WO2006121038A1 - 情報機器 - Google Patents

情報機器 Download PDF

Info

Publication number
WO2006121038A1
WO2006121038A1 PCT/JP2006/309310 JP2006309310W WO2006121038A1 WO 2006121038 A1 WO2006121038 A1 WO 2006121038A1 JP 2006309310 W JP2006309310 W JP 2006309310W WO 2006121038 A1 WO2006121038 A1 WO 2006121038A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
variable focus
focus lens
recording medium
Prior art date
Application number
PCT/JP2006/309310
Other languages
English (en)
French (fr)
Inventor
Naoharu Yanagawa
Masataka Izawa
Takehisa Okuyama
Eiji Muramatsu
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006121038A1 publication Critical patent/WO2006121038A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to the technical field of information equipment such as a DVD recorder and a DVD player that perform information recording or information reproduction on an information recording medium such as a DVD.
  • a recording medium for optically recording and reproducing data using a laser beam or the like such as a CD or a DVD
  • Such recording media have various substrate thicknesses, for example 1.2 mm for CDs, 0.6 mm for DVDs and HD DVDs, for example Blu-ray. If it is a disc, it has a substrate thickness of 0.1 mm.
  • a recording medium having a plurality of recording layers has also been developed.
  • Non-Patent Document 1 “Next generation optical discs to be unified” Nikkei Electronics September 27, 2004 P112- 113
  • the present invention has been made in view of, for example, the above-described conventional problems, and an object of the present invention is to provide an information device capable of suitably irradiating a recording medium with a laser beam or the like. .
  • an optical pickup irradiates light toward a recording medium having one or a plurality of recording layers, and condenses the light emitted from the light source onto the recording medium.
  • An optical pickup comprising: an objective lens; and a variable focus lens that is disposed on the optical path between the light source and the objective lens and changes a focal position with respect to the light irradiated with the light source force;
  • a calculating means for calculating an aberration amount of the light focused on the recording medium based on at least one of a substrate thickness variation of the recording medium, a wavelength of the light, and a numerical aperture of the objective lens;
  • Control means for controlling the variable focus lens so as to change the focal position according to the calculated aberration amount.
  • the light emitted from the light source is condensed on the recording medium by the objective lens.
  • the light condensed on the recording medium forms pits or marks on the recording medium. Thereby, predetermined information can be recorded on the recording medium.
  • the light irradiated with the light source power is transmitted through the focus variable lens before passing through the objective lens.
  • the variable focus lens can change the focal position by changing the refractive index distribution by, for example, an electric action or a magnetic action.
  • the variable focus lens functions in the same way as a single transparent substrate, while a predetermined voltage is applied to the variable focus lens.
  • the variable focus lens functions as a lens that changes the focal position. In this case, the focal position is determined according to the magnitude of the applied voltage.
  • the variable focus lens functions to collect light at one focal position, while a predetermined voltage is applied to the variable focus lens.
  • variable focus lens functions to collect light at another focal position different from the one focal position.
  • variable focus lens When a predetermined voltage is applied to the variable focus lens, the variable focus lens The lens functions to collect light at another focal position according to the applied voltage.
  • the substrate thickness differs (that is, the substrate thickness varies, or the substrate thickness varies when one or more recording layers are considered) on each recording surface of a plurality of recording media.
  • Light can be suitably condensed.
  • the focal length of the variable focus lens is changed according to the substrate thickness of the recording medium, the light irradiated from the light source can be recorded on the recording medium regardless of the substrate thickness of the recording medium.
  • the light can be suitably condensed on the surface.
  • information can be recorded or reproduced suitably for each of a plurality of recording media having different substrate thicknesses.
  • the substrate thickness of a recording medium having a plurality of recording layers and the substrate thickness of a recording medium having a single recording layer are generally different in many cases. Therefore, if the focal length of the variable focus lens is changed in accordance with the substrate thickness of the recording medium as described above, information can be suitably recorded or reproduced on a recording medium having a plurality of recording layers.
  • the recording medium has a plurality of recording layers, but the light irradiated with the light source power is recorded on the recording medium.
  • Light can be suitably condensed on the surface.
  • information can be recorded or reproduced suitably for each of a plurality of recording media having different wavelengths of light to be irradiated.
  • the numerical aperture of the objective lens included in the optical pickup is different from a predetermined numerical aperture conforming to the standard of the recording medium
  • light is preferably collected on the recording surface of the recording medium.
  • the focal length of the variable focus lens is changed in accordance with the numerical aperture of the objective lens, for example, the numerical aperture of the objective lens included in the optical pickup is different from the predetermined numerical aperture based on the recording medium standard.
  • the light irradiated with the light source can be suitably condensed on the recording surface of the recording medium.
  • the numerical aperture of the objective lens can be substantially changed by changing the focal length of the variable focus lens.
  • the opening of the objective lens provided in the optical pickup Even if the numerical aperture is different from the predetermined numerical aperture based on the standard of the recording medium, information can be recorded or reproduced suitably on the recording medium.
  • information is preferably recorded or reproduced on each of a plurality of recording media having one or a plurality of recording layers and different types. It is out.
  • the optical pickup included in the information device according to the present invention does not need to include a mechanical drive device such as a motor, so that the optical pickup can be reduced in size and thickness. Further, since there is no need to provide a mechanical drive device, there is an advantage that the power consumption of the optical pickup can be suppressed.
  • the focal length of the variable focus lens can be changed so that the light is suitably condensed on the recording surface according to the substrate thickness of the recording medium, etc., eliminating the need for multiple objective lenses.
  • the NA control element can be omitted. From this point, the optical pickup can be reduced in size and thickness.
  • One aspect of the information device of the present invention is focused on the recording medium based on at least one of a variation in substrate thickness of the recording medium, a wavelength of the light, and a numerical aperture of the objective lens.
  • Calculation means for calculating an aberration amount of the light aberration is further provided, and the control means controls the variable focus lens so as to change the focal position in accordance with the calculated aberration amount.
  • the amount of aberration of the light collected on the recording medium is calculated by the operation of the calculating means.
  • the amount of aberration is calculated based on, for example, variations in the substrate thickness of the recording medium, the wavelength of the light, and the numerical aperture of the objective lens.
  • the focus variable lens is controlled by the operation of the control means so as to change the focal position in accordance with the calculated aberration amount.
  • the focal position is changed so as to cancel the calculated aberration amount. Accordingly, information can be suitably recorded or reproduced on each of a plurality of recording media having one or a plurality of recording layers and different types.
  • the correlation between the aberration amount and at least one of the wavelength of the light and the numerical aperture of the objective lens varies depending on the substrate thickness of the recording medium.
  • variable focus lens includes a liquid crystal lens
  • control unit changes the focus position by adjusting a voltage applied to the liquid crystal lens.
  • the variable focus lens is controlled so that
  • variable focus lens can be configured relatively easily.
  • the liquid crystal lens includes a plurality of first divided electrodes and a plurality of second divided electrodes that are concentrically distributed, and the plurality of first divided electrodes.
  • a liquid crystal element sandwiched between one divided electrode and the plurality of second divided electrodes, and the control means applies to each of the plurality of first divided electrodes or each of the plurality of second divided electrodes.
  • the focus variable lens may be controlled so as to change the focus position by adjusting a voltage to be applied.
  • Another aspect of the information device of the present invention is arranged on the optical path between the light source and the objective lens, transmits light emitted from the light source, and reflects the reflected light from the recording medium.
  • a beam splitter that changes the optical path of the light source, and the variable focus lens is disposed on the optical path between the light source and the beam splitter.
  • the light irradiated with the light source force passes through the beam splitter and is condensed on the recording surface of the recording medium.
  • the light reflected by the recording surface of the recording medium (more specifically, for example, a reflective film formed inside the recording medium) is changed in its optical path by the beam splitter and is incident on the photodetector, for example. . Thereby, the information recorded on the recording medium can be read.
  • variable focus lens is disposed between the beam splitter and the light source.
  • the variable focus lens is disposed between the beam splitter and the light source.
  • the light reflected on the recording surface of the recording medium enters the photodetector without passing through the variable focus lens. Therefore, the light reflected on the recording surface of the recording medium
  • spherical aberration correction performed by the variable focus lens is not performed redundantly. For this reason, it is possible to eliminate an adverse effect caused by overlapping application of spherical aberration correction, for example, which may occur on the photodetector.
  • variable focus lens includes a liquid lens that changes the shape of an interface formed by including a plurality of types of liquids having different refractive indexes.
  • the optical pickup according to the present invention (that is, the focal position can be changed without using a mechanical drive device).
  • Optical pickup equipped with a variable focus lens) can be configured
  • variable focus lens includes an element having an electro-optic effect.
  • the optical pickup according to the present invention (that is, the focal position can be changed without using a mechanical drive device) relatively easily. And an optical pickup equipped with a variable focus lens.
  • variable focus lens includes an element having a magneto-optical effect.
  • the optical pickup according to the present invention (that is, the focal position can be changed without using a mechanical drive device). And an optical pickup equipped with a variable focus lens.
  • variable focus lens changes the focal position so that the light is incident on the objective lens in at least one of a finite system and an infinite system.
  • the numerical aperture of the objective lens on the light incident side is any one of 0.053 force and 0.063. Make up.
  • the recording medium has at least one of a first substrate thickness and a second substrate thickness.
  • the wavelength of light, the numerical aperture of the objective lens, and the like are often different. Therefore, when the recording medium has at least one of the first substrate thickness and the second substrate thickness, as described above, the wavelength and numerical aperture corresponding to the recording medium having the first substrate thickness, and the second substrate thickness. It is preferable to change the focal point position in consideration of the wavelength and numerical aperture corresponding to the recording medium having a substrate thickness of.
  • the objective lens on the light emission side has the first substrate thickness.
  • the recording medium may have a first numerical aperture capable of condensing the light.
  • variable focus lens includes the objective lens on the light emission side.
  • the focal position may be changed to have a number.
  • the optical pickup designed to be able to suitably collect light on the recording medium having the first substrate thickness
  • the focal position of the variable focus lens is changed ( Alternatively, if the variable focus lens acts as a predetermined lens), the light can be suitably condensed on the recording medium having the second substrate thickness.
  • the first substrate thickness is 0.1 mm
  • the second substrate thickness is 0. May be configured to be 6 mm! / ,.
  • each of a recording medium such as a Blu-ray Disc having a substrate thickness of 0.1 mm and a recording medium such as an HD DVD or DVD having a substrate thickness of 0.6 mm, for example. Light can be suitably condensed.
  • the numerical aperture of the objective lens on the light emission side is 0. It may be configured to be 85.
  • variable focus lens includes the objective on the light emission side.
  • the focal position may be changed so that the numerical aperture of the lens is approximately 0.65.
  • the optical pickup designed to be able to focus light suitably on a recording medium having a substrate thickness of 0.1 mm, for example, a Blu-ray Disc has a focal point. If the focal position of the variable lens is changed (or if the variable focal lens acts as a predetermined lens), the light is suitable for a recording medium having a substrate thickness of 0.6 mm, such as HD DVD and DVD. Can be condensed.
  • the information device is disposed on the optical path between the light source and the variable focus lens, and on the recording medium after the focal position is changed by the control means.
  • the aberration of the condensed light is measured while measuring the aberration. It further comprises an aberration correction element that corrects (while performing the control).
  • the aberration correction element is configured to correct at least one of spherical aberration, coma aberration, and astigmatism as the aberration. A little.
  • the light source, the objective lens, and the variable focus lens capable of changing the focal position are provided. Therefore, it is possible to suitably irradiate the recording medium with different substrate thickness with laser light or the like.
  • FIG. 1 is a block diagram of an information recording / reproducing apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of an optical pickup according to the present embodiment.
  • FIG. 3 is a cross-sectional view showing one specific example of an optical path of a laser beam (more specifically, a laser beam) in the optical pickup according to the present embodiment.
  • FIG. 4 is a cross-sectional view showing another specific example of an optical path of a laser beam (more specifically, a laser beam) in the optical pickup according to the present embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a configuration of an optical pickup according to a comparative example.
  • FIG. 6 is a cross-sectional view schematically showing a configuration of an optical pickup according to another comparative example.
  • FIG. 7 is a table showing numerical apertures, substrate thicknesses, and laser light wavelengths corresponding to a plurality of types of optical discs loaded onto an information recording / reproducing apparatus.
  • FIG. 8 is a graph showing the correlation between substrate thickness variation (horizontal axis) and aberration amount (vertical axis).
  • FIG. 9 is a cross-sectional view and a plan view showing a specific configuration of a variable focus lens.
  • a transparent electric power provided in the variable focus lens includes a refractive index distribution to be realized in the variable focus lens and a voltage applied to the variable focus lens in order to realize the refractive index distribution. It is a graph shown in association with a pole.
  • FIG. 11 is a plan view, a cross-sectional view, or a perspective view schematically showing another specific configuration of the variable focus lens used in the optical pickup according to the present embodiment.
  • FIG. 12 is a plan view, a sectional view, or a perspective view schematically showing another specific configuration of the variable focus lens used in the optical pickup according to the present embodiment.
  • FIG. 13 is a plan view, a cross-sectional view, or a perspective view schematically showing another specific configuration of the variable focus lens used in the optical pickup according to the present embodiment.
  • FIG. 14 is a plan view, a cross-sectional view, or a perspective view schematically showing another specific configuration of the variable focus lens used in the optical pickup according to the present embodiment.
  • FIG. 15 is a cross-sectional view schematically showing a configuration of an optical pickup according to a modification.
  • FIG. 1 is a block diagram of an information recording / reproducing apparatus 300 according to an embodiment.
  • Information recording / playback equipment The device 300 has a function of recording data on the optical disc 10 and a function of reproducing data recorded on the optical disc 10.
  • the information recording / reproducing apparatus 300 includes a disk drive 301 in which the optical disk 10 is actually loaded and data is recorded and reproduced, and data recording and recording on the disk drive 301. And a host computer 302 such as a personal computer for controlling reproduction!
  • the disk drive 301 includes an optical disk 10, a spinneret motor 311, an optical pickup 100, a signal recording / reproducing unit 313, a CPU (drive control unit) 314, a memory 315, a data input / output control unit 316, and a bus 317. It is configured.
  • the host computer 302 includes data input / output control means 318, CPU 319, memory 320, nose 321, operation Z display control means 322, operation buttons 323, and display panel 324.
  • the spindle motor 311 rotates and stops the optical disc 10 and operates when accessing the optical disc 10. More specifically, the spindle motor 311 is configured to rotate and stop the optical disc 10 at a predetermined speed while receiving spindle servo from a servo unit (not shown) or the like.
  • the signal recording / reproducing means 313 records and reproduces data with respect to the optical disc 10 by controlling the spindle motor 311 and the optical pickup 100. More specifically, the signal recording / reproducing means 313 includes, for example, a laser diode driver (LD driver) and a head amplifier.
  • the laser diode driver drives a laser diode 101 provided in the optical pickup 100.
  • the head amplifier amplifies the output signal of the optical pickup 100, that is, the reflected light of the light beam, and outputs the amplified signal.
  • the memory 315 is used in general data processing in the disk drive 301 such as a data buffer area and an area used as an intermediate buffer when data is converted into data usable by the signal recording / reproducing means 313. .
  • the memory 315 stores a program for operating as a recorder device, that is, a ROM area in which firmware is stored, a buffer for temporarily storing recording / playback data, and a variable necessary for the operation of the firmware program and the like. RAM area is configured.
  • a CPU (drive control means) 314 includes a signal recording / reproducing means 313, a memory 315, and a bus 3
  • the entire disk drive 301 is controlled by instructing various control means connected via the control unit 17. Normally, software or firmware for operating the CPU 314 is stored in the memory 315.
  • the data input / output control means 316 controls external data input / output to / from the disk drive 301, and stores and retrieves data in / from the data buffer on the memory 315.
  • the drive control command issued from the external host computer 302 connected to the information recording device 300 via an interface such as SCSI or ATAPI is transmitted to the CPU 314 via the data input / output control means 316.
  • the operation Z display control means 322 is for receiving and displaying an operation instruction for the host computer 302.
  • the CPU 319 transmits a control command (command) to the information recording / reproducing device 300 via the data input / output unit 318 based on the instruction information from the operation Z display control unit 322 to control the entire disk drive 301. .
  • the CPU 319 can send a command requesting the disk drive 301 to send the operating status to the host.
  • the operation state of the disk drive 301 during recording can be grasped, so the CPU 319 outputs the operation state of the disk drive 301 to the display panel 324 such as a fluorescent tube or LCD via the operation / display control means 322. Can do.
  • the memory 320 is an internal storage device used by the host computer 302. For example, a ROM area in which a firmware program such as BIOS (Basic Input / Output System) is stored, an operating system, an operation of an application program, etc.
  • BIOS Basic Input / Output System
  • the RAM area that stores the necessary variables is also configured. Further, it is not shown in the figure via the data input / output control means 318, and may be connected to an external storage device such as a node disk.
  • a specific example of using the disk drive 301 and the host computer 302 in combination as described above is a home device such as a recorder device that records video.
  • This recorder device is a device that records broadcast reception tuners and video signals of external connection terminal power on a disc.
  • the program stored in the memory 320 is executed by the CPU 319 to operate as a recorder device.
  • the disk drive 301 is not connected.
  • the host computer 302 is a personal computer or a workstation.
  • a host computer such as a Norsonano computer and a drive are connected via data input / output control means 316 and 318 such as SCSI and ATAPI, and application capabilities such as reading software installed in the host computer 302 are connected. Control the disk drive 301.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the optical pickup according to the present embodiment
  • FIG. 3 is an optical path of the laser light in the optical pickup according to the present embodiment (more specifically, FIG. 4 is a cross-sectional view showing one specific example of the laser beam).
  • FIG. 4 is a diagram illustrating another optical path of the laser beam (more specifically, the laser beam) in the optical pickup according to the present embodiment.
  • FIG. 5 and FIG. 6 are cross-sectional views schematically showing a configuration of an optical pickup according to a comparative example.
  • the optical pickup 100 has the laser diode 101 that irradiates the laser beam LB, the focal position of the laser beam LB that passes through the electric action, or the magnetic action.
  • Variable focus lens 102, beam splitter 103, condensing lens (collimator lens) 104, liquid crystal element 105 for correcting spherical aberration of laser beam LB, 1/4 wavelength plate 106, laser beam LB is recorded on optical disk 10 recording surface
  • Objective lens 107 for condensing light and photodetector 108 for receiving the reflected light of laser beam LB.
  • the CPU 354 included in the information recording / reproducing apparatus 300 includes an aberration amount calculation unit 354a and an applied voltage control unit 354b.
  • the laser beam LB emitted from the laser diode 101 is transmitted through the variable focus lens 102, the beam splitter 103, the condensing lens 104, the liquid crystal element 105, the 1Z4 wavelength plate 106, and the objective lens 107, and Irradiates the recording surface.
  • the laser beam LB irradiated on the recording surface forms pits or marks on the recording surface. As a result, data is recorded on the optical disc 10.
  • the laser beam LB reflected on the recording surface of the optical disc 10 passes through the objective lens 107, the 1Z4 wavelength plate 106, the liquid crystal element 105 and the condenser lens 104, and passes through the beam splitter 10.
  • the light is reflected at 3 and collected on the photodetector 108.
  • the light irradiated on the photodetector 108 is converted into an electrical signal, and a reproduction signal, various servo error signals, and the like are generated from the electrical signal.
  • the data recorded on the optical disk 10 is reproduced, or various management information and control information for reading or managing the recording operation or the reproducing operation are read.
  • the focal position of the variable focus lens 102 (in other words, the focal length or the refractive index distribution in the lens) can be changed as appropriate.
  • the magnification of the focus variable lens 102 can be changed as appropriate. More specifically, as will be described in more detail later with reference to FIGS. 5 to 8, variation in the substrate thickness in consideration of one or more recording layers of the optical disk 10 due to the operation of the aberration amount calculation unit 354a. Based on the wavelength of the laser beam LB and the numerical aperture of the objective lens 107, the amount of aberration (hereinafter referred to as “aberration amount”) generated in the laser beam LB focused on the optical disc 10 is calculated.
  • the voltage applied to the variable focus lens 102 is set based on the calculated aberration amount by the operation of the applied voltage control unit 354 b. More specifically, the voltage applied to the variable focus lens 102 is set so as to cancel the calculated aberration amount. The set voltage is applied to the variable focus lens 102. As a result, the focal position of the variable focus lens 102 can be changed according to the applied voltage.
  • the variable focus lens 102 acts as a transparent glass substrate, for example. That is, the focus variable lens 102 transmits the laser beam LB as it is without acting as a lens for the laser beam LB. Therefore, the laser beam LB is incident on the objective lens 107 without changing its propagation mode (that is, the spread angle or light flux of the laser beam LB). At this time, the laser beam LB is converted into substantially parallel light (that is, infinite light) by the condenser lens 104 and then enters the objective lens 107.
  • the laser beam LB converted into an infinite system is focused on the recording surface of the optical disk 10a (specifically, for example, a B1 u-ray Disc) having a substrate thickness of 0.1 mm from the objective lens 107 mm. .
  • the optical pickup described here The 100 fixed optical systems (specifically, other components excluding the variable focus lens 102) are configured to focus the laser beam LB on the recording surface of the optical disc 10a having a substrate thickness of 0.1 mm. It is counted.
  • the NA of the objective lens (more specifically, the NA on the emission side of the laser beam LB) is set to “0.85”.
  • the variable focus lens 102 when the voltage B [V] is applied to the variable focus lens 102, the variable focus lens 102 is applied to the laser light LB, for example. It acts as a convex lens with a refractive index distribution according to the voltage. Accordingly, the laser beam LB converges once at a position corresponding to the focal position of the variable focus lens 102 before the variable focus lens 102, and then diverges again (that is, spreads) to the objective lens 107. Incident. At this time, since the manner in which the laser beam LB enters the condenser lens 104 is different from the example shown in FIG. 3A, the laser beam LB is not converted into infinite light by the condenser lens 104.
  • the laser beam LB is incident on the objective lens 107 as finite system light.
  • the laser beam LB is an optical disc 10b having a substrate thickness of 0.6 mm (specifically Specifically, it is focused on the recording surface of HD DVD or DVD, for example.
  • the focal position of the variable focus lens is determined so that the laser beam LB is focused on the recording surface of the optical disc 10b having a substrate thickness of 0.6 mm.
  • a predetermined voltage is applied to the variable focus lens 102 so as to realize the focal position.
  • the NA on the exit side of the objective lens 107 at this time remains “0.85” as a matter of course.
  • the aspect of the laser beam LB incident on the object lens 107 changes, so that In order to realize this, it is preferable that the NA on the incident side of the objective lens 107 falls within any range of “0.053” force “0.063”.
  • the NA on the incident side of the objective lens 107 is determined based on the focal position of the variable focus lens 102, the focal position of the condenser lens 104, etc. Therefore, the NA on the incident side of the objective lens 107 is "0. 053
  • the focal position of the variable focus lens 102 is determined so that it falls within one of the ranges of “force” 0. 063. Then, with respect to the variable focus lens 102, the focal position is realized. A predetermined voltage is applied.
  • variable focus lens 102 acts as a convex lens having a refractive index distribution corresponding to, for example, a voltage applied to the laser light LB. Therefore, for example, the laser beam LB converges once at a position corresponding to the focal position of the variable focal lens 102, for example, before the focal variable lens 102, and then diverges again (that is, spreads) to the objective lens 107. Incident.
  • the laser light LB is not converted into infinite light by the condensing lens 104 because the manner of incidence of the laser light LB on the condensing lens 104 is different from the example shown in FIG. Therefore, the laser beam LB is incident on the objective lens 107 as a finite system light.
  • the laser beam LB is an optical disc 10c with a substrate thickness of 1.2 mm (specifically For example, the light is condensed on a recording surface of a CD or the like.
  • the focal position of the variable focus lens is determined so that the laser beam LB is condensed on the recording surface of the optical disk 10c having a substrate thickness of 1.2 mm. Then, a predetermined voltage is applied to the variable focus lens 102 so as to realize the focal position.
  • the variable focus lens 102 when the voltage of D [V] is applied to the variable focus lens 102, the variable focus lens 102 is applied to the laser light LB, for example. It acts as a convex lens with a refractive index distribution according to the voltage. Therefore, for example, the laser beam LB converges once at a position corresponding to the focal position of the variable focal lens 102, for example, before the focal variable lens 102, and then diverges again (that is, spreads) to the objective lens 107. Incident. At this time, the laser light LB is not converted into infinite light by the condensing lens 104 because the manner of incidence of the laser light LB on the condensing lens 104 is different from the example shown in FIG.
  • the laser beam LB is incident on the objective lens 107 as a finite system light.
  • the laser light LB is an optical disc 10d having a substrate thickness of 0.075 mm (specifically Specifically, the light is collected on the recording surface of, for example, a Blu-ray Disc having two recording layers L0 and L1.
  • the focal position of the variable focus lens is determined so that the laser beam LB is focused on the recording surface of the optical disk 10d having a substrate thickness of 1.2 mm.
  • a predetermined voltage is applied to the variable focus lens 102 so as to realize the focal point position.
  • the variable focus lens 102 is used.
  • the focal position of the laser beam LB in the objective lens 107 can be changed by changing the focal position. Therefore, the laser beam LB can be preferably focused on the recording surfaces of the plurality of types of optical disks 10 having different substrate thicknesses. Accordingly, data can be suitably recorded on each of a plurality of types of optical discs 10 having different substrate thicknesses, and each of a plurality of types of optical discs 10 having different substrate thicknesses and having one or a plurality of recording layers can be used. The recorded data can be suitably reproduced.
  • the condensing position of the laser beam LB in the objective lens 107 can be changed using an electrical action or a magnetic action. For this reason, for example, as shown in the optical pickup 120 according to the comparative example of FIG. 5, the objective lens is moved by moving the position of the condenser lens 104 in the optical axis direction using a mechanical drive device such as a motor 121. There is no need to change the condensing position of the laser beam LB in 107. Alternatively, as shown in the optical pickup 130 according to the comparative example of FIG.
  • the objective lens 107a is switched by switching the plurality of objective lenses 107a and 107b by the operation of the switching drive device 131 including a mechanical drive device such as a motor. There is no need to change the focusing position of the laser beam LB at.
  • the optical pickup 100 according to the present embodiment can change the condensing position of the laser beam LB in the objective lens 107 without using a mechanical drive device that can occupy a relatively large space. Therefore, compared with the optical pickups 120 and 130 according to the comparative example, there is an advantage that the size of the optical pickup 100 can be reduced or the thickness of the optical pickup 100 can be reduced. In addition, since it is not necessary to use a mechanical drive device that requires relatively large power, the power consumption of the optical pickup 100 can be reduced compared to the variable focus lens 102. is doing.
  • variable focus lens 102 is disposed between the laser diode 101 and the beam splitter 103.
  • the laser beam LB reflected on the recording surface of the optical disc 10 is condensed on the photodetector 108 without passing through the variable focus lens 102.
  • the optical pickup 120 according to the comparative example of FIG. 5 the laser light LB reflected on the recording surface of the optical disc 10 is again transmitted through the condenser lens 104 and then condensed on the photodetector 108.
  • the laser beam LB originally emitted from the laser diode 101 The condensing lens 104 for expanding or narrowing the light beam according to the substrate thickness of the optical disk 10 will spread or narrow the laser beam LB reflected on the recording surface of the optical disk 10 in an overlapping manner. .
  • the laser beam LB reflected on the recording surface of the optical disk 10 is condensed on the photodetector 108 without passing through the variable focus lens 102 for expanding or narrowing the light beam of the laser beam LB.
  • the state in which the light beam of the laser beam LB reflected on the recording surface of the optical disk 10 is spread or narrowed in a duplicated manner does not occur. Therefore, the laser beam LB can be suitably emitted on the photodetector 108.
  • the information recording / reproducing apparatus 300 can substantially change the NA on the exit side of the objective lens 107 by changing the focal position of the variable focus lens 102.
  • the NA on the exit side of the objective lens 107 can be substantially changed by changing the focal position so as to cancel out the aberration amount according to the type of the optical disk 10 that irradiates the laser beam LB. That is, the operation for canceling the aberration amount and the operation for changing the NA on the exit side of the objective lens 107 are operations closely related to each other or substantially the same operation. Therefore, the information recording / reproducing apparatus 300 according to the present embodiment does not necessarily need to include the NA control element 129 that is necessarily included in the optical pickup 120 according to the comparative example of FIG. Thereby, the configuration of the optical pickup 100 can be further simplified, and as a result, the size of the optical pickup 100 can be reduced as compared with the optical pickups 120 and 130 according to the comparative example.
  • variable focus lens. 102 may be arranged at any position on the optical path of the laser beam LB between the laser diode 101 and the objective lens 107.
  • the variable focus lens 10 2 is preferably arranged on the optical path of the laser beam LB between the laser diode 101 and the beam splitter 103.
  • the beam splitter 103 is disposed between the laser diode 101 and the condensing lens 104.
  • the force condensing lens 104 and the objective lens 107 may be disposed.
  • the force for disposing the liquid crystal element 105 for correcting the spherical aberration in the optical pick-up 100 is not necessarily provided.
  • the spherical aberration that should have been corrected in the liquid crystal element 105 is preferably corrected in the variable focus lens 102.
  • the liquid crystal element 105 is feedback controlled (or servo-controlled) using the measured amount of aberration. Control) to correct spherical aberration with higher accuracy.
  • laser light LB emitted from the laser diode 101 may be used depending on circumstances. It is necessary to change the wavelength. In this case, it is preferable to change the positional relationship between the laser diode 101 and the objective lens 107 (specifically, the distance between them) according to the difference in the wavelength of the laser beam LB. That is, it is preferable to set a suitable positional relationship in consideration of the wavelength of the laser beam LB, the focal position of each lens in the optical pickup 100, and the like.
  • the voltage applied to the variable focus lens 102 is set in consideration of the wavelength of the laser beam LB. Therefore, it is not always necessary to change the positional relationship between the laser diode 101 and the objective lens 107.
  • the explanation has been made by taking the substrate thickness of the optical disc 10 as 0.075 mm, 0.1 mm, 0.6 mm, and 1.2 mm as an example, but it goes without saying that the present invention is not limited to this. Yes.
  • the optical pickup may be configured to support a plurality of optical disks having three or more types of substrate thicknesses.
  • optical DVDs such as HD DVD, DVD, and CD other than Blu-ray Disc may have two or more recording layers.
  • the focal position of the variable focus lens 102 is suitably set according to the substrate thickness of the optical disk 10 that irradiates the light LB, and as a result, the laser light LB can be focused on the recording surface of the optical disk 10. .
  • FIG. 7 is a table showing the numerical aperture NA, the substrate thickness, and the wavelength of the laser beam LB corresponding to a plurality of types of optical disks 10 loaded in the information recording / reproducing apparatus 300
  • FIG. FIG. 9 is a graph showing a correlation between variation (horizontal axis) and aberration amount (vertical axis).
  • FIG. 9 is a cross-sectional view and a plan view showing a specific configuration of the variable focus lens 102
  • BD Blu-ray Disc having a single recording layer
  • the numerical aperture NA of the corresponding objective lens 107 is “0.85”
  • the substrate thickness is 0.1 ⁇ 0.005 mm
  • the wavelength of the laser beam LB is 405 nm.
  • BD-DL Blu-ray Disc having two recording layers (specifically, the optical disk 10d shown in FIG. 4 (b), hereinafter referred to as “BD-DL (Dual Layer)”)
  • the numerical aperture NA of the corresponding objective lens 107 is “0.85”
  • the substrate thickness specifically, the distance from the surface of the optical disc 10 to the recording layer L0 closer to the optical pickup 100
  • the wavelength of the laser beam LB is 405 nm.
  • the numerical aperture NA of the corresponding objective lens 107 is “0.60”.
  • the substrate thickness is 0.6 mm, and the wavelength of the laser beam LB is 650 nm.
  • the numerical aperture NA of the corresponding objective lens 107 is “0.65”.
  • the substrate thickness is 0.6 mm, and the wavelength of the laser beam LB is 405 nm.
  • the numerical aperture NA of the corresponding objective lens 107 is “0.45”.
  • the substrate thickness is 1.2 mm, and the wavelength of the laser beam LB is 780 nm.
  • the graphs shown in FIGS. 8A and 8B are obtained.
  • the disc thickness error on the horizontal axis is based on a BD having a single recording layer. That is, a substrate thickness of 0.1 mm for a BD having a single recording layer is a disc thickness error force SOmm.
  • the graph shown in Fig. 8 (b) is an enlarged graph of the graph shown in Fig. 8 (a), extracting the range where the disc thickness error is from Omm to 0.1mm.
  • the substrate thickness of the BD has a margin of 0.005 mm with respect to 0.1 mm. Therefore, if the disc thickness error in BD is 0.05 mm, the amount of convergence will be approximately 0.05 rms.
  • the substrate thickness of the BD-DL is 0.075 mm. Accordingly, since the disc thickness error in BD-DL is 0.025 mm, the aberration amount is approximately 0.75 1 rms.
  • the substrate thickness of the DVD is 0.6 mm. Therefore, the error for the BD substrate thickness of 0.1 mm is 0.5 mm. Therefore, the disc thickness error on DVD is 0.
  • the amount of aberration is approximately 0.4 rms.
  • the substrate thickness of the HD DVD is 0.6 mm. Therefore, the error for the BD substrate thickness of 0.1 mm is 0.5 mm. Therefore, since the disc thickness error in HD DVD is 0.5 mm, the aberration is approximately 1.7 rms.
  • the substrate thickness of the CD is 1.2 mm. Therefore, the error for a BD substrate thickness of 0.1 mm is 1. lmm. Therefore, the disc thickness error in CD is 1. lm m, so the amount of aberration is approximately 0.5 rms.
  • a liquid crystal lens 102 a is preferably used as the variable focus lens 102.
  • 9 (a) is a cross-sectional view of the liquid crystal lens 102a
  • FIG. 9 (b) is a plan view of the transparent electrode 212 of the liquid crystal lens 102a of FIG. 9 (a) observed from the upper side of FIG. 9 (a). is there.
  • a liquid crystal layer 213 including a liquid crystal element is sealed between a transparent substrate 211 and a transparent substrate 215, and a transparent electrode 212 is provided on the transparent substrate 211.
  • a transparent electrode 214 is formed on the surface of the transparent substrate 215 in contact with the liquid crystal layer 213. Furthermore, as shown in FIG. 9B, the transparent electrode 212 is divided into a plurality of divided electrodes 212a to 212d distributed concentrically.
  • the refractive index distribution of the liquid crystal layer 213 changes. Thereby, the focal position of the liquid crystal lens 102a can be changed.
  • the refractive index distribution in the liquid crystal layer 211 changes depending on the applied voltage, and the liquid crystal lens 102a functions as, for example, a convex lens. Accordingly, the liquid crystal lens 102a can be used as the variable focus lens 102.
  • the transparent electrode 214 is divided into a plurality of divided electrodes 212a to 212d distributed concentrically like the transparent electrode 212.
  • the focal length of the variable focus lens 102 described with reference to FIG. 9 is changed so as to cancel out the aberration amount described with reference to FIG. For this reason, if the amount of aberration is large, it is necessary to change the refractive index distribution of the variable focus lens 102 more greatly. In order to change the refractive index distribution more greatly (in other words, when the amount of aberration is large), it is necessary to apply a higher voltage to the variable focus lens 102.
  • the voltage applied as shown in the lower part of FIG. 10 is set by the operation of the applied voltage control unit 354b so as to realize the refractive index distribution as shown in the middle part of FIG.
  • the highest voltage VI is applied to the variable focus lens 102 when the optical disc 10 being loaded is an HD DVD, and the voltage is lower than VI when the optical disc 10 being loaded is a BD-DL.
  • V2 When V2 is applied to the variable focus lens 102 and the optical disk 10 to be loaded is a CD or DVD, a voltage V3 lower than VI and V2 is applied to the variable focus lens 102, and the optical disk 10 to be loaded is a BD. In this case, it is necessary to apply a voltage V4 lower than VI, V2 and V3 to the variable focus lens 102.
  • a plurality of split electrodes 212a to 21 are concentrically split. Of 2d, a small voltage is applied to the divided electrode closer to the center, and a larger voltage is applied to the divided electrode located farther from the central force.
  • the division of the transparent electrode 212 is not limited to a concentric circle. This is because if a refractive index distribution that draws a normal distribution curve is obtained, the focal length is inevitably determined accordingly. That is, the shape is not limited as long as it is a transparent electrode to which a voltage capable of suitably changing the refractive index distribution of the liquid crystal layer 213 can be applied. However, as long as the focal length of the variable focus lens 102 can be suitably changed, a refractive index distribution that draws a normal distribution curve may not be obtained.
  • variable focus lens (Other specific examples of variable focus lens)
  • FIGS. 11 to 14 are plan views, a cross-sectional view, or a perspective view schematically showing another specific configuration of the variable focus lens used in the optical pickup according to the present embodiment.
  • the Fresnel structure in which the transparent electrode 212 is finely divided into concentric circles You may comprise so that it may have. Accordingly, an increase in the thickness of the liquid crystal layer 213 can be suppressed, and at the same time, the response speed and recovery speed of the liquid crystal elements in the liquid crystal layer 213 can be improved. Further, white turbidity of the liquid crystal layer 213 due to the light scattering effect can be suppressed.
  • the liquid crystal element may be configured such that the molecular orientation is concentric (axisymmetric). Thereby, substantially the same lens characteristics can be realized in the major axis direction of the liquid crystal element and the direction perpendicular thereto.
  • the liquid crystal layer 213 shown in FIG. 11 refer to pages 57 to 58 of Applied Physics 63rd No. 1 (1994).
  • an electro-optic (EO: Electro Optic) material that has an electro-optic effect
  • the electro-optic lens 102b using the lens 231 may be used as the variable focus lens 102.
  • 12A is a perspective view of the electro-optical lens 102b
  • FIG. 12B is a cross-sectional view of the electro-optical lens 102b.
  • the electro-optic lens 102b includes, for example, (Pb, La) (Ar, Ti) 0
  • Electro-optic material 231 including gas-optic ceramic (hereinafter referred to as “PLZT electro-optic ceramic” as appropriate), and transparent electrodes 232 and 2 32 formed on both opposing surfaces of the electro-optic material 231.
  • Transparent electrode Each of 232 and 233 is formed in the Nth-order (N is an integer of 1 or more) even-numbered zone in the + x direction and the X direction from the center of the electro-optic material 231 as shown in FIG. 12 (b). In this case, each of the transparent electrodes 232 and 232 is not formed in the odd-numbered zone.
  • the electro-optic lens 102b acts as a cylindrical lens having a focal length determined by the distance to the Nth zone (more specifically, the primary zone) according to the voltage V, for example. It acts as a simple transparent glass substrate. If this concept is developed and a concentric transparent electrode is adopted, it acts as a convex lens, so that the electro-optic lens 102b can be used as the focus variable lens 102 described above.
  • the amount of power consumed to develop the electro-optic effect is relatively small, so that the amount of power consumed by the electro-optic lens 102b can be reduced.
  • the amount of power consumed by the optical pickup 100 can be reduced.
  • the electro-optic material 231 and the transparent electrodes 232 and 233 have a thin film structure, the power consumption can be further reduced, and the size of the variable focus lens 102 can be relatively reduced.
  • the electro-optic material 241 containing PLZT electro-optic ceramic may be used as the V, and the electro-optic lens 102c may be used as the variable focus lens 102.
  • the electro-optic lens 102c includes a rectangular parallelepiped electro-optic material 241 and striped transparent electrodes formed along the optical path of the laser beam LB on both opposing surfaces of the electro-optic material 241. 242a, 242b, 243a, 243b, 244a and 244b.
  • the transparent electrode 242a and the transparent electrode 242b constitute a first electrode pair, and the transparent electrode 243a, the transparent electrode 243b, the transparent electrode 244a and the transparent electrode 244b constitute a second electrode pair.
  • Transparent constituting electrode pair The electrodes are preferably formed at opposing positions on both surfaces of the electro-optic material 241.
  • the electro-optic lens 102c functions as, for example, a convex lens or simply as a transparent glass substrate depending on the voltages V1 and V2 applied to the electrode pair. For this reason, the electro-optic lens 102c can be used as the variable focus lens 102 described above. For further details of the electro-optic lens 102c, see page 62 in the page 61 force of Applied Physics 63rd No. 1 (1994).
  • a magneto-optic lens including a magneto-optic material having the magneto-optic effect may be used as the variable focus lens. More specifically, a magneto-optical lens having a magneto-optical material that can change the refractive index in the material by applying a magnetic field may be used as the variable focus lens. Even with such a magneto-optical lens, the various benefits described above can be suitably enjoyed.
  • a liquid lens 102d that changes the focal position by changing the shape of the interface formed by two kinds of liquids having different refractive indexes without being mixed with each other is provided.
  • the variable focus lens 102 may be used.
  • the liquid lens 102d includes a translucent flat plate-like upper member 251, a hydrophilic conductive liquid 252, and a small hydrophobic insulating liquid force.
  • the conductive liquid 252 and the insulating liquid constituting the droplet 253 have different refractive indexes without being mixed with each other.
  • FIG. 15 is a cross-sectional view schematically showing the configuration of the optical pickup according to the modification.
  • the optical pickup 110 is similar to the optical pickup 100 described above.
  • the laser diode 101 that irradiates the laser beam LB and the focal position of the transmitted laser beam LB are electrically Variable focus lens 102, beam splitter 103, condensing lens (collimator lens) 104, liquid crystal element 105 for correcting spherical aberration of laser beam LB, 1/4 wavelength plate 106, laser beam LB
  • An objective lens 107 that focuses on the recording surface of the optical disk 10 and a photodetector 108 that receives the reflected light of the laser beam LB are provided.
  • the optical pickup 110 according to the modification further includes a coma aberration correcting element 109.
  • a coma aberration correcting element 109 that can suitably correct the coma that may occur for light of a finite system.
  • an astigmatism correcting element for correcting astigmatism may be provided in the same manner as the coma aberration correcting element 109.
  • an aberration correction element that corrects various aberrations other than the above-described spherical aberration, coma aberration, and astigmatism may be provided in the same manner as the coma aberration correction element 109.
  • the information device according to the present invention can be used, for example, for an information device that emits light when information recording or information reproduction is performed on an information recording medium such as a DVD.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Head (AREA)

Abstract

 情報機器(300)は、一又は複数の記録層を備える記録媒体(10)に向けて光(LB)を照射する光源(101)と、光源から照射される光を記録媒体に集光する対物レンズ(107)と、光源と対物レンズとの間の光路上に配置され、且つ光源から照射される光に対して焦点位置を変化させる焦点可変レンズ(102)とを備える光ピックアップ(100)と、記録媒体の基板厚のばらつき、光の波長及び対物レンズの開口数の少なくとも1つに基づいて、焦点位置を変化させるように焦点可変レンズを制御する制御手段(354)とを備える。

Description

明 細 書
情報機器
技術分野
[0001] 本発明は、例えば DVD等の情報記録媒体に対して情報記録又は情報再生を行う DVDレコーダや DVDプレーヤ等の情報機器の技術分野に関する。
背景技術
[0002] 例えば CDや DVD等のように、レーザ光等を用いて光学的にデータの記録や再生 を行う記録媒体が開発されている。このような記録媒体は様々な基板厚を有しており 、例えば CDであれば 1. 2mmの基板厚を、例えば DVDや HD DVDであれば 0. 6 mmの基板厚を、例えば Blu— ray Discであれば 0. 1mmの基板厚を有している。 カロえて、複数の記録層を備える記録媒体も開発されている。
[0003] このような基板厚の異なる記録媒体或いは複数の記録層を備える記録媒体にデー タを記録するためには、夫々の基板厚に応じてレーザ光を記録面に集光させる必要 がある。このための一の手法として、例えば基板厚に応じた複数の対物レンズを備え る光ピックアップを用いて、基板厚に応じてレーザ光を記録面に集光させる手法が開 発されている。また他の手法として、レーザ光の光路中におけるコリメータレンズ (集 光レンズ)の位置を変化させることで、基板厚に応じてレーザ光を記録面に集光させ る手法が開発されている。即ち、光学的な倍率を変換することで、基板厚に応じてレ 一ザ光を記録面に集光させる手法が開発されている。(非特許文献 1参照)。
[0004] 非特許文献 1:「次世代光ディスク 大統一へ」 日経エレクトロニクス 2004年 9月 27 日 P112- 113
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、上述した手法であっても、基板厚の異なる記録媒体或いは複数の記 録層を備える記録媒体に好適にデータを記録することが困難であるという技術的な 問題点を有している。つまり、ローデイングされる記録媒体の種類によっては、必ずし も好適にデータを記録することができな 、と 、う技術的な問題点を有して 、る。 [0006] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば記録 媒体にレーザ光等を好適に照射することを可能とならしめる情報機器を提供すること を課題とする。
課題を解決するための手段
[0007] (情報機器)
本発明の光ピックアップは上記課題を解決するために、一又は複数の記録層を備 える記録媒体に向けて光を照射する光源と、前記光源から照射される光を前記記録 媒体に集光する対物レンズと、前記光源と前記対物レンズとの間の前記光路上に配 置され、且つ前記光源力 照射される光に対して焦点位置を変化させる焦点可変レ ンズとを備える光ピックアップと、前記記録媒体の基板厚のばらつき、前記光の波長 及び前記対物レンズの開口数の少なくとも 1つに基づいて、前記記録媒体に集光さ れる前記光の収差の収差量を算出する算出手段と、前記算出された収差量に応じて 、前記焦点位置を変化させるように前記焦点可変レンズを制御する制御手段とを備 える。
[0008] 本発明の情報機器によれば、光源から照射された光は、対物レンズにより記録媒体 上に集光される。記録媒体上に集光された光は、記録媒体上にピットないしはマーク を形成する。これにより、記録媒体に対して所定の情報を記録することができる。
[0009] 本発明では特に、光源力も照射された光は、対物レンズを透過する前に、焦点可 変レンズを透過する。焦点可変レンズは、例えば電気的作用によりないしは磁気的 作用により、その屈折率分布を変化させ、焦点位置を変化させることができる。例え ば、焦点可変レンズに電圧を印加していない場合には、該焦点可変レンズは、単な る透明基板と同様に機能し、他方、焦点可変レンズに所定の電圧を印加している場 合には、該焦点可変レンズは、焦点位置を変化させるレンズとして機能する。この場 合、印加する電圧の大きさに応じて、焦点位置が決定される。或いは、焦点可変レン ズに電圧を印加していない場合には、該焦点可変レンズは、一の焦点位置に光を集 光させるように機能し、他方、焦点可変レンズに所定の電圧を印加している場合には 、該焦点可変レンズは、一の焦点位置とは異なる他の焦点位置に光を集光させるよう に機能する。焦点可変レンズに所定の電圧を印加している場合には、該焦点可変レ ンズは、印加される電圧に応じた他の焦点位置に光を集光させるように機能する。こ のように焦点位置を変化させることで、対物レンズに入射する光の態様 (具体的には 、光の光束ないしは広がり角度等)を適宜変化させることができる。
[0010] これにより、例えば基板厚の異なる(つまり、基板厚にばらつきがある、或いは一又 は複数の記録層を考慮すれば基板厚にばらつきがある)複数の記録媒体の夫々の 記録面に好適に光を集光することができる。言い換えれば、記録媒体の基板厚に応 じて焦点可変レンズの焦点距離を変化させれば、記録媒体がどのような基板厚を有 していても、光源から照射される光を記録媒体の記録面上に好適に集光することが できる。これにより、基板厚の異なる複数の記録媒体の夫々に対して好適に情報を記 録或いは再生することができる。
[0011] また、複数の記録層を備える記録媒体の基板厚と単一の記録層を備える記録媒体 の基板厚とは一般的に異なることが多い。従って、上述の如く記録媒体の基板厚に 応じて焦点可変レンズの焦点距離を変化させれば、複数の記録層を備える記録媒 体に対して好適に情報を記録或いは再生することができる。
[0012] 更には、例えば照射される光の波長が夫々異なる複数の記録媒体の夫々の記録 面に好適に光を集光することができる。言い換えれば、照射される光の波長に応じて 焦点可変レンズの焦点距離を変化させれば、記録媒体が複数の記録層を有して 、 ても、光源力も照射される光を記録媒体の記録面上に好適に集光することができる。 これにより、照射される光の波長が夫々異なる複数の記録媒体の夫々に対して好適 に情報を記録或 ヽは再生することができる。
[0013] 更には、例えば光ピックアップが備える対物レンズの開口数が、記録媒体の規格に 準拠した所定の開口数と異なっている場合であっても、記録媒体の記録面に好適に 光を集光することができる。言い換えれば、対物レンズの開口数に応じて焦点可変レ ンズの焦点距離を変化させれば、例えば光ピックアップが備える対物レンズの開口数 力 記録媒体の規格に準拠した所定の開口数と異なっている場合であっても、光源 力 照射される光を記録媒体の記録面上に好適に集光することができる。言い換え れば、焦点可変レンズの焦点距離を変えることで、対物レンズの開口数を実質的に 変化させることができる。これにより、例えば光ピックアップが備える対物レンズの開口 数力 記録媒体の規格に準拠した所定の開口数と異なっている場合であっても、記 録媒体に対して好適に情報を記録或いは再生することができる。
[0014] まとめると、本発明による情報機器によれば、一又は複数の記録層を備え且つ種類 が異なる複数の記録媒体の夫々に対して、好適に情報を記録したり或いは再生した りすることがでさる。
[0015] 特に、本発明に係る情報機器が備える光ピックアップは例えばモーター等の機械 的駆動装置を備える必要がな 、ため、光ピックアップの小型化や薄型化を図ることが できる。また、機械的駆動装置を備える必要がないがゆえに、光ピックアップの消費 電力を抑えることができるという利点も有している。加えて、記録媒体の基板厚等に応 じて、記録面上に光が好適に集光するように焦点可変レンズの焦点距離を変化させ ることができるため、対物レンズを複数備える必要がなくなると共に、 NA制御素子を その構成力も省くこともできる。この点からも、光ピックアップの小型化や薄型化を図る ことができる。
[0016] 本発明の情報機器の一の態様は、前記記録媒体の基板厚のばらつき、前記光の 波長及び前記対物レンズの開口数の少なくとも 1つに基づいて、前記記録媒体に集 光される前記光の収差の収差量を算出する算出手段を更に備え、前記制御手段は 、前記算出された収差量に応じて、前記焦点位置を変化させるように前記焦点可変 レンズを制御する。
[0017] この態様によれば、算出手段の動作により、記録媒体に集光される光の収差量が 算出される。収差量は、例えば記録媒体の基板厚のばらつき、前記光の波長、前記 対物レンズの開口数に基づいて算出される。その後、制御手段の動作により、算出さ れた収差量に応じて焦点位置を変化させるように焦点可変レンズが制御される。具 体的には、算出された収差量を打ち消すように、焦点位置を変化させる。これにより、 一又は複数の記録層を備え且つ種類が異なる複数の記録媒体の夫々に対して、好 適に情報を記録したり或いは再生したりすることができる。
[0018] 上述の如く算出手段を備える情報機器の態様では、前記記録媒体の基板厚のば らつき、前記光の波長及び前記対物レンズの開口数の少なくとも 1つと前記収差量と の相関関係を示す相関情報を格納する格納手段を更に備え、前記算出手段は、相 関情報に基づいて、前記収差量を算出するように構成してもよい。
[0019] このように構成すれば、比較的容易に収差量を算出することができる。
[0020] 本発明の情報機器の他の態様は、前記焦点可変レンズは、液晶レンズを含み、前 記制御手段は、前記液晶レンズに印加される電圧を調整することで、前記焦点位置 を変化させるように前記焦点可変レンズを制御する。
[0021] この態様によれば、比較的容易に焦点可変レンズを構成することができる。この場 合、収差量と印加される電圧との対応関係を示す情報を、例えば上述の格納手段に 格納しておくことが好ましい。
[0022] 上述の如く焦点可変レンズが液晶レンズを含む情報機器の態様では、前記液晶レ ンズは、同心円状に分布する複数の第 1分割電極及び複数の第 2分割電極と、前記 複数の第 1分割電極と前記複数の第 2分割電極との間に挟まれる液晶素子とを備え ており、前記制御手段は、複数の第 1分割電極の夫々又は前記複数の第 2分割電極 の夫々に印加される電圧を調整することで、前記焦点位置を変化させるように前記焦 点可変レンズを制御するように構成してもよ 、。
[0023] このように構成すれば、比較的容易に且つ的確に焦点距離を変化させることができ る。
[0024] 本発明の情報機器の他の態様は、前記光源と前記対物レンズとの間の前記光路 上に配置され、前記光源から照射される光を透過し且つ前記記録媒体からの前記反 射光の光路を変化させるビームスプリッタを更に備え、前記焦点可変レンズは、前記 光源と前記ビームスプリッタとの間の前記光路上に配置される。
[0025] この態様によれば、光源力 照射された光は、ビームスプリッタを透過して記録媒体 の記録面に集光される。他方、記録媒体の記録面 (より具体的には、例えば記録媒 体内部に形成される反射膜等)において反射された光は、ビームスプリッタにおいて その光路が変えられ、例えば光検出器に入射する。これにより、記録媒体上に記録さ れた情報を読み取ることができる。
[0026] この態様では特に、焦点可変レンズは、ビームスプリッタと光源との間に配置される 。これにより、記録媒体の記録面において反射された光は、焦点可変レンズを透過す ることなく光検出器に入射する。従って、記録媒体の記録面において反射された光 に対して、焦点可変レンズにより施される例えば球面収差補正が重複して施されるこ とがない。このため、光検出器上において生じ得る、例えば球面収差補正の重複適 用による悪影響を排除することができる。
[0027] 本発明の情報機器の他の態様は、前記焦点可変レンズは、屈折率の異なる複数 種類の液体を含んで形成される界面の形状を変化させる液体レンズを含む。
[0028] この態様によれば、液体レンズを焦点可変レンズとして用いることで、比較的容易に 本発明に係る光ピックアップ (即ち、機械的駆動装置を用いることなく焦点位置を変 化させることができる焦点可変レンズを備える光ピックアップ)を構成することができる
[0029] 本発明の情報機器の他の態様は、前記焦点可変レンズは、電気光学効果を有す る素子を含む。
[0030] この態様によれば、電気光学効果を有する素子を焦点可変レンズとして用いること で、比較的容易に本発明に係る光ピックアップ (即ち、機械的駆動装置を用いること なく焦点位置を変化させることができる焦点可変レンズを備える光ピックアップ)を構 成することができる。
[0031] 本発明の情報機器の他の態様は、前記焦点可変レンズは、磁気光学効果を有す る素子を含む。
[0032] この態様によれば、磁気光学効果を有する素子を焦点可変レンズとして用いること で、比較的容易に本発明に係る光ピックアップ (即ち、機械的駆動装置を用いること なく焦点位置を変化させることができる焦点可変レンズを備える光ピックアップ)を構 成することができる。
[0033] 本発明の情報機器の他の態様は、前記焦点可変レンズは、前記焦点位置を変化 させることで、前記光を有限系及び無限系の少なくとも一方にて対物レンズに入射さ せる。
[0034] この態様によれば、焦点位置を変化させることで、無限系の光を対物レンズに入射 させたり、有限系の光を対物レンズに入射させることができる。従って、記録媒体の基 板厚等に応じて何れの系の光を入射させるかを決定し、その決定に応じて焦点位置 を変化させれば、一又は複数の記録層を備え且つ種類が異なる複数の記録媒体の 夫々の記録面に好適に光を集光することができる。
[0035] この態様では、前記光が有限系で前記対物レンズに入射する場合、前記光の入射 側における前記対物レンズの開口数は、 0. 053力ら 0. 063のいずれかであるように 構成してちょい。
[0036] このように構成すれば、後に詳述するように、例えば焦点可変レンズが存在しなけ れば、基板厚が 0. 1mmである記録媒体に光を集光することができる光ピックアップ において、焦点位置を変化させることで、基板厚が 0. 6mmである記録媒体にも好適 に光を集光することができる。
[0037] 本発明の情報機器の他の態様は、前記記録媒体は、第 1の基板厚及び第 2の基板 厚の少なくとも一方を有する。
[0038] この態様によれば、異なる 2種類の基板厚等に応じて焦点位置を変化させることで 、該 2種類の基板厚を有する 2種類の記録媒体の夫々に、好適に光を集光すること ができる。
[0039] 尚、基板厚が異なる場合には、光の波長や対物レンズの開口数等も異なることが多 い。従って、記録媒体が第 1の基板厚及び第 2の基板厚の少なくとも一方を有する場 合には、上述したように第 1の基板厚を有する記録媒体に対応する波長及び開口数 、並びに第 2の基板厚を有する記録媒体に対応する波長及び開口数を考慮して焦 点位置を変化させることが好まし 、。
[0040] 上述の如く記録媒体が第 1の基板厚及び第 2の基板厚の少なくとも一方を有する情 報機器の態様では、前記光の出射側における前記対物レンズは、前記第 1の基板厚 を有する前記記録媒体に前記光を集光可能な第 1の開口数を有するように構成して ちょい。
[0041] このように構成すれば、焦点可変レンズの有無によらず (或いは、焦点可変レンズ が透明基板として作用していれば)、第 1の基板厚を有する記録媒体に好適に光を 集光することができる。
[0042] 上述の如く記録媒体が第 1の基板厚及び第 2の基板厚の少なくとも一方を有する情 報機器の態様では、前記焦点可変レンズは、前記光の出射側における前記対物レ ンズが、前記第 2の基板厚を有する前記記録媒体に前記光を集光可能な第 2の開口 数を有するように前記焦点位置を変化させるように構成してもよ 、。
[0043] このように構成すれば、第 1の基板厚を有する記録媒体に好適に光を集光すること ができるよう設計された光ピックアップにおいて、焦点可変レンズの焦点位置を変化 させれば (或いは、焦点可変レンズを所定のレンズとして作用させれば)、第 2の基板 厚を有する記録媒体に好適に光を集光することができる
上述の如く記録媒体が第 1の基板厚及び第 2の基板厚の少なくとも一方を有する情 報機器の態様では、前記第 1の基板厚は 0. 1mmであり、前記第 2の基板厚は 0. 6 mmであるように構成してもよ!/、。
[0044] このように構成すれば、基板厚が 0. lmmである例えば Blu— ray Disc等の記録 媒体、並びに基板厚が 0. 6mmである例えば HD DVDや DVD等の記録媒体の夫 々に好適に光を集光することができる。
[0045] 上述の如く第 1の基板厚が 0. lmmであり、第 2の基板厚が 0. 6mmである情報機 器の態様では、前記光の出射側における前記対物レンズの開口数は 0. 85であるよ うに構成してもよい。
[0046] このように構成すれば、焦点可変レンズの有無によらず或いは、焦点可変レンズが 透明基板として作用していれば)、基板厚が 0. lmmである例えば Blu— ray Disc 等の記録媒体に、好適に光を集光することができる。
[0047] 上述の如く第 1の基板厚が 0. lmmであり、第 2の基板厚が 0. 6mmである情報機 器の態様では、前記焦点可変レンズは、前記光の出射側における前記対物レンズの 開口数が略 0. 65となるように前記焦点位置を変化させるように構成してもよい。
[0048] このように構成すれば、基板厚が 0. lmmである例えば Blu— ray Disc等の記録 媒体に好適に光を集光することができるよう設計された光ピックアップにぉ 、て、焦点 可変レンズの焦点位置を変化させれば (或いは、焦点可変レンズを所定のレンズとし て作用させれば)、基板厚が 0. 6mmである例えば HD DVDや DVD等の記録媒 体に好適に光を集光することができる。
[0049] 本発明の情報機器の他の態様では、前記光源と前記焦点可変レンズとの間の前 記光路上に配置され、前記制御手段による前記焦点位置の変更の後に、前記記録 媒体上に集光される前記光の収差を、当該収差を測定しながら (具体的には、サー ボ制御を施しながら)補正する収差補正素子を更に備える。
[0050] この態様によれば、光の収差を好適に補正することができるため、より好適に記録 媒体に光を集光することができる。
[0051] 上述の如く収差補正素子を備える情報機器の態様では、前記収差補正素子は、前 記収差として、球面収差、コマ収差及び非点収差の少なくとも一つを補正するよう〖こ 構成してちょい。
[0052] このように構成すれば、球面収差、コマ収差及び非点収差の夫々或 、はそれらが 複合的に組み合わされた収差を好適に補正することができる。
[0053] 本発明のこのような作用及び他の利得は次に説明する実施例から更に明らかにさ れる。
[0054] 以上説明したように、本発明の光ピックアップによれば、光源、対物レンズ及び焦点 位置を変化させることができる焦点可変レンズを備える。従って、基板厚の異なる記 録媒体にレーザ光等を好適に照射することができる。
図面の簡単な説明
[0055] [図 1]本実施例に係る情報記録再生装置のブロック図である。
[図 2]本実施例に係る光ピックアップの構成を概略的に示す断面図である。
[図 3]本実施例に係る光ピックアップにおけるレーザ光の光路 (より具体的には、レー ザ光の光束)の一の具体例を示す断面図である。
[図 4]本実施例に係る光ピックアップにおけるレーザ光の光路 (より具体的には、レー ザ光の光束)の他の具体例を示す断面図である。
[図 5]—の比較例に係る光ピックアップの構成を概略的に示す断面図である。
[図 6]他の比較例に係る光ピックアップの構成を概略的に示す断面図である。
[図 7]情報記録再生装置にローデイングされる複数種類の光ディスクに対応する開口 数、基板厚及びレーザ光の波長を示す表である。
[図 8]基板厚のばらつき (横軸)と収差量 (縦軸)との相関関係を示すグラフである。
[図 9]焦点可変レンズの具体的な構成を示す断面図及び平面図である。
[図 10]焦点可変レンズにおいて実現されるべき屈折率分布と、該屈折率分布を実現 するために焦点可変レンズに印加される電圧とを、焦点可変レンズが備える透明電 極に対応付けて示すグラフである。
[図 11]本実施例に係る光ピックアップに用いられる焦点可変レンズの他の具体的な 構成を概略的に示す平面図、断面図ないしは斜視図である。
[図 12]本実施例に係る光ピックアップに用いられる焦点可変レンズの他の具体的な 構成を概略的に示す平面図、断面図ないしは斜視図である。
[図 13]本実施例に係る光ピックアップに用いられる焦点可変レンズの他の具体的な 構成を概略的に示す平面図、断面図ないしは斜視図である。
[図 14]本実施例に係る光ピックアップに用いられる焦点可変レンズの他の具体的な 構成を概略的に示す平面図、断面図ないしは斜視図である。
[図 15]変形例に係る光ピックアップの構成を概略的に示す断面図である。
符号の説明
[0056] 10 光ディスク
100 光ピックアップ
101 レーザダイオード
102 焦点可変レンズ
103 ビームスプリッタ
107 対物レンズ
300 情報記録再生装置
354 CPU
354a 収差量算出部
354b 印加電圧制御部
発明を実施するための最良の形態
[0057] 以下、本発明を実施するための最良の形態について実施例毎に順に図面に基づ いて説明する。
[0058] (情報機器の実施例)
初めに、図 1を参照して、本発明の情報機器の実施例としての情報記録再生装置 ( 即ち、本発明における情報機器の実施例)について簡単に説明する。ここに、図 1は
、本実施例に係る情報記録再生装置 300のブロック図である。尚、情報記録再生装 置 300は、光ディスク 10にデータを記録する機能と、光ディスク 10に記録されたデー タを再生する機能とを備える。
[0059] 図 1に示すように、情報記録再生装置 300は、実際に光ディスク 10がローデイング され且つデータの記録やデータの再生が行なわれるディスクドライブ 301と、該デイス クドライブ 301に対するデータの記録及び再生を制御するパーソナルコンピュータ等 のホストコンピュータ 302とを備えて!/、る。
[0060] ディスクドライブ 301は、光ディスク 10、スピンドノレモータ 311、光ピックアップ 100、 信号記録再生手段 313、 CPU (ドライブ制御手段) 314、メモリ 315、データ入出力 制御手段 316、及びバス 317を備えて構成されている。また、ホストコンピュータ 302 は、データ入出力制御手段 318、 CPU319、メモリ 320、ノ ス 321、操作 Z表示制御 手段 322、操作ボタン 323及び表示パネル 324を備えて構成される。
[0061] スピンドルモータ 311は光ディスク 10を回転及び停止させるもので、光ディスク 10 へのアクセス時に動作する。より詳細には、スピンドルモータ 311は、図示しないサー ボユニット等によりスピンドルサーボを受けつつ所定速度で光ディスク 10を回転及び 停止させるように構成されて 、る。
[0062] 信号記録再生手段 313は、スピンドルモータ 311と光ピックアップ 100を制御するこ とで光ディスク 10に対してデータの記録及び再生を行う。より具体的には、信号記録 再生手段 313は、例えば、レーザダイオードドライバ (LDドライバ)及びヘッドアンプ 等によって構成されている。レーザダイオードドライバは、光ピックアップ 100内に設 けられたレーザダイオード 101を駆動する。ヘッドアンプは、光ピックアップ 100の出 力信号、即ち、光ビームの反射光を増幅し、該増幅した信号を出力する。
[0063] メモリ 315は、データのバッファ領域や、信号記録再生手段 313で使用出来るデー タに変換する時の中間ノ ッファとして使用される領域などディスクドライブ 301におけ るデータ処理全般において使用される。また、メモリ 315はこれらレコーダ機器として の動作を行うためのプログラム、即ちファームウェアが格納される ROM領域と、記録 再生データの一時格納用バッファや、ファームウェアプログラム等の動作に必要な変 数が格納される RAM領域などカゝら構成される。
[0064] CPU (ドライブ制御手段) 314は、信号記録再生手段 313及びメモリ 315と、バス 3 17を介して接続され、各種制御手段に指示を行うことで、ディスクドライブ 301全体の 制御を行う。通常、 CPU314が動作するためのソフトウェア又はファームウェアは、メ モリ 315に格糸内されている。
[0065] データ入出力制御手段 316は、ディスクドライブ 301に対する外部からのデータ入 出力を制御し、メモリ 315上のデータバッファへの格納及び取り出しを行う。情報記録 装置 300と SCSIや、 ATAPIなどのインタフェースを介して接続されて!、る外部のホ ストコンピュータ 302から発行されるドライブ制御命令は、データ入出力制御手段 31 6を介して CPU314に伝達される。また、データも同様にデータ入出力制御手段 31 6を介して、ホストコンピュータ 302とやり取りされる。
[0066] 操作 Z表示制御手段 322はホストコンピュータ 302に対する動作指示受付と表示 を行うもので、例えば記録や再生といった操作ボタン 323による指示を CPU319に 伝える。 CPU319は、操作 Z表示制御手段 322からの指示情報を元に、データ入出 力手段 318を介して、情報記録再生装置 300に対して制御命令 (コマンド)を送信し 、ディスクドライブ 301全体を制御する。同様に、 CPU319は、ディスクドライブ 301に 対して、動作状態をホストに送信するように要求するコマンドを送信することができる。 これにより、記録中といったディスクドライブ 301の動作状態が把握できるため CPU3 19は、操作/表示制御手段 322を介して蛍光管や LCDなどの表示パネル 324にデ イスクドライブ 301の動作状態を出力することができる。
[0067] メモリ 320は、ホストコンピュータ 302が使用する内部記憶装置であり、例えば BIO S (Basic Input/Output System)等のファームウェアプログラムが格納される ROM領 域、オペレーティングシステムや、アプリケーションプログラム等の動作に必要な変数 等が格納される RAM領域など力も構成される。また、データ入出力制御手段 318を 介して、図示しな!、ノヽードディスク等の外部記憶装置に接続されて 、てもよ 、。
[0068] 以上説明した、ディスクドライブ 301とホストコンピュータ 302を組み合わせて使用す る一具体例は、映像を記録するレコーダ機器等の家庭用機器である。このレコーダ 機器は放送受信チューナや外部接続端子力 の映像信号をディスクに記録する機 器である。メモリ 320に格納されたプログラムを CPU319で実行させることでレコーダ 機器としての動作を行っている。また、別の具体例では、ディスクドライブ 301はディ スクドライブ(以下、適宜ドライブと称す)であり、ホストコンピュータ 302はパーソナル コンピュータやワークステーションである。ノ ーソナノレコンピュータ等のホストコンビュ ータとドライブは SCSIや ATAPIといったデータ入出力制御手段 316及び 318を介 して接続されており、ホストコンピュータ 302にインストールされているリーディングソフ トウエア等のアプリケーション力 ディスクドライブ 301を制御する。
[0069] (光ピックアップの実施例)
図 2から図 6を参照して、本実施例に係る情報記録再生装置 300が備える光ピック アップ 100について説明する。ここに、図 2は、本実施例に係る光ピックアップの構成 を概略的に示す断面図であり、図 3は、本実施例に係る光ピックアップにおけるレー ザ光の光路 (より具体的には、レーザ光の光束)の一の具体例を示す断面図であり、 図 4は、本実施例に係る光ピックアップにおけるレーザ光の光路 (より具体的には、レ 一ザ光の光束)の他の具体例を示す断面図であり、図 5及び図 6は夫々、比較例に 係る光ピックアップの構成を概略的に示す断面図である。
[0070] 図 2に示すように、本実施例に係る光ピックアップ 100は、レーザ光 LBを照射する レーザダイオード 101、透過するレーザ光 LBの焦点位置を電気的作用な 、しは磁 気的作用により変化させる焦点可変レンズ 102、ビームスプリッタ 103、集光レンズ( コリメータレンズ) 104、レーザ光 LBの球面収差を補正する液晶素子 105、 1/4波長 板 106、レーザ光 LBを光ディスク 10の記録面に集光する対物レンズ 107及びレー ザ光 LBの反射光を受光するフォトディテクタ 108を備える。
[0071] 力!]えて、本実施例に係る情報記録再生装置 300が備える CPU354は、収差量算 出部 354aと、印加電圧制御部 354bとを備える。
[0072] レーザダイオード 101から射出されたレーザ光 LBは、焦点可変レンズ 102、ビーム スプリッタ 103、集光レンズ 104、液晶素子 105、 1Z4波長板 106及び対物レンズ 1 07を透過して、光ディスク 10の記録面に照射される。記録面に照射されたレーザ光 LBは、記録面上にピットないしはマークを形成する。これにより、光ディスク 10にデー タが記録される。
[0073] 一方、光ディスク 10の記録面において反射されたレーザ光 LBは、対物レンズ 107 、 1Z4波長板 106、液晶素子 105及び集光レンズ 104を透過し、ビームスプリッタ 10 3において反射され、フォトディテクタ 108に集光される。フォトディテクタ 108上に照 射された光は、電気信号に光変換され、その電気信号から再生信号や各種サーボ エラー信号等が生成される。これにより、光ディスク 10上に記録されたデータが再生 され、或 、は記録動作な 、しは再生動作を管理な 、しは制御するための各種管理 情報や制御情報等が読み取られる。
[0074] 本実施例では特に、焦点可変レンズ 102の焦点位置 (言 、換えれば、焦点距離或 いはレンズ内の屈折率分布)を適宜変化させることができる。言い換えれば、焦点可 変レンズ 102の倍率を適宜変化させることができる。より具体的には、後に図 5から図 8を参照しながらより詳細に説明するが、収差量算出部 354aの動作により、光デイス ク 10の一又は複数の記録層を考慮した基板厚のばらつき、レーザ光 LBの波長及び 対物レンズ 107の開口数に基づいて、光ディスク 10に集光されるレーザ光 LBに生ず る収差の量 (以降、 "収差量"と称する)が算出される。その後、印加電圧制御部 354 bの動作により、算出された収差量に基づいて、焦点可変レンズ 102に印加される電 圧が設定される。より具体的には、算出された収差量を打ち消すように焦点可変レン ズ 102に印加される電圧が設定される。該設定された電圧が焦点可変レンズ 102〖こ 印加される。その結果、印加される電圧に応じて、該焦点可変レンズ 102の焦点位置 を変ィ匕させることができる。
[0075] この焦点位置の変化の態様について、図 3及び図 4を参照しながらより詳細に説明 する。
[0076] 図 3 (a)に示すように、焦点可変レンズ 102に A[V]の電圧が印加されている場合 には、焦点可変レンズ 102は例えば透明なガラス基板として作用する。即ち、焦点可 変レンズ 102は、レーザ光 LBに対してレンズとして作用することはなぐレーザ光 LB をそのまま透過する。従って、レーザ光 LBは、その伝搬の態様 (即ち、レーザ光 LB の広がり角度ないしは光束)を変化させることなぐ対物レンズ 107に入射する。この とき、レーザ光 LBは、集光レンズ 104において略平行光 (即ち、無限系の光)に変換 された後に対物レンズ 107に入射する。その後、無限系に変換されたレーザ光 LBは 、対物レンズ 107〖こより、基板厚が 0. 1mmの光ディスク 10a (具体的には、例えば B1 u-ray Disc)の記録面上に集光される。つまり、ここで説明している光ピックアップ 100の固定的な光学系(具体的には、可変焦点レンズ 102を除いた他の構成要素) は、基板厚が 0. 1mmの光ディスク 10aの記録面にレーザ光 LBを集光するように設 計されている。例えば、対物レンズの NA (より具体的には、レーザ光 LBの出射側の NA)は" 0. 85"に設定されて ヽる。
[0077] 他方、図 3 (b)に示すように、焦点可変レンズ 102に B[V]の電圧が印加されている 場合には、焦点可変レンズ 102は、レーザ光 LBに対して例えば印加される電圧に応 じた屈折率分布を有する凸レンズとして作用する。従って、レーザ光 LBは、焦点可 変レンズ 102の先であって且つ焦点可変レンズ 102の焦点位置に応じた位置で一 度収束した後に、再度発散しながら (即ち、広がりながら)対物レンズ 107に入射する 。このとき、レーザ光 LBの集光レンズ 104への入射の態様が図 3 (a)に示す例と異な るため、レーザ光 LBは、集光レンズ 104において無限系の光に変換されない。従つ て、レーザ光 LBは、有限系の光のままで対物レンズ 107に入射する。ここで、対物レ ンズ 107へ入射するレーザ光 LBの態様が図 3 (a)に示すレーザ光 LBの入射の態様 と異なるため、レーザ光 LBは、基板厚が 0. 6mmの光ディスク 10b (具体的には、例 えば HD DVDや DVD等)の記録面上に集光される。言い換えれば、基板厚が 0. 6mmの光ディスク 10bの記録面上にレーザ光 LBが集光されるように、焦点可変レン ズの焦点位置が決定される。そして、その焦点位置を実現するように、焦点可変レン ズ 102に対して所定の電圧が印加される。
[0078] このときの対物レンズ 107の出射側の NAは当然の如ぐ' 0. 85"のままであるが、対 物レンズ 107に入射するレーザ光 LBの態様が変化することで、実質的には" 0. 65" となる。これを実現するためには、対物レンズ 107の入射側の NAが" 0. 053"力 " 0 . 063"の何れかの範囲に収まっていることが好ましい。ここで、対物レンズ 107の入 射側の NAは、可変焦点レンズ 102の焦点位置や集光レンズ 104の焦点位置等に 基づいて定まる。従って、対物レンズ 107の入射側の NAが" 0. 053 "力 " 0. 063" の何れかの範囲に収まるように、焦点可変レンズ 102の焦点位置等が決定される。そ して、その焦点位置を実現するように、焦点可変レンズ 102に対して所定の電圧が印 加される。
[0079] 他方、図 4 (a)に示すように、焦点可変レンズ 102に C[V]の電圧が印加されている 場合には、焦点可変レンズ 102は、レーザ光 LBに対して例えば印加される電圧に応 じた屈折率分布を有する凸レンズとして作用する。従って、レーザ光 LBは、例えば焦 点可変レンズ 102の先であって且つ焦点可変レンズ 102の焦点位置に応じた位置 で一度収束した後に、再度発散しながら (即ち、広がりながら)対物レンズ 107に入射 する。このとき、レーザ光 LBの集光レンズ 104への入射の態様が図 3 (a)に示す例と 異なるため、レーザ光 LBは、集光レンズ 104において無限系の光に変換されない。 従って、レーザ光 LBは、有限系の光のままで対物レンズ 107に入射する。ここで、対 物レンズ 107へ入射するレーザ光 LBの態様が図 3 (a)に示すレーザ光 LBの入射の 態様と異なるため、レーザ光 LBは、基板厚が 1. 2mmの光ディスク 10c (具体的には 、例えば CD等)の記録面上に集光される。言い換えれば、基板厚が 1. 2mmの光デ イスク 10cの記録面上にレーザ光 LBが集光されるように、焦点可変レンズの焦点位 置が決定される。そして、その焦点位置を実現するように、焦点可変レンズ 102に対 して所定の電圧が印加される。
[0080] 他方、図 4 (b)に示すように、焦点可変レンズ 102に D[V]の電圧が印加されている 場合には、焦点可変レンズ 102は、レーザ光 LBに対して例えば印加される電圧に応 じた屈折率分布を有する凸レンズとして作用する。従って、レーザ光 LBは、例えば焦 点可変レンズ 102の先であって且つ焦点可変レンズ 102の焦点位置に応じた位置 で一度収束した後に、再度発散しながら (即ち、広がりながら)対物レンズ 107に入射 する。このとき、レーザ光 LBの集光レンズ 104への入射の態様が図 3 (a)に示す例と 異なるため、レーザ光 LBは、集光レンズ 104において無限系の光に変換されない。 従って、レーザ光 LBは、有限系の光のままで対物レンズ 107に入射する。ここで、対 物レンズ 107へ入射するレーザ光 LBの態様が図 3 (a)に示すレーザ光 LBの入射の 態様と異なるため、レーザ光 LBは、基板厚が 0. 075mmの光ディスク 10d (具体的 には、例えば 2つの記録層 L0及び L1を有する Blu—ray Disc等)の記録面上に集 光される。言い換えれば、基板厚が 1. 2mmの光ディスク 10dの記録面上にレーザ 光 LBが集光されるように、焦点可変レンズの焦点位置が決定される。そして、その焦 点位置を実現するように、焦点可変レンズ 102に対して所定の電圧が印加される。
[0081] このように、本実施例に係る情報記録再生装置 300によれば、焦点可変レンズ 102 の焦点位置を変化させることで、対物レンズ 107におけるレーザ光 LBの集光位置を 変化させることができる。従って、異なる基板厚を有する複数種類の光ディスク 10の 夫々の記録面に、好適にレーザ光 LBを集光させることができる。これにより、異なる 基板厚を有する複数種類の光ディスク 10の夫々に好適にデータを記録することがで きると共に、異なる基板厚を有すると共に一又は複数の記録層を備える複数種類の 光ディスク 10の夫々に記録されたデータを好適に再生することができる。
[0082] 力!]えて、後に詳述するように電気的作用を用いて又は磁気的作用を用いて、対物 レンズ 107におけるレーザ光 LBの集光位置を変化させることができる。このため、例 えば図 5の比較例に係る光ピックアップ 120に示すように、モーター 121等の機械的 駆動装置を用いて集光レンズ 104の位置を光軸方向に移動させることで、対物レン ズ 107におけるレーザ光 LBの集光位置を変化させる必要がない。或いは、図 6の比 較例に係る光ピックアップ 130に示すように、例えばモーター等の機械的駆動装置を 含む切替駆動装置 131の動作により複数の対物レンズ 107a及び 107bを切り替える ことで、対物レンズ 107におけるレーザ光 LBの集光位置を変化させる必要がない。 まとめると、本実施例に係る光ピックアップ 100は、相対的に大きなスペースを占有し 得る機械的駆動装置を用いることなぐ対物レンズ 107におけるレーザ光 LBの集光 位置を変化させることができる。従って、比較例に係る光ピックアップ 120及び 130と 比較して、光ピックアップ 100のサイズを小さくすることができる或 、は光ピックアップ 100の厚みを薄くすることができるという利点を有している。また、相対的に大きな電 力を必要とする機械的駆動装置を用いる必要がないため、焦点可変レンズ 102と比 較して、光ピックアップ 100の消費電力量を低減することができるという利点を有して いる。
[0083] 加えて、焦点可変レンズ 102は、レーザダイオード 101とビームスプリッタ 103との 間に配置されている。これにより、光ディスク 10の記録面において反射されたレーザ 光 LBは、焦点可変レンズ 102を透過することなくフォトディテクタ 108に集光される。 一方、図 5の比較例に係る光ピックアップ 120では、光ディスク 10の記録面において 反射されたレーザ光 LBは、再度集光レンズ 104を透過した後に、フォトディテクタ 10 8に集光される。これでは、本来レーザダイオード 101から照射されたレーザ光 LBの 光束を、光ディスク 10の基板厚に応じて広げるないしは狭めるための集光レンズ 104 が、光ディスク 10の記録面にお 、て反射されたレーザ光 LBの光束を重複的に広げ るないしは狭めることになる。これでは、フォトディテクタ 108上には、レーザ光 LBが ぼやけた状態で集光されることになり好ましくない。しかるに本実施例では、光デイス ク 10の記録面において反射されたレーザ光 LBは、レーザ光 LBの光束を広げるない しは狭めるための焦点可変レンズ 102を透過することなくフォトディテクタ 108に集光 される。従って、光ディスク 10の記録面において反射されたレーザ光 LBの光束が重 複的に広げられるないしは狭められる状態は生じない。従って、フォトディテクタ 108 上において、好適にレーザ光 LB 光することができる。
[0084] 更に、本実施例に係る情報記録再生装置 300は、焦点可変レンズ 102の焦点位置 を変化させることで、対物レンズ 107の出射側の NAを実質的に変化させることができ る。言い換えれば、レーザ光 LBを照射する光ディスク 10の種類に応じて、収差量を 打ち消すように焦点位置を変化させることで、対物レンズ 107の出射側の NAを実質 的に変化させることができる。つまり、収差量を打ち消す動作と、対物レンズ 107の出 射側の NAを変化させる動作とは、互いに密接に関連している動作或いは実質的に 同一の動作である。このため、本実施例に係る情報記録再生装置 300は、図 5の比 較例に係る光ピックアップ 120が必然的に備える NA制御素子 129を備える必要が 必ずしもない。これにより、光ピックアップ 100の構成を更に簡易なものとすることがで き、その結果、比較例に係る光ピックアップ 120及び 130と比較して、光ピックアップ 1 00のサイズを小さくすることができる。
[0085] 但し、異なる基板厚を有すると共に一又は複数の記録層を備える複数種類の光デ イスク 10の夫々の記録面に、好適にレーザ光 LBを集光させるという効果を享受する ためには、図 5及び図 6に示す構成を採用してもよい。
[0086] 尚、異なる基板厚を有すると共に一又は複数の記録層を備える複数種類の光ディ スク 10の夫々の記録面に、好適にレーザ光 LBを集光させるという観点からは、焦点 可変レンズ 102は、レーザダイオード 101と対物レンズ 107との間のレーザ光 LBの 光路上であれば、何れの位置に配置されてもよい。但し、上述の如くフォトディテクタ 108上において好適にレーザ光 LBを集光するという観点からは、焦点可変レンズ 10 2は、レーザダイオード 101とビームスプリッタ 103との間のレーザ光 LBの光路上に 配置されることが好ましい。
[0087] さらに、図 2の実施例では、レーザダイオード 101と集光レンズ 104の間にビームス プリッタ 103を配置した力 集光レンズ 104と対物レンズ 107の間に配置しても構わな い。
[0088] また、上述の実施例では、球面収差を補正するための液晶素子 105を光ピックアツ プ 100内に配置している力 該液晶素子 105は必ずしも備えていなくともよい。この 場合、液晶素子 105において補正されるはずであった球面収差は、焦点可変レンズ 102において補正されることが好ましい。但し、焦点可変レンズ 102の焦点距離を変 ィ匕させることで球面収差を確実に補正することができるとは限らない。従って、焦点可 変レンズ 102の焦点距離を変化させた後に、実際に球面収差の収差量を測定しなが ら、該測定された収差量を用いて液晶素子 105をフィードバック制御(或いは、サー ボ制御)することで、より高精度に球面収差を補正するように構成してもよ 、。
[0089] また、基板厚が異なると共に一又は複数の記録層を備える複数種類の光ディスク 1 0に対して記録ないしは再生を行う際には、場合によっては、レーザダイオード 101か ら照射するレーザ光 LBの波長を変える必要がある。この場合、レーザ光 LBの波長 の相違に応じて、レーザダイオード 101と対物レンズ 107との位置関係(具体的には 、双方の間の距離等)を変更することが好ましい。即ち、レーザ光 LBの波長や光ピッ クアップ 100内の各レンズの焦点位置等を考慮して、好適な位置関係を設定すること が好ましい。但し、上述したように、焦点可変レンズ 102の焦点距離を変化させる場 合に、レーザ光 LBの波長をも考慮して焦点可変レンズ 102に印加される電圧を設定 している。このため、必ずしもレーザダイオード 101と対物レンズ 107との位置関係を 変更しなくともよい。
[0090] また、上述の実施例では、光ディスク 10の基板厚は 0. 075mmと 0. 1mmと 0. 6m mと 1. 2mmを例に挙げて説明を進めたがこれに限定されないことは言うまでもない。 また、 3種類以上の基板厚を有する複数の光ディスクに対応するように光ピックアップ を構成してもよいことは言うまでもない。更には、 Blu— ray Disc以外の HD DVD や DVDや CD等の光ディスクも、 2つ以上の記録層を備えていてもよい。要は、レー ザ光 LBを照射する光ディスク 10の基板厚等に応じて、焦点可変レンズ 102の焦点 位置を好適に設定し、その結果、光ディスク 10の記録面にレーザ光 LBを集光するこ とができれば足りる。
[0091] (焦点可変レンズの具体例)
続いて、図 7から図 10を参照して、焦点可変レンズ 102の具体例及び焦点可変レ ンズ 102に印加される電圧の具体例について説明する。ここに、図 7は、情報記録再 生装置 300にローデイングされる複数種類の光ディスク 10に対応する開口数 NA、 基板厚及びレーザ光 LBの波長を示す表であり、図 8は、基板厚のばらつき (横軸)と 収差量 (縦軸)との相関関係を示すグラフであり、図 9は、焦点可変レンズ 102の具体 的な構成を示す断面図及び平面図であり、図 10は、焦点可変レンズ 102において 実現されるべき屈折率分布と、該屈折率分布を実現するために焦点可変レンズ 102 に印加される電圧とを、焦点可変レンズ 102が備える透明電極 212に対応付けて示 すグラフである。
[0092] 図 7に示すように、単一の記録層を備える Blu— ray Disc (具体的には、図 3 (a)に 示す光ディスク 10aであって、以降、 "BD"と称する)では、対応する対物レンズ 107 の開口数 NAが" 0. 85"であり、基板厚が 0. 1 ±0. 005mmであり、レーザ光 LBの 波長が 405nmとなる。
[0093] 同様に、 2つの記録層を備える Blu— ray Disc (具体的には、図 4 (b)に示す光デ イスク 10dであって、以降" BD— DL (Dual Layer) "と称する)では、対応する対物レン ズ 107の開口数 NAが" 0. 85"であり、基板厚(具体的には、光ディスク 10の表面か ら、光ピックアップ 100に近い側の記録層 L0までの距離)が 0. 075mmであり、レー ザ光 LBの波長が 405nmとなる。
[0094] 同様に、単一の記録層を備える DVD (具体的には、図 3 (b)に示す光ディスク 10b) では、対応する対物レンズ 107の開口数 NAが" 0. 60"であり、基板厚が 0. 6mmで あり、レーザ光 LBの波長が 650nmとなる。
[0095] 同様に、単一の記録層を備える HD DVD (具体的には、図 3 (b)に示す光ディスク 10b)では、対応する対物レンズ 107の開口数 NAが" 0. 65"であり、基板厚が 0. 6 mmであり、レーザ光 LBの波長が 405nmとなる。 [0096] 同様に、単一の記録層を備える CD (具体的には、図 4 (a)に示す光ディスク 10c) では、対応する対物レンズ 107の開口数 NAが" 0. 45"であり、基板厚が 1. 2mmで あり、レーザ光 LBの波長が 780nmとなる。
[0097] 図 7に示す対物レンズ 107の開口数、基板厚及びレーザ光 LBの波長に基づいて 収差量を算出すると、図 8 (a)及び図 8 (b)に示すグラフが得られる。尚、図 8 (a)及び 図 8 (b)に示すグラフにおいては、横軸のディスク厚み誤差 (即ち、基板厚のばらつき )は、単一の記録層を有する BDを基準としている。つまり、単一の記録層を有する B Dの基板厚 0. 1mmは、ディスク厚み誤差力 SOmmとなる。また、図 8 (b)に示すグラフ は、図 8 (a)に示すグラフのうち、ディスク厚み誤差が Ommから 0. 1mmとなる範囲を 抜き出して拡大したグラフである。
[0098] 図 8 (b)〖こ示すように、 BDの基板厚は、 0. 1mmに対して 0. 005mmのマージンを 有している。従って、 BDにおけるディスク厚み誤差が 0. 005mmであるとすれば、収 差量は、概ね 0. 05 rmsとなる。
[0099] 図 8 (b)に示すように、 BD— DLの基板厚は、 0. 075mmである。従って、 BD— D Lにおけるディスク厚み誤差は 0. 025mmであることから、収差量は、概ね 0. 75 1 r msとなる。
[0100] 図 8 (a)に示すように、 DVDの基板厚は、 0. 6mmである。従って、 BDの基板厚 0. lmmに対する誤差は 0. 5mmとなる。従って、 DVDにおけるディスク厚み誤差は 0.
5mmであることから、収差量は、概ね 0. 4 rmsとなる。
[0101] 図 8 (a)に示すように、 HD DVDの基板厚は、 0. 6mmである。従って、 BDの基板 厚 0. lmmに対する誤差は 0. 5mmとなる。従って、 HD DVDにおけるディスク厚 み誤差は 0. 5mmであることから、収差量は、概ね 1. 7 rmsとなる。
[0102] 図 8 (a)に示すように、 CDの基板厚は、 1. 2mmである。従って、 BDの基板厚 0. 1 mmに対する誤差は 1. lmmとなる。従って、 CDにおけるディスク厚み誤差は 1. lm mであることから、収差量は、概ね 0. 5 rmsとなる。
[0103] 続いて、図 9 (a)に示すように、焦点可変レンズ 102として、例えば液晶レンズ 102a を用いることが好ましい。尚、図 9 (a)は液晶レンズ 102aの断面図であり、図 9 (b)は 図 9 (a)の液晶レンズ 102aの透明電極 212を図 9 (a)の上側から観察した平面図で ある。液晶レンズ 102aは、図 9 (a)に示すように、液晶素子を含む液晶層 213が透明 基板 211と透明基板 215との間に封入され、透明基板 211には透明電極 212が、ま た、透明基板 215には透明電極 214が液晶層 213と接する面に形成されている。更 に、透明電極 212は、図 9 (b)に示すように、同心円状に分布する複数の分割電極 2 12aから 212dに分割されている。透明電極 212と透明電極 214の間に、印加電圧制 御部 354bの制御を受ける電源 216により電圧が印加されることで、液晶層 213の屈 折率分布が変化する。これにより、液晶レンズ 102aの焦点位置を変化させることがで きる。この場合、印加される電圧によって液晶層 211内の屈折率分布が変化し、液晶 レンズ 102aは、例えば凸レンズとしての機能を生じる。これにより、液晶レンズ 102a を焦点可変レンズ 102として用いることができる。
[0104] また、透明電極 214についても、透明電極 212と同様に、同心円状に分布する複 数の分割電極 212aから 212dに分割されている。
[0105] そして、図 8を参照して説明した収差量を打ち消すように、図 9を参照して説明した 焦点可変レンズ 102の焦点距離が変化される。このため、収差量が多ければ、焦点 可変レンズ 102の屈折率分布をより大きく変化させる必要がある。そして、屈折率分 布をより大きく変化させるためには (言い換えれば、収差量が多ければ)、より高い電 圧を焦点可変レンズ 102に印加する必要がある。
[0106] 例えば、図 8に示す例では、 HD DVDの屈折率分布を最も大きく変化させる必要 があり、以降、 BD— DL、 CD、 DVD, BDの順に、屈折率分布の変化を小さくしてい けばよい。従って、図 10の中段に示すような屈折率分布を実現するように、印加電圧 制御部 354bの動作により、図 10の下段に示すように印加される電圧が設定される。 図 8に示す例では、ローデイングされる光ディスク 10が HD DVDである場合に最も 高い電圧 VIを焦点可変レンズ 102に印加し、ローデイングされる光ディスク 10が BD —DLである場合に VIよりも低い電圧 V2を焦点可変レンズ 102に印加し、ローディ ングされる光ディスク 10が CD又は DVDである場合に VI及び V2よりも低い電圧 V3 を焦点可変レンズ 102に印加し、ローデイングされる光ディスク 10が BDである場合に VI、 V2及び V3よりも低い電圧 V4を焦点可変レンズ 102に印加する必要がある。こ のとき、図 10に示すように、同心円状に分割されている複数の分割電極 212aから 21 2dのうち、中心に近い分割電極により小さな電圧が印加され、中心力 遠い位置に ある分割電極ほどより大きな電圧が印加される。
[0107] 尚、図 10の中段に示すような正規分布のカーブを描くような屈折率分布が得られる ものであれば、透明電極 212の分割の態様は同心円状に限られない。というのも、正 規分布のカーブを描くような屈折率分布が得られれば、それに伴って焦点距離も必 然的に決定するからである。つまり、液晶層 213の屈折率分布を好適に変化させるこ とができる電圧を印加することができる透明電極であれば、その形状は限定されな ヽ 。但し、焦点可変レンズ 102の焦点距離を好適に変化させることができれば、正規分 布のカーブを描くような屈折率分布が得られなくともよい。
[0108] (焦点可変レンズの他の具体例)
続いて、図 11から図 14を参照して、本実施例に係る光ピックアップに用いられる焦 点可変レンズの具体的な構成について説明する。ここに、図 11から図 14の夫々は、 本実施例に係る光ピックアップに用いられる焦点可変レンズの他の具体的な構成を 概略的に示す平面図、断面図ないしは斜視図である。
[0109] 上述の図 7に示すように液晶レンズ 102aを焦点可変レンズ 102として用いる場合に は、図 11に示すように、透明電極 212が、同心円状に細カゝく分割されたフレネル構 造を有するように構成してもよい。これにより、液晶層 213の厚みの増加を抑えると共 に、液晶層 213内の液晶素子の応答速度や回復速度の向上を図ることができる。ま た、光散乱効果による液晶層 213の白濁化を抑止することができる。
[0110] また、この場合、液晶素子の分子配向が同心円状 (軸対称)となるように構成しても よい。これにより、液晶素子の長軸方向とそれに直角な方向とで略同一なレンズ特性 を実現することができる。尚、図 11に示した液晶層 213の更に詳細な態様について は、応用物理 第 63卷 第 1号 (1994年)の 57ページから 58ページを参照された い。
[0111] また、図 12 (a)及び図 12 (b)に示すように、電圧を印加することで屈折率が変化す ると ヽぅ電気光学効果を有する電気光学 (EO: Electro Optic)材料 231を用いた電気 光学レンズ 102bを焦点可変レンズ 102として用いてもよい。尚、図 12 (a)は、電気光 学レンズ 102bの斜視図であり、図 12 (b)は、電気光学レンズ 102bの断面図である。 [0112] 図 12 (a)に示すように、電気光学レンズ 102bは、例えば(Pb, La) (Ar, Ti) 0電
3 気光学セラミック(以下、適宜" PLZT電気光学セラミツグ'と称する)を含む電気光学 材料 231と、該電気光学材料 231の対向する両面に形成される透明電極 232及び 2 32とを備える。透明電極 232及び 233の夫々は、図 12 (b)に示すように、電気光学 材料 231の中心から +x方向及び X方向の夫々の N次(Nは 1以上の整数)偶数フ レネルゾーンに形成される。この場合、奇数ゾーンには、透明電極 232及び 232の夫 々は形成されない。
[0113] この透明電極 232及び 233の間に電圧 Vを印加すると、電気光学材料 231に電気 光学効果が発現する。即ち、電気光学材料 231内の屈折率分布が変化する。これに より、電気光学レンズ 102bは、電圧 Vに応じて、例えば中心力も N次ゾーン(より具体 的には、 1次ゾーン)までの距離で定まる焦点距離を有するシリンドリカルレンズとして 作用したり、或いは単なる透明のガラス基板として作用する。この考え方を発展させ て同心円上の透明電極を採用すれば、凸レンズとして作用するため、電気光学レン ズ 102bを、上述した焦点可変レンズ 102として用いることができる。特に、電気光学 効果を発現させるための消費電力は相対的に軽微なもので足りるため、電気光学レ ンズ 102bの消費電力量を低減することができ、その結果、光ピックアップ 100の消費 電力量を低減することができる。また、電気光学材料 231や透明電極 232及び 233 を薄膜構造とすることで、更に消費電力量を低減することができると共に、焦点可変 レンズ 102のサイズを相対的に小さくすることができる。尚、係る電気光学レンズ 102 bの更に詳細な態様については、応用物理 第 63卷 第 1号 (1994年)の 59ぺー ジから 60ページを参照された!、。
[0114] また、図 13に示すように、 PLZT電気光学セラミックを含む電気光学材料 241を用 V、た電気光学レンズ 102cを焦点可変レンズ 102として用いてもょ 、。具体的には、 電気光学レンズ 102cは、直方体形状を有する電気光学材料 241と、該電気光学材 料 241の対向する両面に、レーザ光 LBの光路に沿って形成されるストライプ状の透 明電極 242a、 242b, 243a, 243b, 244a及び 244bとを備える。透明電極 242aと 透明電極 242bとが第 1の電極対を構成し、透明電極 243aと透明電極 243b及び透 明電極 244aと透明電極 244bとが第 2の電極対を構成する。電極対を構成する透明 電極は、電気光学材料 241の両面において、夫々対向する位置に形成されることが 好ましい。
[0115] この第 1の電極対に電圧 VIを印加し、第 2の電極対に電圧 V2を印加することで、 電気光学材料 241内の屈折率分布が変化する。これにより、電気光学レンズ 102cに 入射するレーザ光 LBは、 X方向及び y方向の少なくとも一方に収束するようにその光 束が変化させられる。これにより、電気光学レンズ 102cは、電極対に印加する電圧 V 1及び V2に応じて、例えば凸レンズとして作用したり、或いは単なる透明のガラス基 板として作用する。このため、電気光学レンズ 102cを、上述した焦点可変レンズ 102 として用いることができる。尚、係る電気光学レンズ 102cの更に詳細な態様について は、応用物理 第 63卷 第 1号 (1994年)の 61ページ力も 62ページを参照された い。
[0116] また、電気光学効果を有する電気光学材料 231又は 241を用いることに代えて、磁 気光学効果を有する磁気光学材料を備える磁気光学レンズを焦点可変レンズとして 用いてもよい。より具体的には、磁界をかけることで材料内の屈折率を変化させること ができる磁気光学材料を備える磁気光学レンズを焦点可変レンズとして用いてもょ ヽ 。このような磁気光学レンズであっても、上述した各種利益を好適に享受することがで きる。
[0117] また、図 14に示すように、互いに混合することなく且つ互いに屈折率の異なる 2種 類の液体により形成される界面の形状を変化させることで焦点位置を変化させる液 体レンズ 102dを、焦点可変レンズ 102として用いてもよい。具体的には、図 14に断 面図として示すように、液体レンズ 102dは、透光性平板状の上側部材 251と、親水 性の導電性液体 252と、疎水性の絶縁性液体力もなる小滴 253と、中央部を小滴 25 3の形状と略同一な円形状に除いて形成された親水性の表面層 254と、疎水性の絶 縁層 255と、中央部を小滴 253の形状と略同一な円形状に除いて形成された電極 2 56と、透光性平板状の下側部材 257を備えている。導電性液体 252と小滴 253を構 成する絶縁性液体とは、互いに混合することなく且つ互いに屈折率が異なる。
[0118] このような液体レンズ 102dにおいて、導電性液体 252と電極 256との間に直流電 圧ないしは交流電圧 Vを印加すると、導電性液体 252と絶縁層 255との接触 (所謂、 electro- wetting現象)が進行する。その結果、導電性液体 252と小滴 253とにより形 成される界面(レンズ面)の形状が変化する。これにより、液体レンズ 102dの焦点位 置を変化させることができる。このため、液体レンズ 102dを、上述した焦点可変レン ズ 102として用いることができる。尚、係る液体レンズ 102dの更に詳細な態様につい ては、特開 2001—13306号公報を参照されたい。
[0119] (光ピックアップの変形例)
続いて、図 15を参照して、変形例に係る光ピックアップについて説明する。ここに、 図 15は、変形例に係る光ピックアップの構成を概略的に示す断面図である。
[0120] 図 15に示すように、変形例に係る光ピックアップ 110は、上述した光ピックアップ 10 0と同様に、レーザ光 LBを照射するレーザダイオード 101、透過するレーザ光 LBの 焦点位置を電気的作用ないしは磁気的作用により変化させる焦点可変レンズ 102、 ビームスプリッタ 103、集光レンズ(コリメータレンズ) 104、レーザ光 LBの球面収差を 補正する液晶素子 105、 1/4波長板 106、レーザ光 LBを光ディスク 10の記録面に 集光する対物レンズ 107及びレーザ光 LBの反射光を受光するフォトディテクタ 108 を備える。
[0121] 変形例に係る光ピックアップ 110は特に、コマ収差補正素子 109を更に備える。と いうのも、有限系の光については、その性質上、コマ収差が発生しやすくなるないし は相対的に大きなコマ収差が発生し得る。このため、特に有限系の光に対して発生 し得るコマ収差を好適に補正することができるコマ収差補正素子 109を備えることで 、これらの不都合を抑止することができる。これにより、変形例に係る光ピックアップ 1 10は、異なる基板厚を有する複数種類の光ディスク 10の夫々の記録面に、より好適 にレーザ光 LBを集光させることができる。
[0122] また、このコマ収差補正素子 109にカ卩えて又は代えて、例えば非点収差を補正す る非点収差補正素子を、コマ収差補正素子 109と同様の態様で備えていてもよい。 或いは、上述した球面収差やコマ収差や非点収差以外の各種収差を補正する収差 補正素子を、コマ収差補正素子 109と同様の態様で備えていてもよい。
[0123] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴なう情報機器もまた本発明の技術的範囲に含まれるものである。 産業上の利用可能性
本発明に係る情報機器は、例えば、 DVD等の情報記録媒体に対して情報記録又 は情報再生を行う際に光を照射する情報機器に利用可能である。

Claims

請求の範囲
[1] 一又は複数の記録層を備える記録媒体に向けて光を照射する光源と、
前記光源から照射される光を前記記録媒体に集光する対物レンズと、 前記光源と前記対物レンズとの間の前記光路上に配置され、且つ前記光源から照 射される光に対して焦点位置を変化させる焦点可変レンズと
を備える光ピックアップと、
前記記録媒体の基板厚のばらつき、前記光の波長及び前記対物レンズの開口数 の少なくとも 1つに基づいて、前記焦点位置を変化させるように前記焦点可変レンズ を制御する制御手段と
を備えることを特徴とする情報機器。
[2] 前記記録媒体の基板厚のばらつき、前記光の波長及び前記対物レンズの開口数 の少なくとも 1つに基づいて、前記記録媒体に集光される前記光の収差の収差量を 算出する算出手段を更に備え、
前記制御手段は、前記算出された収差量に応じて、前記焦点位置を変化させるよ うに前記焦点可変レンズを制御することを特徴とする請求の範囲第 1項に記載の情 報機器。
[3] 前記記録媒体の基板厚のばらつき、前記光の波長及び前記対物レンズの開口数 の少なくとも 1つと前記収差量との相関関係を示す相関情報を格納する格納手段を 更に備え、
前記算出手段は、相関情報に基づいて、前記収差量を算出することを特徴とする 請求の範囲第 2項に記載の情報機器。
[4] 前記焦点可変レンズは、液晶レンズを含み、
前記液晶レンズは、同心円状に分布する複数の第 1分割電極及び複数の第 2分割 電極と、前記複数の第 1分割電極と前記複数の第 2分割電極との間に挟まれる液晶 素子とを備えており、
前記制御手段は、複数の第 1分割電極の夫々又は前記複数の第 2分割電極の夫 々に印加される電圧を調整することで、前記焦点位置を変化させるように前記焦点可 変レンズを制御することを特徴とする請求の範囲第 1項に記載の情報機器。
[5] 前記光源と前記対物レンズとの間の前記光路上に配置され、前記光源から照射さ れる光を透過し且つ前記記録媒体からの前記反射光の光路を変化させるビームスプ リツタを更に備え、
前記焦点可変レンズは、前記光源と前記ビームスプリッタとの間の前記光路上に配 置されることを特徴とする請求の範囲第 1項に記載の情報機器。
[6] 前記焦点可変レンズは、屈折率の異なる複数種類の液体を含んで形成される界面 の形状を変化させる液体レンズを含むことを特徴とする請求の範囲第 1項に記載の 情報機器。
[7] 前記焦点可変レンズは、電気光学効果を有する素子を含むことを特徴とする請求 の範囲第 1項に記載の情報機器。
[8] 前記焦点可変レンズは、磁気光学効果を有する素子を含むことを特徴とする請求 の範囲第 1項に記載の情報機器。
[9] 前記焦点可変レンズは、前記焦点位置を変化させることで、前記光を有限系及び 無限系の少なくとも一方にて前記対物レンズに入射させることを特徴とする請求の範 囲第 1項に記載の情報機器。
[10] 前記光が有限系で前記対物レンズに入射する場合、前記光の入射側における前 記対物レンズの開口数は、 0. 053から 0. 063のいずれかであることを特徴とする請 求の範囲第 9項に記載の情報機器。
[11] 前記記録媒体は、第 1の基板厚及び第 2の基板厚の少なくとも一方を有することを 特徴とする請求の範囲第 1項に記載の情報機器。
[12] 前記光の出射側における前記対物レンズの開口数は、前記第 1の基板厚を有する 前記記録媒体に前記光を集光可能な第 1の開口数であることを特徴とする請求の範 囲第 11項に記載の情報機器。
[13] 前記焦点可変レンズは、前記光の出射側における前記対物レンズの開口数が、前 記第 2の基板厚を有する前記記録媒体に前記光を集光可能な第 2の開口数となるよ うに前記焦点位置を変化させることを特徴とする請求の範囲第 11項に記載の情報機
[14] 前記第 1の基板厚は 0. 1mmであり、前記第 2の基板厚は 0. 6mmであることを特 徴とする請求の範囲第 11項に記載の情報機器。
[15] 前記光の出射側における前記対物レンズの開口数は 0. 85であることを特徴とする 請求の範囲第 14項に記載の情報機器。
[16] 前記焦点可変レンズは、前記光の出射側における前記対物レンズの開口数が略 0
. 65となるように前記焦点位置を変化させることを特徴とする請求の範囲第 14項に 記載の情報機器。
[17] 前記光源と前記対物レンズとの間の前記光路上に配置され、且つ前記制御手段に よる前記焦点位置の変更の後に、前記記録媒体上に集光される前記光の収差を、 当該収差を測定しながら補正する収差補正素子を更に備えることを特徴とする請求 の範囲第 1項に記載の情報機器。
[18] 前記収差補正素子は、前記収差として、球面収差、コマ収差及び非点収差の少な くとも一つを補正することを特徴とする請求の範囲第 17項に記載の情報機器。
PCT/JP2006/309310 2005-05-10 2006-05-09 情報機器 WO2006121038A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-136951 2005-05-10
JP2005136951 2005-05-10

Publications (1)

Publication Number Publication Date
WO2006121038A1 true WO2006121038A1 (ja) 2006-11-16

Family

ID=37396546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309310 WO2006121038A1 (ja) 2005-05-10 2006-05-09 情報機器

Country Status (1)

Country Link
WO (1) WO2006121038A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995725A1 (en) * 2007-05-25 2008-11-26 Funai Electric Co., Ltd. Optical pickup device
JP2011508889A (ja) * 2008-01-04 2011-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学プローブ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765409A (ja) * 1993-08-20 1995-03-10 Ricoh Co Ltd 光情報記録再生装置
JP2000215506A (ja) * 1999-01-27 2000-08-04 Citizen Watch Co Ltd 光学装置
JP2002150569A (ja) * 2000-11-09 2002-05-24 Nec Corp 光ディスク、収差補正方法および光ディスク装置
JP2002170257A (ja) * 2000-12-05 2002-06-14 Sharp Corp 光ピックアップ装置
JP2002237076A (ja) * 2001-02-06 2002-08-23 Pioneer Electronic Corp 収差補正装置
JP2004348840A (ja) * 2003-05-21 2004-12-09 Victor Co Of Japan Ltd 光ディスク装置における収差補正装置及び収差補正方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765409A (ja) * 1993-08-20 1995-03-10 Ricoh Co Ltd 光情報記録再生装置
JP2000215506A (ja) * 1999-01-27 2000-08-04 Citizen Watch Co Ltd 光学装置
JP2002150569A (ja) * 2000-11-09 2002-05-24 Nec Corp 光ディスク、収差補正方法および光ディスク装置
JP2002170257A (ja) * 2000-12-05 2002-06-14 Sharp Corp 光ピックアップ装置
JP2002237076A (ja) * 2001-02-06 2002-08-23 Pioneer Electronic Corp 収差補正装置
JP2004348840A (ja) * 2003-05-21 2004-12-09 Victor Co Of Japan Ltd 光ディスク装置における収差補正装置及び収差補正方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995725A1 (en) * 2007-05-25 2008-11-26 Funai Electric Co., Ltd. Optical pickup device
US7792004B2 (en) 2007-05-25 2010-09-07 Funai Electric Co., Ltd. Optical pickup device
JP2011508889A (ja) * 2008-01-04 2011-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学プローブ

Similar Documents

Publication Publication Date Title
JP4287898B2 (ja) 光ディスク装置及び多層光ディスクの記録再生方法
JP4217395B2 (ja) 光ディスク装置及び多層光ディスクの記録再生方法
JP2002237076A (ja) 収差補正装置
US8599661B2 (en) Optical disk device, optical pickup, and optical recording medium
WO2002073610A1 (fr) Tete optique, dispositif optique, et element de correction d'aberration
JP2007026540A (ja) 光ピックアップ装置及び光学的情報処理装置
JP2008293600A (ja) 光ピックアップ装置
EP2202544A1 (en) Aspheric lens and optical pickup including the same
US7428193B2 (en) Optical pickup device and optical recording medium reproducing device
US20080002555A1 (en) Optical pickup and optical disc apparatus
JP2005122861A (ja) 光ピックアップ装置および光学式記録媒体再生装置
WO2006121038A1 (ja) 情報機器
US20070237053A1 (en) Aberration correcting unit, optical pickup device, information reproducing apparatus, and aberration correcting program
JP2005158171A (ja) 光ピックアップ
JP2009211794A (ja) 光ピックアップ装置及び光ディスク装置
WO2007069612A1 (ja) 光ヘッドおよび光情報装置
JP2008192188A (ja) 光ディスク装置及び光ヘッド装置
JP2009501405A (ja) 能動型補正素子、それを採用した互換型光ピックアップ及び光記録及び/または再生機器
WO2010023901A1 (ja) 光ディスク装置、前記光ディスク装置を用いた映像再生装置、サーバー及びカーナビゲーションシステム、集積回路、並びに記録再生方法
US20070237052A1 (en) Aberration correcting device, optical pickup device, information reproducing apparatus, aberration correcting program, and aberration correcting method
JP2008276852A (ja) 光ピックアップ装置及び光ディスク装置
JPH10222856A (ja) 光学式情報記録再生装置
EP2017837A2 (en) Optical pickup device
JP2009146477A (ja) ピックアップ装置
JP2000149309A (ja) 光学ピックアップ装置およびこれを具備する光ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP