JP4097940B2 - Agc回路 - Google Patents

Agc回路 Download PDF

Info

Publication number
JP4097940B2
JP4097940B2 JP2001398495A JP2001398495A JP4097940B2 JP 4097940 B2 JP4097940 B2 JP 4097940B2 JP 2001398495 A JP2001398495 A JP 2001398495A JP 2001398495 A JP2001398495 A JP 2001398495A JP 4097940 B2 JP4097940 B2 JP 4097940B2
Authority
JP
Japan
Prior art keywords
current
output
droop
capacitor
variable gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001398495A
Other languages
English (en)
Other versions
JP2003198293A (ja
Inventor
祐丞 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2001398495A priority Critical patent/JP4097940B2/ja
Publication of JP2003198293A publication Critical patent/JP2003198293A/ja
Application granted granted Critical
Publication of JP4097940B2 publication Critical patent/JP4097940B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、振幅の変動を伴う入力信号の振幅を一定値に制御して出力するAGC(Automatic Gain Control)回路に関し、例えばディスク状の記録媒体からの読み取り信号を再生するデータ再生装置において、その読み取った信号の振幅を一定に保つAGC回路に関するものである。
【0002】
【従来の技術】
従来、この種のAGC回路の一例としては、図10に示すようなものが知られている。
このAGC回路は、図10に示すように、可変利得アンプ1と、エンベロープ検出器2と、制御信号発生回路3と、基準電圧発生回路4とを備えている。
可変利得アンプ1は、入力信号を増幅するとともに、制御信号発生回路3からの制御信号に応じて利得が可変できるようになっている。
【0003】
エンベロープ検出器2は、オペアンプからなるコンパレータ5、P型のMOSトランジスタQ1、コンデンサC1、および電流源6からなる。このエンベロープ検出器2は、図11(A)に示すように、可変利得アンプ1の出力信号のピーク値やボトム値を検出して出力するようになっている。
制御信号発生回路3は、Gmアンプ(V−I変換器)7およびコンデンサC2からなる。Gmアンプ7は、エンベロープ検出器2の検出したピーク電圧Vpを基準電圧発生回路4の発生する基準電圧を比較し、その差(オフセット)に応じてコンデンサC2を充電または放電する出力電流icを生成するようになっている。
【0004】
例えば、Gmアンプ7は、そのピーク電圧Vpが基準電圧発生回路4が発生する基準電圧Vrefよりも大きな場合には、可変利得アンプ1の利得を下げるような制御信号を生成し、これを可変利得アンプ1に出力する。これにより、可変利得アンプ1は、その利得を下げるので、可変利得アンプ1の出力信号の振幅は一定となる。
ところで、エンベロープ検出器2では、可変利得アンプ1の出力信号がピーク電圧Vpよりも大きな場合には、コンパレータ5によりMOSトランジスタQ1が導通状態となり、コンデンサC1に電荷が充電される。また、可変利得アンプ1の出力信号の変動(振幅が小さくなる方向)に対応してコンデンサC1の電荷を放電させるために、電流源6によりドループ電流(放電電流)Idを流している。
【0005】
このような動作により、エンベロープ検出器2は、図11(B)に示すように、可変利得アンプ1の出力信号の振幅に対応した値をピーク電圧Vpとして出力する。
【0006】
【発明が解決しようとする課題】
ところで、AGC回路のループの時定数が、可変利得アンプ1の入力信号の周期よりも十分に大きくない場合には、以下のような不都合があった。
すなわち、図12(A)に示すように、可変利得アンプ1の入力信号の振幅が小から大に変動するときに、エンベロープ検出器2が可変利得アンプ1の出力信号のピークをとらえることができず、正常な動作をしなくなる。この結果、可変利得アンプ1の出力信号と、このピーク電圧Vpの関係は、図12(B)に示すようになる。
【0007】
この結果、エンベロープ検出器2で検出されたピーク電圧Vpと、実際の可変利得アンプ1の出力信号との間に大きな差が発生するので、その出力信号の振幅が定常状態になるまでの時間(アタックタイム)が長くなってしまう。
これらの不具合を解決するためには、エンベロープ検出器2における電流源6のドループ電流Idを大きくすれば良い。しかし、このようにすると、定常状態時に、図13に示すように、エンベロープ検出器2が可変利得アンプ1の出力信号の振幅のピークを正確にとらえることができないという、新たな不都合が生じてしまう。
【0008】
そこで、本発明の目的は、上記の点に鑑み、AGC回路のAGCループの時定数が入力信号の周期よりも十分に大きくないときでも、安定した回路動作をするAGC回路を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決して本発明の目的を達成するために、請求項1〜請求項4に記載の各発明は、以下のように構成した。
すなわち、請求項1に記載の発明は、入力信号を増幅するとともに利得を可変自在な可変利得アンプと、前記可変利得アンプの出力信号の振幅を検出するエンベロープ検出器と、前記可変利得アンプの出力信号の振幅を一定にするための基準となる基準信号を発生する基準信号発生回路と、前記エンベロープ検出器が検出した出力信号の振幅のピーク値と前記基準信号との差に基づいて前記可変利得アンプの利得を制御する制御信号を発生する制御信号発生回路と、を備えたAGC回路であって、前記エンベロープ検出器は、前記ピーク値を保持する第1のコンデンサと、この第1のコンデンサから所定のドループ電流を流す電流源と、を含み、さらに、前記ピーク値が前記基準信号より大きな場合に、前記ピーク値と前記基準信号との差に応じたドループ加速電流を前記第1のコンデンサから流す可変電流源と、を含むことを特徴とするものである。
【0010】
請求項2に記載の発明は、請求項1に記載のAGC回路において、前記制御信号発生回路は、前記第1のコンデンサで保持されるピーク値と前記基準信号とを入力し、これらの差に応じた出力電流を出力するGmアンプを含み、前記可変電流源は、前記ピーク値が前記基準信号より大きな場合に、前記出力電流に比例したドループ加速電流を生成するドループ加速電流発生回路を含むことを特徴とする。
請求項3に記載の発明は、請求項2に記載のAGC回路において、前記Gmアンプは、前記第1のコンデンサに保持されるピーク値と前記基準信号とをそれぞれ入力する差動対と、この差動対の出力に基づいて入出力する第1の出力電流を発生するとともに、前記第1の出力電流とカレントミラーの関係にある第2の出力電流を前記出力電流として発生する出力段とを含み、前記制御信号発生回路は、前記第1の出力電流により充放電されるとともに、保持した電荷に応じた前記制御信号を出力する第2のコンデンサを含み、前記ドループ加速電流発生回路は、前記第2の出力電流に比例する前記ドループ加速電流を発生するカントミラー回路からなること特徴とする。
【0011】
請求項4に記載の発明は、入力信号を増幅するとともに利得を可変自在な可変利得アンプと、前記可変利得アンプの出力信号の振幅を検出するエンベロープ検出器と、前記可変利得アンプの出力信号の振幅を一定にするための基準となる基準信号を発生する基準信号発生回路と、前記エンベロープ検出器が検出した出力信号の振幅のピーク値と前記基準信号との差に基づいて前記可変利得アンプの利得を制御する制御信号を発生する制御信号発生回路と、を備えたAGC回路であって、前記エンベロープ検出器は、前記ピーク値を保持するコンデンサと、このコンデンサから所定のドループ電流を流す電流源と、前記ピーク値と前記基準信号との差に応じたドループ加速電流を前記コンデンサから流す可変電流源と、を含み、前記制御信号発生回路は、前記コンデンサで保持されるピーク値と前記基準信号とを入力し、これらの差に応じた出力電流を出力するGmアンプを含み、前記可変電流源は、前記Gmアンプの出力電流から所定のオフセット電流を引いた電流に比例したドループ加速電流を、前記ピーク値が前記基準信号と前記オフセット電流に相当するオフセット値とを加えた値より大きな場合に生成するドループ加速電流発生回路を含むことを特徴とする。
このように本発明では、エンベープ検出器のコンデンサが保持するピーク値が基準信号より大きな場合に、一定のドループ電流の他に、そのピーク値とその基準信号の差に応じたドループ加速電流をコンデンサから流すようにした。
【0012】
このため、本発明によれば、AGC回路のAGCループの時定数が入力信号の周期よりも十分に大きくないときでも、安定した回路動作をするAGC回路を提供することができる。
【0013】
【発明の実施の形態】
以下、本発明のAGC回路の実施形態について、図面を参照して説明する。
まず、実施形態の説明に先立って、本発明の基本的な考え方について、図1を参照して説明する。図1は、本発明に係るエンベロープ検出器の基本的な考え方を説明する回路図である。
本発明に係るエンベロープ検出器は、図10に示す従来のエンベロープ検出器2の電流源6を、図1に示すように、電流源8および可変電流源9に置き換えるようにしたものである。
【0014】
電流源8は、所定の電流値からなるドループ電流Id’を発生するものである。また、可変電流源9は、コンデンサC1が保持するピーク電圧Vpが基準電圧発生回路4が発生する基準電圧Vrefよりも大きな場合に、そのピーク電圧Vpとその基準電圧Vrefとの差に応じたドループ加速電流Iacを発生するものである。
すなわち、このエンベロープ検出器では、図2に示すように、ピーク電圧Vpが基準電圧Vref以下の場合には、可変電流源9は、ドループ加速電流Iacを発生せずにIac=0とし、ドループ電流Idとして電流源8が発生するドループ電流Id’のみを流すようにした。
【0015】
これは、図3(A)に示すように、可変利得アンプ1の入力信号の振幅が、大きな状態から小さな状態に変動するときに、可変利得アンプ1の出力信号が定常状態になるまでの時間(ディケイタイム)t1が長くなるのを防ぐためである(図3(B)参照)。
すなわち、図3(B)の破線aで示すように、可変利得アンプ1の出力信号のピーク電圧Vpを正確にとらえるようにするためであり、これは従来と同様である。このとき、ドループ電流IdがId’よりも小さいと、図3(B)の実線bで示すように、可変利得アンプ1の出力信号のピーク電圧Vpを正確にとらえることができない。
【0016】
これに対して、コンデンサC1の、ピーク電圧Vpが基準電圧Vref以上の場合には、可変電流源9は、そのピーク電圧Vpの値に比例するドループ加速電流Iacを発生し、ドループ電流Idとしてドループ電流Id’にそのドループ加速電流Iacを加算した電流を流すようにした(図2参照)。
このため、AGC回路のループの時定数が、可変利得アンプ1の入力信号の周期よりも十分に大きくない場合であっても、可変利得アンプ1の入力信号の振幅が小から大に変動するときに、エンベロープ検出器は、可変利得アンプ1の出力信号のピークをとらえることができ、安定な動作をする(図4参照)。
【0017】
次に、本発明のAGC回路の実施形態について、図5を参照して説明する。
この実施形態に係るAGC回路は、図5に示すように、可変利得アンプ1と、エンベロープ検出器12と、制御信号発生回路13と、基準電圧発生回路4とを備えている。
可変利得アンプ1は、入力信号を増幅するとともに、制御信号発生回路13から出力される制御電圧Vcに応じて利得が可変できるようになっている。
【0018】
エンベロープ検出器12は、可変利得アンプ1の出力信号のピーク値Vpを検出して出力するようになっている。このために、エンベロープ検出器12は、オペアンプからなるコンパレータ(比較器)5と、P型のMOSトランジスタQ1と、コンデンサC1と、電流源8と、ドループ加速電流発生回路14とを備えている。
コンパレータ5は、可変利得アンプ1の出力信号とエンベロープ検出器12の検出するピーク電圧Vpを比較し、その出力信号がピーク電圧Vpを上回る場合に、MOSトランジスタQ1をオンにしてコンデンサC1を充電するようになっている。
【0019】
電流源8は、所定の電流値からなるドループ電流Id’を発生するものである。ドループ加速電流発生回路14は、制御信号発生回路13のGmアンプ7Aから後述のように出力される双方向に流れる出力電流ic’のうち、Gmアンプ7Aから供給される側の電流に基づいて、ドループ加速電流Iacを発生する回路である。
制御信号発生回路13は、Gmアンプ7AおよびコンデンサC2からなる。Gmアンプ7Aは、エンベロープ検出器12の検出したピーク電圧Vpを基準電圧発生回路4の発生する基準電圧Vrefを比較し、その差(オフセット)に応じてコンデンサC2を充電または放電する双方向に流れる出力電流icを出力するとともに、その出力電流icとカレントミラーの関係にある双方向の出力電流ic’を出力するようになっている。
【0020】
このために、Gmアンプ7Aは、エンベロープ検出器12のコンデンサC1に保持されるピーク電圧Vpと基準電圧Vrefとをそれぞれ入力する差動対の他に、この差動対の出力に基づいて生成する出力電流icを発生するとともに、その出力電流icとカレントミラーの関係にある出力電流ic’を発生する出力段とを含んでいる。
次に、図5に示すGmアンプ7Aの具体的な回路構成について、図6を参照して説明する。
【0021】
このGmアンプ7Aは、図10に示すGmアンプ7を基本にし、そのGmアンプ7のMOSトランジスタQ11、Q12からなる出力段に、図6に示すように、MOSトランジスタQ13、Q14を追加するようにしたものである。
すなわち、Gmアンプ7Aは、MOSトランジスタQ11〜Q14でカレントミラー回路を構成し、コンデンサC2を充放電させる本来の出力電流icの他に、この出力電流icとカレントミラーの関係にあり、ドループ加速電流発生回路14がドループ加速電流Iacを発生するための出力電流ic’を発生するようにしたものである。
【0022】
Gmアンプ7Aの構成をさらに具体的に説明すると、MOSトランジスタQ11、Q12は、電源とアースとの間に直列に接続され、その共通接続部から出力電流icを取り出すようにしている。
MOSトランジスタQ13、Q14は、電源とアースとの間に直列に接続されている。また、MOSトランジスタQ13、14の各ゲートが、MOSトランジスタQ11、Q12の対応する各ゲートに接続されている。そして、MOSトランジスタQ13、Q14の共通接続部から出力電流ic’を取り出すようにしている。
【0023】
次に、図5に示すドループ加速電流発生回路14の具体的な回路構成について、図7を参照して説明する。
このドループ加速電流発生回路14は、N型のMOSトランジスタQ21、Q22とにより、カレントミラー回路を構成するようにし、MOSトランジスタMQ21のドレインにGmアンプ7Aの出力電流ic’を供給するとともに、その出力電流ic’とミラー関係にあるドループ加速電流Iacを発生するようにしたものである。
【0024】
さらに詳述すると、MOSトランジスタQ21は、そのゲートとドレインが共通接続され、その共通接続部がMOSトランジスタQ22のゲートに接続されている。また、MOSトランジスタQ21は、そのドレインにGmアンプ7Aの出力電流ic’が供給され、そのソースが接地されている。さらに、MOSトランジスタQ22は、そのソースが接地され、かつ、そのドレインがコンデンサC1に接続されている。
【0025】
次に、このように構成されるドループ加速電流発生回路14の動作について、図面を参照して説明する。
ドループ加速電流発生回路14は、図7に示すようにカレントミラー回路からなり、MOSトランジスタMQ21のドレインにGmアンプ7Aの出力電流ic’を供給するようにしている。このため、その出力電流ic’のうち+側だけを取り出し、これとミラー関係にあるドループ加速電流Iacを発生することができる。
【0026】
ここで、Gmアンプ7Aの出力電流ic’は、上述のように出力電流icとカレントミラーの関係にあり、出力電流icは、エンベロープ検出器12の検出したピーク電圧Vpを基準電圧発生回路4の基準電圧Vrefと比較し、その差に応じてコンデンサC2を充電または放電させる電流である。従って、出力電流ic’のうちその+側は、そのピーク電圧Vpがその基準電圧Vref以上の場合に、その差に比例する電流である。
【0027】
従って、ドループ加速電流発生回路14の発生するドループ加速電流Iacは、図2に示すように、エンベロープ検出器12の検出したピーク電圧Vpが基準電圧発生回路4の基準電圧Vrefを上回る場合に、その差に比例する電流となる。このため、ドループ加速電流発生回路14は、図1に示す可変電流源9と等価となる。
以上説明したように、この実施形態によれば、エンベロープ検出器12のコンデンサC1が保持するピーク電圧Vpが基準電圧Vrefより大きな場合に、一定のドループ電流Id’の他に、そのピーク電圧Vpとその基準電圧Vrefの差に応じたドループ加速電流IacをコンデンサC1から流すようにした。
【0028】
このため、この実施形態によれば、AGC回路のAGCループの時定数が入力信号の周期よりも十分に大きくないときでも、安定した回路動作をするAGC回路を提供することができる。
また、この実施形態では、Gmアンプ7Aとして従来のGmアンプを活用するとともに、ドループ加速電流発生回路14を追加するだけで良いので、最小限の回路の追加で実現できる。
【0029】
次に、ドループ加速電流発生回路14の変形例について、図8を参照して説明する。
このドループ加速電流発生回路14Aは、図8に示すように、図7に示すドループ加速電流発生回路14に対して並列にオフセット電流源21を追加するようにしたものである。
このようにオフセット電流源21を追加するようにしたのは、以下の理由による。すなわち、図5の可変利得アンプ1の出力信号の振幅の一定時(定常時)に、ドループ加速電流Iacが流れるとドループ電流Idが変化し、これによりその出力信号の振幅が、設定値(基準電圧)に対して誤差を発生するのを避けるためである。
【0030】
このため、図9に示すように、ドループ加速電流Iacが流れ始める際のコンデンサC1のピーク電圧Vpは、基準電圧Vrefよりもオフセット分Voffだけ大きくなる。
なお、エンベロープ検出器の実施形態については、可変利得アンプの出力信号のピーク値を検出する、ピーク検出器を例に説明してきたが、出力信号のボトム値を検出するボトム検出器、またはその両方を検出するピークボトム検出器としても良い。
【0031】
【発明の効果】
以上説明したように、本発明によれば、AGC回路のAGCループの時定数が入力信号の周期よりも十分に大きくないときでも、安定した回路動作をするAGC回路を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るエンベロープ検出器の基本的な考え方を説明する図である。
【図2】ピーク電圧とドループ電流の関係を示す図である。
【図3】可変利得アンプの入力信号の振幅が大から小に変化する場合において、その出力信号とエンベロープ検出器の検出電圧の関係を示す波形図である。
【図4】可変利得アンプの入力信号の振幅が小から大に変化する場合において、その出力信号とエンベロープ検出器の検出電圧の関係を示す波形図である。
【図5】本発明のAGC回路の実施形態の構成を示すブロック図である。
【図6】図5のGmアンプの出力段の回路の構成を示す回路図である。
【図7】図5のドループ加速電流発生回路の回路構成を示す回路図である。
【図8】ドループ加速電流発生回路の変形例の回路構成を示す回路図である。
【図9】ピーク電圧とドループ電流の関係を示す図である。
【図10】従来のAGC回路の構成を示すブロック図である。
【図11】図10のエンベロープ検出器の各部の波形例を示す波形図である。
【図12】従来のエンベロープ検出器を説明するための波形図である。
【図13】従来のエンベロープ検出器を説明するための他の波形図である。
【符号の簡単な説明】
C1、C2 コンデンサ
1 可変利得アンプ
4 基準電圧発生回路
7A Gmアンプ
8 電流源
9 可変電流源
12 エンベロープ検出器
13 制御信号発生回路
14 ドループ加速電流発生回路
21 オフセット電流源

Claims (4)

  1. 入力信号を増幅するとともに利得を可変自在な可変利得アンプと、前記可変利得アンプの出力信号の振幅を検出するエンベロープ検出器と、前記可変利得アンプの出力信号の振幅を一定にするための基準となる基準信号を発生する基準信号発生回路と、前記エンベロープ検出器が検出した出力信号の振幅のピーク値と前記基準信号との差に基づいて前記可変利得アンプの利得を制御する制御信号を発生する制御信号発生回路と、を備えたAGC回路であって、
    前記エンベロープ検出器は、
    前記ピーク値を保持する第1のコンデンサと、この第1のコンデンサから所定のドループ電流を流す電流源と、を含み、
    さらに、前記ピーク値が前記基準信号より大きな場合に、前記ピーク値と前記基準信号との差に応じたドループ加速電流を前記第1のコンデンサから流す可変電流源と、
    を含むことを特徴とするAGC回路。
  2. 前記制御信号発生回路は、前記第1のコンデンサで保持されるピーク値と前記基準信号とを入力し、これらの差に応じた出力電流を出力するGmアンプを含み、
    前記可変電流源は、前記ピーク値が前記基準信号より大きな場合に、前記出力電流に比例したドループ加速電流を生成するドループ加速電流発生回路を含むことを特徴とする請求項1に記載のAGC回路。
  3. 前記Gmアンプは、前記第1のコンデンサに保持されるピーク値と前記基準信号とをそれぞれ入力する差動対と、この差動対の出力に基づいて入出力する第1の出力電流を発生するとともに、前記第1の出力電流とカレントミラーの関係にある第2の出力電流を前記出力電流として発生する出力段とを含み、
    前記制御信号発生回路は、前記第1の出力電流により充放電されるとともに、保持した電荷に応じた前記制御信号を出力する第2のコンデンサを含み、
    前記ドループ加速電流発生回路は、前記第2の出力電流に比例する前記ドループ加速電流を発生するカントミラー回路からなること特徴とする請求項2に記載のAGC回路。
  4. 入力信号を増幅するとともに利得を可変自在な可変利得アンプと、前記可変利得アンプの出力信号の振幅を検出するエンベロープ検出器と、前記可変利得アンプの出力信号の振幅を一定にするための基準となる基準信号を発生する基準信号発生回路と、前記エンベロープ検出器が検出した出力信号の振幅のピーク値と前記基準信号との差に基づいて前記可変利得アンプの利得を制御する制御信号を発生する制御信号発生回路と、を備えたAGC回路であって、
    前記エンベロープ検出器は、前記ピーク値を保持するコンデンサと、このコンデンサから所定のドループ電流を流す電流源と、前記ピーク値と前記基準信号との差に応じたドループ加速電流を前記コンデンサから流す可変電流源と、を含み、
    前記制御信号発生回路は、前記コンデンサで保持されるピーク値と前記基準信号とを入力し、これらの差に応じた出力電流を出力するGmアンプを含み、
    前記可変電流源は、前記Gmアンプの出力電流から所定のオフセット電流を引いた電流に比例したドループ加速電流を、前記ピーク値が前記基準信号と前記オフセット電流に相当するオフセット値とを加えた値より大きな場合に生成するドループ加速電流発生回路を含むことを特徴とするAGC回路。
JP2001398495A 2001-12-27 2001-12-27 Agc回路 Expired - Fee Related JP4097940B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398495A JP4097940B2 (ja) 2001-12-27 2001-12-27 Agc回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398495A JP4097940B2 (ja) 2001-12-27 2001-12-27 Agc回路

Publications (2)

Publication Number Publication Date
JP2003198293A JP2003198293A (ja) 2003-07-11
JP4097940B2 true JP4097940B2 (ja) 2008-06-11

Family

ID=27603893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398495A Expired - Fee Related JP4097940B2 (ja) 2001-12-27 2001-12-27 Agc回路

Country Status (1)

Country Link
JP (1) JP4097940B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006260A (ja) 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Agc回路

Also Published As

Publication number Publication date
JP2003198293A (ja) 2003-07-11

Similar Documents

Publication Publication Date Title
US6181178B1 (en) Systems and methods for correcting duty cycle deviations in clock and data signals
US7009445B2 (en) Charge pump with a constant current input
JP4891916B2 (ja) 追跡および保持ピーク検出器回路
JPH01265718A (ja) シュミットトリガ回路
US7405614B2 (en) Circuit arrangement having an amplifier arrangement and an offset compensation arrangement
US6611485B2 (en) Apparatus and method for correcting asymmetry of optical disk reproducing system
JP4972453B2 (ja) 電圧発生装置、電流発生装置および試験装置
US6922474B2 (en) Shock sound prevention circuit
US6480311B1 (en) Peak-hold circuit and an infrared communication device provided with such a circuit
US6940985B2 (en) Shock sound prevention circuit
JP4097940B2 (ja) Agc回路
JPH05121954A (ja) 電位検出回路
US5805022A (en) Circuit for automatically regulating the gain of a differential amplifier
EP0582289B1 (en) Transistor circuit for holding peak/bottom level of signal
JPH03181868A (ja) ピーク検出器
JP2001515602A (ja) ピーク検出装置
JP2007189600A (ja) のこぎり波発生回路
JP3127878B2 (ja) クランプ回路
JP2901899B2 (ja) 自動利得制御装置
JP3336965B2 (ja) 電位センサ
US20050147011A1 (en) Optical integrated device
JP3100664B2 (ja) 積分器用コンパレータ回路装置及び比較方法
JP3548399B2 (ja) ピーク値検出回路およびバースト信号増幅器
KR100271590B1 (ko) 차동 증폭 장치
KR0120585B1 (ko) 스탠더드/롱 플레이(sp/lp) 판별회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees