JP4103137B2 - 光ディスク装置における収差補正装置及び収差補正方法 - Google Patents

光ディスク装置における収差補正装置及び収差補正方法 Download PDF

Info

Publication number
JP4103137B2
JP4103137B2 JP2003143916A JP2003143916A JP4103137B2 JP 4103137 B2 JP4103137 B2 JP 4103137B2 JP 2003143916 A JP2003143916 A JP 2003143916A JP 2003143916 A JP2003143916 A JP 2003143916A JP 4103137 B2 JP4103137 B2 JP 4103137B2
Authority
JP
Japan
Prior art keywords
signal
optical disc
light receiving
aberration correction
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143916A
Other languages
English (en)
Other versions
JP2004348840A (ja
Inventor
淳一郎 戸波
栄治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003143916A priority Critical patent/JP4103137B2/ja
Publication of JP2004348840A publication Critical patent/JP2004348840A/ja
Application granted granted Critical
Publication of JP4103137B2 publication Critical patent/JP4103137B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光ディスク装置における収差補正装置及び収差補正方法に係り、特に、光ディスクの透明基板の厚さが規格値からずれていることに起因して集光スポットに生じる球面収差を補正し、適正な集光スポットによって記録・再生を行わせるための改良に関する。
【0002】
【従来の技術】
近年、高密度な情報記録媒体としてCD(Compact disk)やDVD(Digital versatile disk)等の多種多様な光ディスクが実用化されているが、光ディスクを対象とする情報の記録・再生は光ディスク装置の光学系を通じて光ディスクの情報記録層に微小な集光スポットを照射することにより行われる。
具体的には、図17に示すように、光ディスク101には一般にその盤面に沿って情報記録層102が形成されていると共に、その情報記録層102が透明基板103で覆われた構造になっており、光ディスク装置が記録・再生用のレーザ光を導光系で光ディスク101の手前に導き、最終段の集光光学系(図では対物レンズ)104によって前記の情報記録層102の表面に集光スポット105を形成する。
ここに、情報記録層102にはマイクロメータオーダの記録ピットで同心円状又はスパイラル状に情報が書き込まれるが、透明基板103はポリ・カーボネイト等の透明な樹脂で構成されており、情報記録層102を保護すると共に、光ディスク自体に機械的強度をもたせる役割を果たす。
尚、図17の光ディスク101では、情報記録層102の表裏面が透明基板103で覆われた構成になっているが(両面記録の光ディスクの場合には必然的にこのような構成になる)、片面記録の光ディスクでは記録面側にのみ透明基板を施すようにしてもよい。
【0003】
ところで、最近では、光ディスクの大容量化とそれに伴う高密度化が著しく、集光スポットを形成するための対物レンズ104の開口数が益々大きくなる傾向があり、例えば、従来のCDに対応する開口数が0.45であったのに対して、高密度記録が可能なDVDでは0.6となり、更に0.8以上の開口数の集光レンズを適用することも検討されている。
【0004】
そのような状況下において、光ディスク101における透明基板103の厚さtの精度は、情報の記録・再生において極めて重要な意義を有する。
何故なら、透明基板103は当然に一定の屈折率を有し、前記のように対物レンズ104で集光スポット105を形成する場合に、透明基板103の厚さtが許容値からずれていると集光スポット105で発生する収差の影響が大きくなり、特に、対物レンズ104の開口数が大きくなると収差の範囲も大きくなって記録・再生にエラーが発生する可能性が高くなるからである。
例えば、開口数が0.85になると、一般的な光ディスクでは透明基板の厚さtの誤差許容値は数μm以下になるとされており、そのような精度を確保することは、現状の光ディスク製造技術をもってしてもかなり困難である。
【0005】
図18は、透明基板103の厚さtのずれが許容値内である場合における、焦点ずれ量に対する集光スポット105の光軸を中心とした光強度分布の変化を示したものであり、その場合には合焦点の前後でほぼ対称な関係でのビーム径が変化する傾向にある。
一方、透明基板103の厚さtのずれが許容値を超えると、光軸を中心とした同心円状の波面変動となる球面収差が発生し、図19に示すように、焦点ずれに対する集光スポット105の光強度分布が合焦点の前後で非対称に変化する。また、その光強度分布は、焦点ずれ量に対して、サイドローブが大きくなったり、ビーム径が大きくなったりして、不規則な変化を呈する傾向がある。
【0006】
従って、光ディスク装置においては、透明基板103の厚さtが許容値を超えるような場合に、何等かの方法で前記の収差量を検出し、その検出情報に基づいて光学系を調整することにより集光スポット105の光強度分布を補正し、常に適正な記録・再生が行えるようにする必要がある。
【0007】
その問題点に関して、下記の特許文献1では次のような収差補正方法とその方法を実行する光ディスク装置が提案されている。
この提案に係る方法及び装置では、情報を記録または再生するための集光スポットが形成される情報記録層の記録面側が透明基板により覆われた光ディスクを対象とし、予め、その情報記録層の記録面の特定領域に対して、互いに周期の異なる複数のピット列(長周期のピット列と短周期のピット列)を交互に配置した特定パターンが形成されている。
【0008】
そして、前記光ディスクを光ディスク装置で再生すると、前記特定パターンの各周期のピット列からはその周期に応じて異なる信号振幅の再生信号が得られるが、各再生信号の焦点ずれ量に対する振幅変化をとると、それぞれの振幅変化の最大振幅を与える焦点ずれ量(フォーカスオフセット量)に顕著な違いが生じる。
ここで、前記フォーカスオフセット量は、図19に示したような焦点ずれに対する集光スポット105の光強度分布の変化に対応して生じるものであり、光ディスクの透明基板の厚さずれによって発生した微小スポットの球面収差に相当する。
【0009】
そこで、この提案では、前記の長周期のピット列と短周期のピット列の再生信号に基づいて得られた前記フォーカスオフセット量の差が最小となるように、対物レンズに入射する光ビームの発散・収束角度を調節することにより、前記球面収差を補正するようにしている。
【0010】
【特許文献1】
特開2002−150569号公報
【0011】
【発明が解決しようとする課題】
ところで、前記特許文献1の提案によると、予め光ディスクの特定領域に特定パターンが記録されていなければならず、既に規格化されている読み取り専用の光ディスクについては対応できないという致命的な問題点がある。
また、書き換え型の光ディスクの場合には、長周期と短周期のピット列を記録すればよいことになるが、光ディスク装置が予めそれらの記録情報を用意しておく必要があると共に、光ディスクに収差補正用の特別な記録領域を設けなければならないために、本来の情報記録領域を狭くして光ディスクの容量を小さくするという問題が生じる。
更には、特定領域における透明基板の厚さが許容値の範囲内に入っていても、他の情報記録領域では許容値を超えているような場合や、その逆の場合もあり、特定パターンから得られた制御情報だけで光学系を一律に制御しても球面収差を正確に補正できない可能性もある。
【0012】
一方、従来から、光ディスク装置におけるトラッキングサーボ方式として3ビーム方式やプッシュプル方式やヘテロダイン方式等がある。
その内の3ビーム方式は、レーザ光源から出射されたレーザビームを回折格子によって3つのビーム(メインビームと2つのサブビーム)に分割し、光ディスクに対してメインスポットと2つのサブスポットからなる集光スポットを形成する。
また、前記の各サブスポットは、メインスポットに対してタンジェンシャル方向の前後に等距離だけずれた位置であって、且つメインスポットに対して光ディスクのラジアル方向にトラックピッチの1/4分又は1/2分だけ左右にずれた位置に配置される。
そして、3ビーム方式では、各サブスポットから得られる信号の不均衡を差動増幅器でトラッキングエラー信号として検出することにより、トラッキングサーボを実行する。
【0013】
今、前記の3ビーム方式を採用している光ディスク装置において、光ピックアップ全体を光ディスクのラジアル方向へ移動させると、各集光スポットがトラックを横断してゆくために各集光スポットから得られる再生信号が周期的に変化することになるが、光ディスクの透明基板の厚さが規格値からずれており、図19に示したように、焦点ずれに対して集光スポット105の光強度分布の変化が発生している場合には、各サブスポットの再生信号相互間ではその周期的変化の位相にずれが生じることになる。
【0014】
そこで、本発明は、前記の位相のずれに着目し、光ディスク装置がトラッキングサーボに3ビーム方式を採用している場合において、特許文献1の提案のように特別な光ディスクを用いることなく、既存のトラッキングサーボ用の回路を利用した簡単な回路構成によって、光ディスクの透明基板の厚さが規格値からずれている場合の収差補正を行うことが可能な収差補正装置及び収差補正方法を提供することを目的として創作された。
【0015】
【課題を解決するための手段】
第1の発明は、光ディスクの情報記録面を覆う透明基板の厚さが規格値からずれていることによって発生する球面収差を補正する光ディスク装置における収差補正装置において、前記光ディスク装置は、2つのサブスポットをメインスポットに対して1/2トラックピッチ分だけ前記光ディスクのラジアル方向へずらせて形成し、且つ光検出器における前記各サブスポットに対応する各受光素子を前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した2分割受光素子として3ビーム方式によるトラッキング制御を実行するものであって、前記光ディスクに対する入射ビームの発散・収束角度を変化させる収差補正手段と、前記の各2分割受光素子に対応させて設けられ、各分割領域から得られる出力信号の差信号を検出する第1信号検出手段及び第2信号検出手段と、前記第1信号検出手段と前記第2信号検出手段が検出する各差信号の差信号を検出する第3信号検出手段と、前記第3信号検出手段による検出信号の振幅に比例する信号をエラー信号として求めるエラー信号生成手段と、前記光ディスク装置の光ピックアップを前記光ディスクのラジアル方向へ移動せしめ、その移動状態で前記エラー信号生成手段から得られる前記エラー信号に基づいて、そのエラー信号を小さくするように前記収差補正手段を制御する制御手段とを具備し、前記光検出器の前記メインスポットに対応する受光素子が、前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した各領域から受光信号が得られる構成を備えており、前記エラー信号生成手段が、前記メインスポットの各分割領域から得られる出力信号の差信号を検出する第4信号検出手段と、前記第4信号検出手段が検出した差信号を微分する微分手段と、前記微分手段による微分後の信号を2値化する2値化手段と、前記第3信号検出手段が検出する差信号の極性を前記2値化手段から得られる2値情報に応じて反転させる信号極性反転手段と、前記信号極性反転手段によって得られた信号を積分する積分手段とを有する光ディスク装置における収差補正装置である
【0016】
この発明では、光ディスク装置が3ビーム方式によるトラッキング制御を実行するものであり、各サブスポットはメインスポットに対して1/2トラックピッチ分だけ光ディスクのラジアル方向へずらせてある。
これは、3ビーム方式におけるDPP(Differential Push Pull)法で採用されるメインスポットと各サブスポットの配置条件と同様である。
従って、光ピックアップを光ディスクのラジアル方向へ移動させた場合に、各サブスポットはトラックとトラック間を順次照射してゆくことになるが、その照射条件は各サブスポットについて常に同一となる。
今、光ディスクの透明基板の厚さが規格値にあれば、各サブスポットでの光強度分布は焦点ずれに対して図18のように対称性を有しているため、第1信号検出手段と第2信号検出手段による検出信号(正弦波形信号)は同一になり、第3信号検出手段の出力信号は0レベルとなる。
一方、光ディスクの透明基板の厚さが規格値からずれていることによって球面収差が発生しているとすると、各サブスポットでの光強度分布は焦点ずれに対して図19のように不規則で非対称な状態となり、各サブスポットでの光強度分布の不均衡によって第1信号検出手段と第2信号検出手段の各検出信号には位相差が発生し、必然的に第3信号検出手段には差信号として一定の振幅を有する正弦波形信号が現れる。
即ち、第3信号検出手段の出力信号の振幅は球面収差の発生度合いに比例した値を示すことになる。
そこで、この発明では、前記の原理に基づいて、エラー信号生成手段が第3信号検出手段の出力信号からエラー信号を作成し、制御手段がそのエラー信号を小さくするように収差補正手段を制御することで光ディスクに生じている球面収差を補正している。
尚、収差補正手段としては、光ディスク装置の光軸上に入射ビームの発散・収束角度を変化させる光学的要素を設ける方式やレーザ光源を光軸方向へ移動させる方式を採用できる。
【0017】
前記の第1の発明において、エラー信号生成手段は第3信号検出手段の出力信号の振幅に比例したエラー信号を作成するものであり、そのままピーク・ツー・ピーク値を求める方式であってもよいが、次のような方式を採用できる。
(a) 前記第3信号検出手段が検出する差信号の絶対値又は2乗値を求める演算手段と、前記演算手段が求めた絶対値又は2乗値を積分する積分手段とからなり、(+)極性のレベル値としてエラー信号を生成する方式。
(b) 前記光検出器の前記メインスポットに対応する受光素子が、前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した各領域から受光信号が得られる構成を備えている場合(受光素子が2分割又は4分割であるような場合)において、前記メインスポットの各分割領域から得られる出力信号の差信号を検出する第4信号検出手段と、前記第4信号検出手段が検出した差信号を微分する微分手段と、前記微分手段による微分後の信号を2値化する2値化手段と、前記第3信号検出手段が検出する差信号の極性を前記2値化手段から得られる2値情報に応じて反転させる信号極性反転手段と、前記信号極性反転手段によって得られた信号を積分する積分手段とからなり、球面収差の発生方向に応じて異なる極性のレベル値としてエラー信号を生成する方式。
【0019】
の発明は、第1の発明に係る収差補正装置において、エラー信号生成手段として前記(b)の方式を採用している場合における収差補正方法であって、前記制御手段が、前記光ディスク装置の光ピックアップを前記光ディスクのラジアル方向へ移動させる第1手順と、前記第1手順を実行中に前記積分手段が生成するエラー信号の極性を確認する第2手順と、前記第2手順で確認した極性に基づいて、前記積分手段が生成するエラー信号の絶対値が小さくなるように前記収差補正手段を一定微小量だけ制御する第3手順と、前記積分手段が生成するエラー信号のレベル絶対値が前記光ディスクの球面収差に係る許容限度に対応させて予め設定した閾値以下になるまで、前記の第2手順と第3手順とを繰り返し実行させる第4手順とを実行することを特徴とする光ディスク装置における収差補正方法に係る。
この発明によれば、エラー信号生成手段がエラー信号を球面収差の発生方向に応じて異なる極性のレベル値として作成しているため、フィードバック制御による収差補正が可能になる。
尚、上記の各発明において、「透明基板の厚さ」とは、光ディスクの透明基板が情報記録面に対して光透過性シートを紫外線硬化樹脂等の接着剤を用いて貼着することにより構成される場合には、前記光透過性シートと前記接着剤の厚さを併せた厚さとする。
【0020】
【発明の実施の形態】
以下、本発明の「光ディスク装置における収差補正装置及び収差補正方法」の実施形態を、図1から図16を用いて詳細に説明する。
[実施形態1]
先ず、図1は3ビーム方式でトラッキングサーボを行う光ディスク装置における光ピックアップとサーボ系回路の概略構成図である。
また、この光ディスク装置は3ビーム方式の内のDPP法を採用したものである。
同図において、1は光ディスク、2は光ピックアップ、3はサーボ系回路を示す。
この実施形態において、光ピックアップ2は、通常の3ビーム方式の光ディスク装置と同様に、レーザ光源21と、コリメートレンズ22と、回折格子23と、ビームスプリッタ24と、対物レンズ25と、複合レンズ(凸レンズとシリンドリカルレンズ)26と、光検出器27と、対物レンズ25用のアクチュエータ28を搭載していると共に、特徴的要素としてビームスプリッタ24と対物レンズ25の間に収差補正部29が設けられており、その収差補正部29用のアクチュエータ30を搭載している。
一方、サーボ系回路3は、通常の3ビーム方式の光ディスク装置と同様に、フォーカス・トラッキング・スライド・スピンドルに係る各サーボ回路を備えているが、特徴的要素としてトラッキングサーボ回路の一部を利用した球面収差エラー検出回路31も内蔵している。
【0021】
そして、レーザ光源21とコリメートレンズ22と回折格子23とビームスプリッタ24と収差補正部29と対物レンズ25とは、それぞれ光軸を一致させて配置されており、レーザ光源21から出射されたレーザビームは、コリメートレンズ22で平行ビームとされた後、回折格子23で3つのビームに分割され、その各ビームはビームスプリッタ24と収差補正部29を透過し、対物レンズ25によって光ディスク1の情報記録面1aに3つの集光スポットとして照射される。
即ち、情報の記録・再生・消去用及びフォーカスエラー信号の検出用に用いられるメインスポットSmと、トラッキングエラー信号の検出用に用いられる2つのサブスポットSs1,Ss2とが光ディスク1の情報記録面1aに形成される。
尚、メインスポットSmに係るビームは回折格子23による0次回折光であり、各サブスポットSs1,Ss2に係るビームは±1次回折光である。
【0022】
光ディスク1の情報記録面1aに形成された各集光スポットSm,Ss1,Ss2からの反射光は、再び対物レンズ25を透過して平行ビームとなり、ビームスプリッタ24の偏光分離膜で入射ビームと分離される態様で複合レンズ26へ導かれ、複合レンズ26が光検出器27の受光面に各集光スポットSm,Ss1,Ss2に対応した検出用スポットDm,Ds1,Ds2を形成する。
【0023】
ところで、光ディスク1に照射される各ビームは、図2(光ディスク1の拡大断面図)に示すように、光ディスク1の透明基板1bを透過して情報記録面1aに各集光スポットSm,Ss1,Ss2を形成するが、各集光スポットSm,Ss1,Ss2の情報記録面1a上で相対的位置関係は図3に示される。
但し、この実施形態での光ディスク1はグルーブ記録方式のものであり、各トラックがグルーブ10aとしてランド10bの間に所定のトラックピッチTpで形成されている。
そして、この光ディスク装置はDPP法によるトラッキングサーボを行うものであるため、各サブスポットSs1,Ss2は、メインスポットSmに対してタンジェンシャル方向の前後に等距離だけずれた位置であって、且つメインスポットSmに対して光ディスク1のラジアル方向にTp/2だけ左右にずれた位置に形成される。
【0024】
一方、光検出器27には、図4に示すように、メインスポットSmに対応する検出用スポットDmの形成位置に4分割受光素子27aを、また各サブスポットSs1,Ss2に対応する各検出用スポットDs1,Ds2の形成位置に2分割受光素子27b,27cを配設させてある。
但し、同図において(A〜D),(G,H),(I,H)はそれぞれ各受光素子27a,27b,27cの分割領域を示しており、A・DとC・Bの分割線、GとHの分割線、及びIとJの分割線は、それぞれ光ディスク1のタンジェンシャル方向と光学的に平行な関係にある。
【0025】
次に、サーボ系回路3が内蔵している球面収差エラー検出回路31の回路図、及びその球面収差エラー検出回路31と前記の光検出器27との接続関係を図5に示す。
同図に示されるように、この実施形態では2分割受光素子27b,27cの出力信号を用いて球面収差エラー検出回路31がエラー信号:ΔK1を作成するようになっている。
具体的には、球面収差エラー検出回路31は、2分割受光素子27bの各領域G,Hから得られる各出力信号の差(プッシュプル信号)を出力する差動増幅器41と、2分割受光素子27cの各領域I,Jから得られる各出力信号の差(プッシュプル信号)を出力する差動増幅器42と、それら差動増幅器41,42の各出力信号の差(プッシュプル信号)を出力する差動増幅器43と、その差動増幅器43が出力するプッシュプル信号の絶対値又は2乗値を求める演算回路44と、その演算回路44が求めた演算信号を積分して球面収差エラー信号:ΔK1を求める積分回路45とからなる。
【0026】
従って、各2分割受光素子27b,27cの各分割領域の出力信号をGs,Hs,Is,Jsとすると、球面収差エラー信号:ΔK1は次式で与えられることになる。
演算回路44が絶対値を求める場合;
ΔK1=∫ |(Gs−Hs)−(Is−Js)| dt … (1)
演算回路44が2乗値を求める場合;
ΔK1=∫ [(Gs−Hs)−(Is−Js)]2 dt … (2)
【0027】
そして、図1に示すように、球面収差エラー検出回路31が出力するエラー信号:ΔK1はアクチュエータ30へ出力され、アクチュエータ30がそのエラー信号ΔK1に基づいて収差補正部29を制御する。
この収差補正部29は、光ディスク1の透明基板1bの厚さ:tが規格値からずれていることに起因した球面収差を補正するための光学要素である。
即ち、図2に示すように、各集光スポットSm,Ss1,Ss2に係るビームは透明基板1bを透過して情報記録面1aに集光せしめられるため、透明基板1dの厚さ:tによる集光ビームの回折条件も考慮して各集光スポットSm,Ss1,Ss2が形成されるようになっているが、前記の厚さ:tが規格値からずれていると球面収差が発生してメインスポットSmによる光ディスク1のトラックに対する適正な記録・再生等ができなくなる可能性があり、その球面収差を打ち消すように収差補正部29で入射光ビームの発散又は収束角度が調整される。
【0028】
従って、収差補正部29は入射光ビームの発散又は収束角度を変化させる光学的機能を備えているが、例えば、図6(A)に示すように、凸レンズ29aと凹レンズ29bの組合せからなり、一方又は双方のレンズ29a,29bを光軸方向へ移動可能とし、両レンズ29a,29bの間隔を変化させるような構成が採用できる。
また、図6(B)に示すように、光軸を中心とした同心円状に電極パターン29cをもつ液晶素子29dで構成された可変焦点レンズを用い、電極パターン29cに印加する電圧によって液晶透過光の位相変化量を制御する方式や、2枚の凸レンズの組合せ方式やホログラムレンズを用いた方式を採用してもよい。
【0029】
以上の構成に基づいて、この実施形態に係る光ディスク装置では収差補正を図7のフローチャートに示すような手順で実行する。
先ず、光ディスク装置に光ディスク1がセットされると、収差補正モードが設定され、サーボ系回路3がフォーカスサーボをONにして、アクチュエータ28で対物レンズ25の光軸方向の位置を調整することによりフォーカス制御を行う(S1〜S3)。
この場合、この光ディスク1はグルーブ記録方式のものであるため、グルーブ10aの情報記録面を基準にして、メインスポットSmから得られる反射光量が最大になるように制御される。
【0030】
次に、サーボ系回路3はスライドサーボにより光ピックアップ2を光ディスク1のラジアル方向へ移動させる(S4)。
また、サーボ系回路3は、その移動期間にアクチュエータ30へ掃引制御信号を出力し、収差補正部29の凸レンズ29aを光軸に沿って前後方向へ移動させる(S5)。
その場合、図3に示した相対的位置関係で形成された各々の集光スポットSm,Ss1,Ss2についてみると、それらスポットからの反射光量の変化は図8に示すようになる。即ち、集光スポットの中心がグルーブ10aの中心位置へ移動した状態で最大の反射光量が得られ、ランド10bの中心位置へ移動した状態で反射光量は最小となり、光量変化が最大になるのはグルーブ10aの中心からトラックピッチTpの1/4だけ離れた位置である。
【0031】
そして、前記のように光ピックアップ2を移動させている状態において、球面収差エラー検出回路31(図5)は次のように動作してエラー信号:ΔK1を出力する。
先ず、光ディスク1の透明基板1bの厚さ:tが規格値に対して許容範囲内にある場合を仮定すると、図9(A)に示すように、各差動増幅器41,42の出力はほぼ同一の信号波形(正弦波形)として得られる。
何故なら、図3において、各サブスポットSs1,Ss2がトラックを横切る方向(光ディスク1のラジアル方向)へ移動した場合、その移動方向に係る各サブスポットSs1,Ss2の間隔は1トラックピッチTpであるため、グルーブ10aとランド10bに対するサブスポットSs1,Ss2の相対的位置関係は常に同一条件であり、且つ、透明基板1bの厚さ:tが規格値に対して許容範囲内にあれば、図18に示したように、焦点ずれに対して各サブスポットSs1,Ss2の光強度分布が合焦点の前後でほぼ対称な関係を有しているからである。
【0032】
従って、図9(B),(C)に示すように、前記の各差動増幅器41,42の出力信号の差を求めている差動増幅器43のプッシュプル信号はほぼ0レベルの信号値となり、当然に演算回路44の出力もほぼ0レベルとなって、積分回路45で求められるエラー信号:ΔK1もほぼ0レベルとなる。
即ち、この場合には球面収差エラー検出回路31のエラー信号:ΔK1がほぼ0レベルとなって、球面収差を補正する必要がないことになる。
【0033】
一方、光ディスク1の透明基板1bの厚さ:tが規格値に対して許容範囲からずれている場合を仮定すると、図19に示したように、焦点ずれに対する各サブスポットSs1,Ss2の光強度分布が合焦点の前後で非対称に変化し、微小ではあるがトラックを横切る方向に各スポット半径が変動して各サブスポットSs1,Ss2から得られる反射光量に不均衡が生じる。
従って、例えば、図10(A)に示すように、各差動増幅器41,42の出力信号には位相ずれが生じ、差動増幅器43からは各差動増幅器41,42の出力信号によるプッシュプル信号として図10(B)に示すような正弦波形の信号が得られることになる。
【0034】
次に、演算回路44は上記のように差動増幅器43の出力信号の絶対値又は2乗値を求める回路であり、その出力信号は、図10の(C)又は(D)に示すように、前記の正弦波形信号における(−)側に振れた部分を(+)側へ折り返した信号波形、又は全ての信号値を2乗した(+)側の信号波形となる。
そして、演算回路44の出力信号を積分回路45によって積分すると、差動増幅器43の出力信号の振幅に対応した直流信号が得られ、それがエラー信号:ΔK1として出力されることになる。
即ち、エラー信号:ΔK1は光ディスク1の透明基板1bの厚さ:tが規格値に対してずれていることによる球面収差量に比例した値となり、エラー信号:ΔK1と球面収差量の関係は図11のようになる。
【0035】
ここで、図7に戻って、前記のステップS4,S5で光ピックアップ2の移動と収差補正部29の凸レンズ29aの前後移動がなされている状態において、サーボ系回路3は球面収差エラー検出回路31のエラー信号:ΔK1を検出しており、そのエラー信号:ΔK1が最小となる場合の収差補正部29に対する制御値を確認する(S6)。
即ち、サーボ系回路3は、アクチュエータ30に対する制御信号の設定によって収差補正部29の凸レンズ29aの位置を掃引制御して入射光ビームの発散又は収束角度を連続的に変化させているが、光ディスク1の透明基板1bの厚み:tによる球面収差がキャンセルできた時点(エラー信号:ΔK1が最小値となった時点)の制御値を確認する。
【0036】
そして、サーボ系回路3は、その確認が完了した段階で光ピックアップ2の移動と収差補正部29の掃引制御を停止させ、アクチュエータ30に対して前記手順で確認した制御値を設定して収差補正モードを終了する(S7,S8)。
この収差補正モードの終了時点では、エラー信号:ΔK1を最小とする球面収差補正量が収差補正部29に設定されているため、光ディスク1の透明基板1bの厚み:tが規格値からずれていることによる球面収差が極めて小さいものに抑制された状態となる。
従って、その最適設定による光ピックアップ2の光学条件で以降のメインスポットSmによる情報が記録・再生されることになり、常にエラーの発生のない適正な記録・再生が可能になる。
尚、図7のフローチャートでは収差補正モードで1回の補正制御を実行するようになっているが、ステップS4からステップS8を複数回繰り返して実行させて、より最適な状態へ漸近させるようにしてもよい。
【0037】
また、この実施形態では、収差補正部29を図6(A)に示した光学的構成によるものとして説明したが、図6(B)に示した液晶素子29dによる可変焦点レンズによる場合には、電極パターン29cに印加する電圧を掃引制御してエラー信号:ΔK1を最小とする電圧値を求め、その電圧値で液晶透過光の位相変化量を設定して収差補正を行うことになる。
また、収差補正部29を凸レンズの組合せ方式やホログラムレンズを用いた方式で構成した場合には、前記の実施形態に準じた制御と収差補正量の設定が行われる。
【0038】
[実施形態2]
この実施形態に係る光ディスク装置は、その基本的構成については実施形態1に係る光ディスク装置(図1)と同様であり、また3ビーム方式のDPP法でトラッキングサーボを実行するものであることも同様であるが、サーボ系回路3に内蔵されている球面収差エラー検出回路31の回路構成が異なっている。
従って、この実施形態では、主にその特徴的部分である球面収差エラー検出回路と収差補正手順を説明することとし、実施形態1と共通した部分についての説明は省略する。
【0039】
この実施形態の球面収差エラー検出回路は、図12に示す回路構成を有している。
同図のように、球面収差エラー検出回路51には、光検出器27におけるサブスポットSs1,Ss2に対応した2分割受光素子27b,27cの出力信号だけでなく、メインスポットSmに対応した4分割受光素子27aの出力信号も入力されている。
そして、2分割受光素子27bの各領域G,Hから得られる各出力信号の差(プッシュプル信号)を出力する差動増幅器41と、2分割受光素子27cの各領域I,Jから得られる各出力信号の差(プッシュプル信号)を出力する差動増幅器42と、それら差動増幅器41,42の各出力信号の差(プッシュプル信号)を出力する差動増幅器43とを備えていることは実施形態1の場合と同様であるが、4分割受光素子27aの領域A,Dから得られる各出力信号の和を出力する加算器52と、領域B,Cから得られる各出力信号の和を出力する加算器53と、それら加算器52,53の各出力信号の差(プッシュプル信号)を出力する差動増幅器54とが設けられている。
【0040】
また、差動増幅器43の出力信号は乗算器55へ入力され、その乗算器55の出力信号を積分回路56で積分してエラー信号:ΔK2を求めるようになっており、一方、差動増幅器54の出力信号は微分回路57で微分され、その微分後の信号を2値化回路58で+1又は−1に2値化して、その2値情報を乗算器55における乗算値とする回路が構成されている。
【0041】
次に、実施形態1の場合と同様に光ピックアップ2を光ディスク1のラジアル方向へ移動させている状態における、この球面収差エラー検出回路51の動作について説明する。
先ず、光ディスク1の透明基板1bの厚さ:tが規格値に対して許容範囲内にある場合については、実施形態1の図9で説明したように、各差動増幅器41,42の出力はほぼ同一の信号波形(正弦波形)として得られ、差動増幅器43の出力信号はほぼ0レベルの信号値となり、乗算器55の出力もほぼ0レベルになることから、積分回路56が出力するエラー信号:ΔK2もほぼ0レベルとなる。
【0042】
一方、光ディスク1の透明基板1bの厚さ:tが規格値に対して許容範囲からずれている場合には、実施形態1における図10(A)と同様に、各差動増幅器41,42の出力信号には位相ずれが生じ、差動増幅器43からは、各差動増幅器41,42の出力信号によるプッシュプル信号として、正弦波形の出力信号が得られることになる。
ここで、実施形態1では差動増幅器41と差動増幅器42の各出力信号に関する位相の進み/遅れの関係を問題とせず、図10(A)のように差動増幅器41側の出力信号が差動増幅器42側の出力信号よりも位相が進んでいる状態で説明したが、実際にはその逆の場合もあり得る。
実施形態1の場合は、図5に示したように、差動増幅器43の出力信号を演算回路44で絶対値又は2乗値に変換しているために、前記の位相に関する進み/遅れを問題にする必要がなかっただけである。
【0043】
各差動増幅器41,42の出力信号についての位相の進み/遅れを考慮すると、この実施形態における各差動増幅器41,42の出力信号と差動増幅器43の出力信号の信号波形は図13の(A)及び(B)又は図14の(A)及び(B)のようになる。
図13は差動増幅器41の出力信号が差動増幅器42の出力信号より位相が進んでいる場合であり、図14はその逆の場合に相当する。
各図から明らかなように、各差動増幅器41,42の出力信号について位相の進み/遅れが逆になると、差動増幅器43の出力信号は180°だけ位相が異なった信号波形となる。
【0044】
一方、4分割受光素子27aに係る各加算器52,53では、加算器52が領域A,Dの出力を、加算器53が領域B,Cの出力を加算しているが、光ディスク1における各集光スポットSm,Ss1,Ss2と各分割受光素子27a,27b,27cの対応関係は実施形態1で図3と図4を用いて説明したとおりであって、領域A,Dと領域B,Cはそれぞれタンジェンシャル方向を基準にしてメインスポットSmにおけるサブスポットSs1寄りの光とサブスポットSs2寄りの光を検出するようになっており、加算器52の出力は差動増幅器54の(+)側端子へ、加算器53の出力は差動増幅器54の(−)側端子へそれぞれ入力されている。
そして、2分割受光素子27bに係る差動増幅器41の出力信号は差動増幅器43の(+)側端子へ、2分割受光素子27cに係る差動増幅器42の出力信号は差動増幅器43の(−)側端子へそれぞれ入力されている。
従って、差動増幅器54の出力信号は差動増幅器43の出力信号に対して常に90°だけ位相がずれた信号波形となり、その関係は図13の(B)と(C)及び図14の(B)と(C)に示される。
【0045】
ところで、この実施形態の球面収差エラー検出回路51では、差動増幅器54の出力信号を微分回路57で微分しており、微分回路57の出力として差動増幅器54の出力信号の位相を90°遅らせた信号を得ている。
そのため、差動増幅器43の出力信号が図13(B)のようになっている場合には、その出力信号と微分回路57の出力信号[図13(D)]の位相が一致し、差動増幅器43の出力信号が図14(B)のようになっている場合には、その出力信号と微分回路57の出力信号[図14(D)]の位相は180°だけずれた関係になる。
【0046】
そして、微分回路57の出力信号を2値化回路58によって2値化すると、図13(E)及び図14(E)に示すように、出力信号が(+)側へ振れている期間では+1が、(−)側へ振れている期間では−1が得られ、その2値化信号が乗算器55での乗算値とされる。
ここで、差動増幅器43の出力信号波形[図13(B),図14(B)]と前記の2値化信号波形[図13と図14の(E)]とを比較してみると、図13(B)の出力信号波形の場合にはその振幅に係る極性が2値化信号波形の極性と一致しており、図14(B)の出力信号波形の場合にはその振幅に係る極性が2値化信号波形の極性と逆になっている。
従って、乗算器55から得られる出力信号は、差動増幅器43の出力信号が図13(B)の場合には、図13(F)に示すように(+)側にのみ振れた波形となり、差動増幅器43の出力信号が図14(B)の場合には、図14(F)に示すように(−)側にのみ振れた波形となる。
【0047】
その結果、積分回路56によって乗算器55の出力信号を積分すると、差動増幅器43の出力信号波形が図13(B)の場合には(+)極性の直流信号が得られ、差動増幅器43の出力信号波形が図14(B)の場合には(−)極性の直流信号が得られ、その直流信号がエラー信号:ΔK2として出力されることになる。
そして、差動増幅器43の出力信号の振幅は、光ディスク1の透明基板1bの厚さ:tが規格値に対してずれていることに起因して生じる球面収差に比例しているため、エラー信号:ΔK2と球面収差との関係は図15のようになる。
【0048】
ここで重要なことは、その図15と実施形態1における図11とを比較すれば明らかなように、この実施形態では前記の球面収差が(+)側に生じているか(−)側に生じているかをエラー信号:ΔK2の極性から判別できることである。即ち、実施形態1の場合には球面収差の大きさだけしか検出できなかったのに対して、この実施形態では、球面収差が発生しない状態(光ディスク1の透明基板1bの厚さ:tが規格値である場合)から何れの方向へ球面収差が発生しているかも含めて判別できることになる。
【0049】
そして、この実施形態によれば、前記の球面収差エラー検出回路51を用いたことにより、収差補正手順を実施形態1の場合よりも合理的に実行させることが可能になる。
以下、その手順を図16のフローチャートを参照しながら説明する。
先ず、光ディスク装置に光ディスク1がセットされると、収差補正モードが設定され、サーボ系回路3がフォーカスサーボをONになると共に、スライドサーボによって光ピックアップ2を光ディスク1のラジアル方向へ移動させることは、実施形態1の場合と同様である(S21〜S24)。
【0050】
光ピックアップ2が移動せしめられると、球面収差エラー検出回路51からはエラー信号:ΔK2が出力されるが、その出力レベルは収差補正部29に対する初期設定状態に対応したレベルになっている。
ここで、サーボ系回路3は前記のエラー信号:ΔK2の極性を確認し、その極性が(+)側であれば、アクチュエータ30に対してΔK2を(−)側へ一定量だけ変化させる制御値を設定し、逆に極性が(−)側であれば、アクチュエータ30に対してΔK2を(+)側へ一定微小量だけ変化させる制御値を設定する(S25,S26,S27)。
従って、アクチュエータ30は、確認されたエラー信号:ΔK2の極性に応じて収差補正部29を制御することになるが、ΔK2の絶対値を小さくする方向、即ち、光ディスク1の透明基板1bによって生じている球面収差を小さくする方向へ入射光ビームの発散・収束角度を制御する。
【0051】
次に、収差補正部29の制御がなされた段階で、サーボ系回路3は球面収差エラー検出回路51のエラー信号:ΔK2の絶対値と所定の閾値:Ltとを比較し、|ΔK2|≦Ltが成立していなければ、再びステップS25に戻ってΔK2の極性を確認し、アクチュエータ30に対してΔK2の極性に応じた新たな制御値を設定する(S28→S25,S26,S27)。
以降、|ΔK2|≦Ltの条件が成立するまでステップS25からステップS28の手順を繰り返して実行し、その条件が得られた時点で、光ピックアップ2の移動を停止させると共に、その時点での制御値を球面収差の補正値としてアクチュエータ30に設定した後、収差補正モードを抜ける(S28〜S30)。
尚、収差補正部29の初期設定状態で|ΔK2|≦Ltが成立していれば、当然にその設定状態のまま収差補正モードを抜けることになる(S28〜S30)。
【0052】
ところで、前記の閾値:Ltは図15に示したエラー信号:ΔK2と球面収差との関係に基づいて球面収差を許容範囲内に抑制できる|ΔK2|の値に相当し、光ディスク装置において適正な記録・再生が保証できる値として設定される。
従って、前記の収差補正手順が実行された後には、光ディスク1の透明基板1bの厚さ:tが規格値に対してずれていることに起因して生じる球面収差が極めて小さいものに抑制された状態になっている。
そして、この実施形態によれば、ネガティブフィードバックループによって収差補正を実行するため、迅速な収差補正制御が可能になり、また実施形態1のように収差補正部29を掃引制御する必要がないという利点がある。
【0053】
尚、上記の実施形態1及び2では、光ディスク1がグルーブ記録方式である場合について説明したが、原理的にランド記録方式の光ディスクについても適用できることは当然である。
また、CDにおいてはトラック上のピットがグルーブと同様の光学的条件を構成するため、実施形態1及び2の収差補正装置と収差補正手順はCDについても適用できる。
【0054】
ところで、上記の実施形態1及び2では、収差補正部29をビームスプリッタ24と対物レンズ25の間に配置させて球面収差を補正するようにしているが、その機能は要するに入射光ビームの発散・収束角度を調節することにある。
従って、その機能を果たし得る収差補正手段が光ピックアップ1に内蔵されていれば足り、レーザ光源21をエラー信号:ΔK1,ΔK2に対応させて光軸方向へ移動させるような制御方式で収差補正を実行させてもよい。
【0055】
【発明の効果】
本発明の「光ディスク装置における収差補正装置及び収差補正方法」は、以上の構成を有していることにより、次のような効果を奏する。
請求項1の発明は、前記光ディスク装置が2つのサブスポットをメインスポットに対して1/2トラックピッチ分だけディスクのラジアル方向へずらせて形成して3ビーム方式によるトラッキング制御を実行するものである場合に、光ディスクの透明基板の厚さが規格値からずれていることに起因して発生する球面収差を、従来技術(特許文献1)のように特別な光ディスクを用いることなく、簡単な回路構成によって補正することを可能にする。
また、少なくとも第1信号検出手段及び第2信号検出手段と第3信号検出手段は、3ビーム方式の内のDPP法によるトラッキングサーボに適用されるものであり、既存の回路構成をそのまま利用できるという利点を有している。
請求項2の発明は、球面収差に係るエラー信号を(+)極性のレベル値として検出して収差補正制御を容易にする。
請求項3の発明は、球面収差の発生方向に応じて異なる極性のレベル値としてエラー信号を生成させ、収差補正制御をフィードバック制御によって行うことを可能にする。
請求項4及び請求項5の発明は、請求項1の発明の収差補正装置に対して請求項2及び請求項3の発明に係るエラー信号生成手段をそれぞれ適用した場合において有効な収差補正制御方法を提供する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光ディスク装置における光ピックアップとサーボ系回路の概略構成図である。
【図2】光ディスクの情報記録面にメインスポットとサブスポットが形成されている状態を示す光ディスクの拡大断面図である。
【図3】情報記録面上におけるメインスポットとサブスポットの相対的位置関係を示す拡大平面図である。
【図4】メインスポットに対応する4分割受光素子とサブスポットに対応する2分割受光素子が配設された光検出器の平面図である。
【図5】光検出器と接続された実施形態1の球面収差エラー検出回路の電気回路図である。
【図6】収差補正部の概略構成図である。但し、(A)は凹レンズと凸レンズの組合せ方式によるもの、(B)は同心円状に電極パターンをもつ液晶素子で構成された可変焦点レンズ方式によるものである。
【図7】実施形態1における収差補正手順を示すフローチャートである。
【図8】集光スポットを光ディスクのラジアル方向へ移動させた場合に、集光スポットから得られる反射光量が光ディスクのグルーブ区間とランド区間で変化している状態を示す図である。
【図9】光ディスクに球面収差が発生していない場合における、実施形態1の球面収差エラー検出回路(図5)の各差動増幅器と演算回路の各出力を示す信号タイミングチャートである。
【図10】光ディスクに球面収差が発生している場合における、実施形態1の球面収差エラー検出回路(図5)の各差動増幅器と演算回路の各出力を示す信号タイミングチャートである。
【図11】実施形態1の球面収差エラー検出回路(図5)のエラー信号:ΔK1と光ディスクの球面収差量との関係を示すグラフである。
【図12】光検出器と接続された実施形態2の球面収差エラー検出回路の電気回路図である。
【図13】光ディスクに球面収差が発生している場合における、実施形態2の球面収差エラー検出回路(図12)の各差動増幅器と微分回路と2値化回路と乗算回路の各出力を示す信号タイミングチャートである。(但し、差動増幅器41の出力信号の位相が差動増幅器42の出力信号の位相より進んでいる場合に係る。)
【図14】光ディスクに球面収差が発生している場合における、実施形態2の球面収差エラー検出回路(図12)の各差動増幅器と微分回路と2値化回路と乗算回路の各出力を示す信号タイミングチャートである。(但し、差動増幅器42の出力信号の位相が差動増幅器41の出力信号の位相より進んでいる場合に係る。)
【図15】実施形態2の球面収差エラー検出回路(図12)のエラー信号:ΔK2と光ディスクの球面収差量との関係を示すグラフである。
【図16】実施形態2における収差補正手順を示すフローチャートである。
【図17】光ディスクの断面図と集光レンズによる集光スポットの形成態様を示す図である。
【図18】透明基板の厚さのずれが許容値内である場合における、焦点ずれ量に対する集光スポットの光軸を中心とした光強度分布の変化を示す図である。
【図19】透明基板の厚さのずれが許容値を超えた場合における、焦点ずれ量に対する集光スポットの光軸を中心とした光強度分布の変化を示す図である。
【符号の説明】
1,101…光ディスク、1a…情報記録面、1b,103…透明基板、2…光ピックアップ、3…サーボ系回路、10a…グルーブ、10b…ランド、21…レーザ光源、22…コリメートレンズ、23…回折格子、24…ビームスプリッタ、25,104…対物レンズ、26…複合レンズ、27…光検出器、27a…4分割受光素子、27b,27c…2分割受光素子、28,30…アクチュエータ、29…収差補正部、29a…凸レンズ、29b…凹レンズ、29c…電極パターン、29d…液晶素子、31,51…球面収差エラー検出回路、41,42,43,54…差動増幅器、44…演算回路、45,56…積分回路、52,53…加算器、55…乗算器、57…微分回路、58…2値化回路、102…情報記録層、105…集光スポット、A,B,C,D,G,H,I,J…受光素子の分割領域、ΔK1,ΔK2…エラー信号、Sm…メインスポット、Ss1,Ss2…サブスポット、t…透明基板の厚さ、Tp…トラックピッチ。

Claims (3)

  1. 光ディスクの情報記録面を覆う透明基板の厚さが規格値からずれていることによって発生する球面収差を補正する光ディスク装置における収差補正装置において、
    前記光ディスク装置は、2つのサブスポットをメインスポットに対して1/2トラックピッチ分だけ前記光ディスクのラジアル方向へずらせて形成し、且つ光検出器における前記各サブスポットに対応する各受光素子を前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した2分割受光素子として3ビーム方式によるトラッキング制御を実行するものであって、
    前記光ディスクに対する入射ビームの発散・収束角度を変化させる収差補正手段と、
    前記の各2分割受光素子に対応させて設けられ、各分割領域から得られる出力信号の差信号を検出する第1信号検出手段及び第2信号検出手段と、
    前記第1信号検出手段と前記第2信号検出手段が検出する各差信号の差信号を検出する第3信号検出手段と、
    前記第3信号検出手段による検出信号の振幅に比例する信号をエラー信号として求めるエラー信号生成手段と、
    前記光ディスク装置の光ピックアップを前記光ディスクのラジアル方向へ移動せしめ、その移動状態で前記エラー信号生成手段から得られる前記エラー信号に基づいて、そのエラー信号を小さくするように前記収差補正手段を制御する制御手段とを具備し、
    前記光検出器の前記メインスポットに対応する受光素子が、前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した各領域から受光信号が得られる構成を備えており、
    前記エラー信号生成手段が、
    前記メインスポットの各分割領域から得られる出力信号の差信号を検出する第4信号検出手段と、
    前記第4信号検出手段が検出した差信号を微分する微分手段と、
    前記微分手段による微分後の信号を2値化する2値化手段と、
    前記第3信号検出手段が検出する差信号の極性を前記2値化手段から得られる2値情報に応じて反転させる信号極性反転手段と、
    前記信号極性反転手段によって得られた信号を積分する積分手段と
    を有する光ディスク装置における収差補正装置。
  2. 光ディスクの情報記録面を覆う透明基板の厚さが規格値からずれていることによって発生する球面収差を補正する光ディスク装置における収差補正方法において、
    前記光ディスク装置は、2つのサブスポットをメインスポットに対して1/2トラックピッチ分だけ前記光ディスクのラジアル方向へずらせて形成し、且つ光検出器における前記各サブスポットに対応する各受光素子を前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した2分割受光素子として3ビーム方式によるトラッキング制御を実行するものであると共に、前記光検出器の前記メインスポットに対応する受光素子が、前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した各領域から受光信号が得られる構成を備えたものであって、
    前記光ディスクに対する入射ビームの発散・収束角度を変化させる収差補正手段と、前記の各2分割受光素子に対応させて設けられ、各分割領域から得られる出力信号の差信号を検出する第1信号検出手段及び第2信号検出手段と、前記第1信号検出手段と前記第2信号検出手段が検出する各差信号の差信号を検出する第3信号検出手段と、前記メインスポットの各分割領域から得られる出力信号の差信号を検出する第4信号検出手段と、前記第4信号検出手段が検出した差信号を微分する微分手段と、前記微分手段による微分後の信号を2値化する2値化手段と、前記第3信号検出手段が検出する差信号の極性を前記2値化手段から得られる2値情報に応じて反転させる信号極性反転手段と、前記信号極性反転手段によって得られた信号を積分してエラー信号を生成する積分手段と、前記収差補正手段を制御する制御手段を備えており、
    前記制御手段が、
    前記光ディスク装置の光ピックアップを前記光ディスクのラジアル方向へ移動させる第1手順と、
    前記第1手順を実行中に前記積分手段が生成するエラー信号の極性を確認する第2手順と、
    前記第2手順で確認した極性に基づいて、前記積分手段が生成するエラー信号の絶対値が小さくなるように前記収差補正手段を一定微小量だけ制御する第3手順と、
    前記積分手段が生成するエラー信号のレベル絶対値が前記光ディスクの球面収差に係る許容限度に対応させて予め設定した閾値以下になるまで、前記の第2手順と第3手順とを繰り返し実行させる第4手順と
    を実行することを特徴とする光ディスク装置における収差補正方法。
  3. 光ディスクの情報記録面を覆う透明基板の厚さが規格値からずれていることによって発生する球面収差を補正する光ディスク装置における収差補正装置において、
    前記光ディスク装置は、2つのサブスポットをメインスポットに対して1/2トラックピッチ分だけ前記光ディスクのラジアル方向へずらせて形成し、且つ光検出器における前記各サブスポットに対応する各受光素子を前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した2分割受光素子として3ビーム方式によるトラッキング制御を実行するものであると共に、前記光検出器の前記メインスポットに対応する受光素子が、前記光ディスクのタンジェンシャル方向と光学的に平行な関係にある分割線で2分割した各領域から受光信号が得られる構成を備えたものであって、
    前記光ディスクに対する入射ビームの発散・収束角度を変化させる収差補正手段と、前記の各2分割受光素子に対応させて設けられ、各分割領域から得られる出力信号の差信号を検出する第1信号検出手段及び第2信号検出手段と、前記第1信号検出手段と前記第2信号検出手段が検出する各差信号の差信号を検出する第3信号検出手段と、前記メインスポットの各分割領域から得られる出力信号の差信号を検出する第4信号検出手段と、前記第4信号検出手段が検出した差信号を微分する微分手段と、前記微分手段による微分後の信号を2値化する2値化手段と、前記第3信号検出手段が検出する差信号の極性を前記2値化手段から得られる2値情報に応じて反転させる信号極性反転手段と、前記信号極性反転手段によって得られた信号を積分してエラー信号を生成する積分手段と、前記収差補正手段を制御する制御手段とを備えており、
    前記制御手段が、
    前記光ディスク装置の光ピックアップを前記光ディスクのラジアル方向へ移動させる第1手順と、
    前記第1手順を実行中に前記積分手段が生成するエラー信号の極性を確認する第2手順と、
    前記第2手順で確認した極性に基づいて、前記積分手段が生成するエラー信号の絶対値が小さくなるように前記収差補正手段を一定微小量だけ制御する第3手順と、
    前記積分手段が生成するエラー信号のレベル絶対値が前記光ディスクの球面収差に係る許容限度に対応させて予め設定した閾値以下になるまで、前記の第2手順と第3手順とを繰り返し実行させる第4手順と
    を実行することを特徴とする光ディスク装置における収差補正装置。
JP2003143916A 2003-05-21 2003-05-21 光ディスク装置における収差補正装置及び収差補正方法 Expired - Fee Related JP4103137B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143916A JP4103137B2 (ja) 2003-05-21 2003-05-21 光ディスク装置における収差補正装置及び収差補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143916A JP4103137B2 (ja) 2003-05-21 2003-05-21 光ディスク装置における収差補正装置及び収差補正方法

Publications (2)

Publication Number Publication Date
JP2004348840A JP2004348840A (ja) 2004-12-09
JP4103137B2 true JP4103137B2 (ja) 2008-06-18

Family

ID=33531553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143916A Expired - Fee Related JP4103137B2 (ja) 2003-05-21 2003-05-21 光ディスク装置における収差補正装置及び収差補正方法

Country Status (1)

Country Link
JP (1) JP4103137B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121038A1 (ja) * 2005-05-10 2006-11-16 Pioneer Corporation 情報機器

Also Published As

Publication number Publication date
JP2004348840A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
US7227819B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
KR100625156B1 (ko) 광 디스크의 경사 검출 방법, 광 디스크의 경사 제어 방법, 광 픽업 디바이스 및 광 디스크 디바이스
JP4645410B2 (ja) 光ピックアップ及び光ディスク装置
JP2003123282A (ja) 焦点調整方法および光ピックアップ装置
JP4171378B2 (ja) 記録用光ディスクの球面収差補正方法,光ディスク記録再生方法及び光ディスク装置
JP2001216662A (ja) ピックアップ装置及び情報記録再生装置
KR100601632B1 (ko) 광기록재생기기용 에러신호 검출장치
US7116612B2 (en) Optical pickup device driven by an error signal obtained from an optical detector's output signals
JPH1064080A (ja) 非点収差フォーカスエラー信号生成方法及び光ピックアップ装置
EP1286343B1 (en) Information recording/reproducing apparatus
US5856959A (en) Method for generating a focus error signal due to astigmatism and optical pickup device using the same
JP4103137B2 (ja) 光ディスク装置における収差補正装置及び収差補正方法
US7468939B2 (en) Optical disk apparatus with phase difference offset
KR100694097B1 (ko) 광픽업 및 이를 사용하는 광 기록 및/또는 재생기기 및트랙킹 에러신호 검출방법
JP3984970B2 (ja) 光ディスク装置、情報再生方法または記録方法
JP2002190125A (ja) 光ヘッド装置、光情報記録再生装置、収差検出方法および光ヘッド装置の調整方法
JP2633420B2 (ja) 光記録再生装置
US20090238054A1 (en) Optical disc device, tracking error signal generating circuit, tracking error signal correcting method, and program
JPH07320287A (ja) 光ピックアップ装置
JP4724181B2 (ja) 光ピックアップ装置及び情報記録再生装置
JP2005276358A (ja) 光ピックアップ装置
US20060193221A1 (en) Optical head unit and optical disc apparatus
JP4505979B2 (ja) 光ヘッド、受発光素子および光記録媒体記録再生装置
JP2002175636A (ja) 光記憶媒体および傾き検出装置および情報記録再生装置
JPWO2008143006A1 (ja) 光ヘッド装置及び光学式情報記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees