JP4108162B2 - Infrared data communication module manufacturing method - Google Patents

Infrared data communication module manufacturing method Download PDF

Info

Publication number
JP4108162B2
JP4108162B2 JP30506197A JP30506197A JP4108162B2 JP 4108162 B2 JP4108162 B2 JP 4108162B2 JP 30506197 A JP30506197 A JP 30506197A JP 30506197 A JP30506197 A JP 30506197A JP 4108162 B2 JP4108162 B2 JP 4108162B2
Authority
JP
Japan
Prior art keywords
circuit board
data communication
communication module
collective circuit
infrared data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30506197A
Other languages
Japanese (ja)
Other versions
JPH11126913A (en
Inventor
正仁 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP30506197A priority Critical patent/JP4108162B2/en
Publication of JPH11126913A publication Critical patent/JPH11126913A/en
Application granted granted Critical
Publication of JP4108162B2 publication Critical patent/JP4108162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルコンピューター、プリンター、PDA、ファクシミリ、ページャー、携帯電話等の民生機器に使用される赤外線データ通信モジュール及びその製造方法に関する。
【0002】
【従来の技術】
近年、光通信機能を搭載したノート型パソコン、PDA、携帯電話等の携帯機器で赤外線データ通信モジュールの小型化がより強く要求されている。LEDからなる赤外線発光素子、フォトダイオードからなる受光素子、アンプ、ドライブ回路等が組み込まれたICからなる回路部を回路基板に直接ダイボンド及びワイヤーボンドし、可視光線カット剤入りエボキシ樹脂によるレンズ一体の樹脂モールドで、送信部と受信部を一体パッケージ化した赤外線データ通信モジュールが開発されている。従来の一般的な赤外線データ通信モジュールの構造について、図15でその概要を説明する。図15は、赤外線データ通信モジュールの外観を示す斜視図である。
【0003】
図15において、1は、赤外線データ通信モジュールである。2はガラスエボキシ、BTレジン等の耐熱性及び絶縁性を有する回路基板であり、表面には図示しない電極パターンが形成されている。
【0004】
図示しない発光素子である赤外LED素子及び受光素子であるフォトダイオードが回路基板2上面側に形成された電極パターンにダイボンド及びワイヤーボンド実装されている。赤外LED素子及びフォトダイオードは電極パターン上に、導電性接着剤として銀ペースト等のダイボンドペーストで電気的に接続されている。前記回路基板2上には、前記赤外LED素子及びフォトダイオード以外に、図示しない集積回路等の電子部品が搭載されている。
【0005】
7は、赤外LED素子及びフォトダイオード等を樹脂封止する可視光線カット剤入りエポキシ系樹脂等の透光性の封止樹脂で、赤外LED素子及びフォトトダイオードの上面に半球型レンズ部7a及び7bを形成し、赤外線光を照射及び集光する機能を持たせると同時に両素子の保護を行う。
【0006】
8は、略箱型形状をした薄板、例えば、略0.15mmの厚さのステンレス、アルミ、銅、鉄等の金属製のシールドケースである。シールドケース8は、前記赤外LED素子及びフォトダイオードの上面に形成した半球型レンズ部7a、7bに対応する位置にそれぞれ透光窓8aを有し、モジュール本体を覆っている。前記シールドケース8は、回路部を囲っているので、電磁シールド対策を採ることができ、外部からのノイズなどによる影響を防止するのに極めて有効である。従って、半球型レンズ部7a、7b及びプリント配線基板等のマザーボードに実装される以外の面は、前記シールドケース8でカバーされている。9は、マザーボードのGND電極であり、赤外線データ通信モジュール1はこのGND電極に半田10にて半田付けされている。
【0007】
前記赤外線データ通信モジュール1の製造方法の概略について説明する。図9〜図15は、従来の赤外線データ通信モジュールの製造方法を示す。図9は、集合回路基板にスルーホール加工工程と電極パターン形成工程、図10は、赤外LED素子、フォトダイオード及び集積回路のダイボンド工程、図11は、ワイヤーボンド工程、図12は、樹脂封止工程、図13は、ダイシング工程、図14は、赤外線データ通信モジュール半製品単体にするチップバラシ工程、図15は、シールドケース組み込み工程を示す、それぞれ斜視図である。
【0008】
図9において、スルーホール加工工程は、カラスエポキシ樹脂よりなる多数個取りする集合回路基板2Aの各列毎に、上下面導電パターン接続用の複数個のスルーホール11をNC切削等の加工手段により穴明けする。
【0009】
次に、メッキ工程において、前記スルーホール11の壁面を含む集合回路基板2Aの全表面を洗浄した後、集合回路基板2Aの全表面を無電解メッキにより銅メッキ層を形成し、その上に電解メッキによりニッケルメッキ層を形成し、更に、その上に電解メッキにより金メッキ層を形成する。
【0010】
更に、電極パターン形成工程は、エッチング工程で、メッキレジストをラミネートし、露光現像してパターンマスクを形成し、前記集合回路基板2Aの上面に電子部品実装用電極パターン2a、2b及び2cと、上面及び下面の導電パターンと接続するスルーホール電極11aを形成する。
【0011】
図10において、電子部品を実装するダイボンド工程で、前記集合回路基板2Aの上面側の所定位置、即ち、前記電子部品実装用電極パターン2a、2b及び2c上に、銀ペースト等の導電性接着剤6を塗布又は印刷し、赤外LED素子3と、フォトダイオード4及び集積回路5等の電子部品を傷が付かない程度に軽く加圧しながら銀ペースト上に搭載し、その後キュアー炉に入れて、所定の温度、時間保持することで銀ペーストが硬化することにより、前記電子部品は集合回路基板2A上に固着し一体化される。
【0012】
図11において、ワイヤーボンド工程は、前記集合回路基板2A上に固着された各電子部品を金線等よりなるボンディングワイヤー12により集合回路基板2A上のパターンにワイヤーボンド接続する。
【0013】
図12において、樹脂封止工程は、前記赤外LED素子3及びフォトダイオード4の上面を、半球型レンズ部7a及び7bで覆うように、集合回路基板2Aの上面側を透光性のエポキシ樹脂よりなる封止樹脂7を充填して、成形、キュアーする。以上により、赤外線データ通信モジュール集合体1Aが形成される。
【0014】
図13において、ダイシング工程は、前記赤外線データ通信モジュール集合体1Aを、直交する2つのカットラインに沿って、ダイシング又はスライシングマシン等で切断して単体の赤外線データ通信モジュール半完成品1Bに分割する。前記カットラインのうち、X方向のカットライン13は、前記各列間に形成された複数の図示しないスルーホール(11)の中心を通るラインであり、このラインに直交するY方向のカットライン14は、前記電子部品の一組を含むラインである。前記X方向のカットライン13の列上には、半円形状の図示しないスルーホール電極(11a)が形成されている。
【0015】
チップバラシ工程は、前記ダイシング工程で分割され単体にばらされて、図14に示すように赤外線データ通信モジュール半完成品1Bになる。前述したように、図15は、シールドケース組み込み工程で、赤外線データ通信モジュール半完成品1Bを、略箱型形状をした薄板のステンレス、アルミ、銅、鉄等の金属製のシールドケース8で、前記赤外LED素子3及びフォトダイオード4の上面に形成した半球型レンズ部7a、7bに対応する位置にそれぞれ透光窓8aを開口した状態でモジュール本体を覆うことにより赤外線データ通信モジュール1が完成する。
【0016】
【発明が解決しようとする課題】
しかしながら、前述した赤外線データ通信モジュール及びその製造方法には次のような問題点がある。即ち、赤外線データ通信モジュールにおいて、使用中における赤外LED素子及びその他の電子部品から発生する熱の放熱及び外部からのノイズ対策をシールドケースを用いて行っているため、先ず、薄板の前記金属製のシールドケース(部品代)が必要となる。また、シールドケースを作るための金型(金型代)が必要となる。更に、シールドケースに製品を組み込み、2ヵ所の突起片を折り曲げる作業(工数)が必要となる。また、組み込み後の組み込み高さ検査(工数)が必要となる。また、組み込まれた製品とシールドケースの間(特に上面方向)に隙間(空気層)があるため、空気層に熱がこもってしまい、放熱が十分でなく、電子部品の寿命劣化等を促進させる。信頼性及び製品のコストアップになる等致命的な問題があった。
【0017】
本発明は上記従来の課題に鑑みなされたものであり、その目的は、従来の金属製のシールドケースを使わずに、その代わりとてエボキシ樹脂の表面にNiメッキ層を形成した簡単な構成で、このNiメッキ層でシールド対策及び放熱効率をアップさせる。即ち、発光素子の発生する熱を放熱させることができると同時に、外部からのノイズ対策に対応することができる。安価で、超小型、薄型の信頼性に優れた赤外線データ通信モジュールを提供するものである。
【0019】
【課題を解決するための手段】
上記目的を達成するために、本発明における赤外線データ通信モジュールの製造方法は、多数個取りする集合回路基板の各列に、上下面導電パターン接続用の複数個のスルーホールを穴明けするスルーホール加工工程と、前記スルーホール内面を含む前記集合回路基板の全面にメッキ層を形成するメッキ工程と、メッキレジストをラミネートし露光現像後パターンマスクを形成してパターンエッチングを行い、前記集合回路基板の上面に電子部品実装用電極パターンと前記スルーホールにスルーホール電極パターンを形成する電極パターン形成工程と、前記電子部品実装用電極パターンに少なくとも発光素子、受光素子、ICチップを含む電子部品を実装する実装工程と、前記集合回路基板上の前記発光素子及び受光素子の上面を半球型レンズ部で覆うように透光性の樹脂で封止する樹脂封止工程とを有する赤外線データ通信モジュールの製造方法において、前記集合回路基板上面を覆う前記封止樹脂を、前記集合回路基板は切断することなく、前記集合回路基板手前までの前記封止樹脂の厚さ分を切断するハーフダイシング工程と、前記半球型レンズ部を除く前記封止樹脂の表面及び前記集合回路基板の裏面の前記スルーホール電極パターンをマスクにて覆うマスキング工程と、前記半球型レンズ部をレジスト膜で覆うレジスト塗布工程と、前記封止樹脂表面のマスクを除去した後前記半球型レンズ部と前記スルーホール電極パターンとを除いた前記封止樹脂の表面にNiメッキ層を形成するNiメッキ工程と、前記ハーフダイシングで残した前記集合回路基板を切断して赤外線データ通信モジュールを単体に分割するフルダイシング工程と、よりなることを特徴とするものである。
【0020】
【発明の実施の形態】
以下、図面に基づいて本発明における赤外線データ通信モジュールについて説明する。図1〜図8は、本発明の実施の形態に係わる赤外線データ通信モジュールの製造方法を説明するそれぞれ斜視図である。図8は、赤外線データ通信モジュール完成品の斜視図である。図において、従来技術と同一部材は同一符号で示す。
【0021】
図8において、20は、赤外線データ通信モジュールである。2は、従来と同様に、平面が略長方形形状のガラスエポキシ樹脂よりなる回路基板で、表面には図示しない電極パターン及びスルーホール電極が形成さている。赤外LED素子、フォトダイオード及び集積回路等の電子部品が回路基板2表面側に形成さた電極パターンに銀ペースト等の導電性接着剤によりダイボンドされ、金線等のボンディングワイヤーによりワイヤーボンド実装されている。
【0022】
また、従来と同様に、赤外LED素子及びフォトダイオード等の上面をエポキシ樹脂等の透光性の封止樹脂7で、赤外LED素子及びフォトトダイオードの上面に半球型レンズ部7a及び7bを形成し、赤外線光を照射及び集光する機能を持たせると同時に両素子の保護を行う。
【0023】
21は、半球型レンズ部7a、7b及びスルーホール電極部を除く、封止樹脂7の表面に形成されたNiメッキ層である。前記Niメッキ層21は、従来のシールドケースの機能を有するもので、電磁シールド対策を採ることができ、外部からのノイズなどによる影響を防止するのに極めて有効である。更に、赤外LED素子及びその他の電子部品から発生する熱を放熱するのに、従来のシールドケースと異なり、回路基板2及び半球型レンズ部を含めた樹脂封止部は露出しているので空気層が介在することもなく放熱効率は極めて良好である。9は、マザーボードのGND電極で、赤外線データ通信モジュール20はこのGND電極に半田10にて半田付けされている。
【0024】
前記赤外線データ通信モジュール20の製造方法の概略について説明する。図1〜図7は、本発明の赤外線データ通信モジュールの製造方法を示す。図1は、エポキシ樹脂のみ切断するハーフダイシング工程、図2は、マスキング工程、図3は、レジスト塗布工程、図4は、Niメッキ工程、図5は、マスク部材の剥離工程、図6は、回路基板を切断するフルダイシング工程、図7は、単体に分割された赤外線データ通信モジュールを示す、それぞれ斜視図である。
【0025】
本発明の実施の形態に係わる赤外線データ通信モジュールの製造方法において、ガラスエポキシ樹脂よりなる多数個取りする集合回路基板の各列毎に、上下面導電パターン接続用の複数個のスルーホールを穴明けするスルーホール加工工程と、前記スルーホールの各列間の所定位置にメッキ処理により前記スルーホール内面を含む集合回路基板の全面にメッキ層を形成するメッキ工程と、メッキレジストをラミネートし、露光現像後パターンマスクを形成し、パターンエッチングを行い、集合回路基板の上面に電子部品実装用電極パターンと、前記スルーホールにスルーホール電極を形成する電極パターン形成工程と、前記集合回路基板の上面に発光素子、受光素子及びICチップ等の電子部品を導電性接着剤で固着し、ワイヤーボンド実装する実装工程と、前記発光素子及び受光素子の上面を、半球型レンズ部で覆うように透光性のエポキシ樹脂で封止する樹脂封止工程は、前述した従来技術と同様であるので、その説明は省略する。前記樹脂封止工程迄で、赤外線データ通信モジュール集合体20Aが形成される。
【0026】
図1において、図1(a)は、ハーフダイシング工程を示す斜視図、図1(b)は、図1(a)の二点鎖線円Aで囲むスルーホール部の断面図である。前記赤外線データ通信モジュール集合体20Aを、X方向のカットライン13は、前記各列間に形成された複数のスルーホール11の中心を通るラインであり、このラインに直交するY方向のカットライン14は、前記電子部品の一組を含むラインである。この直交する2つのカットラインに沿って、ダイシング又はスライシングマシン等でダイシングするが、そのダイシングの深さは、集合回路基板2Aは切断することなく、集合回路基板2Aの手前まで切り込み、封止樹脂7の厚み分を切断する。
【0027】
図2において、マスキング工程は、集合回路基板2Aの裏面のスルーホール電極部11aをマスク部材として、例えば、マスキングテープ22等でマスクする。また、封止樹脂7で形成した半球型レンズ部7a、7bを露出するように、封止樹脂7の表面をマスク部材として、例えば、マスク型23でマスクする。
【0028】
図3において、レジスト塗布工程は、前記マスキングされた赤外線データ通信モジュール集合体20Aに、レジスト液を塗り付けるか又は吹き付け、キュアーすることにより、前記半球型レンズ部7a、7bの表面にレジスト膜24が形成される。
【0029】
図4において、Niメッキ工程は、前記封止樹脂7の表面をマスクしていたマスク型23を除去した後、Niメッキを施す。Niメッキ層21は、レジスト膜24でマスクされた半球型レンズ部7a、7bとスルーホール電極11aを除く封止樹脂7の全面に形成される。前記Niメッキ層21の厚みとしては、その目的がシールドであることより、薄くてはシールドの効果が発揮されず、最低でも、例えば、0.1mm以上の厚みを確保する必要がある。従って、シールド用のNiメッキ層21は厚メッキになる。尚、前記Niメッキの際、集合回路基板2Aの表面にもメッキ液は浸るが、基板の材質がガラス入りのエポキシ樹脂のため、基板の表面にはNiメッキは付かない。また、前記スルーホール電極11aには半田付け性向上と強度確保の目的で金メッキが施されているのでNiメッキを施さない。
【0030】
図5において、剥離工程は、半球型レンズ部7a、7bをマスクしていたレジスト膜24を剥離した後、基板裏面のスルーホール電極11aをマスクしていたマスキングテープ22を除去する。
【0031】
図6において、フルダイシング工程は、前記ハーフダイシング工程で残した集合回路基板2Aを切断して単体の赤外線データ通信モジュール20が完成される。フルダイシング工程で、前記X方向のカットライン13の列上には、半円形状の図示しないスルーホール電極(11a)が形成される。
【0032】
図7は、全工程を終え完成した赤外線データ通信モジュール20である。封止樹脂7の表面に形成されたNiメッキ層21が形成され、電磁シールド対策を採ることができ、外部からのノイズなどによる影響を防止するのに極めて有効である。更に、赤外LED素子3から発生する熱を放熱するのに、封止樹脂7面から直接Niメッキ層21へ、また回路基板2から直接放熱することができるので、放熱効率は極めて良好である。
【0033】
【発明の効果】
以上説明したように、本発明の赤外線データ通信モジュールは、半球型レンズ部及びスルーホール電極部を除く、封止樹脂の表面にNiメッキ層を形成することにより、このNiメッキ層が従来のシールドケースの機能を有するもので、電磁シールド対策を採ることができ、外部からのノイズなどによる影響を防止するのに極めて有効である。更に、赤外LED素子及びその他の電子部品から発生する熱を放熱するのに、従来は基板とシールドケースとの間に空気層が介在していたが、封止樹脂7面から直接Niメッキ層21へ、また回路基板2から直接放熱し、放熱効果をアップすることができる。
【0034】
また、従来使用していたシールドケースは不要となる。これに伴いシールドケースを作るための金型が不要となり、シールドケースに製品を組み込み、その後製品落下防止用の2箇所の突起片を折り曲げる作業が不要となる。更に、組み込み後の検査も不要となる。
【0035】
以上述べたように、部材費でのコストダウン、組立工数、検査工数等での製品のコストダウン、多数個取り生産による生産性のアップ、放熱効果アップすることによる信頼性の向上、シールドケースがなくなるので、小型・薄型になる等の様々な実用効果を発揮する赤外線データ通信モジュール及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる赤外線データ通信モジュールの製造方法を説明する、図1(a)は、ハーフダイシング工程を示す斜視図、図1(b)は、図1(a)の二点鎖線Aで囲むスルーホール部の断面図である。
【図2】図1にマスキングテープ及びマスク型を取り付けるマスキング工程を示す斜視図である。
【図3】図2の半球型レンズ部にレジスト膜を形成するレジスト液塗布工程を示す斜視図である。
【図4】図3の半球型レンズ部及びスルーホール電極を除く封止樹脂の表面にNiメッキ層を形成するNiメッキ工程を示す斜視図である。
【図5】図4のマスキングテープの除去及びレジスト膜の剥離工程を示す斜視図である。
【図6】図5の基板を切断するフルダイシング工程を示す斜視図である。
【図7】図6で単体に分割された赤外線データ通信モジュールの斜視図である。
【図8】図7の赤外線データ通信モジュールを、マザーボードのGND電極に半田付けした状態の斜視図である。
【図9】従来と本発明に共通した集合回路基板にスルーホール加工及び電極パターン形成工程を示す斜視図である。
【図10】図9の電極パターンに電子部品を導電性接着剤で固着するダイボンド工程を示す斜視図である。
【図11】図10の電子部品をボンディングワイヤーで接続するワイヤーボンド工程を示す斜視図である。
【図12】図11の電子部品を封止する樹脂封止工程を示す斜視図である。
【図13】従来のダイシング工程を示す斜視図である。
【図14】図13で分割された赤外線データ通信モジュール半完成品を示す斜視図である。
【図15】図14の半完成品をシールドケースに組み込んだ状態の赤外線データ通信モジュールの外観を示す斜視図である。
【符号の説明】
2 回路基板
2A 集合回路基板
2a、2b、2c 電子部品実装用電極パターン
3 赤外LED素子
4 フォトダイオード
5 集積回路
6 銀ペースト
7 封止樹脂
7a、7b 半球型レンズ部
8 シールドケース
9 マザーボードのGND電極
10 半田
11 スルーホール
11a スルーホール電極
12 ボンディングワイヤー
13 X方向カットライン
14 Y方向カットライン
20 赤外線データ通信モジュール
20A 赤外線データ通信モジュール集合体
21 Niメッキ層
22 マスキングテープ
23 マスク型
24 レジスト膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared data communication module used for consumer equipment such as a personal computer, a printer, a PDA, a facsimile, a pager, and a mobile phone, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been a strong demand for miniaturization of infrared data communication modules in portable devices such as notebook personal computers, PDAs, and mobile phones equipped with optical communication functions. A circuit part consisting of an IC incorporating an infrared light emitting element made of LED, a light receiving element made of a photodiode, an amplifier, a drive circuit, etc. is directly die-bonded and wire-bonded to the circuit board, and the lens is integrated with an epoxy resin containing a visible light cut agent. An infrared data communication module in which a transmitter and a receiver are integrally packaged with a resin mold has been developed. The structure of a conventional general infrared data communication module will be described with reference to FIG. FIG. 15 is a perspective view showing the appearance of the infrared data communication module.
[0003]
In FIG. 15, reference numeral 1 denotes an infrared data communication module. Reference numeral 2 denotes a circuit board having heat resistance and insulation, such as glass eboxy and BT resin, and an electrode pattern (not shown) is formed on the surface.
[0004]
An infrared LED element, which is a light emitting element (not shown), and a photodiode, which is a light receiving element, are die-bonded and wire-bonded to an electrode pattern formed on the upper surface side of the circuit board 2. The infrared LED element and the photodiode are electrically connected on the electrode pattern with a die bond paste such as a silver paste as a conductive adhesive. On the circuit board 2, electronic components such as an integrated circuit (not shown) are mounted in addition to the infrared LED element and the photodiode.
[0005]
7 is a translucent sealing resin such as an epoxy resin containing a visible light cut agent for resin-sealing infrared LED elements and photodiodes, and a hemispherical lens portion on the upper surfaces of the infrared LED elements and photodiodes. 7a and 7b are formed to provide a function of irradiating and condensing infrared light, and at the same time protecting both elements.
[0006]
Reference numeral 8 denotes a thin plate having a substantially box shape, for example, a shield case made of metal such as stainless steel, aluminum, copper, or iron having a thickness of about 0.15 mm. The shield case 8 has translucent windows 8a at positions corresponding to the hemispherical lens portions 7a and 7b formed on the upper surfaces of the infrared LED element and the photodiode, and covers the module body. Since the shield case 8 surrounds the circuit portion, it is possible to take countermeasures against electromagnetic shielding, and it is extremely effective in preventing the influence of noise from the outside. Accordingly, the surfaces other than the hemispherical lens portions 7a and 7b and the printed wiring board other than those mounted on the motherboard are covered with the shield case 8. Reference numeral 9 denotes a GND electrode of the motherboard, and the infrared data communication module 1 is soldered to the GND electrode with solder 10.
[0007]
The outline of the manufacturing method of the infrared data communication module 1 will be described. 9 to 15 show a conventional method for manufacturing an infrared data communication module. 9 shows a through-hole processing process and an electrode pattern forming process on the collective circuit board, FIG. 10 shows a die-bonding process of an infrared LED element, a photodiode and an integrated circuit, FIG. 11 shows a wire-bonding process, and FIG. FIG. 13 is a perspective view showing a stopping process, FIG. 13 is a dicing process, FIG. 14 is a chip breaking process for making an infrared data communication module semi-finished product, and FIG. 15 is a shield case assembling process.
[0008]
In FIG. 9, the through-hole machining step is performed by machining a plurality of through-holes 11 for connecting the upper and lower conductive patterns for each row of the collective circuit board 2A made of crow epoxy resin by machining means such as NC cutting. Drill a hole.
[0009]
Next, in the plating step, after cleaning the entire surface of the collective circuit board 2A including the wall surface of the through hole 11, a copper plating layer is formed on the entire surface of the collective circuit board 2A by electroless plating, and electrolysis is performed thereon. A nickel plating layer is formed by plating, and a gold plating layer is formed thereon by electrolytic plating.
[0010]
Further, the electrode pattern forming step is an etching step, in which a plating resist is laminated, exposed and developed to form a pattern mask, and the electronic component mounting electrode patterns 2a, 2b and 2c are formed on the upper surface of the collective circuit board 2A. And the through-hole electrode 11a connected with the conductive pattern of a lower surface is formed.
[0011]
In FIG. 10, in a die-bonding process for mounting electronic components, a conductive adhesive such as silver paste is deposited on a predetermined position on the upper surface side of the collective circuit board 2A, that is, on the electronic component mounting electrode patterns 2a, 2b and 2c. 6 is applied or printed, and the infrared LED element 3 and the electronic components such as the photodiode 4 and the integrated circuit 5 are mounted on the silver paste while being lightly pressed to the extent that they are not damaged, and then placed in a cure furnace. By holding the silver paste for a predetermined temperature and time, the electronic component is fixed and integrated on the aggregate circuit board 2A.
[0012]
In FIG. 11, in the wire bonding step, each electronic component fixed on the collective circuit board 2A is wire-bonded to a pattern on the collective circuit board 2A by a bonding wire 12 made of a gold wire or the like.
[0013]
In FIG. 12, in the resin sealing step, the upper surface side of the collective circuit board 2A is translucent epoxy resin so that the upper surfaces of the infrared LED element 3 and the photodiode 4 are covered with the hemispherical lens portions 7a and 7b. The sealing resin 7 made of is filled, molded, and cured. Thus, the infrared data communication module assembly 1A is formed.
[0014]
In FIG. 13, in the dicing process, the infrared data communication module assembly 1A is cut by a dicing or slicing machine or the like along two orthogonal cut lines to divide it into a single infrared data communication module semi-finished product 1B. . Among the cut lines, an X-direction cut line 13 is a line passing through the centers of a plurality of through holes (11) (not shown) formed between the rows, and a Y-direction cut line 14 orthogonal to the lines. Is a line including a set of the electronic components. A semicircular through-hole electrode (11a) (not shown) is formed on the row of cut lines 13 in the X direction.
[0015]
The chip breaking process is divided in the dicing process and separated into individual pieces, and an infrared data communication module semi-finished product 1B is obtained as shown in FIG. As described above, FIG. 15 is a shield case assembling step, and the infrared data communication module semi-finished product 1B is a thin box-shaped metal shield case 8 made of stainless steel, aluminum, copper, iron, or the like. The infrared data communication module 1 is completed by covering the module body with the transparent window 8a opened at positions corresponding to the hemispherical lens portions 7a and 7b formed on the upper surfaces of the infrared LED element 3 and the photodiode 4, respectively. To do.
[0016]
[Problems to be solved by the invention]
However, the above-described infrared data communication module and its manufacturing method have the following problems. That is, in the infrared data communication module, since heat radiation generated from the infrared LED element and other electronic components in use and countermeasures against noise from the outside are performed using a shield case, first, the thin plate made of the metal Shield case (parts cost) is required. In addition, a mold (mold cost) for making a shield case is required. Furthermore, it is necessary to assemble the product in the shield case and bend the projecting pieces at two locations (man-hours). In addition, an assembly height inspection (man-hour) after assembly is required. In addition, since there is a gap (air layer) between the built-in product and the shield case (especially in the upper surface direction), heat is trapped in the air layer, heat dissipation is not sufficient, and the life deterioration of electronic components is promoted. . There were fatal problems such as increased reliability and product cost.
[0017]
The present invention has been made in view of the above-described conventional problems, and its object is to use a simple configuration in which a Ni plating layer is formed on the surface of an epoxy resin instead of using a conventional metal shield case. This Ni plating layer improves shield measures and heat dissipation efficiency. That is, it is possible to dissipate heat generated by the light emitting element, and at the same time, it is possible to cope with noise countermeasures from the outside. The present invention provides an infrared data communication module that is inexpensive, ultra-small, and thin and has excellent reliability.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing an infrared data communication module according to the present invention includes a through hole in which a plurality of through holes for connecting upper and lower conductive patterns are formed in each row of a collective circuit board. Processing step, plating step of forming a plating layer on the entire surface of the collective circuit board including the inner surface of the through-hole, laminating a plating resist, forming a pattern mask after exposure and development, and performing pattern etching, An electrode pattern forming step for forming an electronic component mounting electrode pattern on the upper surface and a through hole electrode pattern on the through hole , and mounting an electronic component including at least a light emitting element, a light receiving element, and an IC chip on the electronic component mounting electrode pattern A hemispherical lens is mounted on the upper surface of the light emitting element and the light receiving element on the assembly circuit board; In the method for manufacturing an infrared data communication module and a resin sealing step of sealing a translucent resin to cover in part, the sealing resin covering the collective circuit board top surface, the set circuit board is cut A half-dicing step for cutting the sealing resin to the thickness before the collective circuit board, and the through-holes on the surface of the encapsulating resin excluding the hemispherical lens portion and the back surface of the collective circuit board A masking step of covering the electrode pattern with a mask, a resist coating step of covering the hemispherical lens portion with a resist film, and removing the mask on the surface of the sealing resin, the hemispherical lens portion and the through-hole electrode pattern An Ni plating step of forming a Ni plating layer on the surface of the removed sealing resin, and cutting the collective circuit board left by the half dicing to cut infrared rays And full dicing step of dividing a Data Communications module alone, and is characterized in that the more.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an infrared data communication module according to the present invention will be described with reference to the drawings. 1 to 8 are perspective views for explaining a method of manufacturing an infrared data communication module according to an embodiment of the present invention. FIG. 8 is a perspective view of a completed infrared data communication module. In the figure, the same members as those in the prior art are denoted by the same reference numerals.
[0021]
In FIG. 8, 20 is an infrared data communication module. 2 is a circuit board made of glass epoxy resin having a substantially rectangular plane as in the prior art, and an electrode pattern and a through-hole electrode (not shown) are formed on the surface. Electronic components such as infrared LED elements, photodiodes, and integrated circuits are die-bonded to the electrode pattern formed on the surface side of the circuit board 2 with a conductive adhesive such as silver paste, and wire-bonded with a bonding wire such as a gold wire. ing.
[0022]
Further, similarly to the conventional case, the upper surfaces of the infrared LED elements and photodiodes are covered with a translucent sealing resin 7 such as epoxy resin, and the hemispherical lens portions 7a and 7b are formed on the upper surfaces of the infrared LED elements and photodiodes. , And the function of irradiating and condensing infrared light and simultaneously protecting both elements.
[0023]
Reference numeral 21 denotes a Ni plating layer formed on the surface of the sealing resin 7 excluding the hemispherical lens portions 7a and 7b and the through-hole electrode portion. The Ni plating layer 21 has the function of a conventional shield case, can take electromagnetic shielding measures, and is extremely effective in preventing the influence of noise from the outside. Further, unlike the conventional shield case, the resin sealing part including the circuit board 2 and the hemispherical lens part is exposed to dissipate heat generated from the infrared LED element and other electronic components. The heat dissipation efficiency is very good without any layers. Reference numeral 9 denotes a GND electrode of the mother board, and the infrared data communication module 20 is soldered to the GND electrode with solder 10.
[0024]
An outline of a manufacturing method of the infrared data communication module 20 will be described. 1 to 7 show a method for manufacturing an infrared data communication module of the present invention. 1 is a half dicing process for cutting only an epoxy resin, FIG. 2 is a masking process, FIG. 3 is a resist coating process, FIG. 4 is a Ni plating process, FIG. 5 is a mask member peeling process, and FIG. FIG. 7 is a perspective view showing the infrared data communication module divided into a single unit.
[0025]
In the method for manufacturing an infrared data communication module according to the embodiment of the present invention, a plurality of through holes for connecting the upper and lower conductive patterns are formed in each row of the collective circuit board made of glass epoxy resin. Through-hole processing step, a plating step for forming a plating layer on the entire surface of the collective circuit board including the inner surface of the through-hole by plating at a predetermined position between each row of the through-holes, and laminating a plating resist, and exposure development A pattern mask is formed, pattern etching is performed, an electrode pattern for mounting electronic components on the upper surface of the collective circuit board, an electrode pattern forming process for forming a through-hole electrode in the through hole, and light emission on the upper surface of the collective circuit board Electronic components such as elements, light receiving elements and IC chips are fixed with a conductive adhesive, and wire bond mounting is performed. Since the mounting process and the resin sealing process of sealing the light emitting element and the light receiving element with a translucent epoxy resin so as to cover the upper surface of the light emitting element and the light receiving element are the same as those in the prior art described above, Description is omitted. Up to the resin sealing step, the infrared data communication module assembly 20A is formed.
[0026]
1A is a perspective view showing a half dicing process, and FIG. 1B is a cross-sectional view of a through hole portion surrounded by a two-dot chain line circle A in FIG. 1A. In the infrared data communication module assembly 20A, the cut line 13 in the X direction passes through the centers of the plurality of through holes 11 formed between the rows, and the cut line 14 in the Y direction perpendicular to the lines. Is a line including a set of the electronic components. Dicing is performed along these two orthogonal cut lines with a dicing or slicing machine or the like, and the depth of the dicing is cut to the front of the collective circuit board 2A without cutting the collective circuit board 2A. Cut the thickness of 7.
[0027]
In FIG. 2, in the masking step, the through-hole electrode portion 11a on the back surface of the collective circuit board 2A is masked with, for example, a masking tape 22 or the like. Further, the surface of the sealing resin 7 is masked with, for example, the mask mold 23 so as to expose the hemispherical lens portions 7 a and 7 b formed with the sealing resin 7.
[0028]
In FIG. 3, in the resist coating step, a resist film 24 is formed on the surface of the hemispherical lens portions 7a and 7b by applying or spraying a resist solution to the masked infrared data communication module assembly 20A and curing. It is formed.
[0029]
In FIG. 4, in the Ni plating process, after removing the mask mold 23 masking the surface of the sealing resin 7, Ni plating is performed. The Ni plating layer 21 is formed on the entire surface of the sealing resin 7 excluding the hemispherical lens portions 7a and 7b masked with the resist film 24 and the through-hole electrode 11a. As the thickness of the Ni plating layer 21, since the purpose thereof is a shield, if it is thin, the effect of the shield is not exhibited, and it is necessary to secure a thickness of, for example, at least 0.1 mm. Therefore, the Ni plating layer 21 for shielding becomes thick plating. During the Ni plating, the plating solution is immersed in the surface of the collective circuit board 2A. However, since the substrate material is an epoxy resin containing glass, the Ni plating is not applied to the surface of the substrate. Further, since the through-hole electrode 11a is plated with gold for the purpose of improving solderability and ensuring strength, Ni plating is not performed.
[0030]
In FIG. 5, in the peeling step, the resist film 24 masking the hemispherical lens portions 7a and 7b is peeled, and then the masking tape 22 masking the through-hole electrode 11a on the back surface of the substrate is removed.
[0031]
In FIG. 6, in the full dicing step, the collective circuit board 2A left in the half dicing step is cut to complete the single infrared data communication module 20. In the full dicing step, a semicircular through-hole electrode (11a) (not shown) is formed on the row of cut lines 13 in the X direction.
[0032]
FIG. 7 shows the infrared data communication module 20 that has been completed through all the steps. The Ni plating layer 21 formed on the surface of the sealing resin 7 is formed, and an electromagnetic shielding measure can be taken. This is extremely effective for preventing the influence of noise from the outside. Furthermore, since the heat generated from the infrared LED element 3 can be dissipated, heat can be dissipated directly from the surface of the sealing resin 7 to the Ni plating layer 21 and directly from the circuit board 2, so that the heat dissipation efficiency is very good. .
[0033]
【The invention's effect】
As described above, the infrared data communication module of the present invention forms a Ni plating layer on the surface of the sealing resin, excluding the hemispherical lens portion and the through-hole electrode portion. It has a case function, can take electromagnetic shielding measures, and is extremely effective in preventing the influence of noise from the outside. Furthermore, in order to dissipate the heat generated from the infrared LED element and other electronic components, an air layer has conventionally been interposed between the substrate and the shield case. 21 and directly from the circuit board 2 can increase the heat dissipation effect.
[0034]
Moreover, the conventionally used shield case is not necessary. This eliminates the need for a mold for making the shield case, and eliminates the need for incorporating the product into the shield case and then bending the two protruding pieces for preventing the product from dropping. Furthermore, the inspection after installation becomes unnecessary.
[0035]
As described above, cost reduction in material costs, product cost reduction in assembly man-hours, inspection man-hours, etc., productivity improvement by multi-piece production, improved reliability by improving heat dissipation effect, shield case Therefore, it is possible to provide an infrared data communication module that exhibits various practical effects such as miniaturization and thinning, and a method for manufacturing the same.
[Brief description of the drawings]
1A and 1B illustrate a method for manufacturing an infrared data communication module according to an embodiment of the present invention. FIG. 1A is a perspective view showing a half dicing process, and FIG. It is sectional drawing of the through hole part enclosed with the dashed-two dotted line A.
FIG. 2 is a perspective view showing a masking process for attaching a masking tape and a mask mold to FIG. 1;
3 is a perspective view showing a resist solution coating process for forming a resist film on the hemispherical lens portion of FIG. 2; FIG.
4 is a perspective view showing a Ni plating process for forming a Ni plating layer on the surface of the sealing resin excluding the hemispherical lens portion and the through-hole electrode in FIG. 3;
5 is a perspective view showing a process of removing the masking tape and removing the resist film of FIG. 4;
6 is a perspective view showing a full dicing process for cutting the substrate of FIG. 5; FIG.
7 is a perspective view of an infrared data communication module divided into a single unit in FIG. 6;
8 is a perspective view of a state in which the infrared data communication module of FIG. 7 is soldered to a GND electrode of a motherboard.
FIG. 9 is a perspective view showing through-hole processing and an electrode pattern forming process on a collective circuit board common to the related art and the present invention.
10 is a perspective view showing a die bonding step of fixing an electronic component to the electrode pattern of FIG. 9 with a conductive adhesive.
11 is a perspective view showing a wire bonding step of connecting the electronic component of FIG. 10 with a bonding wire.
12 is a perspective view showing a resin sealing step for sealing the electronic component of FIG. 11. FIG.
FIG. 13 is a perspective view showing a conventional dicing process.
14 is a perspective view showing an infrared data communication module semi-finished product divided in FIG. 13; FIG.
15 is a perspective view showing an appearance of an infrared data communication module in a state in which the semi-finished product of FIG. 14 is incorporated in a shield case.
[Explanation of symbols]
2 Circuit board 2A Aggregate circuit board 2a, 2b, 2c Electron component mounting electrode pattern 3 Infrared LED element 4 Photo diode 5 Integrated circuit 6 Silver paste 7 Sealing resin 7a, 7b Hemispherical lens part 8 Shield case 9 Motherboard GND Electrode 10 Solder 11 Through hole 11a Through hole electrode 12 Bonding wire 13 X direction cut line 14 Y direction cut line 20 Infrared data communication module 20A Infrared data communication module assembly 21 Ni plating layer 22 Masking tape 23 Mask type 24 Resist film

Claims (1)

多数個取りする集合回路基板の各列に、上下面導電パターン接続用の複数個のスルーホールを穴明けするスルーホール加工工程と、前記スルーホール内面を含む前記集合回路基板の全面にメッキ層を形成するメッキ工程と、メッキレジストをラミネートし露光現像後パターンマスクを形成してパターンエッチングを行い、前記集合回路基板の上面に電子部品実装用電極パターンと前記スルーホールにスルーホール電極パターンを形成する電極パターン形成工程と、前記電子部品実装用電極パターンに少なくとも発光素子、受光素子、ICチップを含む電子部品を実装する実装工程と、前記集合回路基板上の前記発光素子及び受光素子の上面を半球型レンズ部で覆うように透光性の樹脂で封止する樹脂封止工程とを有する赤外線データ通信モジュールの製造方法において、
前記集合回路基板上面を覆う前記封止樹脂を、前記集合回路基板は切断することなく、前記集合回路基板手前までの前記封止樹脂の厚さ分を切断するハーフダイシング工程と、前記半球型レンズ部を除く前記封止樹脂の表面及び前記集合回路基板の裏面の前記スルーホール電極パターンをマスクにて覆うマスキング工程と、前記半球型レンズ部をレジスト膜で覆うレジスト塗布工程と、前記封止樹脂表面のマスクを除去した後前記半球型レンズ部と前記スルーホール電極パターンとを除いた前記封止樹脂の表面にNiメッキ層を形成するNiメッキ工程と、前記ハーフダイシングで残した前記集合回路基板を切断して赤外線データ通信モジュールを単体に分割するフルダイシング工程と、よりなることを特徴とする赤外線データ通信モジュールの製造方法。
A through-hole processing step of drilling a plurality of through-holes for connecting upper and lower conductive patterns on each row of the collective circuit board to be taken, and a plating layer on the entire surface of the collective circuit board including the inner surface of the through-hole A plating process to be formed, a plating resist is laminated, a pattern mask is formed after exposure and development, pattern etching is performed, and an electrode pattern for mounting electronic components on the upper surface of the collective circuit board and a through-hole electrode pattern on the through-hole are formed. An electrode pattern forming step, a mounting step of mounting an electronic component including at least a light emitting element, a light receiving element, and an IC chip on the electrode pattern for mounting the electronic component, and a hemisphere on the upper surface of the light emitting element and the light receiving element Data communication module having a resin sealing step of sealing with a translucent resin so as to cover with a mold lens part In the method for manufacturing Lumpur,
A half dicing step of cutting the sealing resin covering the upper surface of the collective circuit board without cutting the collective circuit board to a thickness of the sealing resin up to the front of the collective circuit board; and the hemispherical lens A masking step of covering the through-hole electrode pattern on the surface of the sealing resin excluding the portion and the back surface of the collective circuit board with a mask, a resist coating step of covering the hemispherical lens portion with a resist film, and the sealing resin An Ni plating step of forming a Ni plating layer on the surface of the sealing resin excluding the hemispherical lens portion and the through-hole electrode pattern after removing the mask on the surface, and the collective circuit board left by the half dicing Infrared data communication module characterized by comprising a full dicing process for cutting an infrared data communication module into a single unit The method of production.
JP30506197A 1997-10-21 1997-10-21 Infrared data communication module manufacturing method Expired - Fee Related JP4108162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30506197A JP4108162B2 (en) 1997-10-21 1997-10-21 Infrared data communication module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30506197A JP4108162B2 (en) 1997-10-21 1997-10-21 Infrared data communication module manufacturing method

Publications (2)

Publication Number Publication Date
JPH11126913A JPH11126913A (en) 1999-05-11
JP4108162B2 true JP4108162B2 (en) 2008-06-25

Family

ID=17940655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30506197A Expired - Fee Related JP4108162B2 (en) 1997-10-21 1997-10-21 Infrared data communication module manufacturing method

Country Status (1)

Country Link
JP (1) JP4108162B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902046B2 (en) * 2000-12-15 2012-03-21 ローム株式会社 Infrared data communication module and manufacturing method thereof
JP4238126B2 (en) * 2003-12-25 2009-03-11 ローム株式会社 Semiconductor module
JP4841981B2 (en) * 2006-03-20 2011-12-21 ローム株式会社 Manufacturing method of light receiving module
JP4883144B2 (en) * 2009-07-08 2012-02-22 ブラザー工業株式会社 Optical scanning device
US8363083B2 (en) * 2009-07-08 2013-01-29 Brother Kogyo Kabushiki Kaisha Light source device having holding member for holding light-emitting element and coupling lens for use in optical scanner
JP2014135360A (en) * 2013-01-09 2014-07-24 Panasonic Corp Optical-electrical converter
CN117538961B (en) * 2024-01-09 2024-07-09 中天引控科技股份有限公司 Preparation method and device for realizing infrared seeker

Also Published As

Publication number Publication date
JPH11126913A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
US7190071B2 (en) Semiconductor package and method for fabricating the same
JP3507251B2 (en) Optical sensor IC package and method of assembling the same
JP3032964B2 (en) Ball grid array semiconductor package and manufacturing method
US7236373B2 (en) Electronic device capable of preventing electromagnetic wave from being radiated
JPH10308466A (en) Ball grid array semiconductor package with heat sink
US20170012142A1 (en) Printed circuit board assembly forming enhanced fingerprint module
CN110890340B (en) Semiconductor device and method for manufacturing the same
CN112042283B (en) Printed circuit board and printed circuit board strip
JP4056598B2 (en) Infrared data communication module
JP4108162B2 (en) Infrared data communication module manufacturing method
KR20040040348A (en) Circuit device, circuit module, and manufacturing method of the circuit device
JP3797771B2 (en) Infrared remote control light receiving unit and manufacturing method thereof
JP3900606B2 (en) Infrared data communication module
JP3786227B2 (en) Infrared data communication module and manufacturing method thereof
JP4319771B2 (en) Infrared data communication module
JP4197569B2 (en) Infrared data communication module
JP4222458B2 (en) Infrared data communication module
JPH11154758A (en) Manufacture of infrared remote-control optical receiver unit
JPH11154764A (en) Manufacture of infrared data communication module
CN113394170B (en) Package structure and method for manufacturing the same
CN221529941U (en) Optical package chip and electronic device
US20240222308A1 (en) Sensor packaging method and sensor package
JP4319772B2 (en) Infrared data communication module
KR19980068016A (en) Ball Grid Array (BGA) Semiconductor Package Using Flexible Circuit Board and Manufacturing Method Thereof
US8531022B2 (en) Routable array metal integrated circuit package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees