JP4097069B2 - Printed circuit board manufacturing method - Google Patents

Printed circuit board manufacturing method Download PDF

Info

Publication number
JP4097069B2
JP4097069B2 JP2002248668A JP2002248668A JP4097069B2 JP 4097069 B2 JP4097069 B2 JP 4097069B2 JP 2002248668 A JP2002248668 A JP 2002248668A JP 2002248668 A JP2002248668 A JP 2002248668A JP 4097069 B2 JP4097069 B2 JP 4097069B2
Authority
JP
Japan
Prior art keywords
interlayer insulating
resin layer
insulating resin
filler
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248668A
Other languages
Japanese (ja)
Other versions
JP2004087924A (en
Inventor
由美子 尾崎
隆 楫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002248668A priority Critical patent/JP4097069B2/en
Publication of JP2004087924A publication Critical patent/JP2004087924A/en
Application granted granted Critical
Publication of JP4097069B2 publication Critical patent/JP4097069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビアホールを用いて導体層同士の電気接続を行うプリント基板の製造方法に係り、特にパワーアンプモジュール用受動部品内蔵基板等の高周波用基板の作製に用いて好適な、量産性に優れるプリント基板の製造方法に関する。
【0002】
【従来の技術】
従来、この種のプリント基板にビアホールを形成する場合、層間絶縁樹脂層の所定の位置に、炭酸ガスレーザー、UV−YAGレーザー等を用いて、直径100〜50μmの孔を形成した後に、孔周囲の熱変成層(smear)を過マンガン酸ナトリウム、過マンガン酸カリウム等のデスミア(desmear)処理液を用いてエッチングして除去する。また、ビルドアップ工法等ではこの工程で前記層間絶縁樹脂層表面をエッチングし表面の粗度をあげて、次工程で形成される導体層の密着性を確保している。
【0003】
なお、炭酸ガスレーザーで層間絶縁樹脂層にビアホールを形成する技術を開示するものとして特開2000−22337号公報がある。
【0004】
【発明が解決しようとする課題】
ところで、前記層間絶縁樹脂層の材質が、例えばビニルベンジルのような電気的特性に優れる高信頼性の樹脂である場合、熱変成層はある程度デスミア処理液に溶解するものの、樹脂そのものは不溶であり、熱変性層表面部分と樹脂層との間の溶けにくい中間層が残り、信頼性に深刻な不具合を生じる場合がある。また、ビルドアップ工法等で、下地導体を無電解めっきで形成する場合は、通常、ウエットデスミアを行うと同時に樹脂表面を粗化して基板とめっき銅との密着性を確保するが、樹脂がエッチングされないために、この工程で前記層間絶縁樹脂層の表面粗化を行うことができない。
【0005】
スパッタリングもしくは蒸着法等のドライ工法により、ある程度の密着性を確保しつつ平滑な層間絶縁樹脂層表面に導体層を形成する方法はあるが、一般的に密着性が不十分であり、また、量産性が大幅に低下する。
【0006】
本発明は、上記の点に鑑み、特性に優れる高周波基板で信頼性に優れる層間接続を形成でき、かつ絶縁樹脂層と導体層の密着性を確保可能で、これらを量産性よく実現することが可能なプリント基板の製造方法を提供することを目的とする。
【0007】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明は、1GHzにおいてQが150を超える層間絶縁樹脂層を用いたプリント基板の製造方法において、
前記層間絶縁樹脂層はビニルベンジル樹脂にフィラとして球状シリカを含んでおり、
前記層間絶縁樹脂層にUV−YAGレーザーにより直径200μm以下、30μm以上の孔を形成後、
ビニルベンジル樹脂及びフィラに対して反応性を有する、少なくとも酸素を含む反応性ガスでドライエッチングすることでスミアの除去されたビアホールを形成するとともに、
前記ドライエッチング時に前記層間絶縁樹脂層の表面の樹脂及びフィラを異なるエッチングレートでエッチングして、樹脂面から突出するフィラの平均高さを、少なくともフィラの平均粒径の1/4以上とすることを特徴としている。
【0014】
【発明の実施の形態】
以下、本発明に係るプリント基板の製造方法の実施の形態を図面に従って説明する。
【0015】
図1は本発明に係るプリント基板の製造方法の実施の形態であり、まず、第1導体層となる銅箔1上に、1GHzにおいてQが150を超える層間絶縁樹脂層2を塗布、形成した基板を用意する。ここで、1GHzにおいてQが150を超える層間絶縁樹脂層2としては、例えば、ビニルベンジル樹脂(比誘電率2.5、1GHzでのQ値が260)に1〜30μmの球状シリカフィラを数10体積%混入したもの等を用いることができる。層間絶縁樹脂層2の厚さは数10μm〜数100μmである。
【0016】
1GHzにおいてQが150を超える層間絶縁樹脂層2を用いる理由は、パワーアンプモジュール用受動部品内蔵基板等の高周波用基板を作製するのを目的とする場合、1GHzにおけるQが150以下であると、高周波特性が低下して使用に適さなくなるからである。また、1GHzにおけるQが150を超える樹脂は、ビニルベンジルに見られるように化学的に安定で、レーザーで孔あけ加工をした際、ウエットデスミア処理では十分な効果が得られない材質が多い。
【0017】
層間絶縁樹脂層2に混入するフィラとしてシリカフィラを用いるのは、後述のドライエッチング工程におけるエッチングレートが樹脂と異なるため、選択的にエッチングする(又は選択的に残す)ことが可能であるからである。また、シリカフィラの粒径を1〜30μmとするのは、粒径1μm未満は入手が困難であり、またドライエッチング工程にて層間絶縁樹脂層2の表面に凹凸を形成する効果が薄れるからであり、粒径30μmを超える場合には層間絶縁樹脂層の厚さにバラツキを生じ、また、層間絶縁樹脂層2表面の凹凸が当該樹脂層の厚みに比べて過大となるからである。また、シリカフィラの形状は球状であるほうが表面積が小さく高周波の損失を少なくする上では好ましい。
【0018】
上記の基板に対して、図1(A)のようにUV−YAGレーザー加工機により、ビアホール形成位置に対してUV−YAGレーザーを照射して直径200μm以下、30μm以上の孔3を形成する。その際、孔3の内側側面及び孔周辺に層間絶縁樹脂層2の熱変成層(smear)2aが形成される。ここで、UV−YAGレーザーを用いる理由は、図2(A)のように、レーザー加工によって層間絶縁樹脂層2に孔3を形成したときに生じる熱変成層2aが孔底面には殆ど形成されないからである。これに反し、従来広く用いられている炭酸ガスレーザーでは、図2(B)のように、層間絶縁樹脂層2に孔3を形成したときに、レーザー加工中の発熱により樹脂が溶解して熱変成層2a(若しくは樹脂)が孔底部に残り、ビアホールにより導体層相互の接続を図るときに信頼性上問題が発生する恐れが強い。ドライエッチング処理で除去できる樹脂やその熱変成層の厚さは2μmが限度であり、それ以上の熱変成層2aが孔底部に残留すると、ビアホールによる導体接続の断線、ルーズコンタクト等の不具合の要因となる。なお、孔3の直径(ここでは孔3の開口径を言う)を30μm〜200μmの範囲とするのは、30μm未満では層間絶縁樹脂層の厚さに比較して孔径が過小となり、後工程で上層の導体層を形成する際にビアホール接続の信頼性が確保できなくなるきらいがあり、200μmを超える場合にはレーザー加工よりもコストの安い方法でビアホール形成が可能になるからである。
【0019】
上記のようにレーザー加工による孔3を形成した基板に対して、層間絶縁樹脂層2及びフィラに対して反応性を有するガス(例えばOとCFとの混合ガス)を用いたドライエッチング処理により、図1(B)のように熱変成層2aを除去し(デスミア処理)、これと同時に層間絶縁樹脂層2の表面を粗化する。ドライエッチング処理において、O+CFの混合ガスを用いた場合、Oの割合を増やすと樹脂のエッチングレートが上がり、CFの割合を増やすとシリカフィラのエッチングレートが上がる。従って、混合ガスにおけるOとCFとの混合割合を変えて層間絶縁樹脂層2の樹脂とシリカフィラのエッチングレートを適切に設定することで層間絶縁樹脂層2の表面を適切に粗化できる。
【0020】
このドライエッチング処理により、孔3の内側面及びその周囲の熱変成層2aが除去されたビアホール10が形成されるとともに、次工程の第2導体層形成に適した粗さに層間絶縁樹脂層2の表面を粗化することができる。
【0021】
その後、図1(C)のように、無電解銅めっき等により第2導体層の下地導体層11を層間絶縁樹脂層2上及びビアホール10の内面に形成することで、ビアホール10を介しての第1導体層1と第2導体層の下地導体層11の電気接続が行われる。そして、図示しないが、下地導体層11上には所要厚みとなるように銅等の電解めっきでめっき導体層を形成して第2導体層とする。
【0022】
なお、前記第1導体層及び第2導体層の少なくとも一方は所定の配線パターンとなるようにパターニングする。
【0023】
図3は球状シリカフィラを含む層間絶縁樹脂層2をドライエッチングし、層間絶縁樹脂層2の表面のビニルベンジル樹脂を選択的にエッチングすることで樹脂面からフィラを突出させたとき、{フィラの平均突出高さ/フィラ平均粒径}と第2導体層のピール強度との関係を示す。この図から、フィラの平均突出高さがフィラの平均粒径の1/4以上であれば、上限値の90%以上のピール強度が得られることがわかる。
【0024】
なお、前記ドライエッチング処理において、球状シリカフィラの方が選択的にエッチングされるようにO+CFの混合ガスの混合割合を変えて、層間絶縁樹脂層の表面において球状シリカフィラの部分がエッチングされて窪んだ状態とすることで表面粗化を図ってもよい。ドライエッチング時に樹脂表面の粗化はデスミアと同時に行うことが好ましいが、条件の設定が難しいときにはデスミアで有効な条件で処理を行った後に表面粗化に有効な条件で処理することができる。また、処理工程順序を反対にしても良い。上記処理はドライエッチングの同一バッチで行える。
【0025】
この実施の形態によれば、次の通りの効果を得ることができる。
【0026】
(1) 導体層間に介在する層間絶縁層樹脂層2としてビニルベンジル等の高Q材料(1GHzにおいてQが150より大)を使用するので高周波特性に優れる。
【0027】
(2) 球状シリカ等の低損失フィラを層間絶縁樹脂層2に混入するとQが上がり、さらに高周波特性が改善される。
【0028】
(3) レーザーによる孔あけ加工後のデスミア(熱変成層除去)をドライエッチングで行っているので信頼性が良好である。ウエットエッチングの場合、ビニルベンジルのような電気的特性に優れる高信頼性の樹脂では、熱変性層表面部分と樹脂層との間の溶けにくい中間層が残り、信頼性が不十分である。
【0029】
(4) 上記のデスミア工程と同時に層間絶縁樹脂層の粗面化が行われるので、工程が短く、量産性に優れる。
【0030】
(5) 処理後の層間絶縁樹脂層2の表面には、フィラの粒径と同程度の凹凸がきめ細かく形成されるので、その上に形成される導体層の密着性に優れる。とくに、樹脂表面からのフィラの平均突出高さを、フィラの平均粒径の1/4以上とすることでピール強度を十分大きくできる。
【0031】
(6) 層間絶縁樹脂層表面の凹凸がフィラの粒径で決まるので、粗化の制御が容易である。すなわち、表面の表面粗さを上げる場合は、フィラの粒径を大きくする。また、凹凸の総数を上げる場合は、フィラの混入割合を上げればよい。
【0032】
(7) 上記に類似の考え方は、ウエットデスミア処理でもある。すなわち樹脂中に炭酸カルシウム等のエッチングされやすいフィラを混入し、デスミア等の薬液処理でフィラを溶解し、凹凸を形成する。この場合、処理液の浸透により内部のフィラをも溶解する場合があり、その場合、層間絶縁不良を生じる。本発明では、ドライエッチングにより表層の樹脂又はフィラをエッチングするので(エッチングは表層に限られるので)絶縁不良は起こらない。
【0033】
(8) フィラの粒径を1μm程度にすると、密着性に優れ、かつ高周波特性も良好な導体層を層間絶縁樹脂層上に形成することができる。つまり、導体層が銅である場合、そのスキンデプスは1GHzで約2μmであり、高周波特性の上からは層間絶縁樹脂層表面の凹凸はスキンデプスより小さいことが好ましい。
【0034】
(9) UV−YAGレーザーで孔あけ加工することで、層間絶縁樹脂層2にあけた孔3の周囲にできる熱変成層2aは少なく、孔底面には熱変成層が殆ど形成されないため(図2(A)参照)、ビアホールによる導体接続の断線、ルーズコンタクト等の不具合の発生は無い。
【0035】
【実施例】
以下、本発明に係るプリント基板の製造方法を実施例で詳述する。
【0036】
本実施例に使用した基板は、第1導体層としての銅箔上に、層間絶縁樹脂層としてのビニルベンジル樹脂を塗布したものである。ビニルベンジル樹脂には1〜30μmの球状シリカフィラが40体積%混入している。層間絶縁樹脂層となるビニルベンジル樹脂の膜厚は約0.1mmである。
【0037】
層間絶縁樹脂層に形成するビアホールのレーザー加工には、三菱電機製605DLXのレーザー加工機を用いた。レーザー加工機の種類はUV−YAGである。レーザー加工条件は、周波数:30kHz、パルス幅:200μs、マスク:直径0.9mm、パルスエネルギー:0.5mJ、ショット数:20である。
【0038】
上記条件で層間絶縁樹脂層にレーザー加工した孔のSEM(走査電子顕微鏡)写真を図4の(写真1)に示す。図4の(写真2)は加工孔の付近(写真1のA付近)で、飛散物(スミア)が付着している。図4の(写真3)は加工孔から離れた位置(写真1のB付近)で、飛散物はみられない。
【0039】
前記レーザー加工による孔内面及び周辺の飛散物の除去並びに層間絶縁樹脂層表面の粗化のためのドライエッチング処理に用いた装置は、TELPA AG製の多用途プラズマ装置SYSTEM400である。ガスの種類は、O+CFで、エッチング条件は、O:700cc/min,CF:100cc/min、圧力:100Pa、プラズマ出力:1kW、RFバイアス:100W、エッチング時間:10分である。上記条件でエッチングした基板の表面SEM像を図5に示す。層間絶縁樹脂層の表面に球状シリカフィラがエッチングされずに残っているのがわかる。
【0040】
上記のようにRFバイアス:100W、エッチング時間:10分でドライエッチングした基板に、次工程の下地導体処理を銅の無電解めっきで行いピール強度を測定したところ、約0.6kgf/cm (約6×10N/m)であった。これは、ロープロファイル品(表面粗さが小さい製品)の銅箔にビニルベンジルを塗布したもののピール強度が、約0.4kgf/cm (約4×10N/m)であるのと比較して、同程度以上であることがわかる。
【0041】
以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0042】
【発明の効果】
以上説明したように、本発明に係るプリント基板の製造方法によれば、特性に優れる高周波基板において信頼性に優れるビアホールによる層間接続を形成でき、かつ絶縁樹脂層と導体層の密着性を確保可能で、それらを量産性よく実現可能である。
【図面の簡単な説明】
【図1】本発明に係るプリント基板の製造方法の実施の形態を示す説明図である。
【図2】UV−YAGレーザー及び炭酸ガスレーザーによる孔あけ加工の際に発生する熱変性層(スミア)の様子を示し、(A)はUV−YAGレーザー、(B)は炭酸ガスレーザーの場合の説明図である。
【図3】層間絶縁樹脂層表面の{フィラの平均突出高さ/フィラ平均粒径}と、層間絶縁樹脂層上に形成した第2導体層のピール強度との関係を示すグラフである。
【図4】層間絶縁樹脂層に対するレーザー孔あけ加工後の孔周辺の写真図である。
【図5】ドライエッチング処理後の層間絶縁樹脂層表面の写真図である。
【符号の説明】
1 銅箔
2 層間絶縁樹脂層
2a 熱変成層
3 孔
10 ビアホール
11 下地導体層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a printed circuit board in which conductor layers are electrically connected using via holes, and is particularly suitable for use in manufacturing a high frequency substrate such as a passive component built-in substrate for a power amplifier module, and is excellent in mass productivity. The present invention relates to a printed circuit board manufacturing method.
[0002]
[Prior art]
Conventionally, when forming a via hole in this type of printed circuit board, a hole having a diameter of 100 to 50 μm is formed at a predetermined position of the interlayer insulating resin layer using a carbon dioxide gas laser, a UV-YAG laser, etc. The thermal metamorphic layer (smear) is removed by etching using a desmear treatment solution such as sodium permanganate or potassium permanganate. Also, in the build-up method or the like, the surface of the interlayer insulating resin layer is etched in this step to increase the surface roughness, and the adhesion of the conductor layer formed in the next step is ensured.
[0003]
Japanese Patent Laid-Open No. 2000-22337 discloses a technique for forming a via hole in an interlayer insulating resin layer with a carbon dioxide gas laser.
[0004]
[Problems to be solved by the invention]
By the way, when the material of the interlayer insulating resin layer is a highly reliable resin having excellent electrical characteristics such as vinyl benzyl, for example, the thermal metamorphic layer dissolves to some extent in the desmear treatment liquid, but the resin itself is insoluble. In addition, an intermediate layer that hardly dissolves between the surface portion of the heat-denatured layer and the resin layer remains, which may cause a serious problem in reliability. In addition, when the base conductor is formed by electroless plating by a build-up method, etc., the resin surface is generally roughened at the same time as wet desmearing to ensure adhesion between the substrate and the plated copper, but the resin is etched. Therefore, the surface of the interlayer insulating resin layer cannot be roughened in this step.
[0005]
There is a method of forming a conductor layer on the surface of a smooth interlayer insulating resin layer while ensuring a certain degree of adhesion by a dry method such as sputtering or vapor deposition, but generally the adhesion is insufficient, and mass production Is significantly reduced.
[0006]
In view of the above points, the present invention can form a highly reliable interlayer connection with a high-frequency substrate having excellent characteristics, and can ensure the adhesion between the insulating resin layer and the conductor layer, and realize them with high productivity. An object of the present invention is to provide a method for manufacturing a printed circuit board.
[0007]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application is a printed circuit board manufacturing method using an interlayer insulating resin layer having a Q of more than 150 at 1 GHz.
The interlayer insulating resin layer contains spherical silica as a filler in vinylbenzyl resin,
After forming holes having a diameter of 200 μm or less and 30 μm or more by UV-YAG laser in the interlayer insulating resin layer,
Forming via holes from which smear has been removed by dry etching with a reactive gas containing at least oxygen and having reactivity with vinylbenzyl resin and filler ,
The resin and filler on the surface of the interlayer insulating resin layer are etched at different etching rates during the dry etching so that the average height of the filler protruding from the resin surface is at least 1/4 of the average particle diameter of the filler. It is characterized by.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a printed circuit board manufacturing method according to the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of a method for producing a printed circuit board according to the present invention. First, an interlayer insulating resin layer 2 having a Q of more than 150 at 1 GHz is applied and formed on a copper foil 1 serving as a first conductor layer. Prepare a substrate. Here, as the interlayer insulating resin layer 2 having a Q of more than 150 at 1 GHz, for example, several 10 spherical silica fillers of 1 to 30 μm are added to a vinylbenzyl resin (relative dielectric constant 2.5, Q value at 1 GHz is 260). What mixed by volume% etc. can be used. The thickness of the interlayer insulating resin layer 2 is several tens of μm to several hundreds of μm.
[0016]
The reason why the interlayer insulating resin layer 2 having a Q exceeding 150 at 1 GHz is to produce a high frequency substrate such as a passive component built-in substrate for a power amplifier module, and when the Q at 1 GHz is 150 or less, This is because the high frequency characteristics are deteriorated and become unsuitable for use. Resins having a Q of more than 150 at 1 GHz are chemically stable as seen in vinylbenzyl, and many materials cannot be sufficiently obtained by wet desmear treatment when drilled with a laser.
[0017]
Silica filler is used as the filler mixed in the interlayer insulating resin layer 2 because it can be selectively etched (or left selectively) because the etching rate in the dry etching process described later is different from that of the resin. is there. Also, the reason why the silica filler particle size is 1 to 30 μm is that it is difficult to obtain particles having a particle size of less than 1 μm, and the effect of forming irregularities on the surface of the interlayer insulating resin layer 2 in the dry etching process is reduced. If the particle diameter exceeds 30 μm, the thickness of the interlayer insulating resin layer varies, and the unevenness on the surface of the interlayer insulating resin layer 2 becomes excessive compared to the thickness of the resin layer. Further, the spherical shape of the silica filler is preferable for reducing the loss of high frequency because the surface area is small.
[0018]
As shown in FIG. 1A, the substrate is irradiated with a UV-YAG laser at a via-hole forming position to form holes 3 having a diameter of 200 μm or less and 30 μm or more. At that time, a thermal metamorphic layer (smear) 2 a of the interlayer insulating resin layer 2 is formed on the inner side surface of the hole 3 and around the hole. Here, the reason why the UV-YAG laser is used is that, as shown in FIG. 2A, the heat-transformed layer 2a generated when the hole 3 is formed in the interlayer insulating resin layer 2 by laser processing is hardly formed on the bottom surface of the hole. Because. On the contrary, in the carbon dioxide laser that has been widely used in the past, when the hole 3 is formed in the interlayer insulating resin layer 2 as shown in FIG. The metamorphic layer 2a (or resin) remains at the bottom of the hole, and there is a strong possibility that a problem in reliability occurs when the conductor layers are connected to each other by a via hole. Resin that can be removed by dry etching and the thickness of its thermal metamorphic layer is limited to 2 μm. If the thermal metamorphic layer 2a is left at the bottom of the hole, it may cause problems such as disconnection of conductor connection due to via holes and loose contact. It becomes. The diameter of the hole 3 (referred to here as the opening diameter of the hole 3) is in the range of 30 μm to 200 μm. If the diameter is less than 30 μm, the hole diameter is too small compared to the thickness of the interlayer insulating resin layer. This is because the reliability of via hole connection cannot be ensured when the upper conductor layer is formed, and if it exceeds 200 μm, via holes can be formed by a method that is less expensive than laser processing.
[0019]
A dry etching process using a gas (for example, a mixed gas of O 2 and CF 4 ) having reactivity with the interlayer insulating resin layer 2 and the filler on the substrate having the holes 3 formed by laser processing as described above. As shown in FIG. 1B, the thermal metamorphic layer 2a is removed (desmear treatment), and at the same time, the surface of the interlayer insulating resin layer 2 is roughened. When a mixed gas of O 2 + CF 4 is used in the dry etching process, increasing the O 2 ratio increases the resin etching rate, and increasing the CF 4 ratio increases the silica filler etching rate. Therefore, the surface of the interlayer insulating resin layer 2 can be appropriately roughened by changing the mixing ratio of O 2 and CF 4 in the mixed gas and appropriately setting the etching rate of the resin of the interlayer insulating resin layer 2 and the silica filler. .
[0020]
By this dry etching process, the via hole 10 is formed by removing the inner side surface of the hole 3 and the thermal transformation layer 2a around it, and the interlayer insulating resin layer 2 has a roughness suitable for forming the second conductor layer in the next step. The surface of can be roughened.
[0021]
Thereafter, as shown in FIG. 1C, the underlying conductor layer 11 of the second conductor layer is formed on the interlayer insulating resin layer 2 and on the inner surface of the via hole 10 by electroless copper plating or the like. Electrical connection is made between the first conductor layer 1 and the underlying conductor layer 11 of the second conductor layer. Although not shown, a plated conductor layer is formed on the underlying conductor layer 11 by electrolytic plating such as copper so as to have a required thickness, thereby forming a second conductor layer.
[0022]
Note that at least one of the first conductor layer and the second conductor layer is patterned to have a predetermined wiring pattern.
[0023]
In FIG. 3, when the filler is protruded from the resin surface by dry etching the interlayer insulating resin layer 2 containing the spherical silica filler and selectively etching the vinylbenzyl resin on the surface of the interlayer insulating resin layer 2, The average protrusion height / filler average particle size} and the peel strength of the second conductor layer are shown. From this figure, it can be seen that if the average protrusion height of the filler is 1/4 or more of the average particle diameter of the filler, a peel strength of 90% or more of the upper limit value can be obtained.
[0024]
In the dry etching process, the mixing ratio of the mixed gas of O 2 + CF 4 is changed so that the spherical silica filler is selectively etched, and the spherical silica filler portion is etched on the surface of the interlayer insulating resin layer. Then, the surface may be roughened by making it depressed. It is preferable to roughen the resin surface simultaneously with desmear during dry etching. However, when it is difficult to set conditions, the resin surface can be processed under conditions effective for surface roughening after being processed under conditions effective with desmear. Further, the order of processing steps may be reversed. The above process can be performed in the same batch of dry etching.
[0025]
According to this embodiment, the following effects can be obtained.
[0026]
(1) Since a high-Q material such as vinylbenzyl (Q is greater than 150 at 1 GHz) is used as the interlayer insulating resin layer 2 interposed between the conductor layers, the high-frequency characteristics are excellent.
[0027]
(2) When a low-loss filler such as spherical silica is mixed in the interlayer insulating resin layer 2, the Q is increased and the high frequency characteristics are further improved.
[0028]
(3) The desmear (thermal metamorphic layer removal) after drilling by laser is performed by dry etching, so the reliability is good. In the case of wet etching, a highly reliable resin such as vinylbenzyl having excellent electrical characteristics leaves an insoluble intermediate layer between the surface portion of the heat-denatured layer and the resin layer, resulting in insufficient reliability.
[0029]
(4) Since the interlayer insulating resin layer is roughened simultaneously with the desmear process, the process is short and the mass productivity is excellent.
[0030]
(5) Since the surface of the interlayer insulating resin layer 2 after the treatment has fine irregularities similar to the particle size of the filler, the adhesiveness of the conductor layer formed thereon is excellent. In particular, the peel strength can be sufficiently increased by setting the average protrusion height of the filler from the resin surface to ¼ or more of the average particle diameter of the filler.
[0031]
(6) Since the irregularities on the surface of the interlayer insulating resin layer are determined by the particle size of the filler, it is easy to control the roughening. That is, when increasing the surface roughness of the surface, the particle size of the filler is increased. Moreover, what is necessary is just to raise the mixing rate of a filler, when raising the total number of unevenness | corrugations.
[0032]
(7) A similar idea to the above is also wet desmear processing. That is, a filler that is easily etched, such as calcium carbonate, is mixed in the resin, and the filler is dissolved by chemical treatment such as desmear to form irregularities. In this case, the filler inside may be dissolved by the permeation of the treatment liquid, and in this case, an interlayer insulation failure occurs. In the present invention, since the resin or filler on the surface layer is etched by dry etching (since etching is limited to the surface layer), insulation failure does not occur.
[0033]
(8) When the particle size of the filler is about 1 μm, a conductor layer having excellent adhesion and good high frequency characteristics can be formed on the interlayer insulating resin layer. That is, when the conductor layer is copper, the skin depth is about 2 μm at 1 GHz, and the unevenness on the surface of the interlayer insulating resin layer is preferably smaller than the skin depth from the viewpoint of high frequency characteristics.
[0034]
(9) By drilling with a UV-YAG laser, there are few thermal metamorphic layers 2a around the holes 3 in the interlayer insulating resin layer 2, and almost no thermal metamorphic layer is formed on the bottom of the holes (see FIG. 2 (A)), there is no trouble such as disconnection of the conductor connection due to the via hole, loose contact or the like.
[0035]
【Example】
Hereinafter, the manufacturing method of the printed circuit board concerning the present invention is explained in full detail in an example.
[0036]
The board | substrate used for the present Example apply | coats the vinyl benzyl resin as an interlayer insulation resin layer on the copper foil as a 1st conductor layer. The vinylbenzyl resin is mixed with 40 volume% of 1-30 μm spherical silica filler. The film thickness of the vinyl benzyl resin used as the interlayer insulating resin layer is about 0.1 mm.
[0037]
A 605DLX laser processing machine manufactured by Mitsubishi Electric was used for laser processing of the via hole formed in the interlayer insulating resin layer. The type of laser processing machine is UV-YAG. The laser processing conditions are a frequency: 30 kHz, a pulse width: 200 μs, a mask: a diameter of 0.9 mm, a pulse energy: 0.5 mJ, and a shot number: 20.
[0038]
An SEM (scanning electron microscope) photograph of the hole laser-processed in the interlayer insulating resin layer under the above conditions is shown in (photo 1) of FIG. In FIG. 4 (photo 2), scattered matter (smear) is attached in the vicinity of the processing hole (near A in photo 1). 4 (Photo 3) is a position away from the processing hole (near B in Photo 1), and no scattered matter is seen.
[0039]
The apparatus used for the dry etching process for removing the scattered material around the inner surface of the hole by the laser processing and for roughening the surface of the interlayer insulating resin layer is a versatile plasma apparatus SYSTEM400 manufactured by TELPA AG. The gas type is O 2 + CF 4 , and the etching conditions are O 2 : 700 cc / min, CF 4 : 100 cc / min, pressure: 100 Pa, plasma output: 1 kW, RF bias: 100 W, etching time: 10 minutes. . A surface SEM image of the substrate etched under the above conditions is shown in FIG. It can be seen that the spherical silica filler remains on the surface of the interlayer insulating resin layer without being etched.
[0040]
RF as the bias: 100W, etching time: the substrate was dry-etched with 10 minutes, where the underlying conductor processing in the next step was to measure the peel strength is performed by electroless plating of copper, about 0.6 kgf / cm 2 ( About 6 × 10 4 N / m 2 ). This is because the peel strength of low profile copper foil coated with vinylbenzyl is about 0.4 kgf / cm 2 (about 4 × 10 4 N / m 2 ). In comparison, it can be seen that it is the same or higher.
[0041]
Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims. I will.
[0042]
【The invention's effect】
As described above, according to the method of manufacturing a printed circuit board according to the present invention, it is possible to form an interlayer connection by a via hole having excellent reliability in a high-frequency substrate having excellent characteristics, and to ensure adhesion between the insulating resin layer and the conductor layer. Therefore, they can be realized with high productivity.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of a method for producing a printed circuit board according to the present invention.
FIG. 2 shows a state of a heat-denatured layer (smear) generated during drilling with a UV-YAG laser and a carbon dioxide gas laser, where (A) is a UV-YAG laser and (B) is a carbon dioxide laser. It is explanatory drawing of.
FIG. 3 is a graph showing the relationship between {filler average protrusion height / filler average particle size} on the surface of an interlayer insulating resin layer and peel strength of a second conductor layer formed on the interlayer insulating resin layer.
FIG. 4 is a photographic view of the periphery of a hole after laser drilling for an interlayer insulating resin layer.
FIG. 5 is a photograph of the surface of an interlayer insulating resin layer after dry etching.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Copper foil 2 Interlayer insulation resin layer 2a Thermal metamorphic layer 3 Hole 10 Via hole 11 Base conductor layer

Claims (1)

1GHzにおいてQが150を超える層間絶縁樹脂層を用いたプリント基板の製造方法において、
前記層間絶縁樹脂層はビニルベンジル樹脂にフィラとして球状シリカを含んでおり、
前記層間絶縁樹脂層にUV−YAGレーザーにより直径200μm以下、30μm以上の孔を形成後、
ビニルベンジル樹脂及びフィラに対して反応性を有する、少なくとも酸素を含む反応性ガスでドライエッチングすることでスミアの除去されたビアホールを形成するとともに、
前記ドライエッチング時に前記層間絶縁樹脂層の表面の樹脂及びフィラを異なるエッチングレートでエッチングして、樹脂面から突出するフィラの平均高さを、少なくともフィラの平均粒径の1/4以上とすることを特徴とするプリント基板の製造方法。
In a method for manufacturing a printed circuit board using an interlayer insulating resin layer having a Q exceeding 150 at 1 GHz,
The interlayer insulating resin layer contains spherical silica as a filler in vinylbenzyl resin,
After forming holes having a diameter of 200 μm or less and 30 μm or more by UV-YAG laser in the interlayer insulating resin layer,
Forming via holes from which smear has been removed by dry etching with a reactive gas containing at least oxygen and having reactivity with vinylbenzyl resin and filler ,
The resin and filler on the surface of the interlayer insulating resin layer are etched at different etching rates during the dry etching so that the average height of the filler protruding from the resin surface is at least 1/4 of the average particle diameter of the filler. A printed circuit board manufacturing method characterized by the above.
JP2002248668A 2002-08-28 2002-08-28 Printed circuit board manufacturing method Expired - Fee Related JP4097069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248668A JP4097069B2 (en) 2002-08-28 2002-08-28 Printed circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248668A JP4097069B2 (en) 2002-08-28 2002-08-28 Printed circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2004087924A JP2004087924A (en) 2004-03-18
JP4097069B2 true JP4097069B2 (en) 2008-06-04

Family

ID=32055993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248668A Expired - Fee Related JP4097069B2 (en) 2002-08-28 2002-08-28 Printed circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP4097069B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4130811B2 (en) 2004-03-24 2008-08-06 株式会社アドバンテスト Test apparatus and test method
US7842223B2 (en) * 2004-12-22 2010-11-30 Nordson Corporation Plasma process for removing excess molding material from a substrate
US9166268B2 (en) 2012-05-01 2015-10-20 Nanoton, Inc. Radio frequency (RF) conductive medium
JP2016092307A (en) * 2014-11-07 2016-05-23 株式会社アルバック Processing method of resin substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797178A (en) * 1987-05-13 1989-01-10 International Business Machines Corporation Plasma etch enhancement with large mass inert gas
JPH07249867A (en) * 1994-03-09 1995-09-26 Oki Electric Ind Co Ltd Method of surface treating insulating film
JPH11186716A (en) * 1997-10-14 1999-07-09 Fujitsu Ltd Method of forming metal layer
JP3692761B2 (en) * 1998-01-23 2005-09-07 日本ビクター株式会社 Printed circuit board manufacturing method and printed circuit board
JP2002038022A (en) * 2000-07-21 2002-02-06 Toppan Printing Co Ltd Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same
JP2002124415A (en) * 2000-10-17 2002-04-26 Tdk Corp Printed circuit board for high frequency and its manufacturing method
JP2002190671A (en) * 2000-12-22 2002-07-05 Shinko Electric Ind Co Ltd Method for manufacturing circuit board
JP2003273499A (en) * 2002-03-12 2003-09-26 Nippon Spindle Mfg Co Ltd Method of plasma cleaning printed-circuit board

Also Published As

Publication number Publication date
JP2004087924A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3752161B2 (en) Method for roughening copper surface of printed wiring board, printed wiring board, and manufacturing method thereof
US6428942B1 (en) Multilayer circuit structure build up method
KR20070037671A (en) Printed-wiring board, multilayer printed-wiring board and manufacturing process therefor
JP2000294921A (en) Printed circuit board and manufacture thereof
WO2006033315A1 (en) Plating method and plating apparatus
KR20010108391A (en) Method for manufacturing a multilayer printed circuit board and composite foil for use therein
US20030135994A1 (en) Printed circuit board and manufacturing method therefor
KR20010105366A (en) Method of manufacturing multilayer wiring board
JP4212006B2 (en) Manufacturing method of multilayer printed wiring board
TW202226919A (en) A method for manufactunring a multilayer circuit structure having embedded trace layers
JP4060629B2 (en) Method for forming plated through hole and method for manufacturing multilayer wiring board
JP4097069B2 (en) Printed circuit board manufacturing method
JP4192946B2 (en) MATERIAL FOR MULTILAYER WIRING BOARD CONTAINING CAPACITOR, MULTILAYER WIRING BOARD SUBSTRATE, MULTILAYER WIRING BOARD AND METHOD FOR PRODUCING THE SAME
JP4488187B2 (en) Method for manufacturing substrate having via hole
JP2001251054A (en) Method for manufacturing circuit board for multilayer printed wiring board
JP2002043753A (en) Manufacturing method of multilayer printed circuit board
KR20030016515A (en) method for producing build-up multi-layer printed circuit board using a via filling
JP3556178B2 (en) Flexible copper-clad board and method of manufacturing the same
WO2005015966A1 (en) Printed wiring board and method of producing the same
JP2000036659A (en) Manufacture of build-up multilayer interconnection board
JP2004235202A (en) Via forming method in wiring board
JP2000036661A (en) Manufacture of build-up multilayer interconnection board
JP4593009B2 (en) Method for manufacturing printed circuit board
JP2002271026A (en) Multi-layer printed wiring board and manufacturing method therefor
JP3763666B2 (en) Method for manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees