JP3900606B2 - Infrared data communication module - Google Patents

Infrared data communication module Download PDF

Info

Publication number
JP3900606B2
JP3900606B2 JP20735897A JP20735897A JP3900606B2 JP 3900606 B2 JP3900606 B2 JP 3900606B2 JP 20735897 A JP20735897 A JP 20735897A JP 20735897 A JP20735897 A JP 20735897A JP 3900606 B2 JP3900606 B2 JP 3900606B2
Authority
JP
Japan
Prior art keywords
data communication
communication module
infrared data
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20735897A
Other languages
Japanese (ja)
Other versions
JPH1140859A (en
Inventor
晴美 渡部
廣彦 石井
剛 三浦
新 下澤
淳一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP20735897A priority Critical patent/JP3900606B2/en
Publication of JPH1140859A publication Critical patent/JPH1140859A/en
Application granted granted Critical
Publication of JP3900606B2 publication Critical patent/JP3900606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パーソナルコンピューター、プリンター、PDA、ファクシミリ、ページャー、携帯電話等の民生機器に使用される赤外線データ通信モジュールに関する。
【0002】
【従来の技術】
近年、光通信機能を搭載したノート型パソコン、PDA、携帯電話等の携帯機器で赤外線データ通信モジュールの小型化がより強く要求されている。LEDからなる赤外線発光素子、フォトダイオードからなる受光素子、アンプ、ドライブ回路等が組み込まれたICからなる回路部をリードフレームに直接ダイボンド及びワイヤーボンドし、可視光カットエボキシ樹脂によるレンズ一体の樹脂モールドで、送信部と受信部を一パッケージ化した赤外線データ通信モジュールが開発されている。従来の一般的な赤外線データ通信モジュールの構造について、図3〜図5でその概要を説明する。図3は赤外線データ通信モジュールの外観を示す正面図、図4は図3を上面から透視した平面図、図5は図3の内部構成を示す断面図である。
【0003】
図3〜図5において、赤外線データ通信モジュール1は、リードフレーム2の上面側のみに、発光素子3、受光素子4及びICチップ5をダイボンド及びワイヤーボンディングして接続されている。前記電子部品を保護すると共に、発光素子3及び受光素子4の上面を可視光線カット剤入りエポキシ系樹脂等の透光性樹脂6で、赤外線光を照射及び集光する機能を持つ、半球型レンズ部6a及び6bを形成するように樹脂封止する。前記リードフレーム2の端子2aは、プリント基板等の図示しないマザーボードの配線パターンに実装するために赤外線データ通信モジュール1の本体より外部に飛び出している。
【0004】
図4及び図5に示すように、リードフレーム2の発光素子3を実装する位置にプレス絞り等で成形された逆円錐形状の傾斜面2bを形成し、傾斜面2bに囲まれた底面に発光素子3が実装されている。
【0005】
しかし、前述した赤外線データ通信モジュールにおいて、発光素子3は、リードフレーム2と一体成形された逆円錐形状の傾斜面2bに囲まれているので、発光素子3から出る赤外線光を上面に反射させる効果はあるが、リードフレーム2を使用した実装構造では、赤外線データ通信モジュール1の構成部品である発光素子3、受光素子4、ICチップ5及び図示しないコンデンサ等をリードフレーム2の上面側だけに配設するために、実装スペースがそのまま構成部品の面積に効き、平面的にサイズを小さくするのに限界があった。また、リードフレーム2のリード端子2aが本体の外側に飛び出しているので、プリント基板等のマザーボードへの実装スペースが広くなり、高密度実装を妨げる等の様々な問題があった。
【0006】
そこで、本出願人は、特願平9−49588号(出願日、平成9年2月19日)「赤外線データ通信モジュール及びその製造方法」で、モジュール本体をシールドケースで覆った技術を開示している。その概要を図6で説明する。
【0007】
図6は、赤外線データ通信モジュールの断面図である。7はガラスエポキシ樹脂等よりなる平面が略長方形形状の絶縁性を有する回路基板で、その上面及び下面に形成した導電パターン(図示せず)が、前記回路基板7に形成したスルーホール8のスルーホール電極8aを介して電気的に接続される。尚、回路基板7は、ガラスエポキシ基板を使用したが、アルミナセラミック基板、ポリエステルやポリイミド等のプラスチックフィルム基板等を使用しても良い。
【0008】
3は高速赤外LEDからなる発光素子であり、4はフォトダイオードからなる受光素子である。両者はそれぞれ回路基板7の上面側に実装されており、導電パターンにダイボンド及びワイヤーボンドされ接続されている。5は高速アンプ、ドライブ回路等が組み込まれた回路部を有するICチップであり、回路基板7の上面側の導電パターンにダイボンド及びワイヤーボンドされている。前記回路基板7の下面側には、コンデンサ9が半田10により半田付けされ、前記スルーホール8のスルーホール電極8aを介して接続されている。回路基板7の下面側にコンデンサ9等を実装しない場合は、前記スルーホール8は不要である。
【0009】
6は、前述と同様に発光素子3及び受光素子4を樹脂封止する可視光カット剤入りエボキシ系の透光性樹脂である。透光性樹脂6により、発光素子3及び受光素子4の上面に半球型レンズ部6a及び6bを形成して、赤外線光の照射及び集光の機能を持たせると同時に両素子の保護を行う。回路基板7の下面に実装したコンデンサ9は封止樹脂で封止しても、しなくても良い。
【0010】
図6に示す赤外線データ通信モジュール1において、発光素子3及び受光素子4の上面に形成した半球型レンズ部6a及び6bに対応する位置に透孔部12aを有するステンレス、アルミ、銅等の部材よりなるシールドケース12で、前記モジュール本体を覆っている。図6に示すように、発光素子3側の赤外線光の照射幅はA1、受光素子4側の赤外線光の集光幅はB1に相当する。前記シールドケース12が回路部等を囲っているので、電磁シールド対策を採ることができ、外部からのノイズ等による影響を防止するのに極めて有効である。従って、半球型レンズ部6a及び6b及び図示しないマザーボードに実装される以外の面は、前記シールドケース12でカバーされている。
【0011】
【発明が解決しようとする課題】
しかしながら、前述した赤外線データ通信モジュールには次のような問題点がある。即ち、赤外線データ通信モジュールとして、IrDAに2つのタイプが有り、その1つのタイプにIrDA1.0規格(中出力)、1.1規格(高出力)がある。1.1規格によるLEDの高出力が要求される場合には、上記したように、特に、発光素子側からの赤外線光の一部は左右に広がってしまう無駄な光を集光、照射することができない。また、受光素子側も受光面積を広くしないとレンズ外周周辺の光を効率良く集光することができない。従って、半球型レンズ部だけでの照射、集光では、高出力化を実現するために、LEDに頼るか、レンズ径を相当大きくするしかなく、製品を小さくすることに限界があった。また、LEDに流す電流を大きく上げると、これはLEDの出力の劣化を招くと同時に、セットの低消費電力化の妨げとなる等の致命的な問題となった。
【0012】
本発明は上記従来の課題に鑑みなされたものであり、その目的は、発光素子及び受光素子の上面を覆う半球型レンズ部の外周に位置し、その周囲が反射部材の反射面で囲み、発光素子からの赤外線光及び受光素子への赤外線光を有効に照射、集光させることにより、低消費電力化及び発光素子の高出力化が計れる、超小型、薄型で安価な赤外線データ通信モジュールを提供するものである。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明における赤外線データ通信モジュールは、平面が略長方形形状の回路基板面に発光素子、受光素子、ICチップ及びコンデンサ等の電子部品を実装し、前記発光素子及び受光素子の上面を半球型レンズ部で覆うように透光性樹脂で樹脂封止する赤外線データ通信モジュールにおいて、前記発光素子及び受光素子の少なくともいずれか一方の上面を覆う半球型レンズ部の外周に位置し、前記半球型レンズ部の周囲が反射部材の反射面で囲まれていることを特徴とするものである。
【0014】
また、前記反射部材の反射面の形状は、逆円錐形状であることを特徴とするものである。
【0015】
また、前記反射部材の反射面の形状は、湾曲形状であることを特徴とするものである。
【0016】
また、前記反射部材の反射面に反射薄膜が形成されていることを特徴とするものである。
【0017】
また、前記反射部材の反射面は、前記発光素子及び受光素子の上面に形成した半球型レンズ部に対応する位置に透孔部を有し、モジュール本体を覆うシールドケースの一部で、シールドケースの透孔部の内縁部近傍に形成したことを特徴とするものである。
【0018】
【発明の実施の形態】
以下、図面に基づいて本発明における赤外線データ通信モジュールについて説明する。図1は、本発明の第1の実施の形態に係わる赤外線データ通信モジュールの断面図である。図において、従来技術と同一部材は同一符号で示す。
【0019】
図1において、平面が略長方形形状の回路基板7面に発光素子3、受光素子4、ICチップ5及びコンデンサ9等の電子部品を実装し、前記発光素子3及び受光素子4の上面を半球レンズ部6a、6bで覆うように透光性樹脂6で樹脂封止する赤外線データ通信モジュール11を構成することは、前述の従来技術と同様であるので説明は省略する。
【0020】
図に示すように、前記発光素子3及び受光素子4の上面に半球型レンズ部6a及び6bに対応する位置に透孔部12aを有するステンレス、アルミ、銅等の部材よりなるシールドケース12は、透孔部12aの内縁部近傍が逆円錐形状をした反射面12bが形成されている。参考までに、従来のシールドケース12の透孔部12aの形状を二点鎖線で示す。
【0021】
前記反射面12bの表面には、発光素子3(高速赤外LED)からの赤外線光、及び受光素子4(P−Di)への赤外線光の反射効率をアップするために、銀色の反射薄膜12c、例えば、Niメッキ層を形成する。
【0022】
図1に示すように、発光素子3側からの赤外線光は、従来は、左右に広がってしまう無駄な光も、反射面12bと、その表面に形成された反射薄膜12cにより効率良く反射されて上方に集光、照射される。また、受光素子4側への赤外線光は、従来は、半球型レンズ部6bのレンズ径より外側で集光できなかった赤外線光を反射面12bと、その表面に形成された反射薄膜12cにより効率良く集光することができるので、受光面積が拡大され、発光素子側及び受光素子側共に感度アップとなる。
【0023】
図1に示すように、発光素子3側の赤外線光の照射幅A2、及び受光素子4側の赤外線光の集光幅B2は、前述(図6)したように、発光素子3側の赤外線光の照射幅A1、及び受光素子4側の赤外線光の集光幅B1に比較して、共に広くなる。即ち、同一の大きさのレンズ径において、A2>A1、B2>B1となり、反射面12bにより発光及び受光面積が拡大される。
【0024】
図2は、本発明の第2の実施の形態に係わる赤外線データ通信モジュールの断面図である。
【0025】
図2において、11は赤外線データ通信モジュールであり、前記発光素子3及び受光素子4の上面に半球型レンズ部6a及び6bに対応する位置の、シールドケース12の透孔部12aの内縁部近傍に、湾曲形状をしている反射面12dを形成し、その表面に上記と同様に銀色の反射薄膜12c、例えば、Niメッキ層を形成する。参考までに、従来のシールドケース12の透孔部12aの形状を二点鎖線で示す。湾曲形状をしている反射面12dの作用、効果は上述の第1の実施の形態と同様であるので、説明は省略する。
【0026】
上述した第1及び第2の実施の形態では、シールドケースの一部を利用してそれぞれの半球型レンズ部の透孔部の内縁部近傍に反射面を形成したが、前記発光素子及び受光素子の上面を覆う半球型レンズ部の外周部に位置し、その周囲にシールドケース以外の、図示しない反射部材を配設して反射面を形成しても良いことは言うまでもない。
【0027】
また、上述した第1及び第2の実施の形態では、発光素子側及び受光素子側の両方に反射面を設けたが、いずれか一方に設けても良い。例えば、発光素子側に設けることで、発光素子の照射の感度アップに、より有効である。
【0028】
【発明の効果】
以上説明したように、従来は、半球型レンズ部だけでの集光では、高出力化を実現するために、LEDに頼るか、レンズ径を相当大きくするしかなく、小型化が困難であったが、本発明によれば、半球型レンズ部の周囲が反射部材の反射面で囲むことにより、発光素子側は、左右に広がってしまう無駄な光を集光、照射し、受光素子側は、受光面積が広がり感度アップとなる。
【0029】
また、反射部材の反射面は、シールドケースの透孔部の内縁部近傍に形成したシールドケースの一部を利用するために、反射面を設けるのに特にコストアップにはならない。
【0030】
また、反射面に反射薄膜を形成することにより反射効率をアップすることができる。
【0031】
以上より、低消費電力でLEDの高出力化、受光、発光の感度アップが計られた赤外線データ通信モジュールが提供でき、小型、薄型、低消費電力の高速・長距離通信の民生機器の実現が可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる赤外線データ通信モジュールの断面図である。
【図2】本発明の第2の実施の形態に係わる赤外線データ通信モジュールの断面図である。
【図3】従来の赤外線データ通信モジュールの外観正面図である。
【図4】図3の上面から透視した平面図である。
【図5】図3の断面図である。
【図6】従来のシールドケースを装着した赤外線データ通信モジュールの断面図である。
【符号の説明】
3 発光素子
4 受光素子
5 ICチップ
6 透光性樹脂
6a、6b 半球型レンズ部
7 回路基板
11 赤外線データ通信モジュール
12 シールドケース
12a 透孔部
12b、12d 反射面
12c 反射薄膜
A1、A2 発光素子側の赤外線光の照射幅
B1、B2 受光素子側の赤外線光の集光幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared data communication module used for consumer equipment such as a personal computer, a printer, a PDA, a facsimile, a pager, and a mobile phone.
[0002]
[Prior art]
In recent years, there has been a strong demand for miniaturization of infrared data communication modules in portable devices such as notebook personal computers, PDAs, and mobile phones equipped with optical communication functions. An LED light-emitting element, a light-receiving element consisting of a photodiode, an amplifier, a circuit part consisting of an IC incorporating a drive circuit, etc. are directly die-bonded and wire-bonded to a lead frame, and a lens-integrated resin mold made of visible-light-cut epoxy resin Therefore, an infrared data communication module in which a transmitter and a receiver are packaged has been developed. The structure of a conventional general infrared data communication module will be outlined with reference to FIGS. 3 is a front view showing the appearance of the infrared data communication module, FIG. 4 is a plan view of FIG. 3 seen through from above, and FIG. 5 is a cross-sectional view showing the internal configuration of FIG.
[0003]
3 to 5, the infrared data communication module 1 is connected to the light emitting element 3, the light receiving element 4, and the IC chip 5 only on the upper surface side of the lead frame 2 by die bonding and wire bonding. A hemispherical lens that protects the electronic components and has a function of irradiating and condensing infrared light with a translucent resin 6 such as an epoxy resin containing a visible light cut agent on the upper surface of the light emitting element 3 and the light receiving element 4 Resin sealing is performed so as to form the parts 6a and 6b. The terminal 2a of the lead frame 2 protrudes from the main body of the infrared data communication module 1 to be mounted on a wiring pattern of a mother board (not shown) such as a printed board.
[0004]
As shown in FIGS. 4 and 5, an inverted conical inclined surface 2b formed by a press drawing or the like is formed at a position where the light emitting element 3 of the lead frame 2 is mounted, and light is emitted from the bottom surface surrounded by the inclined surface 2b. Element 3 is mounted.
[0005]
However, in the above-described infrared data communication module, the light emitting element 3 is surrounded by the inverted cone-shaped inclined surface 2b formed integrally with the lead frame 2, so that the infrared light emitted from the light emitting element 3 is reflected to the upper surface. However, in the mounting structure using the lead frame 2, the light emitting element 3, the light receiving element 4, the IC chip 5, and a capacitor (not shown) that are components of the infrared data communication module 1 are arranged only on the upper surface side of the lead frame 2. Therefore, the mounting space has an effect on the area of the component as it is, and there is a limit in reducing the size in a plane. Further, since the lead terminal 2a of the lead frame 2 protrudes to the outside of the main body, there are various problems such as a large space for mounting on a mother board such as a printed circuit board and hindering high-density mounting.
[0006]
Therefore, the present applicant discloses a technology in which the module body is covered with a shield case in Japanese Patent Application No. 9-49588 (application date, February 19, 1997) "Infrared Data Communication Module and Method for Manufacturing the Same". ing. The outline will be described with reference to FIG.
[0007]
FIG. 6 is a cross-sectional view of the infrared data communication module. 7 is a circuit board made of glass epoxy resin or the like having a substantially rectangular insulating surface, and a conductive pattern (not shown) formed on the upper and lower surfaces thereof passes through the through-hole 8 formed in the circuit board 7. It is electrically connected through the hole electrode 8a. In addition, although the glass epoxy board | substrate was used for the circuit board 7, you may use a plastic film board | substrate etc., such as an alumina ceramic board | substrate and polyester and a polyimide.
[0008]
3 is a light emitting element made of a high-speed infrared LED, and 4 is a light receiving element made of a photodiode. Both are mounted on the upper surface side of the circuit board 7 and are connected to the conductive pattern by die bonding and wire bonding. Reference numeral 5 denotes an IC chip having a circuit portion in which a high-speed amplifier, a drive circuit and the like are incorporated, and is die-bonded and wire-bonded to the conductive pattern on the upper surface side of the circuit board 7. On the lower surface side of the circuit board 7, a capacitor 9 is soldered with solder 10 and is connected via the through-hole electrode 8 a of the through-hole 8. When the capacitor 9 or the like is not mounted on the lower surface side of the circuit board 7, the through hole 8 is unnecessary.
[0009]
6 is an epoxy-based translucent resin containing a visible light cut agent that seals the light-emitting element 3 and the light-receiving element 4 with resin as described above. The translucent resin 6 forms hemispherical lens portions 6a and 6b on the upper surfaces of the light emitting element 3 and the light receiving element 4, thereby providing infrared light irradiation and condensing functions and at the same time protecting both elements. The capacitor 9 mounted on the lower surface of the circuit board 7 may or may not be sealed with a sealing resin.
[0010]
In the infrared data communication module 1 shown in FIG. 6, from a member such as stainless steel, aluminum, or copper having a through-hole portion 12 a at a position corresponding to the hemispherical lens portions 6 a and 6 b formed on the upper surfaces of the light emitting element 3 and the light receiving element 4. The module main body is covered with a shield case 12 formed as follows. As shown in FIG. 6, the infrared light irradiation width on the light emitting element 3 side corresponds to A1, and the infrared light condensing width on the light receiving element 4 side corresponds to B1. Since the shield case 12 surrounds the circuit portion and the like, it is possible to take countermeasures against electromagnetic shielding, and it is extremely effective in preventing the influence of external noise and the like. Therefore, the surfaces other than the hemispherical lens portions 6a and 6b and the surface mounted on the mother board (not shown) are covered with the shield case 12.
[0011]
[Problems to be solved by the invention]
However, the infrared data communication module described above has the following problems. That is, there are two types of infrared data communication modules in IrDA, one of which is IrDA 1.0 standard (medium output) and 1.1 standard (high output). 1. When high output of LED according to the standard is required, in particular, as described above, a part of infrared light from the light emitting element side is condensed and irradiated with useless light that spreads to the left and right. I can't. Further, if the light receiving area is not widened, the light around the lens periphery cannot be collected efficiently. Therefore, in the irradiation and condensing only with the hemispherical lens unit, in order to realize high output, there is a limit to reducing the product by relying on LEDs or enlarging the lens diameter considerably. Further, when the current passed through the LED is increased greatly, this causes a deterioration of the output of the LED and at the same time becomes a fatal problem such as hindering the low power consumption of the set.
[0012]
The present invention has been made in view of the above-described conventional problems, and the object thereof is located on the outer periphery of the hemispherical lens portion covering the upper surfaces of the light emitting element and the light receiving element, and the periphery thereof is surrounded by the reflecting surface of the reflecting member. Providing an ultra-small, thin and inexpensive infrared data communication module that can reduce the power consumption and increase the output of the light-emitting element by effectively irradiating and condensing the infrared light from the element and the infrared light to the light-receiving element. To do.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an infrared data communication module according to the present invention has electronic components such as a light emitting element, a light receiving element, an IC chip and a capacitor mounted on a circuit board surface having a substantially rectangular plane. In the infrared data communication module in which the upper surface of the element is resin-sealed with a translucent resin so as to be covered with the hemispherical lens portion, the outer peripheral surface of the hemispherical lens portion that covers the upper surface of at least one of the light emitting element and the light receiving element And the circumference | surroundings of the said hemispherical type lens part are surrounded by the reflective surface of a reflective member, It is characterized by the above-mentioned.
[0014]
Further, the shape of the reflecting surface of the reflecting member is an inverted conical shape.
[0015]
Further, the shape of the reflecting surface of the reflecting member is a curved shape.
[0016]
Moreover, a reflective thin film is formed on the reflective surface of the reflective member.
[0017]
The reflecting surface of the reflecting member is a part of the shielding case that has a through hole at a position corresponding to the hemispherical lens portion formed on the upper surface of the light emitting element and the light receiving element, and covers the module body. It is characterized in that it is formed in the vicinity of the inner edge portion of the through hole portion.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an infrared data communication module according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of an infrared data communication module according to the first embodiment of the present invention. In the figure, the same members as those in the prior art are denoted by the same reference numerals.
[0019]
In FIG. 1, electronic components such as a light emitting element 3, a light receiving element 4, an IC chip 5 and a capacitor 9 are mounted on the surface of a circuit board 7 having a substantially rectangular plane, and the upper surfaces of the light emitting element 3 and the light receiving element 4 are hemispherical lenses. The configuration of the infrared data communication module 11 that is resin-sealed with the translucent resin 6 so as to be covered with the portions 6a and 6b is the same as that of the above-described conventional technology, and thus the description thereof is omitted.
[0020]
As shown in the figure, a shield case 12 made of a member such as stainless steel, aluminum, or copper having a through hole portion 12a at a position corresponding to the hemispherical lens portions 6a and 6b on the upper surface of the light emitting element 3 and the light receiving element 4, A reflection surface 12b having an inverted conical shape is formed in the vicinity of the inner edge portion of the through-hole portion 12a. For reference, the shape of the through-hole portion 12a of the conventional shield case 12 is indicated by a two-dot chain line.
[0021]
On the surface of the reflection surface 12b, in order to improve the reflection efficiency of infrared light from the light emitting element 3 (high-speed infrared LED) and infrared light to the light receiving element 4 (P-Di), a silver reflective thin film 12c is formed. For example, a Ni plating layer is formed.
[0022]
As shown in FIG. 1, conventionally, the infrared light from the light emitting element 3 side is efficiently reflected by the reflecting surface 12b and the reflective thin film 12c formed on the surface of the useless light that spreads to the left and right. Condensed and irradiated upward. In addition, the infrared light to the light receiving element 4 side is efficiently reflected by the reflective surface 12b and the reflective thin film 12c formed on the surface of the infrared light that could not be collected outside the lens diameter of the hemispherical lens portion 6b. Since the light can be condensed well, the light receiving area is enlarged, and the sensitivity is increased on both the light emitting element side and the light receiving element side.
[0023]
As shown in FIG. 1, the infrared light irradiation width A2 on the light emitting element 3 side and the infrared light condensing width B2 on the light receiving element 4 side are the infrared light on the light emitting element 3 side as described above (FIG. 6). Both are wider than the irradiation width A1 and the infrared light condensing width B1 on the light receiving element 4 side. That is, at the same lens diameter, A2> A1 and B2> B1, and the light emitting and receiving areas are enlarged by the reflecting surface 12b.
[0024]
FIG. 2 is a cross-sectional view of an infrared data communication module according to the second embodiment of the present invention.
[0025]
In FIG. 2, reference numeral 11 denotes an infrared data communication module, which is located on the upper surface of the light emitting element 3 and the light receiving element 4 in the vicinity of the inner edge portion of the through hole portion 12a of the shield case 12 at a position corresponding to the hemispherical lens portions 6a and 6b. A curved reflective surface 12d is formed, and a silver reflective thin film 12c, for example, a Ni plating layer is formed on the surface in the same manner as described above. For reference, the shape of the through-hole portion 12a of the conventional shield case 12 is indicated by a two-dot chain line. Since the action and effect of the reflecting surface 12d having the curved shape are the same as those of the first embodiment described above, description thereof is omitted.
[0026]
In the first and second embodiments described above, a reflecting surface is formed in the vicinity of the inner edge of the through hole portion of each hemispherical lens portion using a part of the shield case. Needless to say, a reflective surface (not shown) other than the shield case may be disposed around the outer periphery of the hemispherical lens portion covering the upper surface of the lens.
[0027]
In the first and second embodiments described above, the reflective surfaces are provided on both the light emitting element side and the light receiving element side, but may be provided on either one. For example, providing it on the light emitting element side is more effective for increasing the sensitivity of irradiation of the light emitting element.
[0028]
【The invention's effect】
As described above, in the past, focusing with only a hemispherical lens unit had to rely on LEDs or significantly increase the lens diameter in order to achieve high output, and it was difficult to reduce the size. However, according to the present invention, the light emitting element side collects and irradiates useless light spreading left and right by surrounding the hemispherical lens portion with the reflecting surface of the reflecting member, and the light receiving element side The light receiving area increases and sensitivity increases.
[0029]
Further, since the reflection surface of the reflection member uses a part of the shield case formed in the vicinity of the inner edge portion of the through hole portion of the shield case, it is not particularly expensive to provide the reflection surface.
[0030]
Further, the reflection efficiency can be increased by forming a reflective thin film on the reflective surface.
[0031]
From the above, we can provide infrared data communication modules with low power consumption, high LED output, light reception and light emission sensitivity, and can realize small, thin, low power, high-speed and long-distance consumer devices. Is possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an infrared data communication module according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of an infrared data communication module according to a second embodiment of the present invention.
FIG. 3 is an external front view of a conventional infrared data communication module.
4 is a plan view seen through from the upper surface of FIG. 3;
FIG. 5 is a cross-sectional view of FIG.
FIG. 6 is a cross-sectional view of an infrared data communication module equipped with a conventional shield case.
[Explanation of symbols]
3 Light-Emitting Element 4 Light-Receiving Element 5 IC Chip 6 Translucent Resin 6a, 6b Hemispherical Lens 7 Circuit Board 11 Infrared Data Communication Module 12 Shield Case 12a Through-hole 12b, 12d Reflecting Surface 12c Reflecting Thin Film A1, A2 Infrared light irradiation widths B1 and B2 Condensing width of infrared light on the light receiving element side

Claims (5)

平面が略長方形形状の回路基板面に発光素子、受光素子、ICチップ及びコンデンサ等の電子部品を実装し、前記発光素子及び受光素子の上面を半球型レンズ部で覆うように透光性樹脂で樹脂封止する赤外線データ通信モジュールにおいて、前記発光素子及び受光素子の少なくともいずれか一方の上面を覆う半球型レンズ部の外周に位置し、前記半球型レンズ部の周囲が反射部材の反射面で囲まれていることを特徴とする赤外線データ通信モジュール。Electronic components such as light emitting elements, light receiving elements, IC chips and capacitors are mounted on the surface of the circuit board having a substantially rectangular plane, and the upper surfaces of the light emitting elements and the light receiving elements are covered with a translucent resin so that they are covered with a hemispherical lens portion. In an infrared data communication module sealed with resin, the infrared data communication module is located on the outer periphery of a hemispherical lens portion covering the upper surface of at least one of the light emitting element and the light receiving element, and the periphery of the hemispherical lens portion is surrounded by a reflecting surface of a reflecting member An infrared data communication module. 前記反射部材の反射面の形状は、逆円錐形状であることを特徴とする請求項1記載の赤外線データ通信モジュール。The infrared data communication module according to claim 1, wherein a shape of the reflecting surface of the reflecting member is an inverted conical shape. 前記反射部材の反射面の形状は、湾曲形状であることを特徴とする請求項1記載の赤外線データ通信モジュール。The infrared data communication module according to claim 1, wherein a shape of the reflecting surface of the reflecting member is a curved shape. 前記反射部材の反射面に反射薄膜が形成されていることを特徴とする請求項2又は3記載の赤外線データ通信モジュール。4. The infrared data communication module according to claim 2, wherein a reflective thin film is formed on a reflective surface of the reflective member. 前記反射部材の反射面は、前記発光素子及び受光素子の上面に形成した半球型レンズ部に対応する位置に透孔部を有し、モジュール本体を覆うシールドケースの一部で、シールドケースの透孔部の内縁部近傍に形成したことを特徴とする請求項1記載の赤外線データ通信モジュール。The reflecting surface of the reflecting member has a through hole portion at a position corresponding to the hemispherical lens portion formed on the upper surface of the light emitting element and the light receiving element, and is a part of the shield case that covers the module body. 2. The infrared data communication module according to claim 1, wherein the infrared data communication module is formed in the vicinity of an inner edge of the hole.
JP20735897A 1997-07-17 1997-07-17 Infrared data communication module Expired - Fee Related JP3900606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20735897A JP3900606B2 (en) 1997-07-17 1997-07-17 Infrared data communication module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20735897A JP3900606B2 (en) 1997-07-17 1997-07-17 Infrared data communication module

Publications (2)

Publication Number Publication Date
JPH1140859A JPH1140859A (en) 1999-02-12
JP3900606B2 true JP3900606B2 (en) 2007-04-04

Family

ID=16538417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20735897A Expired - Fee Related JP3900606B2 (en) 1997-07-17 1997-07-17 Infrared data communication module

Country Status (1)

Country Link
JP (1) JP3900606B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625997B2 (en) * 1999-07-22 2011-02-02 日亜化学工業株式会社 Light emitting diode
JP4359201B2 (en) * 2004-07-26 2009-11-04 シャープ株式会社 Optical semiconductor device, optical connector and electronic device
JP2006049657A (en) * 2004-08-06 2006-02-16 Citizen Electronics Co Ltd Led lamp
JP2006253297A (en) * 2005-03-09 2006-09-21 Sharp Corp Optical semiconductor device, method for manufacturing the same and electronic apparatus
JP4744178B2 (en) * 2005-04-08 2011-08-10 シャープ株式会社 Light emitting diode
JP4568696B2 (en) * 2006-05-26 2010-10-27 京セラ株式会社 Communication terminal device
US8604506B2 (en) 2007-02-22 2013-12-10 Sharp Kabushiki Kaisha Surface mounting type light emitting diode and method for manufacturing the same
US8421088B2 (en) 2007-02-22 2013-04-16 Sharp Kabushiki Kaisha Surface mounting type light emitting diode
US8420999B2 (en) * 2009-05-08 2013-04-16 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Metal shield and housing for optical proximity sensor with increased resistance to mechanical deformation
US8232883B2 (en) * 2009-12-04 2012-07-31 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical proximity sensor with improved shield and lenses

Also Published As

Publication number Publication date
JPH1140859A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP3948789B2 (en) Infrared data communication module
JP2006074030A (en) Compact optical transceiver module
JP3851418B2 (en) Infrared data communication module
JP3900606B2 (en) Infrared data communication module
JP4056598B2 (en) Infrared data communication module
JP4172558B2 (en) Infrared communication device
JP2002076443A (en) Reflection cup for led chip
CN115458611A (en) Sinking type packaging structure
US20070194339A1 (en) Optical data communication module
JP2007258204A (en) Optical communication module
JP2002043632A (en) Light emitting diode
US6897485B2 (en) Device for optical and/or electrical data transmission and/or processing
JP4197569B2 (en) Infrared data communication module
JP3786227B2 (en) Infrared data communication module and manufacturing method thereof
JP4108162B2 (en) Infrared data communication module manufacturing method
JP2001177118A (en) Infrared data communication module
JP4319771B2 (en) Infrared data communication module
JP3985363B2 (en) Optical transmission element
JP4222458B2 (en) Infrared data communication module
JP3859326B2 (en) Infrared data communication module
JP2008147452A (en) Optical communication device
JP4319772B2 (en) Infrared data communication module
JP2001168376A (en) Infrared data communication module
JP3976420B2 (en) Optical semiconductor device
WO2023176291A1 (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees