape of the inner ring raceway 18a. This is because the outer ring 17a has a thickness smaller than that of the power roller 8A, and the outer ring 17a cannot always have sufficient rigidity, and the life of the outer ring raceway 19a is shorter than the life of the inner ring raceway 18a. This is because there is a tendency.
[0031]
It is appropriate that the relationship between these dimensions is regulated as follows, for example.
R 19a -r 19a = (0.01-0.2) D 16
R 18a -r 18a = (0.01 to 0.2) D 16
[0032]
In the case of the thrust ball bearing for a half-toroidal continuously variable transmission according to the present invention configured as described above, durability can be improved while suppressing an increase in rotational torque.
[0033]
That is, when the radial load is not received (or the radial load is small enough to be ignored) and no relative displacement in the diametrical direction occurs between the power roller 8A and the outer ring 17a, the rolling surfaces of the balls 16, 16 As shown in FIG. 1, the outer ring raceway 19a and the inner ring raceway 18a are in contact with the center in the width direction. As described above, the curvature radii R 19a and R 18a of the cross-sectional shape at the center in the width direction of the tracks 19a and 18a are relatively large, so the contact width l between the rolling surface and the tracks 19a and 18a is narrow. .
[0034]
Accordingly, the rolling resistance of the balls 16 and 16 is reduced, and the rotational torque of the thrust ball bearing 15 is reduced. As a result, the transmission efficiency of the toroidal continuously variable transmission incorporating this thrust ball bearing 15 is sufficiently high. At this time, the maximum value P max of the contact surface pressure between the rolling surface and each of the tracks 19a, 18a increases, but the contact state between these rolling surfaces and each of the tracks 19a, 18a is a state close to a pure rolling contact. Thus, there is almost no sliding friction. Therefore, even if the maximum value P max is increased, the durability of the rolling surfaces and the tracks 19a and 18a is not lowered to a practical level.
[0035]
When a radial load is applied and the power roller 8A and the outer ring 17a are relatively displaced in the diametrical direction, the rolling surfaces of the plurality of balls 16, 16 are brought into contact with the tracks 19a, 18a as shown in FIG. These abutments are brought into contact with each of the tracks 19a and 18a at a portion close to one side in the width direction. Since the curvature radii r 19a and r 18a of the cross-sectional shape of this portion are small, the contact width L between the rolling surface and both the tracks 19a and 18a is widened, and the contact between the rolling surface and each track 19a and 18a is increased. maximum value P'max of surface pressure is low (<P max). As a result, even when a radial load is applied, the stress applied to the rolling surface and each of the tracks 19a, 18a does not become excessive, and the half toroidal type continuously variable transmission including these rolling surfaces and the tracks 19a, 18a. The durability of thrust ball bearings for machines can be improved.
[0036]
That is, when the power roller 8A and the outer ring 17a are relatively displaced in the diametrical direction as described above, not only rolling friction but also sliding friction acts on the contact portion between the rolling surface and both the tracks 19a and 18a. However, in the case of the thrust ball bearing for a half toroidal type continuously variable transmission according to the present invention, the amount of elastic deformation of the outer ring raceway 19a and the inner ring raceway 18a is reduced by the amount that the maximum value of the contact surface pressure is reduced. As a result, stress strain repeatedly applied to the outer ring raceway 19a and the inner ring raceway 18a with the use of the thrust ball bearing for the half toroidal type continuously variable transmission is reduced, and the power roller 8A including the outer ring raceway 19a and the inner ring raceway 18a The life of the outer ring 17a can be extended.
[0037]
Further, since the curvature radii of the cross-sectional shapes of the outer ring raceway 19a and the inner ring raceway 18a are smaller on both sides in the width direction, the balls 16 and 16 are less likely to be displaced in the radial direction with respect to the respective raceways 19a and 18a. As a result, it is difficult to apply an uneven load due to the displacement of the balls 16 and 16 to the outer ring raceway 19a and the inner ring raceway 18a, and the life of the power roller 8A and the outer ring 17 can be extended.
[0038]
That is, when the power roller 8A and the outer ring 17a are relatively displaced in the radial direction, an uneven load having a magnitude corresponding to the amount of displacement is caused by the rolling surfaces of the balls 16, 16, the inner ring track 18a and the outer ring track. It becomes easy to join a contact part with 19a. When the thrust ball bearing half toroidal type continuously variable transmission of the present invention for this, for suppressing small the amount of displacement, to reduce the above unbalanced load, thrust ball for half toroidal type continuously variable transmission The life of the bearing can be extended.
[0039]
Next, FIG. 3 shows a second embodiment of the present invention corresponding to claim 1 only . In the case of the present embodiment, only the outer ring raceway 19a is configured by smoothly continuing curved surfaces having different curvatures instead of a single curved surface. That is, the cross-sectional shape of the outer ring raceway 19a is a compound curved surface in which the curvature radii r19a at both side portions in the width direction are smaller than the curvature radius R19a at the center portion in the width direction. On the other hand, the inner ring raceway 18 formed on the power roller 8A has a single curved surface having a relatively large radius of curvature R 18 (R 18 ≈R 19a ).
[0040]
In the case of the present embodiment, the durability of the outer ring 17a can be improved by devising the cross-sectional shape of the outer ring raceway 19a of the outer ring 17a which has low rigidity and is susceptible to adverse effects on durability compared to the power roller 8 due to vibration. It is intended. In the case of this embodiment, the durability improvement effect is slightly inferior to that of the first embodiment described above, but it is sufficiently durable when compared with the conventional thrust ball bearing for a half-toroidal continuously variable transmission. To improve performance. In addition, since processing of the inner ring raceway 18 is facilitated, a thrust ball bearing for a half-toroidal continuously variable transmission that exhibits practically sufficient performance can be obtained without excessively increasing production costs.
[0041]
In the case of each of the above-described embodiments, the both sides in the width direction of each of the tracks 19a and 18a are formed as a single curved surface having the curvature radii r 19a and r 18a. It can also be set as the compound curved surface which the circular arc which has. In this case, it is preferable that the radius of curvature becomes smaller toward the edge in the width direction. The cross-sectional shape of the tracks 19a and 18a may be an arc shape in which at least one of the center portion in the width direction and both sides in the width direction is formed of a series of several arcs. Further, at least one of the outer ring raceway 19a and the inner ring raceway 18a may have an arc shape in which the cross-sectional shape is a series of several arcs.
[0042]
【The invention's effect】
Since the thrust ball bearing for a half toroidal type continuously variable transmission according to the present invention is configured and operates as described above, an increase in rotational torque can be prevented, and durability and reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a half sectional view showing a first embodiment of the present invention in a state where only a thrust load is received.
FIG. 2 is a cross-sectional view similar to FIG. 1, showing a state where a radial load is applied to the power roller.
FIG. 3 is a view similar to FIG. 1, showing a second embodiment of the present invention.
FIG. 4 is a side view showing the basic configuration of a half- toroidal continuously variable transmission incorporating a thrust ball bearing in the state of maximum deceleration.
FIG. 5 is a side view showing the state of the maximum speed increase.
FIG. 6 is a cross-sectional view of a thrust ball bearing and a lubricating device portion thereof.
FIG. 7 is a sectional view showing only a thrust ball bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Input side disk 2a Inner side surface 3 Output shaft 4 Output side disk 4a Inner side surface 5 Pivot 6 Trunnion 7 Displacement shaft 8, 8A Power roller 8a Circumferential surface 9 Pressing device 10 Cam plate 11 Cage 12 Roller 13, 14 Cam Surface 15 Thrust ball bearing 16 Ball 17, 17a Outer ring 18, 18a Inner ring raceway 19, 19a Outer ring raceway 20 Cage 21 Main body 22 Pocket 23 Spacer 24 Oil supply hole

Claims (3)

入力側ディスクの内側面と出力側ディスクの内側面との間に挟持したパワーローラをトラニオンの内側面に回転自在に支持する為、これらパワーローラとトラニオンとの間に設けられて、このパワーローラに加わるスラスト荷重の他、このスラスト荷重に比べて小さなラジアル荷重が作用する状態で使用されるハーフトロイダル型無段変速機用スラスト玉軸受であって、上記トラニオンの内側面にスペーサを介して突き当てられた、軸方向に関する厚さ寸法が上記パワーローラの軸方向に関する厚さ寸法よりも小さい外輪と、この外輪の軸方向内側面に形成された、断面形状が円弧状で全体が円環状の外輪軌道と、上記外輪と同心に配置された上記パワーローラの軸方向外側面でこの外輪軌道と対向する部分に形成された、断面形状が円弧状で全体が円環状の内輪軌道と、それぞれの転動面をこれら外輪軌道と内輪軌道とに当接させた複数の玉とを備え、これら外輪軌道と内輪軌道との少なくとも外輪軌道の断面形状の曲率半径を、上記各玉の半径以上の範囲で、当該軌道の幅方向中央部よりも幅方向両側で小さくしたハーフトロイダル型無段変速機用スラスト玉軸受。In order to rotatably support the power roller sandwiched between the inner surface of the input side disk and the inner side surface of the output side disk on the inner surface of the trunnion, this power roller is provided between the power roller and the trunnion. A thrust ball bearing for a half toroidal type continuously variable transmission that is used in a state in which a radial load smaller than the thrust load is applied in addition to the thrust load applied to the inner surface of the trunnion via a spacer. The applied outer ring has a smaller axial dimension than the axial dimension of the power roller and the axially inner side surface of the outer ring. The outer ring raceway and the cross-sectional shape formed in the portion facing the outer raceway on the axially outer side surface of the power roller arranged concentrically with the outer race have an arc shape. A circular ring-shaped inner ring raceway and a plurality of balls whose respective rolling surfaces are in contact with the outer ring raceway and the inner ring raceway, and at least the curvature of the cross-sectional shape of the outer ring raceway between the outer ring raceway and the inner ring raceway. A thrust ball bearing for a half-toroidal continuously variable transmission, the radius of which is smaller than the radius of each ball and smaller on both sides in the width direction than the center in the width direction of the track. 外輪軌道及び内輪軌道の断面形状の曲率半径を、これら各軌道の幅方向中央部よりも幅方向両側で小さくした、請求項1に記載したハーフトロイダル型無段変速機用スラスト玉軸受。2. The thrust ball bearing for a half toroidal continuously variable transmission according to claim 1, wherein the curvature radii of the cross-sectional shapes of the outer ring raceway and the inner ring raceway are made smaller on both sides in the width direction than in the center portion in the width direction of each raceway. 外輪軌道の断面形状の曲率半径が内輪軌道の断面形状の曲率半径よりも小さい、請求項2に記載したハーフトロイダル型無段変速機用スラスト玉軸受。 The thrust ball bearing for a half-toroidal continuously variable transmission according to claim 2, wherein a radius of curvature of the cross-sectional shape of the outer ring raceway is smaller than a radius of curvature of the cross-sectional shape of the inner ring raceway.
JP00974994A 1994-01-31 1994-01-31 Thrust ball bearing for half toroidal type continuously variable transmission Expired - Fee Related JP3638303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00974994A JP3638303B2 (en) 1994-01-31 1994-01-31 Thrust ball bearing for half toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00974994A JP3638303B2 (en) 1994-01-31 1994-01-31 Thrust ball bearing for half toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH07217661A JPH07217661A (en) 1995-08-15
JP3638303B2 true JP3638303B2 (en) 2005-04-13

Family

ID=11728958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00974994A Expired - Fee Related JP3638303B2 (en) 1994-01-31 1994-01-31 Thrust ball bearing for half toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3638303B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661371B2 (en) * 1997-10-31 2005-06-15 日本精工株式会社 Power roller bearing for toroidal type continuously variable transmission
JP2001208081A (en) * 2000-01-31 2001-08-03 Nsk Ltd Single row deep groove radial ball bearing
US6908410B2 (en) 2000-06-14 2005-06-21 Nsk Ltd. Thrust bearing and toroidal type continuously variable transmission provided with the same
JP3775204B2 (en) * 2000-10-17 2006-05-17 日産自動車株式会社 Toroidal continuously variable transmission
JP2003097564A (en) * 2001-09-25 2003-04-03 Harmonic Drive Syst Ind Co Ltd Four point contact ball bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011250B2 (en) * 1977-05-10 1985-03-25 日本精工株式会社 How to install ball bearings
JP2604422B2 (en) * 1988-05-24 1997-04-30 日産自動車 株式会社 Loading gum device for toroidal continuously variable transmission

Also Published As

Publication number Publication date
JPH07217661A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
US5536091A (en) Thrust ball bearing for use with power rollers
JP3870592B2 (en) Half toroidal continuously variable transmission
JP3638303B2 (en) Thrust ball bearing for half toroidal type continuously variable transmission
JP4135249B2 (en) Half toroidal continuously variable transmission
JP3661371B2 (en) Power roller bearing for toroidal type continuously variable transmission
JP2001004003A (en) Toroidal type continuously variable transmission
JP3326950B2 (en) Thrust ball bearing for half toroidal type continuously variable transmission
JP3870594B2 (en) Toroidal continuously variable transmission
JP3899745B2 (en) Toroidal continuously variable transmission
JP3303503B2 (en) Thrust ball bearings for power rollers
JPH07279974A (en) Ball bearing
JPS6128121Y2 (en)
JP3617235B2 (en) Toroidal continuously variable transmission
JP3820978B2 (en) Toroidal continuously variable transmission
JP3617258B2 (en) Toroidal continuously variable transmission
JP2001116098A5 (en)
JP4721040B2 (en) Toroidal continuously variable transmission
JP3503370B2 (en) Toroidal type continuously variable transmission
JP3539062B2 (en) Toroidal type continuously variable transmission
JP3608547B2 (en) Radial ball bearings
JP4089085B2 (en) Toroidal continuously variable transmission
JPH08178007A (en) Toroidal type continuously variable transmission
JP4013369B2 (en) Toroidal type continuously variable transmission assembly method
JP3293306B2 (en) Toroidal type continuously variable transmission
JP2000310308A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees