JP3786227B2 - Infrared data communication module and manufacturing method thereof - Google Patents

Infrared data communication module and manufacturing method thereof Download PDF

Info

Publication number
JP3786227B2
JP3786227B2 JP4958897A JP4958897A JP3786227B2 JP 3786227 B2 JP3786227 B2 JP 3786227B2 JP 4958897 A JP4958897 A JP 4958897A JP 4958897 A JP4958897 A JP 4958897A JP 3786227 B2 JP3786227 B2 JP 3786227B2
Authority
JP
Japan
Prior art keywords
data communication
communication module
infrared data
emitting element
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4958897A
Other languages
Japanese (ja)
Other versions
JPH10233471A (en
Inventor
剛 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP4958897A priority Critical patent/JP3786227B2/en
Publication of JPH10233471A publication Critical patent/JPH10233471A/en
Application granted granted Critical
Publication of JP3786227B2 publication Critical patent/JP3786227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルコンピューター、プリンター、PDA、ファクシミリ、ページャー、携帯電話等の電子機器に使用される赤外線データ通信モジュール及びその製造方法に関する。
【0002】
【従来の技術】
近年、光通信機能を搭載したノート型パソコン、PDA、携帯電話等の携帯機器で赤外線データ通信モジュールの小型化がより強く要求されている。LEDからなる発光素子、フォトダイオードからなる受光素子、アンプ、ドライブ回路等が組み込まれたICからなる回路部をリードフレームに直接ダイボンド及びワイヤーボンドし、可視光カットエボキシ樹脂によるレンズ一体の樹脂モールドで、送信部と受信部を一パッケージ化した赤外線データ通信モジュールが開発されている。従来の一般的な赤外線データ通信モジュールの構造について、図13〜図17でその概要を説明する。図13は赤外線データ通信モジュールの外観を示す正面図、図14は図13を上面から透視した平面図、図15は図14の内部構成を示す断面図、図16は従来の他の赤外線データ通信モジュールを上面から透視した平面図、図17は従来の赤外線データ通信モジュールをマザーボードに実装した状態を示す斜視図である。
【0003】
図13〜図15において、赤外線データ通信モジュール1は、リードフレーム2の上面側のみに、発光素子3、受光素子4及びICチップ5をダイボンド及びワイヤーボンディングして接続されている。前記電子部品を保護すると共に、発光素子3及び受光素子4の上面を可視光線カット剤入りエポキシ系樹脂等の透光性樹脂6で、赤外線光を照射及び集光する機能を持つ、半球レンズ部6a及び6bを形成するように樹脂封止する。前記リードフレーム2の端子2aは、プンリト基板等のマザーボード7の配線パターン7a(図17)に実装するために赤外線データ通信モジュール1の本体より外部に飛び出している。
【0004】
図16は、前記リードフレーム2の上面側に、前述した発光素子3、受光素子4及びICチップ5以外に、更にコンデンサ8を実装したものである。他の構成は前述と同様であるので説明は省略する。
【0005】
【発明が解決しようとする課題】
しかしながら、前述した赤外線データ通信モジュールには次のような問題点がある。即ち、リードフレームを使用した実装構造では、赤外線データ通信モジュールの構成部品である発光素子、受光素子、ICチップ及びコンデンサ等をリードフレームの上面側だけに配設するために、実装スペースがそのまま構成部品の面積に効き、平面的にサイズを小さくするのに限界があった。また、リードフレームのリード端子が本体の外側に飛び出しているので実装スペースが広くなり、高密度実装を妨げる等の様々な問題があった。
【0006】
本発明は上記従来の課題に鑑みなされたものであり、その目的は、スルーホール付き回路基板を使用して、回路基板の表側及び裏側の両面に電子部品の搭載を可能にする。更に、回路基板の側面に外部接続用電極を形成して、プリント基板等との実装を可能にし、実装スペースも小さくする。多数個取り生産を行い、超小型で安価な赤外線データ通信モジュール及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明における赤外線データ通信モジュールは、平面が略長方形形状の基板の上面及び下面に形成した導電パターンと、前記基板の平面上に形成したスルーホールのスルーホール電極を介して電気的に接続すると共に、少なくとも前記基板の一方の側面に、プリント基板等の配線パターンと接続する外部接続用電極とを形成した回路基板と、前記回路基板の上面側に、発光素子、受光素子、ICチップ及びコンデンサ等の電子部品の中、少なくとも発光素子及び受光素子を実装し、下面側に、前記発光素子及び受光素子以外の電子部品を実装し、上面側の発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止すると共に、下面側の電子部品を樹脂封止又は半田付け等の固着手段で固着したことを特徴とするものである。
【0008】
また、前記回路基板の上面側に、発光素子及び受光素子を、下面側に、ICチップをそれぞれ実装し、前記発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止すると共に、前記ICチップを樹脂封止したことを特徴とするものである。
【0009】
また、前記回路基板の上面側に、発光素子、受光素子及びICチップを、下面側に、コンデンサをそれぞれ実装し、上面側はICチップを含み、前記発光素子及び受光素子の上面を半球レンズ部で形成するように透光性樹脂で樹脂封止し、下面側は半田付け等の固着手段で固着したことを特徴とするものである。
【0010】
また、前記発光素子及び受光素子の上面に形成した半球レンズ部に対応する位置に透孔部を有し、前記回路基板の側面に形成した外部接続用電極面に対応する位置に開口部を有するシールドケースで、前記モジュール本体を覆ったことを特徴とするものである。
【0011】
また、本発明の赤外線データ通信モジュールの製造方法は、集合基板の各列毎に、所定の位置に複数個の上下面導電パターン接続用スルーホールと、前記各列間の直線上に複数個の外部接続用電極スルーホールを形成するスルーホール加工工程と、メッキ処理により前記スルーホールの内面を含む集合基板の全表面にメッキ層を形成するメッキ工程と、メッキレジストをラミネートし、露光現像後パターンマスクを形成し、パターンエッチングを行い、前記集合基板の上面及び下面に導電パターンと、前記スルーホールにスルーホール電極を形成して電気的に接続して回路基板集合体を形成するエッチング工程と、前記回路基板集合体の上面側に、発光素子、受光素子、ICチップ及びコンデンサ等の電子部品の中、少なくとも発光素子及び受光素子を実装し、下面側に、前記発光素子及び受光素子以外の電子部品を実装する電子部品実装工程と、上面側の発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止すると共に、下面側の電子部品を樹脂封止又は半田等の固着手段で固着して赤外線データ通信モジュール集合体を形成する封止工程と、前記赤外線データ通信モジュール集合体を直交する2つのカットラインに沿って切断して単体の赤外線データ通信モジュールに分割する切断工程とからなることを特徴とするものである。
【0012】
また、前記発光素子及び受光素子の上面に形成した半球レンズ部に対応する位置に透孔部を有し、前記回路基板の側面に形成した外部接続用電極面に対応する位置に開口部を有するシールドケースで、単体の赤外線データ通信モジュール本体を覆うシールド工程とからなることを特徴とするものである。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明における赤外線データ通信モジュール及びその製造方法について説明する。図1、図2、図8、図9及び図10は本発明の第1の実施の形態である赤外線データ通信モジュール及びその製造方法に係わり、図1は赤外線データ通信モジュールの断面図、図2は図1の赤外線データ通信モジュールをマザーボードに実装する状態を示す斜視図、図8は赤外線データ通信モジュールの製造方法を説明する回路基板集合体の上面側の部分斜視図、図9は図8の下面側の部分斜視図、図10は樹脂封止した赤外線データ通信モジュール集合体の部分斜視図である。図において、従来技術と同一部材は同一符号で示す。
【0014】
図1及び図2において、11はガラスエポキシ樹脂等よりなる平面が略長方形形状の絶縁性を有する樹脂基板で、その上面及び下面に形成した導電パターン(図示せず)が、前記樹脂基板11の平面上に形成したスルーホール12のスルーホール電極12aを介して電気的に接続する。また、前記樹脂基板11の一方の側面に形成した複数個のスルーホール13のスルーホール電極が、プリント基板等のマザーボード7の配線パターン7aと接続する外部接続用電極13aとなる。前記樹脂基板11に導電パターンが形成された回路基板14が構成される。前記スルーホール13のスルーホール電極である外部接続用電極13aはその一部が回路基板14の下面まで延びて外部接続用電極13bを形成して、側面実装を可能にしている。尚、本実施の形態においては、回路基板14は、ガラスエポキシ基板を使用したが、アルミナセラミック基板、ポリエステルやポリイミド等のプラスチックフィルム基板等を使用しても良い。
【0015】
3は高速赤外LEDからなる発光素子であり、4はフォトダイオードからなる受光素子である。両者はそれぞれ回路基板14の上面側に実装されており、導電パターンにダイボンド及びワイヤーボンドされ接続されている。5は高速アンプ、ドライブ回路等が組み込まれた回路部を有するICチップであり、回路基板14の下面側の導電パターンにダイボンド及びワイヤーボンドされ、前記スルーホール12のスルーホール電極12aを介して接続されている。
【0016】
6は、従来と同様に発光素子3及び受光素子4を樹脂封止する可視光カット剤入りエボキシ系の透光性樹脂である。該透光性樹脂6により、発光素子3及び受光素子4の上面に半球型レンズ部6a及び6bを形成して、赤外線光の照射及び集光の機能を持たせると同時に両素子の保護を行う。回路基板14の下面に実装したICチップ5の封止は、前記透光性樹脂6に限らず、他の熱硬化性の樹脂で封止しても良い。
【0017】
図7は、前述した回路基板14の側面に形成した複数個の外部接続用電極13a及び13bを示す部分拡大図である。前記外部接続用電極13aは後述する回路基板集合体のカットライン上に形成した複数個のスルーホール13を、切断した時にできる半円形状のスルーホール電極である。
【0018】
以上の構成からなる赤外線データ通信モジュール10を、各種機器のプリント基板等のマザーボード7に実装するには、図2に示すように、赤外線データ通信モジュール10側の外部接続用電極13a(スルーホール電極)を、マザーボード7の配線パターン7aに位置合わせした後、リフロー半田付け等の固着手段により接続する。前記発光素子3及び受光素子4の発光・受光の方向がマザーボード7の表面に対して平行になるように側面実装することができる。
【0019】
以上の構成により、図8、図9及び図10によりその製造方法について説明する。先ず、図8において、スルーホール加工工程は、ガラスエポキシ樹脂等よりなる多数個取りする集合樹脂基板11aの各列毎に、所定の位置に複数個の上下面導電パターン接続用のスルーホール12と、隔列間(後述するX方向のカットラインでX2、X4・・・)の直線上に複数個の外部接続用電極のスルーホール13を形成するスルーホール加工を、切削又はプレス等の加工手段により形成する。
【0020】
次に、メッキ工程において、前記2種類のスルーホール12、13の壁面を含む集合樹脂基板11aの全表面を洗浄した後、前記集合樹脂基板11aの全表面を無電解メッキにより銅メッキ層を形成し、その上に電解メッキによりニッケルメッキ層を形成し、更に、その上に電解メッキにより金メッキ層を形成する。
【0021】
更に、エッチング工程において、メッキレジストをラミネートし、露光現像してパターンマスクを形成し、前記集合樹脂基板11aの上面及び下面に導電パターンを形成し、前記スルーホール12の壁面に、上下の導電パターンを接続する縦パターン12aと、スルーホール13の壁面に外部接続用電極13aと、その一部が回路基板14の下面まで延びて外部接続用電極13bを形成して、回路基板集合体14aが形成される。
【0022】
次に、電子部品実装工程において、図8に示すように、前記回路基板集合体14aの上面側の所定の位置に、高速赤外LEDよりなる発光素子3と、フォトダイオードよりなる受光素子4を、導電パターンに接着剤又は半田等の固着手段で、ダイボンド及びワイヤーボンド実装される。更に、図9に示すように、前記回路基板集合体14aの下面側の所定の位置に、前記発光素子3及び受光素子4以外の他の電子部品、例えば、ICチップ5を同様にダイボンド及びワイヤーボンド実装される。上面側及び下面側に実装された電子部品はスルーホール12のスルーホール電極12aを介して接続されている。
【0023】
更に、樹脂封止工程において、図10に示すように、前記回路基板集合体14aの上面側を、エポキシ系樹脂等の透光性樹脂6で、トランスファーモールド等のモールド手段で、発光素子3及び受光素子4の上面を半球レンズ部6a及び6bで覆うように樹脂封止する。下面側のICチップ5も同様に、前記透光性樹脂6又は熱硬化性の封止樹脂により封止する。以上により、赤外線データ通信モジュール集合体10aが形成される。
【0024】
次に、切断工程において、前記赤外線データ通信モジュール集合体10aを、直交するX方向カットライン15、Y方向カットライン16に沿って、ダイシング又はスライシングマシン等で切断して単体の赤外線データ通信モジュール10に分割する。図10に示すように、X方向カットライン15の中、カットラインX2の列上には外部接続用電極13aとなる複数個のスルーホール電極が形成されており、スルーホール13上を切断することにより、単体の赤外線データ通信モジュール10の一方の側面には半円形状のスルーホール電極である外部接続用電極13aが形成されることになる。前記スルーホール13は隔列毎(X2、X4・・・)に形成したが、必要により各列毎(X1、X2、X3・・・)に形成して、切断後に回路基板14の両サイドに外部接続用電極13aを形成しても良い。
【0025】
図3、図11及び図12は本発明の第2の実施の形態である赤外線データ通信モジュール及びその製造方法に係わり、図3は赤外線データ通信モジュールの断面図、図11は赤外線データ通信モジュールの製造方法を説明する回路基板集合体の上面側の部分斜視図、図12は図11の下面側の部分斜視図である。
【0026】
図3において、前記回路基板14の上面側には、前述と同様に、高速赤外LEDからなる発光素子3、フォトダイオードからなる受光素子4と、それ以外に、回路部を構成するICチップ5が実装され、導電パターンにダイボンド及びワイヤーボンドされ接続されている。回路基板14の下面側には、コンデンサ8が高融点半田18により半田付けされている。高融点半田18は、例えばPb:90%、Sn:10%、融点250°Cを使用するが、これは完成された本モジュールがセットメーカーでマウント、リフロー工程で処理されるため、リフローで半田が溶解するのを防ぐためである。
【0027】
第1の実施の形態で説明したと同様に、上面側は、透光性樹脂6によりICチップ5を保護すると同時に、発光素子3及び受光素子4の上面に半球型レンズ部6a及び6bを形成する。下面側に実装したコンデンサ8は封止樹脂で封止してもしなくても良い。赤外線データ通信モジュール20が構成される。
【0028】
図11及び図12において、図8及び図9で説明した第1の実施の形態での製造方法と異なる点は、上述したように回路基板集合体14aの上面側に、発光素子3、受光素子4以外にICチップ5を実装したこと、及び下面側にコンデンサ8を半田付けして実装したことである。それ以外は第1の実施の形態での製造方法と同様であるので説明は省略する。
【0029】
図4は本発明の第3の実施の形態に係わる赤外線データ通信モジュール30の断面図である。図4に示すように、前述の第1の実施の形態で説明した赤外線データ通信モジュール10において、発光素子3及び受光素子4の上面に形成した半球レンズ部6a及び6bに対応する位置に透孔部31aを有し、マザーボード7に側面実装する場合は、前記回路基板14の側面に形成した外部接続用電極面13aに対応する位置に開口部31bを有するステンレス、アルミ、銅等の部材よりなるシールドケース31で、前記モジュール本体を覆うことにより、回路部等を囲っているので、電磁シールド対策を採ることができ、外部からのノイズ等による影響を防止するのに極めて有効である。従って、半球レンズ部6a、6b及びマザーボード7に実装される以外の面は、前記シールドケース31でカバーされていることになる。
【0030】
図5は本発明の第4の実施の形態に係わる赤外線データ通信モジュール40の断面図である。図5に示すように、前述の第2の実施の形態で説明した赤外線データ通信モジュール20において、シールドケース31で上述したように、発光素子3及び受光素子4の上面に形成した半球レンズ部6a及び6bに対応する位置と、マザーボード7に実装する面を除く全ての面を、前記シールドケース31で覆うことより、ノイズ対策を採ったものである。
【0031】
図6は、図4又は図5で示したように、シールドケース31にてカバーした赤外線データ通信モジュール30又は40をマザーボード7に実装する状態を示す斜視図てあり、前述と同様に、モジュール本体側の外部接続用電極13aを、マザーボード7の配線パターン7aに位置合わせした後、半田付け等の固着手段により接続する。前記発光素子3及び受光素子4の発光・受光の方向がマザーボード7の表面に対して平行になるように側面実装することができる。
【0032】
【発明の効果】
以上説明したように、本発明によれば、回路基板の上面側に、少なくとも発光素子及び受光素子を実装し、下面側にICチップ、コンデンサのいづれか一方、又は両方を実装して、上面側と下面側をスルーホール電極を介して接続することにより、従来のようにリードフレームが本体から飛び出すこともなく、基板の上下両面に実装することにより、実装スペースを小さくすることができた。また、多数個取りする回路基板集合体のX方向のカットライン上のスルーホールに外部接続用電極を形成して、モジュール本体をマザーボードに側面実装を可能にし、更に、外部接続用電極の半田付け面積が拡大されたので、マザーボードとの固定力が増大し、信頼性が向上した。
【0033】
また、半球型レンズ部に対応する位置と、マザーボードに実装する面を除く全ての面を、シールドケースで覆うことより、外部からのノイズ等による影響を防止することができた。
【0034】
また、多数個取りする回路基板集合体に、電子部品を実装後、レンズ一体のトランスファーモールドで送信部と受信部を樹脂封止し、直交する2つのカットラインに沿って切断、分離することにより、薄型で超小型の赤外線データ通信モジュールを、多数個取り生産方式により、容易、且つ極めて安価に製造することを可能にした。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を係わる赤外線データ通信モジュールの断面図である。
【図2】図1の赤外線データ通信モジュールをマザーボードに実装する状態を示す斜視図である。
【図3】本発明の第2の実施の形態に係わる赤外線データ通信モジュールの断面図である。
【図4】本発明の第3の実施の形態に係わる赤外線データ通信モジュールの断面図である。
【図5】本発明の第4の実施の形態に係わる赤外線データ通信モジュールの断面図である。
【図6】図4又は図5の赤外線データ通信モジュールをマザーボードに実装する状態を示す斜視図である。
【図7】本発明の外部接続用電極を示す斜視図である。
【図8】図1の赤外線データ通信モジュールの製造方法を説明する回路基板集合体の上面側の斜視図である。
【図9】図8の下面側の斜視図である。
【図10】図8の回路基板集合体の樹脂封止の状態を説明する斜視図である。
【図11】図3の赤外線データ通信モジュールの製造方法を説明する回路基板集合体の上面側の斜視図である。
【図12】図11の下面側の斜視図である。
【図13】従来の赤外線データ通信モジュールの外観正面図である。
【図14】図13を上面から透視した平面図である。
【図15】図13の断面図である。
【図16】従来の他の赤外線データ通信モジュールを上面から透視した平面図である。
【図17】従来のモジュール本体をマザーボードに実装した状態を示す斜視図である。
【符号の説明】
3 発光素子
4 受光素子
5 ICチップ
6 透光性樹脂
7 マザーボード
7a 配線パターン
8 コンデンサ
10、20、30、40 赤外線データ通信モジュール
10a 赤外線データ通信モジュール集合体
11 樹脂基板
11a 集合樹脂基板
12、13 スルーホール
12a スルーホール電極
13a、13b 外部接続用電極
14 回路基板
14a 回路基板集合体
15 X方向カットライン
16 Y方向カットライン
18 高融点半田
31 シールドケース
31a 透光部
31b 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared data communication module used in an electronic apparatus such as a personal computer, a printer, a PDA, a facsimile, a pager, and a mobile phone, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been a strong demand for miniaturization of infrared data communication modules in portable devices such as notebook personal computers, PDAs, and mobile phones equipped with optical communication functions. A light-emitting element composed of LED, a light-receiving element composed of a photodiode, an amplifier, a circuit part composed of an IC incorporating a drive circuit, etc. are directly die-bonded and wire-bonded to a lead frame, and a resin-integrated lens integrated with a visible light cut epoxy resin. An infrared data communication module in which a transmitter and a receiver are packaged has been developed. The outline of the structure of a conventional general infrared data communication module will be described with reference to FIGS. 13 is a front view showing the external appearance of the infrared data communication module, FIG. 14 is a plan view of FIG. 13 seen through from above, FIG. 15 is a cross-sectional view showing the internal configuration of FIG. 14, and FIG. FIG. 17 is a perspective view showing a state in which a conventional infrared data communication module is mounted on a motherboard.
[0003]
13 to 15, the infrared data communication module 1 is connected to the light emitting element 3, the light receiving element 4, and the IC chip 5 only on the upper surface side of the lead frame 2 by die bonding and wire bonding. A hemispherical lens unit that protects the electronic components and has a function of irradiating and condensing infrared light with a translucent resin 6 such as an epoxy resin containing a visible light cut agent on the upper surface of the light emitting element 3 and the light receiving element 4 Resin sealing is performed so as to form 6a and 6b. The terminals 2a of the lead frame 2 protrude from the main body of the infrared data communication module 1 to be mounted on a wiring pattern 7a (FIG. 17) of a mother board 7 such as a printed board.
[0004]
In FIG. 16, a capacitor 8 is further mounted on the upper surface side of the lead frame 2 in addition to the light emitting element 3, the light receiving element 4 and the IC chip 5 described above. Since other configurations are the same as those described above, description thereof will be omitted.
[0005]
[Problems to be solved by the invention]
However, the infrared data communication module described above has the following problems. That is, in the mounting structure using the lead frame, the light emitting element, the light receiving element, the IC chip, the capacitor, etc., which are the components of the infrared data communication module, are arranged only on the upper surface side of the lead frame, so the mounting space is configured as it is. It has an effect on the area of the parts, and there is a limit to reducing the size in a plane. Further, since the lead terminals of the lead frame protrude to the outside of the main body, there are various problems such as a large mounting space and hindering high-density mounting.
[0006]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to enable mounting of electronic components on both the front side and the back side of a circuit board using a circuit board with through holes. Furthermore, an external connection electrode is formed on the side surface of the circuit board to enable mounting on a printed circuit board and the like, and the mounting space is reduced. A multi-unit production is performed to provide an ultra-small and inexpensive infrared data communication module and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an infrared data communication module according to the present invention includes a conductive pattern formed on an upper surface and a lower surface of a substrate having a substantially rectangular plane, and a through-hole electrode of a through hole formed on the plane of the substrate. A circuit board having an external connection electrode connected to a wiring pattern such as a printed board on at least one side surface of the board, and a light emitting element on the upper surface side of the circuit board, At least a light emitting element and a light receiving element are mounted among electronic components such as a light receiving element, an IC chip and a capacitor, and an electronic component other than the light emitting element and the light receiving element is mounted on the lower surface side, and the light emitting element and the light receiving element on the upper surface side are mounted. The upper surface is covered with a translucent resin so that the upper surface is covered with a hemispherical lens portion, and the electronic component on the lower surface side is fixed by fixing means such as resin sealing or soldering. It is characterized in.
[0008]
In addition, a light emitting element and a light receiving element are mounted on the upper surface side of the circuit board, and an IC chip is mounted on the lower surface side, and a resin with a translucent resin is used to cover the upper surface of the light emitting element and the light receiving element with a hemispherical lens portion. In addition to sealing, the IC chip is sealed with resin.
[0009]
A light emitting element, a light receiving element, and an IC chip are mounted on the upper surface side of the circuit board, and a capacitor is mounted on the lower surface side. The upper surface side includes an IC chip, and the upper surface of the light emitting element and the light receiving element is a hemispherical lens portion. The resin is sealed with a translucent resin so as to be formed by the following, and the lower surface side is fixed by fixing means such as soldering.
[0010]
The light emitting element and the light receiving element have a through hole at a position corresponding to the hemispherical lens portion formed on the upper surface and an opening at a position corresponding to the external connection electrode surface formed on the side surface of the circuit board. The module body is covered with a shield case.
[0011]
The method for manufacturing an infrared data communication module of the present invention includes a plurality of upper and lower conductive pattern connecting through holes at a predetermined position for each column of the collective substrate, and a plurality of lines on the straight line between the columns. Through-hole processing step for forming electrode holes for external connection, plating step for forming a plating layer on the entire surface of the aggregate substrate including the inner surface of the through-hole by plating, and laminating a plating resist, pattern after exposure and development An etching step of forming a mask, performing pattern etching, forming a circuit board assembly by forming a conductive pattern on the upper and lower surfaces of the collective substrate, and forming a through-hole electrode in the through-hole to be electrically connected; Among the electronic components such as a light emitting element, a light receiving element, an IC chip and a capacitor on the upper surface side of the circuit board assembly, at least a light emitting element and An electronic component mounting step of mounting an optical element and mounting an electronic component other than the light emitting element and the light receiving element on the lower surface side, and a light-transmitting property so as to cover the upper surface of the light emitting element and the light receiving element on the upper surface side with a hemispherical lens portion A sealing step of forming an infrared data communication module assembly by resin sealing with resin and fixing an electronic component on the lower surface side by resin sealing or a fixing means such as solder and the infrared data communication module assembly orthogonal to each other A cutting step of cutting along two cut lines and dividing it into a single infrared data communication module.
[0012]
The light emitting element and the light receiving element have a through hole at a position corresponding to the hemispherical lens portion formed on the upper surface and an opening at a position corresponding to the external connection electrode surface formed on the side surface of the circuit board. The shield case includes a shield step for covering the single infrared data communication module main body.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an infrared data communication module and a manufacturing method thereof according to the present invention will be described with reference to the drawings. 1, FIG. 2, FIG. 8, FIG. 9 and FIG. 10 relate to the infrared data communication module and the manufacturing method thereof according to the first embodiment of the present invention. FIG. 1 is a sectional view of the infrared data communication module. 1 is a perspective view showing a state in which the infrared data communication module of FIG. 1 is mounted on a motherboard, FIG. 8 is a partial perspective view of the upper surface side of a circuit board assembly for explaining a method of manufacturing the infrared data communication module, and FIG. FIG. 10 is a partial perspective view of the infrared data communication module assembly sealed with resin. In the figure, the same members as those in the prior art are denoted by the same reference numerals.
[0014]
In FIGS. 1 and 2, reference numeral 11 denotes a resin substrate having a substantially rectangular shape made of glass epoxy resin or the like, and a conductive pattern (not shown) formed on the upper and lower surfaces of the resin substrate 11. Electrical connection is made through the through-hole electrode 12a of the through-hole 12 formed on the plane. Further, the through-hole electrodes of the plurality of through-holes 13 formed on one side surface of the resin substrate 11 serve as external connection electrodes 13a connected to the wiring pattern 7a of the mother board 7 such as a printed circuit board. A circuit board 14 having a conductive pattern formed on the resin substrate 11 is configured. A part of the external connection electrode 13a which is a through-hole electrode of the through hole 13 extends to the lower surface of the circuit board 14 to form the external connection electrode 13b, thereby enabling side mounting. In the present embodiment, a glass epoxy substrate is used as the circuit board 14, but an alumina ceramic substrate, a plastic film substrate such as polyester or polyimide, or the like may be used.
[0015]
3 is a light emitting element made of a high-speed infrared LED, and 4 is a light receiving element made of a photodiode. Both are mounted on the upper surface side of the circuit board 14 and are connected to the conductive pattern by die bonding and wire bonding. Reference numeral 5 denotes an IC chip having a circuit portion in which a high-speed amplifier, a drive circuit, and the like are incorporated. Has been.
[0016]
6 is an epoxy-based translucent resin containing a visible light cut agent that seals the light-emitting element 3 and the light-receiving element 4 with a resin as in the conventional case. The translucent resin 6 forms hemispherical lens portions 6a and 6b on the upper surfaces of the light emitting element 3 and the light receiving element 4 to provide the function of irradiating and condensing infrared light, and at the same time protecting both elements. . The sealing of the IC chip 5 mounted on the lower surface of the circuit board 14 is not limited to the translucent resin 6 and may be sealed with another thermosetting resin.
[0017]
FIG. 7 is a partially enlarged view showing a plurality of external connection electrodes 13a and 13b formed on the side surface of the circuit board 14 described above. The external connection electrode 13a is a semicircular through-hole electrode formed when a plurality of through-holes 13 formed on a cut line of a circuit board assembly described later is cut.
[0018]
In order to mount the infrared data communication module 10 having the above configuration on a mother board 7 such as a printed circuit board of various devices, as shown in FIG. 2, an external connection electrode 13a (through-hole electrode) on the infrared data communication module 10 side is provided. ) Is aligned with the wiring pattern 7a of the mother board 7, and then connected by fixing means such as reflow soldering. The light emitting element 3 and the light receiving element 4 can be mounted on the side so that the light emitting and receiving directions are parallel to the surface of the mother board 7.
[0019]
With the above configuration, the manufacturing method will be described with reference to FIGS. First, in FIG. 8, the through-hole processing step includes a plurality of through-holes 12 for connecting the upper and lower conductive patterns at predetermined positions for each row of the collective resin substrate 11a made of glass epoxy resin or the like. , Through-hole processing for forming a plurality of through-holes 13 for external connection electrodes on a straight line between rows (X2, X4,. To form.
[0020]
Next, in the plating step, after cleaning the entire surface of the aggregate resin substrate 11a including the wall surfaces of the two types of through holes 12, 13, a copper plating layer is formed on the entire surface of the aggregate resin substrate 11a by electroless plating. Then, a nickel plating layer is formed thereon by electrolytic plating, and a gold plating layer is further formed thereon by electrolytic plating.
[0021]
Further, in the etching process, a plating resist is laminated, exposed and developed to form a pattern mask, conductive patterns are formed on the upper and lower surfaces of the aggregate resin substrate 11a, and upper and lower conductive patterns are formed on the wall surface of the through hole 12. The circuit board assembly 14a is formed by forming the vertical connection pattern 12a, the external connection electrode 13a on the wall surface of the through hole 13, and a part thereof extending to the lower surface of the circuit board 14 to form the external connection electrode 13b. Is done.
[0022]
Next, in the electronic component mounting step, as shown in FIG. 8, a light emitting element 3 made of a high-speed infrared LED and a light receiving element 4 made of a photodiode are placed at predetermined positions on the upper surface side of the circuit board assembly 14a. Then, die bonding and wire bonding are mounted on the conductive pattern by an adhering means such as an adhesive or solder. Further, as shown in FIG. 9, other electronic components other than the light emitting element 3 and the light receiving element 4, such as an IC chip 5, are similarly bonded to a predetermined position on the lower surface side of the circuit board assembly 14a. Bond mounted. Electronic components mounted on the upper surface side and the lower surface side are connected via the through-hole electrode 12 a of the through-hole 12.
[0023]
Furthermore, in the resin sealing step, as shown in FIG. 10, the upper surface side of the circuit board assembly 14a is made of a light-transmitting resin 6 such as an epoxy resin and a molding means such as a transfer mold. Resin sealing is performed so that the upper surface of the light receiving element 4 is covered with the hemispherical lens portions 6a and 6b. Similarly, the IC chip 5 on the lower surface side is sealed with the translucent resin 6 or the thermosetting sealing resin. Thus, the infrared data communication module aggregate 10a is formed.
[0024]
Next, in the cutting step, the infrared data communication module assembly 10a is cut by a dicing or slicing machine or the like along the orthogonal X-direction cut line 15 and Y-direction cut line 16 to form a single infrared data communication module 10. Divide into As shown in FIG. 10, a plurality of through-hole electrodes serving as external connection electrodes 13a are formed on the cut line X2 in the X-direction cut line 15, and the through-hole 13 is cut off. Thus, the external connection electrode 13a, which is a semicircular through-hole electrode, is formed on one side surface of the single infrared data communication module 10. The through holes 13 are formed in every row (X2, X4...), But are formed in each row (X1, X2, X3...) If necessary, and are formed on both sides of the circuit board 14 after cutting. The external connection electrode 13a may be formed.
[0025]
3, FIG. 11 and FIG. 12 relate to an infrared data communication module and a method for manufacturing the same according to a second embodiment of the present invention. FIG. 3 is a sectional view of the infrared data communication module, and FIG. FIG. 12 is a partial perspective view on the lower surface side of FIG. 11, and FIG. 12 is a partial perspective view on the upper surface side of the circuit board assembly for explaining the manufacturing method.
[0026]
In FIG. 3, on the upper surface side of the circuit board 14, as described above, a light emitting element 3 made of a high-speed infrared LED, a light receiving element 4 made of a photodiode, and an IC chip 5 constituting a circuit part other than that. Is mounted and connected to the conductive pattern by die bonding and wire bonding. The capacitor 8 is soldered to the lower surface side of the circuit board 14 with a high melting point solder 18. The high melting point solder 18 uses, for example, Pb: 90%, Sn: 10%, and a melting point of 250 ° C. This is because the completed module is mounted by a set maker and processed in a reflow process. This is to prevent dissolution.
[0027]
As described in the first embodiment, on the upper surface side, the IC chip 5 is protected by the translucent resin 6 and, at the same time, the hemispherical lens portions 6 a and 6 b are formed on the upper surfaces of the light emitting element 3 and the light receiving element 4. To do. The capacitor 8 mounted on the lower surface side may or may not be sealed with a sealing resin. An infrared data communication module 20 is configured.
[0028]
11 and 12, the difference from the manufacturing method in the first embodiment described in FIGS. 8 and 9 is that the light emitting element 3 and the light receiving element are provided on the upper surface side of the circuit board assembly 14a as described above. This is that the IC chip 5 is mounted in addition to 4, and the capacitor 8 is soldered and mounted on the lower surface side. Since other than that is the same as that of the manufacturing method in 1st Embodiment, description is abbreviate | omitted.
[0029]
FIG. 4 is a cross-sectional view of an infrared data communication module 30 according to the third embodiment of the present invention. As shown in FIG. 4, in the infrared data communication module 10 described in the first embodiment, a through hole is formed at a position corresponding to the hemispherical lens portions 6a and 6b formed on the upper surfaces of the light emitting element 3 and the light receiving element 4. In the case of having a portion 31a and side mounting on the mother board 7, it is made of a member such as stainless steel, aluminum or copper having an opening 31b at a position corresponding to the external connection electrode surface 13a formed on the side surface of the circuit board 14. By covering the module body with the shield case 31, the circuit portion and the like are enclosed, so that electromagnetic shielding measures can be taken and it is extremely effective in preventing the influence of external noise and the like. Accordingly, the surfaces other than those mounted on the hemispherical lens portions 6 a and 6 b and the mother board 7 are covered with the shield case 31.
[0030]
FIG. 5 is a cross-sectional view of an infrared data communication module 40 according to the fourth embodiment of the present invention. As shown in FIG. 5, in the infrared data communication module 20 described in the second embodiment, as described above with the shield case 31, the hemispherical lens portion 6a formed on the upper surfaces of the light emitting element 3 and the light receiving element 4. And 6b, and all the surfaces except the surface to be mounted on the mother board 7 are covered with the shield case 31, so that noise countermeasures are taken.
[0031]
FIG. 6 is a perspective view showing a state where the infrared data communication module 30 or 40 covered by the shield case 31 is mounted on the mother board 7 as shown in FIG. 4 or FIG. The external connection electrode 13a on the side is aligned with the wiring pattern 7a of the mother board 7, and then connected by fixing means such as soldering. The light emitting element 3 and the light receiving element 4 can be mounted on the side so that the light emitting and receiving directions are parallel to the surface of the mother board 7.
[0032]
【The invention's effect】
As described above, according to the present invention, at least the light emitting element and the light receiving element are mounted on the upper surface side of the circuit board, and either or both of the IC chip and the capacitor are mounted on the lower surface side. By connecting the lower surface side via the through-hole electrode, the lead frame does not jump out of the main body as in the conventional case, and the mounting space can be reduced by mounting on the upper and lower surfaces of the substrate. Also, external connection electrodes are formed in through holes on the cut line in the X direction of the circuit board assembly to be taken in large numbers, so that the module body can be mounted on the side surface of the motherboard, and soldering of the external connection electrodes Since the area was expanded, the fixing force with the motherboard increased and the reliability improved.
[0033]
In addition, by covering the surface corresponding to the hemispherical lens portion and all surfaces except the surface mounted on the motherboard with a shield case, it was possible to prevent the influence of external noise and the like.
[0034]
In addition, by mounting electronic components on a circuit board assembly to be obtained in large numbers, the transmitter and receiver are resin-sealed with a lens-integrated transfer mold, and cut and separated along two orthogonal cut lines The thin and ultra-small infrared data communication module can be manufactured easily and at a very low cost by the multi-piece production method.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an infrared data communication module according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing a state where the infrared data communication module of FIG. 1 is mounted on a motherboard.
FIG. 3 is a cross-sectional view of an infrared data communication module according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional view of an infrared data communication module according to a third embodiment of the present invention.
FIG. 5 is a cross-sectional view of an infrared data communication module according to a fourth embodiment of the present invention.
6 is a perspective view showing a state in which the infrared data communication module of FIG. 4 or FIG. 5 is mounted on a motherboard.
FIG. 7 is a perspective view showing an external connection electrode of the present invention.
8 is a top perspective view of a circuit board assembly for explaining a method of manufacturing the infrared data communication module of FIG. 1; FIG.
9 is a perspective view of the lower surface side of FIG.
10 is a perspective view illustrating a state of resin sealing of the circuit board assembly of FIG.
11 is a perspective view of the upper surface side of a circuit board assembly for explaining a method of manufacturing the infrared data communication module of FIG. 3; FIG.
12 is a perspective view of the lower surface side of FIG. 11. FIG.
FIG. 13 is an external front view of a conventional infrared data communication module.
14 is a plan view of FIG. 13 seen through from above.
15 is a cross-sectional view of FIG.
FIG. 16 is a plan view of another conventional infrared data communication module seen through from above.
FIG. 17 is a perspective view showing a state where a conventional module body is mounted on a motherboard.
[Explanation of symbols]
3 Light-Emitting Element 4 Light-Receiving Element 5 IC Chip 6 Translucent Resin 7 Motherboard 7a Wiring Pattern 8 Capacitors 10, 20, 30, 40 Infrared Data Communication Module 10a Infrared Data Communication Module Assembly 11 Resin Substrate 11a Collected Resin Substrate 12, 13 Through Hole 12a Through-hole electrode 13a, 13b External connection electrode 14 Circuit board 14a Circuit board assembly 15 X direction cut line 16 Y direction cut line 18 High melting point solder 31 Shield case 31a Translucent part 31b Opening

Claims (6)

平面が略長方形形状の基板の上面及び下面に形成した導電パターンを、前記基板の平面上に形成したスルーホールのスルーホール電極を介して電気的に接続すると共に、少なくとも前記基板の一方の側面に、プリント基板等の配線パターンと接続する外部接続用電極を形成した回路基板と、前記回路基板の上面側に、発光素子、受光素子、ICチップ及びコンデンサ等の電子部品の中、少なくとも発光素子及び受光素子を実装し、下面側に、前記発光素子及び受光素子以外の電子部品を実装し、上面側の発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止すると共に、下面側の電子部品を樹脂封止又は半田付け等の固着手段で固着したことを特徴とする赤外線データ通信モジュール。Conductive patterns formed on the upper and lower surfaces of the substrate having a substantially rectangular plane are electrically connected via through-hole electrodes of through holes formed on the plane of the substrate, and at least on one side surface of the substrate. A circuit board on which external connection electrodes to be connected to a wiring pattern such as a printed circuit board are formed, and on the upper surface side of the circuit board, at least a light emitting element and a light emitting element, a light receiving element, an IC chip, a capacitor, and the like Mount the light receiving element, mount the electronic components other than the light emitting element and the light receiving element on the lower surface side, and encapsulate with a translucent resin so that the upper surface of the light emitting element and the light receiving element are covered with a hemispherical lens part In addition, an infrared data communication module characterized in that an electronic component on the lower surface side is fixed by fixing means such as resin sealing or soldering. 前記回路基板の上面側に、発光素子及び受光素子を、下面側に、ICチップをそれぞれ実装し、前記発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止すると共に、前記ICチップを樹脂封止したことを特徴とする請求項1記載の赤外線データ通信モジュール。A light-emitting element and a light-receiving element are mounted on the upper surface side of the circuit board, and an IC chip is mounted on the lower surface side, and resin-sealed with a translucent resin so as to cover the upper surface of the light-emitting element and the light-receiving element with a hemispherical lens portion. The infrared data communication module according to claim 1, wherein the IC chip is sealed with resin. 前記回路基板の上面側に、発光素子、受光素子及びICチップを、下面側に、コンデンサをそれぞれ実装し、上面側はICチップを含み、前記発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止し、下面側は半田付け等の固着手段で固着したことを特徴とする請求項1記載の赤外線データ通信モジュール。A light emitting element, a light receiving element and an IC chip are mounted on the upper surface side of the circuit board, and a capacitor is mounted on the lower surface side. The upper surface side includes an IC chip, and the upper surface of the light emitting element and the light receiving element is covered with a hemispherical lens portion. 2. The infrared data communication module according to claim 1, wherein the resin is sealed with a translucent resin, and the lower surface side is fixed by fixing means such as soldering. 前記発光素子及び受光素子の上面に形成した半球レンズ部に対応する位置に透孔部を有し、前記回路基板の側面に形成した外部接続用電極面に対応する位置に開口部を有するシールドケースで、前記モジュール本体を覆ったことを特徴とする請求項2又は3記載の赤外線データ通信モジュール。Shield case having a through hole at a position corresponding to the hemispherical lens formed on the upper surface of the light emitting element and the light receiving element, and an opening at a position corresponding to the external connection electrode surface formed on the side surface of the circuit board 4. The infrared data communication module according to claim 2, wherein the module main body is covered. 集合基板の各列毎に、所定の位置に複数個の上下面導電パターン接続用スルーホールと、前記各列間の直線上に複数個の外部接続用電極スルーホールを形成するスルーホール加工工程と、メッキ処理により前記スルーホールの内面を含む集合基板の全表面にメッキ層を形成するメッキ工程と、メッキレジストをラミネートし、露光現像後パターンマスクを形成し、パターンエッチングを行い、前記集合基板の上面及び下面に導電パターンと、前記スルーホールにスルーホール電極を形成して電気的に接続して回路基板集合体を形成するエッチング工程と、前記回路基板集合体の上面側に発光素子、受光素子、ICチップ及びコンデンサ等の電子部品の中、少なくとも発光素子及び受光素子を実装し、下面側に前記発光素子及び受光素子以外の電子部品を実装する電子部品実装工程と、上面側の発光素子及び受光素子の上面を半球レンズ部で覆うように透光性樹脂で樹脂封止すると共に、下面側の電子部品を樹脂封止又は半田等の固着手段で固着して赤外線データ通信モジュール集合体を形成する封止工程と、前記赤外線データ通信モジュール集合体を直交する2つのカットラインに沿って切断して単体の赤外線データ通信モジュールに分割する切断工程とからなることを特徴とする赤外線データ通信モジュールの製造方法。A through-hole processing step for forming a plurality of through-holes for connecting upper and lower conductive patterns at predetermined positions and a plurality of electrode holes for external connection on a straight line between the rows for each row of the aggregate substrate; A plating process for forming a plating layer on the entire surface of the collective substrate including the inner surface of the through-hole by plating, laminating a plating resist, forming a pattern mask after exposure and development, performing pattern etching, and An etching process for forming a circuit board assembly by forming a conductive pattern on the upper surface and the lower surface, and forming a through-hole electrode in the through-hole to be electrically connected, and a light emitting element and a light receiving element on the upper surface side of the circuit board assembly In addition, at least a light emitting element and a light receiving element are mounted among electronic components such as an IC chip and a capacitor. The electronic component mounting process for mounting the child component, and the upper surface of the light emitting element and the light receiving element are sealed with a translucent resin so as to cover the upper surface of the light emitting element and the light receiving element, and the lower surface side electronic component is sealed with resin or A sealing step of forming an infrared data communication module assembly by fixing with a fixing means such as solder, and cutting the infrared data communication module assembly along two orthogonal cut lines into a single infrared data communication module A method of manufacturing an infrared data communication module, comprising: a cutting step of dividing. 前記発光素子及び受光素子の上面に形成した半球レンズ部に対応する位置に透孔部を有し、前記回路基板の側面に形成した外部接続用電極面に対応する位置に開口部を有するシールドケースで、単体の赤外線データ通信モジュール本体を覆うシールド工程とからなることを特徴とする請求項5記載の赤外線データ通信モジュールの製造方法。Shield case having a through hole at a position corresponding to the hemispherical lens formed on the upper surface of the light emitting element and the light receiving element, and an opening at a position corresponding to the external connection electrode surface formed on the side surface of the circuit board 6. The method of manufacturing an infrared data communication module according to claim 5, further comprising a shielding step of covering a single infrared data communication module main body.
JP4958897A 1997-02-19 1997-02-19 Infrared data communication module and manufacturing method thereof Expired - Fee Related JP3786227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4958897A JP3786227B2 (en) 1997-02-19 1997-02-19 Infrared data communication module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4958897A JP3786227B2 (en) 1997-02-19 1997-02-19 Infrared data communication module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10233471A JPH10233471A (en) 1998-09-02
JP3786227B2 true JP3786227B2 (en) 2006-06-14

Family

ID=12835397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4958897A Expired - Fee Related JP3786227B2 (en) 1997-02-19 1997-02-19 Infrared data communication module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3786227B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4172558B2 (en) * 1998-11-11 2008-10-29 シチズン電子株式会社 Infrared communication device
SG91855A1 (en) * 2000-02-22 2002-10-15 Agilent Technologies Inc Circuit board assembly
US6815621B2 (en) * 2000-10-02 2004-11-09 Samsung Electronics Co., Ltd. Chip scale package, printed circuit board, and method of designing a printed circuit board
CN105556878B (en) * 2013-09-02 2019-09-24 飞利浦照明控股有限公司 Lucidification disposal machine structure
JP2019141470A (en) * 2018-02-23 2019-08-29 富士ゼロックス株式会社 Biological information measurement device
CN108281395A (en) * 2018-02-26 2018-07-13 苏州雷霆光电科技有限公司 A kind of patch-type IRM high shielding constructions and its manufacture craft
WO2021153582A1 (en) 2020-01-30 2021-08-05 京セラ株式会社 Measurement device

Also Published As

Publication number Publication date
JPH10233471A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
EP0720232B1 (en) Multi-chip module
JP3948789B2 (en) Infrared data communication module
US7436680B2 (en) Multi-chip build-up package of optoelectronic chip
CN211879388U (en) Photosensitive module
JPH09283695A (en) Semiconductor mounting structure
JP4010424B2 (en) Electrode structure of side surface type electronic component and manufacturing method thereof
JP3786227B2 (en) Infrared data communication module and manufacturing method thereof
JP3900606B2 (en) Infrared data communication module
JP2003304004A (en) Optical transmission chip and mounting structure thereof
JP4108162B2 (en) Infrared data communication module manufacturing method
JP3797771B2 (en) Infrared remote control light receiving unit and manufacturing method thereof
JP2001044452A (en) Optical communication module
JP4319771B2 (en) Infrared data communication module
JP4197569B2 (en) Infrared data communication module
JP4222458B2 (en) Infrared data communication module
KR100630705B1 (en) Camera module and method of fabricating the same
JP2004186362A (en) Circuit device
US7022913B2 (en) Electronic component, method of manufacturing the electronic component, and electronic apparatus
JP3585952B2 (en) Optical coupling device
JP4319772B2 (en) Infrared data communication module
JPH11154758A (en) Manufacture of infrared remote-control optical receiver unit
KR100639203B1 (en) Method for stacking a semiconductor device with plastic package and a semiconductor device with bga package
KR19980068016A (en) Ball Grid Array (BGA) Semiconductor Package Using Flexible Circuit Board and Manufacturing Method Thereof
KR200179418Y1 (en) Semiconductor package
JP3737093B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150331

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees