JP4096969B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP4096969B2
JP4096969B2 JP2005305668A JP2005305668A JP4096969B2 JP 4096969 B2 JP4096969 B2 JP 4096969B2 JP 2005305668 A JP2005305668 A JP 2005305668A JP 2005305668 A JP2005305668 A JP 2005305668A JP 4096969 B2 JP4096969 B2 JP 4096969B2
Authority
JP
Japan
Prior art keywords
heat exchanger
passage
water
liquid gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005305668A
Other languages
Japanese (ja)
Other versions
JP2007113840A (en
Inventor
真一 坂本
昌弘 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005305668A priority Critical patent/JP4096969B2/en
Publication of JP2007113840A publication Critical patent/JP2007113840A/en
Application granted granted Critical
Publication of JP4096969B2 publication Critical patent/JP4096969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、液ガス熱交換器を用いたヒートポンプ式給湯装置に関するものである。   The present invention relates to a heat pump type hot water supply apparatus using a liquid gas heat exchanger.

ヒートポンプ式給湯装置の冷凍サイクルの途中に液ガス熱交換器を用いたのが提供されている。この液ガス熱交換器は、水熱交換器から流出して減圧機構に流入する高圧冷媒と、空気熱交換器から流出した低圧冷媒との熱交換を行なうものである。この液ガス熱交換器を設けることによって、水熱交換器(ガス冷却器)からの冷媒に過冷却を付与し、また、圧縮機に入る冷媒を加熱して、圧縮機の湿り圧縮を防止するようにしている。   It has been provided that a liquid gas heat exchanger is used in the middle of the refrigeration cycle of a heat pump hot water supply apparatus. This liquid gas heat exchanger performs heat exchange between the high-pressure refrigerant that flows out of the water heat exchanger and flows into the decompression mechanism, and the low-pressure refrigerant that flows out of the air heat exchanger. By providing this liquid gas heat exchanger, the refrigerant from the water heat exchanger (gas cooler) is supercooled, and the refrigerant entering the compressor is heated to prevent wet compression of the compressor. I am doing so.

図6に該液ガス熱交換器を用いたヒートポンプ式給湯装置の簡略図を示している(特許文献1参照)。このヒートポンプ式給湯装置は、貯湯タンク1を有するタンクユニット2と、冷凍サイクル3を有するヒートポンプユニット4とを備えている。そして、タンクユニット2の貯湯タンク1には、その底壁に給水口5が設けられると共に、その上壁に出湯口6が設けられている。この給水口5から貯湯タンク1に水道水が供給され、出湯口6から高温の温湯が出湯される。また、貯湯タンク1には、その底壁に取水口7が開設されると共に、側壁(周壁)の上部に湯入口8が開設され、取水口7と湯入口8とが循環路9にて連結されている。そして、この循環路9に水循環用ポンプ10と熱交換路11とが介設されている。すなわち、水循環用ポンプ10が駆動すると、貯湯タンク1内の未加熱水が取水口7から循環路9に流出して、熱交換路11を介して湯入口8から貯湯タンク1内に返流する。   FIG. 6 shows a simplified diagram of a heat pump type hot water supply apparatus using the liquid gas heat exchanger (see Patent Document 1). The heat pump type hot water supply apparatus includes a tank unit 2 having a hot water storage tank 1 and a heat pump unit 4 having a refrigeration cycle 3. The hot water storage tank 1 of the tank unit 2 is provided with a water supply port 5 on its bottom wall and a hot water outlet 6 on its upper wall. Tap water is supplied from the water supply port 5 to the hot water storage tank 1, and hot hot water is discharged from the hot water outlet 6. In addition, the hot water storage tank 1 has a water intake 7 at the bottom wall and a hot water inlet 8 at the top of the side wall (peripheral wall), and the water intake 7 and the hot water inlet 8 are connected by a circulation path 9. Has been. The circulation path 9 is provided with a water circulation pump 10 and a heat exchange path 11. That is, when the water circulation pump 10 is driven, unheated water in the hot water storage tank 1 flows out from the water intake 7 to the circulation path 9 and returns to the hot water storage tank 1 from the hot water inlet 8 through the heat exchange path 11. .

次に、冷凍サイクル3は、圧縮機13と、上記熱交換路11を構成する水熱交換器14と、電動膨張弁(減圧機構)15と、空気熱交換器16とを順に接続して構成されている。すなわち、圧縮機13の吐出口と水熱交換器14とを冷媒通路17にて接続し、水熱交換器14と電動膨張弁15とを冷媒通路18、36にて接続し、電動膨張弁15と空気熱交換器16とを冷媒通路19にて接続し、空気熱交換器16と圧縮機13とを冷媒通路37及び冷媒通路21にて接続している。そして、冷媒としては、例えば、高圧側を超臨界圧力で使用する炭酸ガス等の自然冷媒が用いられる。   Next, the refrigeration cycle 3 is configured by connecting a compressor 13, a water heat exchanger 14 that constitutes the heat exchange path 11, an electric expansion valve (decompression mechanism) 15, and an air heat exchanger 16 in this order. Has been. That is, the discharge port of the compressor 13 and the water heat exchanger 14 are connected by the refrigerant passage 17, the water heat exchanger 14 and the electric expansion valve 15 are connected by the refrigerant passages 18 and 36, and the electric expansion valve 15 And the air heat exchanger 16 are connected by a refrigerant passage 19, and the air heat exchanger 16 and the compressor 13 are connected by a refrigerant passage 37 and a refrigerant passage 21. And as a refrigerant | coolant, natural refrigerant | coolants, such as a carbon dioxide gas which uses a high voltage | pressure side by a supercritical pressure, are used, for example.

また、冷凍サイクル3は、水熱交換器14から流出した高圧冷媒を冷却する液ガス熱交換器25を備えている。この場合、液ガス熱交換器25は、水熱交換器14から流出した高圧冷媒が通過する第1通路26と、空気熱交換器16から流出した低圧冷媒が通過する第2通路27とを備えている。そして、第1通路26を通過する高温高圧の冷媒と、第2通路27を通過する低温低圧の冷媒との間で熱交換が行なわれる。   The refrigeration cycle 3 includes a liquid gas heat exchanger 25 that cools the high-pressure refrigerant that has flowed out of the water heat exchanger 14. In this case, the liquid gas heat exchanger 25 includes a first passage 26 through which the high-pressure refrigerant flowing out from the water heat exchanger 14 passes, and a second passage 27 through which the low-pressure refrigerant flowing out from the air heat exchanger 16 passes. ing. Then, heat exchange is performed between the high-temperature and high-pressure refrigerant passing through the first passage 26 and the low-temperature and low-pressure refrigerant passing through the second passage 27.

次に、このヒートポンプ式給湯装置の運転動作(湯沸かし運転)を説明する。圧縮機13を駆動すると共に、水循環用ポンプ10を駆動(作動)する。すると、貯湯タンク1の底部に設けた取水口7から貯溜水(温湯)が流出し、これが循環路9の熱交換路11を流通する。また、圧縮機13からの吐出冷媒が、水熱交換器14、減圧機構15、空気熱交換器16とを順次経由して上記圧縮機13へと返流する。そのため、循環路9の熱交換路11を流通する水がガス冷却器である水熱交換器14によって加熱され(沸き上げられ)、湯入口8から貯湯タンク1の上部に返流される。そして、このような動作を継続して行なうことによって、貯湯タンク1に高温の温湯が貯湯されることになる。   Next, the operation of the heat pump type hot water supply apparatus (water heater operation) will be described. The compressor 13 is driven and the water circulation pump 10 is driven (actuated). Then, stored water (hot water) flows out from the water intake 7 provided at the bottom of the hot water storage tank 1, and this flows through the heat exchange path 11 of the circulation path 9. Further, the refrigerant discharged from the compressor 13 returns to the compressor 13 via the water heat exchanger 14, the decompression mechanism 15, and the air heat exchanger 16 in order. Therefore, the water flowing through the heat exchange path 11 of the circulation path 9 is heated (boiling) by the water heat exchanger 14 that is a gas cooler, and returned to the upper part of the hot water storage tank 1 from the hot water inlet 8. Then, by continuously performing such an operation, hot hot water is stored in the hot water storage tank 1.

ところで、上記ヒートポンプユニット4において、液ガス熱交換器25が無ければ、熱交換路11への入水温度が低温であるときには、図7(a)のAのようなサイクルを構成するが、熱交換路11への入水温度が高温であるときには、図7(a)のBのようなサイクルとなる。すなわち、図7(a)のAのサイクルと、図7(a)のBのサイクルとでは水熱交換器14である放熱器内の冷媒量差が大きく、熱交換路11への入水温度が上昇すれば、放熱過程でのエンタルピ差が狭くなって、湯加熱能力及びCOPが減少することになる。これに対して、液ガス熱交換器25を備えている場合には、入水温度変化による高圧側の冷媒量差を吸収し、入水温度が高温時でも液ガス熱交換器25の出口冷媒の密度が大きく、図7(b)のCのような正常のサイクルを形成する。   By the way, in the heat pump unit 4, if there is no liquid gas heat exchanger 25, a cycle such as A in FIG. 7A is configured when the temperature of water entering the heat exchange path 11 is low. When the incoming water temperature to the path 11 is high, the cycle is as shown in FIG. That is, there is a large refrigerant amount difference in the radiator that is the water heat exchanger 14 between the cycle A in FIG. 7A and the cycle B in FIG. 7A, and the temperature of water entering the heat exchange path 11 is high. If it rises, the enthalpy difference in the heat dissipation process will become narrow, and the hot water heating capacity and COP will decrease. On the other hand, when the liquid gas heat exchanger 25 is provided, the refrigerant amount difference on the high pressure side due to the change in the incoming water temperature is absorbed, and the density of the outlet refrigerant of the liquid gas heat exchanger 25 even when the incoming water temperature is high. Is large and forms a normal cycle as shown in FIG. 7B.

このように、上記ヒートポンプ式給湯装置では、水熱交換器14から流出して減圧機構15に流入する高圧冷媒と、空気熱交換器16から流出した低圧冷媒との熱交換を行なう液ガス熱交換器25を設けているので、水熱交換器(ガス冷却器)14からの冷媒に過冷却を付与し、また、圧縮機13に入る冷媒を加熱することができる。このため、圧縮機13の湿り圧縮を防止することができ、安定した運転が可能となる。   As described above, in the heat pump hot water supply apparatus, liquid gas heat exchange is performed to exchange heat between the high-pressure refrigerant that flows out of the water heat exchanger 14 and flows into the decompression mechanism 15 and the low-pressure refrigerant that flows out of the air heat exchanger 16. Since the unit 25 is provided, supercooling can be given to the refrigerant from the water heat exchanger (gas cooler) 14 and the refrigerant entering the compressor 13 can be heated. For this reason, wet compression of the compressor 13 can be prevented, and stable operation is possible.

特願2003−432416Japanese Patent Application No. 2003-432416

図8(a)は上記液ガス熱交換器25の断面図を示し、図8(b)は破断正面図を示している。液ガス熱交換器25は、高圧冷媒が通るパイプ状の第1通路26と、この第1通路26より大径とし低圧冷媒が通るパイプ状の第2通路27とで構成されている。そして、従来では、第2通路27の側面に第1通路26をロウ付け等にて固着し、第1通路26と第2通路27とは水平方向において平行に並設していた。この結果、第1通路26がそのまま大気にさらされる面積が大きくなり、そのため、第1通路26からの放熱ロスが大きいという問題があった。また、第1通路26を第2通路27に対して水平方向側方に設けていたので、第1通路26の分だけ大きなスペースを必要としていた。   FIG. 8A shows a sectional view of the liquid gas heat exchanger 25, and FIG. 8B shows a cutaway front view. The liquid gas heat exchanger 25 includes a pipe-shaped first passage 26 through which high-pressure refrigerant passes, and a pipe-shaped second passage 27 having a diameter larger than that of the first passage 26 and through which low-pressure refrigerant passes. Conventionally, the first passage 26 is fixed to the side surface of the second passage 27 by brazing or the like, and the first passage 26 and the second passage 27 are arranged in parallel in the horizontal direction. As a result, there is a problem that the area where the first passage 26 is exposed to the atmosphere as it is increases, so that the heat loss from the first passage 26 is large. Further, since the first passage 26 is provided laterally in the horizontal direction with respect to the second passage 27, a space that is larger than the first passage 26 is required.

本発明は上述の問題点に鑑みて提供したものであって、液冷媒が流れる第2通路の放熱ロスを低減すると共に、省スペース化を図ることを目的としたヒートポンプ式給湯装置を提供するものである。   The present invention has been provided in view of the above-mentioned problems, and provides a heat pump type hot water supply apparatus that aims to reduce heat dissipation loss of the second passage through which liquid refrigerant flows and to save space. It is.

そこで、本発明の請求項1に記載のヒートポンプ式給湯装置では、圧縮機13と水熱交換器14と減圧機構15と空気熱交換器16とを順次接続したヒートポンプユニット4を備え、上記水熱交換器14にて構成される熱交換路11に未加熱水を供給してこの未加熱水を加熱する沸上運転を可能とし、上記水熱交換器14から流出して減圧機構15に流入する高圧冷媒と、上記空気熱交換器16から流出した低圧冷媒との熱交換を行なう液ガス熱交換器25を設けたヒートポンプ式給湯装置において、上記液ガス熱交換器25は、上記水熱交換器14から冷媒が流入する第1通路26と、上記空気熱交換器26から冷媒の流入する第2通路27とを有し、両通路26、27を長手方向に平行に並設させ、しかも両通路26、27の冷媒の流れが逆方向となるように構成されていると共に、該液ガス熱交換器25は、途中部分で折り返されており、上記第1通路26を第2通路27に対して内側にそれぞれ配置し、上記水熱交換器14の近傍に液ガス熱交換器25を配置し、水熱交換器14においては、高温冷媒の流れる部分を高温部14a、低温冷媒の流れる部分を低温部14bとして上下に配置し、また、液ガス熱交換器25の高温冷媒の流れる部分を高温部25a、低温冷媒の流れる部分を低温部25bとして上下に配置し、上記水熱交換器14の高温部14aには液ガス熱交換器25の高温部25aを、水熱交換器14の低温部14bには液ガス熱交換器25の低温部25bをそれぞれ対応させて配置していることを特徴としている。
Therefore, the heat pump hot water supply apparatus according to claim 1 of the present invention includes the heat pump unit 4 in which the compressor 13, the water heat exchanger 14, the decompression mechanism 15, and the air heat exchanger 16 are sequentially connected, and the water heat A boiling operation for supplying unheated water to the heat exchange path 11 constituted by the exchanger 14 to heat the unheated water is enabled, and the water is discharged from the water heat exchanger 14 and flows into the pressure reducing mechanism 15. In the heat pump type hot water supply apparatus provided with the liquid gas heat exchanger 25 for performing heat exchange between the high pressure refrigerant and the low pressure refrigerant flowing out of the air heat exchanger 16, the liquid gas heat exchanger 25 includes the water heat exchanger. a first passage 26 which the refrigerant flows from the 14, and a second passage 27 for flow of refrigerant from the air heat exchanger 26, in parallel to parallel both passages 26, 27 in the longitudinal direction, moreover both passages 26, 27 refrigerant flow Together they are configured such that the reverse direction, the liquid-gas heat exchanger 25 is folded back in the middle portion, respectively placed inside the first passage 26 to the second passage 27, the water A liquid gas heat exchanger 25 is disposed in the vicinity of the heat exchanger 14, and in the water heat exchanger 14, a portion where the high-temperature refrigerant flows is arranged as a high-temperature portion 14a and a portion where the low-temperature refrigerant flows is arranged as a low-temperature portion 14b. Further, the portion where the high-temperature refrigerant flows in the liquid gas heat exchanger 25 is arranged up and down as the high-temperature portion 25a and the portion where the low-temperature refrigerant flows as the low-temperature portion 25b. The high temperature part 25a of the vessel 25 is arranged in correspondence with the low temperature part 25b of the liquid gas heat exchanger 25 in correspondence with the low temperature part 14b of the water heat exchanger 14, respectively .

請求項2のヒートポンプ式給湯装置は、上記水熱交換14の外殻は、断熱材55で構成されていることを特徴としている。 The heat pump hot water supply apparatus according to claim 2 is characterized in that the outer shell of the water heat exchange 14 is composed of a heat insulating material 55 .

本発明の請求項1に記載のヒートポンプ式給湯装置によれば、温度が高い冷媒が流れる第1通路26が内側に向かい合って配置されることになり、また、水熱交換器14の高温部14aには液ガス熱交換器25の高温部25aを、水熱交換器14の低温部14bには液ガス熱交換器25の低温部25bをそれぞれ対応させて配置しているため、放熱ロスが低減されることになる。また、第1通路26は第2通路27に対して内側に配置されているので、第1通路26が第2通路27より側方には突出しない構成となり、液ガス熱交換器25を配置する場合に省スペース化を図ることができる。 According to the heat pump type hot water supply apparatus according to claim 1 of the present invention, Ri Do that first passage 26 flowing temperature is higher refrigerant is arranged opposite to the inner, also, the high temperature portion of the water heat exchanger 14 the high temperature portion 25a of the liquid-gas heat exchanger 25 to 14a, because the low temperature portion 14b of the water heat exchanger 14 are arranged respectively in correspondence to the low-temperature portion 25b of the liquid-gas heat exchanger 25, heat radiation loss is Will be reduced. Moreover, since the 1st channel | path 26 is arrange | positioned inside with respect to the 2nd channel | path 27, it becomes the structure by which the 1st channel | path 26 does not protrude to the side rather than the 2nd channel | path 27, and arrange | positions the liquid gas heat exchanger 25 In this case, space can be saved.

本発明の請求項2に記載のヒートポンプ式給湯装置によれば、液ガス熱交換器25の側方には水熱交換器14の断熱材55が位置することになり、そのため、放熱ロスが低減されることになる。   According to the heat pump type hot water supply apparatus of the second aspect of the present invention, the heat insulating material 55 of the water heat exchanger 14 is located on the side of the liquid gas heat exchanger 25, so that the heat dissipation loss is reduced. Will be.

以下、本発明の実施の形態を図面を参照して詳細に説明する。なお、本発明は、液ガス熱交換器25の配置構造に特徴を有するものであり、ヒートポンプ式給湯装置の配管構成は図6の場合と同様である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention has the characteristics in the arrangement | positioning structure of the liquid gas heat exchanger 25, and the piping structure of a heat pump type hot-water supply apparatus is the same as that of the case of FIG.

図1は主要な構成部材だけを表したヒートポンプユニット4の分解斜視図を示し、金属製の底板40の上面に立設した仕切板41の一方側を圧縮機13等を配置している機械室42とし、仕切板41の他方側を空気熱交換器16、ファン22等が配置されるファン室43としている。また、ファン22の前面側には天板44を一体化した前板45が配置され、この略格子状の前板45の内面側にベルマウス46がネジ47により固定されるようになっている。なお、ファン22が回転駆動されることで、空気が前板45、ベルマウス46の円形の開口部48を介して吹き出され、その風が空気熱交換器16を通過することで、該空気熱交換器16が冷却される。   FIG. 1 is an exploded perspective view of a heat pump unit 4 showing only main components, and a machine room in which a compressor 13 and the like are arranged on one side of a partition plate 41 erected on the upper surface of a metal bottom plate 40. 42, and the other side of the partition plate 41 is a fan chamber 43 in which the air heat exchanger 16, the fan 22, and the like are arranged. Further, a front plate 45 integrated with a top plate 44 is disposed on the front side of the fan 22, and a bell mouth 46 is fixed to the inner surface side of the substantially lattice-shaped front plate 45 with screws 47. . When the fan 22 is driven to rotate, air is blown out through the front opening 45 and the circular opening 48 of the bell mouth 46, and the air passes through the air heat exchanger 16 so that the air heat is The exchanger 16 is cooled.

図2は空気熱交換器16の背面側から見た分解斜視図であり、図3は要部拡大断面図を示している。空気熱交換器16は略L型に形成されており、この空気熱交換器16を支持固定する支持板51も略L型に形成されていて、この支持板51の上面に空気熱交換器16が支持固定されている。支持板51の下部は、底板40の端縁より立ち上がっているフランジ52の内側に位置して該支持板51が底板40側に配置される。なお、図3に示すように、支持板51の上片53の上面に形成されている台座部54の上面に空気熱交換器16が位置決め固定されている。   FIG. 2 is an exploded perspective view of the air heat exchanger 16 as seen from the back side, and FIG. The air heat exchanger 16 is formed in a substantially L shape, and a support plate 51 for supporting and fixing the air heat exchanger 16 is also formed in a substantially L shape, and the air heat exchanger 16 is formed on the upper surface of the support plate 51. Is supported and fixed. The lower portion of the support plate 51 is located inside the flange 52 rising from the edge of the bottom plate 40, and the support plate 51 is disposed on the bottom plate 40 side. As shown in FIG. 3, the air heat exchanger 16 is positioned and fixed on the upper surface of the pedestal portion 54 formed on the upper surface of the upper piece 53 of the support plate 51.

また、図3に示すように、底板40の上面であってファン室43に位置する箇所(空気熱交換器16の下部の位置)には水熱交換器14が配置されており、この水熱交換器14は、外殻が断熱材55で構成されていて、この断熱材55の内部にパイプ状で二重構造とした水熱交換器部材56が上下方向に積層して配管されている。なお、水熱交換器部材56の上部は、高温の冷媒が流れるように配管され、水熱交換器部材56の下部は低温の冷媒が流れるように配管されている。ここで、水熱交換器部材56に高温冷媒が流れる水熱交換器14の上部を高温部14aとし、水熱交換器部材56に低温冷媒が流れる水熱交換器14の下部を低温部14bとする。   Further, as shown in FIG. 3, the water heat exchanger 14 is disposed at a position (a position below the air heat exchanger 16) located on the upper surface of the bottom plate 40 and in the fan chamber 43. The exchanger 14 has an outer shell made of a heat insulating material 55, and a water heat exchanger member 56 having a pipe-like and double structure is laminated inside the heat insulating material 55 in the vertical direction. The upper part of the water heat exchanger member 56 is piped so that a high-temperature refrigerant flows, and the lower part of the water heat exchanger member 56 is piped so that a low-temperature refrigerant flows. Here, the upper part of the water heat exchanger 14 in which the high-temperature refrigerant flows through the water heat exchanger member 56 is referred to as a high-temperature part 14a, and the lower part of the water heat exchanger 14 in which the low-temperature refrigerant flows into the water heat exchanger member 56 is referred to as a low-temperature part 14b. To do.

液ガス熱交換器25は、水熱交換器14からの高温冷媒に過冷却を付与し、また、圧縮機13に入る低温冷媒を加熱して、圧縮機13の湿り圧縮を防止しているものであり、図5に示すように、液ガス熱交換器25の第1通路26に流入する冷媒の温度は約20℃であり、第1通路26から流出する冷媒の温度は約0℃である。また、空気熱交換器16から液ガス熱交換器25の第2通路27に流入する冷媒の温度は約0℃であり、第2通路27から流出する冷媒の温度は約5〜7℃である。   The liquid gas heat exchanger 25 provides supercooling to the high-temperature refrigerant from the water heat exchanger 14 and heats the low-temperature refrigerant entering the compressor 13 to prevent wet compression of the compressor 13. As shown in FIG. 5, the temperature of the refrigerant flowing into the first passage 26 of the liquid gas heat exchanger 25 is about 20 ° C., and the temperature of the refrigerant flowing out of the first passage 26 is about 0 ° C. . Further, the temperature of the refrigerant flowing into the second passage 27 of the liquid gas heat exchanger 25 from the air heat exchanger 16 is about 0 ° C., and the temperature of the refrigerant flowing out of the second passage 27 is about 5 to 7 ° C. .

次に、この液ガス熱交換器25の構成、配置位置について説明する。液ガス熱交換器25は、図4に示すように、水熱交換器14からの高圧冷媒が流れるパイプ状の第1通路26と、この第1通路26の径より大径としたパイプ状の第2通路27とで構成されている。そして、第1通路26及び第2通路27は長手方向に平行に並設されていて、両通路26、27はロウ付けにて固着されている。液ガス熱交換器25の略中央部分の折り返し部60にて略コ字型であってヘアピン状に折り曲げられており、複数本となるような形で上下方向に両通路26、27が位置するように折曲してある。また、液ガス熱交換器25は水熱交換器14の周囲に囲むようにして配置すべく、液ガス熱交換器25の途中の折曲部61で略90°に折曲されている。   Next, the configuration and arrangement position of the liquid gas heat exchanger 25 will be described. As shown in FIG. 4, the liquid gas heat exchanger 25 includes a pipe-shaped first passage 26 through which the high-pressure refrigerant from the water heat exchanger 14 flows, and a pipe-shaped pipe having a diameter larger than the diameter of the first passage 26. The second passage 27 is configured. The first passage 26 and the second passage 27 are arranged in parallel in the longitudinal direction, and both the passages 26 and 27 are fixed by brazing. The folded portion 60 at the substantially central portion of the liquid gas heat exchanger 25 is substantially U-shaped and is bent into a hairpin shape, and both passages 26 and 27 are positioned in the vertical direction so as to form a plurality. It is bent like this. Further, the liquid gas heat exchanger 25 is bent at approximately 90 ° at a bent portion 61 in the middle of the liquid gas heat exchanger 25 so as to be disposed so as to surround the water heat exchanger 14.

また、液ガス熱交換器25の第1通路26の一方の端部を液(高圧冷媒のこと、以下同じ)が流入する液側入口部62とし、第1通路26の他方の端部を液が流出する液側出口部63としている。また、第2通路27の一方の端部をガス(低圧冷媒のこと、以下同じ)が流入するガス側入口部64とし、第2通路27の他方の端部をガスが流出する液側出口部65としている。そして、液ガス熱交換器25の第1通路26の液が流れる方向と、第2通路27のガスが流れる方向とが逆方向となるようにしている。   In addition, one end of the first passage 26 of the liquid gas heat exchanger 25 is a liquid side inlet portion 62 into which liquid (a high-pressure refrigerant, hereinafter the same) flows, and the other end of the first passage 26 is a liquid. The liquid side outlet portion 63 from which the liquid flows out. In addition, one end of the second passage 27 is a gas-side inlet portion 64 through which gas (a low-pressure refrigerant, the same applies hereinafter) flows, and the other end of the second passage 27 is a liquid-side outlet portion through which gas flows out. 65. The direction in which the liquid in the first passage 26 of the liquid gas heat exchanger 25 flows is opposite to the direction in which the gas in the second passage 27 flows.

ヒートポンプユニット4の簡略図を示す図5において、冷媒通路18が液ガス熱交換器25の第1通路26の液側入口部62に接続され、冷媒通路36が液側出口部63に接続される。また、冷媒通路37が液ガス熱交換器25の第2通路27のガス側入口部64に接続され、ガス側出口部65に冷媒通路21が接続される。   In FIG. 5 showing a simplified diagram of the heat pump unit 4, the refrigerant passage 18 is connected to the liquid side inlet portion 62 of the first passage 26 of the liquid gas heat exchanger 25, and the refrigerant passage 36 is connected to the liquid side outlet portion 63. . The refrigerant passage 37 is connected to the gas side inlet portion 64 of the second passage 27 of the liquid gas heat exchanger 25, and the refrigerant passage 21 is connected to the gas side outlet portion 65.

また、図3に示すように、水熱交換器14の近傍に液ガス熱交換器25を配置しており、かかる場合、上下方向に第2通路27、第1通路26、及び折り返した第1通路26、第2通路27とが上下方向に直線状となるように配置される。そして、図5に示す液ガス熱交換器25の温度分布が一方が高温側となっていて、他方が低温側となっており、液ガス熱交換器25の折り返し部60で折り返した高温側の第2通路27と第1通路26とを上部に配置し、低温側の第1通路26と第2通路27を下部に配置している。ここで、上部に配置した高温側の第2通路27と第1通路26を高温部25aとし、下部に配置した低温側の第1通路26と第2通路27を低温部25bとする。すなわち、水熱交換器14側の高温部14aと、液ガス熱交換器25側の高温部14aとを対応させて配置し、水熱交換器14側の低温部14bと液ガス熱交換器25側の低温部25bとを対応させて配置している。   Moreover, as shown in FIG. 3, the liquid gas heat exchanger 25 is arrange | positioned in the vicinity of the water heat exchanger 14, and in such a case, the 2nd channel | path 27, the 1st channel | path 26, and the 1st folded back | fold in the up-down direction. The passage 26 and the second passage 27 are arranged so as to be linear in the vertical direction. And the temperature distribution of the liquid gas heat exchanger 25 shown in FIG. 5 is one side of the high temperature side, and the other is the low temperature side. The second passage 27 and the first passage 26 are disposed in the upper portion, and the first passage 26 and the second passage 27 on the low temperature side are disposed in the lower portion. Here, the high temperature side second passage 27 and the first passage 26 arranged in the upper part are referred to as a high temperature portion 25a, and the low temperature side first passage 26 and the second passage 27 arranged in the lower portion are referred to as a low temperature portion 25b. That is, the high temperature part 14a on the water heat exchanger 14 side and the high temperature part 14a on the liquid gas heat exchanger 25 side are arranged in correspondence with each other, and the low temperature part 14b on the water heat exchanger 14 side and the liquid gas heat exchanger 25 are arranged. The low temperature part 25b of the side is arrange | positioned correspondingly.

すなわち、図3に示すように、液ガス熱交換器25の高温部25aにおいて、上側に第2通路27を配置し、この第2通路27の垂直方向において下側に第1通路26が位置するように該第1通路26を配置している。また、液ガス熱交換器25の低温部25bにおいて、下側に第2通路27を配置し、この第2通路27の垂直方向において上側に第1通路26が位置するように該第1通路26を配置している。したがって、上下方向に各通路26、27が直線状になり、しかも、第1通路26は第2通路27より小径としていることで、第1通路26が第2通路27より側方に突出することはない。そのため、液ガス熱交換器25の第2通路27の分だけ配置スペースがあれば良く、液ガス熱交換器25を配置する場合の省スペース化を図ることができる。   That is, as shown in FIG. 3, in the high temperature portion 25 a of the liquid gas heat exchanger 25, the second passage 27 is disposed on the upper side, and the first passage 26 is located on the lower side in the vertical direction of the second passage 27. Thus, the first passage 26 is arranged. Further, in the low temperature portion 25 b of the liquid gas heat exchanger 25, the second passage 27 is disposed on the lower side, and the first passage 26 is positioned so that the first passage 26 is located on the upper side in the vertical direction of the second passage 27. Is arranged. Accordingly, the passages 26 and 27 are linear in the vertical direction, and the first passage 26 has a smaller diameter than the second passage 27, so that the first passage 26 protrudes laterally from the second passage 27. There is no. Therefore, it suffices if there is an arrangement space for the second passage 27 of the liquid gas heat exchanger 25, and space saving when the liquid gas heat exchanger 25 is arranged can be achieved.

また、液ガス熱交換器25において温度の高い各第1通路26、26が垂直方向の上下内側に向かい合って配置されることになるため、放熱ロスが低減されることになる。液ガス熱交換器25の左側方には水熱交換器14の断熱材55が、右側方には支持板51がそれぞれ位置することになり、液ガス熱交換器25の放熱ロスを低減させることができる。   Moreover, since each high temperature 1st channel | paths 26 and 26 are arrange | positioned facing the up-and-down inner side of the orthogonal | vertical direction in the liquid gas heat exchanger 25, a heat dissipation loss will be reduced. The heat insulating material 55 of the water heat exchanger 14 is positioned on the left side of the liquid gas heat exchanger 25, and the support plate 51 is positioned on the right side of the liquid gas heat exchanger 25, thereby reducing heat dissipation loss of the liquid gas heat exchanger 25. Can do.

また、一対のパイプ状の第1通路26及び第2通路27で構成される液ガス熱交換器25は、全体形状としては、図2及び図4に示すように、略L型に形成されており、この略L型に形成されている液ガス熱交換器25を水熱交換器14の周囲を囲むように該水熱交換器14の近傍に配置している。また、このように液ガス熱交換器25を水熱交換器14の背面から側面にかけて配置した場合、図3に示すように、支持板51の内側面と水熱交換器14との間に形成されるスペース67に液ガス熱交換器25が配置されることになり、スペース67を有効に利用している。このように、水熱交換器14の周囲を囲むようにして液ガス熱交換器25を配置しているので、液ガス熱交換器25をコンパクトに配置できて、余分なスペースが不要となる。   Further, the liquid gas heat exchanger 25 including the pair of pipe-like first passages 26 and second passages 27 is formed in a substantially L shape as shown in FIGS. 2 and 4. The liquid gas heat exchanger 25 formed in a substantially L shape is disposed in the vicinity of the water heat exchanger 14 so as to surround the water heat exchanger 14. Further, when the liquid gas heat exchanger 25 is arranged from the back surface to the side surface of the water heat exchanger 14 as described above, it is formed between the inner surface of the support plate 51 and the water heat exchanger 14 as shown in FIG. The liquid gas heat exchanger 25 is arranged in the space 67 to be used, and the space 67 is effectively used. Thus, since the liquid gas heat exchanger 25 is arranged so as to surround the water heat exchanger 14, the liquid gas heat exchanger 25 can be arranged in a compact manner, and an extra space becomes unnecessary.

また、一対のパイプ状の第1通路26及び第2通路27を長手方向に平行に接触させて構成した液ガス熱交換器25を、略中央部分の折り返し部60にてヘアピン状の折り曲げると共に、空気熱交換器16の略L型の形状に対応させるように水熱交換器14の背面側と側面側にかけて略L型に折曲しているので、パイプ状の液ガス熱交換器25を複数本用いた形となって、液ガス熱交換器25自体の距離を長くとることができ、そのため、高圧冷媒と低圧冷媒との熱交換を行なうべく必要な有効長をコンパクトに得ることができる。さらには、液ガス熱交換器25を水熱交換器14の背面から側面にかけて配置した場合に、図3に示すように、液ガス熱交換器25は空気熱交換器16の下方に位置して配置されることになるので、ファン22による風が液ガス熱交換器25に当たることもなく、そのため、送風による液ガス熱交換器25の放熱ロスを一層少なくすることができる。   In addition, the liquid gas heat exchanger 25 configured by bringing the pair of pipe-shaped first passage 26 and the second passage 27 into contact with each other in parallel in the longitudinal direction is bent in a hairpin shape at the folded portion 60 in the substantially central portion, Since it is bent into a substantially L shape over the back side and the side of the water heat exchanger 14 so as to correspond to the substantially L shape of the air heat exchanger 16, a plurality of pipe-like liquid gas heat exchangers 25 are provided. In this form, the distance between the liquid gas heat exchanger 25 itself can be increased, so that the effective length necessary for heat exchange between the high-pressure refrigerant and the low-pressure refrigerant can be obtained in a compact manner. Furthermore, when the liquid gas heat exchanger 25 is arranged from the back surface to the side surface of the water heat exchanger 14, the liquid gas heat exchanger 25 is positioned below the air heat exchanger 16, as shown in FIG. Therefore, the wind generated by the fan 22 does not hit the liquid gas heat exchanger 25, and therefore, the heat radiation loss of the liquid gas heat exchanger 25 due to blowing can be further reduced.

本発明の実施の形態におけるヒートポンプユニットの要部分解斜視図である。It is a principal part disassembled perspective view of the heat pump unit in embodiment of this invention. 本発明の実施の形態における空気熱交換器及び液ガス熱交換器の配置状態を示す分解斜視図である。It is a disassembled perspective view which shows the arrangement | positioning state of the air heat exchanger and liquid gas heat exchanger in embodiment of this invention. 本発明の実施の形態における空気熱交換器及び液ガス熱交換器の要部拡大断面図である。It is a principal part expanded sectional view of the air heat exchanger and liquid gas heat exchanger in embodiment of this invention. (a)(b)は本発明の実施の形態における液ガス熱交換器の平面図及び正面図である。(A) (b) is the top view and front view of a liquid-gas heat exchanger in embodiment of this invention. 本発明の実施の形態におけるヒートポンプユニットの配管簡略図である。It is a piping simplified figure of the heat pump unit in an embodiment of the invention. ヒートポンプ式給湯装置の配管簡略図である。It is a piping simplification figure of a heat pump type hot-water supply apparatus. 入水温度が低温状態であるときと高温状態であるときとの比較を示し、(a)は液ガス熱交換器が無い場合のグラフ図であり、(b)は液ガス熱交換器が有る場合のグラフ図である。The comparison between when the incoming water temperature is low and when it is high is shown, (a) is a graph when there is no liquid gas heat exchanger, and (b) is when there is a liquid gas heat exchanger. FIG. (a)(b)は従来例の液ガス熱交換器の断面図及び破断正面図である。(A) and (b) are sectional views and broken front views of a conventional liquid gas heat exchanger.

符号の説明Explanation of symbols

4 ヒートポンプユニット
11 熱交換路
14 水熱交換器
15 減圧機構
16 空気熱交換器
25 液ガス熱交換器
26 第1通路
27 第2通路
55 断熱材
4 Heat Pump Unit 11 Heat Exchange Path 14 Water Heat Exchanger 15 Pressure Reduction Mechanism 16 Air Heat Exchanger 25 Liquid Gas Heat Exchanger 26 First Passage 27 Second Passage 55 Heat Insulating Material

Claims (2)

圧縮機(13)と水熱交換器(14)と減圧機構(15)と空気熱交換器(16)とを順次接続したヒートポンプユニット(4)を備え、上記水熱交換器(14)にて構成される熱交換路(11)に未加熱水を供給してこの未加熱水を加熱する沸上運転を可能とし、上記水熱交換器(14)から流出して減圧機構(15)に流入する高圧冷媒と、上記空気熱交換器(16)から流出した低圧冷媒との熱交換を行なう液ガス熱交換器(25)を設けたヒートポンプ式給湯装置において、上記液ガス熱交換器(25)は、上記水熱交換器(14)から冷媒が流入する第1通路(26)と、上記空気熱交換器(16)から冷媒の流入する第2通路(27)とを有し、両通路(26)(27)を長手方向に平行に並設させ、しかも両通路(26)(27)の冷媒の流れが逆方向となるように構成されていると共に、該液ガス熱交換器(25)は、途中部分で折り返されており、上記第1通路(26)を第2通路(27)に対して内側にそれぞれ配置し、上記水熱交換器(14)の近傍に液ガス熱交換器(25)を配置し、水熱交換器(14)においては、高温冷媒の流れる部分を高温部(14a)、低温冷媒の流れる部分を低温部(14b)として上下に配置し、また、液ガス熱交換器(25)の高温冷媒の流れる部分を高温部(25a)、低温冷媒の流れる部分を低温部(25b)として上下に配置し、上記水熱交換器(14)の高温部(14a)には液ガス熱交換器(25)の高温部(25a)を、水熱交換器(14)の低温部(14b)には液ガス熱交換器(25)の低温部(25b)をそれぞれ対応させて配置していることを特徴とするヒートポンプ式給湯装置。 A heat pump unit (4) in which a compressor (13), a water heat exchanger (14), a pressure reducing mechanism (15), and an air heat exchanger (16) are sequentially connected is provided, and the water heat exchanger (14) A heating operation in which unheated water is supplied to the configured heat exchange path (11) to heat the unheated water is enabled, and flows out from the water heat exchanger (14) and flows into the pressure reducing mechanism (15). In the heat pump hot water supply apparatus provided with the liquid gas heat exchanger (25) for exchanging heat between the high pressure refrigerant to be exchanged with the low pressure refrigerant flowing out from the air heat exchanger (16), the liquid gas heat exchanger (25) Has a first passage (26) through which the refrigerant flows from the water heat exchanger (14) and a second passage (27) through which the refrigerant flows from the air heat exchanger (16). 26) (27) longitudinally parallel to parallel to the, yet both passages (26) (2 With the flow of coolant is configured such that the reverse), the liquid-gas heat exchanger (25) is folded back in the middle portion, said first passage (26) a second passage (27 ) , A liquid gas heat exchanger (25) is disposed in the vicinity of the water heat exchanger (14), and in the water heat exchanger (14), the portion where the high-temperature refrigerant flows is heated to a high temperature. Part (14a), the part through which the low-temperature refrigerant flows is arranged vertically as a low-temperature part (14b), and the part through which the high-temperature refrigerant flows in the liquid gas heat exchanger (25) is the high-temperature part (25a) and the part through which the low-temperature refrigerant flows Are arranged vertically as a low temperature part (25b), and the high temperature part (14a) of the water heat exchanger (14) is replaced with the high temperature part (25a) of the liquid gas heat exchanger (25), and the water heat exchanger (14 ) In the low temperature part (14b) of the liquid gas heat exchanger (25) The heat pump type hot water supply apparatus characterized by being arranged in correspondence respectively. 上記水熱交換器(14)の外殻は、断熱材(55)で構成されていることを特徴とする請求項1のヒートポンプ式給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein the outer shell of the water heat exchanger (14) is formed of a heat insulating material (55) .
JP2005305668A 2005-10-20 2005-10-20 Heat pump type water heater Expired - Fee Related JP4096969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305668A JP4096969B2 (en) 2005-10-20 2005-10-20 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305668A JP4096969B2 (en) 2005-10-20 2005-10-20 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2007113840A JP2007113840A (en) 2007-05-10
JP4096969B2 true JP4096969B2 (en) 2008-06-04

Family

ID=38096194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305668A Expired - Fee Related JP4096969B2 (en) 2005-10-20 2005-10-20 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP4096969B2 (en)

Also Published As

Publication number Publication date
JP2007113840A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4277871B2 (en) Heat pump type water heater
CN103370592A (en) Water-cooled heat rejection brazing sheet heat exchanger used for refrigeration cycle
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
CN103542618B (en) Heat exchanger
JP2009210133A (en) Heat pump water heater
JP2014163567A (en) Water heater
JP5919036B2 (en) Heat pump type water heater
JP5555220B2 (en) Integrated air conditioning assembly including heat exchanger and heat exchanger
JP4946848B2 (en) Heat pump type water heater
JP2007271212A (en) Outdoor unit of heat pump water heater
JP3917581B2 (en) Heat pump water heater
JP4096969B2 (en) Heat pump type water heater
JP4650171B2 (en) Geothermal heat pump water heater
JP2014052087A (en) Heat exchanger for hot water supply
JP4123265B2 (en) Heat pump type water heater
JP4096968B2 (en) Heat pump type water heater
JP4123264B2 (en) Heat pump type water heater
JP2008517247A (en) The shape of the gas cooler integrated in the heat pump chassis
JP4893047B2 (en) Heat pump type water heater
JP2005241092A (en) Heat pump water heater
JP2007113841A (en) Heat pump type water heater
JP3913629B2 (en) Heat exchanger and heat pump water heater equipped with the heat exchanger
JP7257799B2 (en) Storage hot water heater
JP2007333270A (en) Heat-pump heat source equipment
JP2008224073A (en) Heat pump hot water supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees