JP2007113841A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2007113841A
JP2007113841A JP2005305669A JP2005305669A JP2007113841A JP 2007113841 A JP2007113841 A JP 2007113841A JP 2005305669 A JP2005305669 A JP 2005305669A JP 2005305669 A JP2005305669 A JP 2005305669A JP 2007113841 A JP2007113841 A JP 2007113841A
Authority
JP
Japan
Prior art keywords
heat exchanger
liquid
gas
passage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005305669A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamoto
真一 坂本
Masahiro Murakami
昌弘 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005305669A priority Critical patent/JP2007113841A/en
Publication of JP2007113841A publication Critical patent/JP2007113841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a liquid-gas heat exchanger and to reduce costs in a heat pump type water heater. <P>SOLUTION: An outer diameter of a liquid-side main tube 70 of the liquid-gas heat exchanger 25 is made smaller than outer diameters of a liquid-side inlet tube 71 and a liquid-side outlet tube 72 connected with both ends of the liquid-side main tube, and an outer diameter of a gas-side main tube 73 is made smaller than outer diameters of a gas-side inlet tube 74 and a gas-side outlet tube 75 connected with both ends of the gas-side main tube. Thus the liquid-gas heat exchanger 25 can be miniaturized, and the costs can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液ガス熱交換器を用いたヒートポンプ式給湯装置に関するものである。   The present invention relates to a heat pump type hot water supply apparatus using a liquid gas heat exchanger.

ヒートポンプ式給湯装置の冷凍サイクルの途中に液ガス熱交換器を用いたのが提供されている。この液ガス熱交換器は、水熱交換器から流出して減圧機構に流入する高圧冷媒と、空気熱交換器から流出した低圧冷媒との熱交換を行なうものである。この液ガス熱交換器を設けることによって、水熱交換器(ガス冷却器)からの冷媒に過冷却を付与し、また、圧縮機に入る冷媒を加熱して、圧縮機の湿り圧縮を防止するようにしている。   It has been provided that a liquid gas heat exchanger is used in the middle of the refrigeration cycle of a heat pump hot water supply apparatus. This liquid gas heat exchanger performs heat exchange between the high-pressure refrigerant that flows out of the water heat exchanger and flows into the decompression mechanism, and the low-pressure refrigerant that flows out of the air heat exchanger. By providing this liquid gas heat exchanger, the refrigerant from the water heat exchanger (gas cooler) is supercooled, and the refrigerant entering the compressor is heated to prevent wet compression of the compressor. I am doing so.

図7に該液ガス熱交換器を用いたヒートポンプ式給湯装置の簡略図を示している(特許文献1参照)。このヒートポンプ式給湯装置は、貯湯タンク1を有するタンクユニット2と、冷凍サイクル3を有するヒートポンプユニット4とを備えている。そして、タンクユニット2の貯湯タンク1には、その底壁に給水口5が設けられると共に、その上壁に出湯口6が設けられている。この給水口5から貯湯タンク1に水道水が供給され、出湯口6から高温の温湯が出湯される。また、貯湯タンク1には、その底壁に取水口7が開設されると共に、側壁(周壁)の上部に湯入口8が開設され、取水口7と湯入口8とが循環路9にて連結されている。そして、この循環路9に水循環用ポンプ10と熱交換路11とが介設されている。すなわち、水循環用ポンプ10が駆動すると、貯湯タンク1内の未加熱水が取水口7から循環路9に流出して、熱交換路11を介して湯入口8から貯湯タンク1内に返流する。   FIG. 7 shows a simplified diagram of a heat pump type hot water supply apparatus using the liquid gas heat exchanger (see Patent Document 1). The heat pump type hot water supply apparatus includes a tank unit 2 having a hot water storage tank 1 and a heat pump unit 4 having a refrigeration cycle 3. The hot water storage tank 1 of the tank unit 2 is provided with a water supply port 5 on its bottom wall and a hot water outlet 6 on its upper wall. Tap water is supplied from the water supply port 5 to the hot water storage tank 1, and hot hot water is discharged from the hot water outlet 6. In addition, the hot water storage tank 1 has a water intake 7 at the bottom wall and a hot water inlet 8 at the top of the side wall (peripheral wall), and the water intake 7 and the hot water inlet 8 are connected by a circulation path 9. Has been. The circulation path 9 is provided with a water circulation pump 10 and a heat exchange path 11. That is, when the water circulation pump 10 is driven, unheated water in the hot water storage tank 1 flows out from the water intake 7 to the circulation path 9 and returns to the hot water storage tank 1 from the hot water inlet 8 through the heat exchange path 11. .

次に、冷凍サイクル3は、圧縮機13と、上記熱交換路11を構成する水熱交換器14と、電動膨張弁(減圧機構)15と、空気熱交換器16とを順に接続して構成されている。すなわち、圧縮機13の吐出口と水熱交換器14とを冷媒通路17にて接続し、水熱交換器14と電動膨張弁15とを冷媒通路18、36にて接続し、電動膨張弁15と空気熱交換器16とを冷媒通路19にて接続し、空気熱交換器16と圧縮機13とを冷媒通路37及び冷媒通路21にて接続している。そして、冷媒としては、例えば、高圧側を超臨界圧力で使用する炭酸ガス等の自然冷媒が用いられる。   Next, the refrigeration cycle 3 is configured by connecting a compressor 13, a water heat exchanger 14 that constitutes the heat exchange path 11, an electric expansion valve (decompression mechanism) 15, and an air heat exchanger 16 in this order. Has been. That is, the discharge port of the compressor 13 and the water heat exchanger 14 are connected by the refrigerant passage 17, the water heat exchanger 14 and the electric expansion valve 15 are connected by the refrigerant passages 18 and 36, and the electric expansion valve 15 And the air heat exchanger 16 are connected by a refrigerant passage 19, and the air heat exchanger 16 and the compressor 13 are connected by a refrigerant passage 37 and a refrigerant passage 21. And as a refrigerant | coolant, natural refrigerant | coolants, such as a carbon dioxide gas which uses a high voltage | pressure side by a supercritical pressure, are used, for example.

また、冷凍サイクル3は、水熱交換器14から流出した高圧冷媒を冷却する液ガス熱交換器25を備えている。この場合、液ガス熱交換器25は、水熱交換器14から流出した高圧冷媒が通過する第1通路26と、空気熱交換器16から流出した低圧冷媒が通過する第2通路27とを備えている。そして、第1通路26を通過する高温高圧の冷媒と、第2通路27を通過する低温低圧の冷媒との間で熱交換が行なわれる。   The refrigeration cycle 3 includes a liquid gas heat exchanger 25 that cools the high-pressure refrigerant that has flowed out of the water heat exchanger 14. In this case, the liquid gas heat exchanger 25 includes a first passage 26 through which the high-pressure refrigerant flowing out from the water heat exchanger 14 passes, and a second passage 27 through which the low-pressure refrigerant flowing out from the air heat exchanger 16 passes. ing. Then, heat exchange is performed between the high-temperature and high-pressure refrigerant passing through the first passage 26 and the low-temperature and low-pressure refrigerant passing through the second passage 27.

次に、このヒートポンプ式給湯装置の運転動作(湯沸かし運転)を説明する。圧縮機13を駆動すると共に、水循環用ポンプ10を駆動(作動)する。すると、貯湯タンク1の底部に設けた取水口7から貯溜水(温湯)が流出し、これが循環路9の熱交換路11を流通する。また、圧縮機13からの吐出冷媒が、水熱交換器14、減圧機構15、空気熱交換器16とを順次経由して上記圧縮機13へと返流する。そのため、循環路9の熱交換路11を流通する水がガス冷却器である水熱交換器14によって加熱され(沸き上げられ)、湯入口8から貯湯タンク1の上部に返流される。そして、このような動作を継続して行なうことによって、貯湯タンク1に高温の温湯が貯湯されることになる。   Next, the operation of the heat pump type hot water supply apparatus (water heater operation) will be described. The compressor 13 is driven and the water circulation pump 10 is driven (actuated). Then, stored water (hot water) flows out from the water intake 7 provided at the bottom of the hot water storage tank 1, and this flows through the heat exchange path 11 of the circulation path 9. Further, the refrigerant discharged from the compressor 13 returns to the compressor 13 via the water heat exchanger 14, the decompression mechanism 15, and the air heat exchanger 16 in order. Therefore, the water flowing through the heat exchange path 11 of the circulation path 9 is heated (boiling) by the water heat exchanger 14 that is a gas cooler, and returned to the upper part of the hot water storage tank 1 from the hot water inlet 8. Then, by continuously performing such an operation, hot hot water is stored in the hot water storage tank 1.

ところで、上記ヒートポンプユニット4において、液ガス熱交換器25が無ければ、熱交換路11への入水温度が低温であるときには、図8(a)のAのようなサイクルを構成するが、熱交換路11への入水温度が高温であるときには、図8(a)のBのようなサイクルとなる。すなわち、図8(a)のAのサイクルと、図8(a)のBのサイクルとでは水熱交換器14である放熱器内の冷媒量差が大きく、熱交換路11への入水温度が上昇すれば、放熱過程でのエンタルピ差が狭くなって、湯加熱能力及びCOPが減少することになる。これに対して、液ガス熱交換器25を備えている場合には、入水温度変化による高圧側の冷媒量差を吸収し、入水温度が高温時でも液ガス熱交換器25の出口冷媒の密度が大きく、図8(b)のCのような正常のサイクルを形成する。   By the way, in the heat pump unit 4, if there is no liquid gas heat exchanger 25, a cycle such as A in FIG. 8A is configured when the temperature of water entering the heat exchange path 11 is low. When the temperature of water entering the path 11 is high, the cycle is as shown in B of FIG. That is, there is a large refrigerant amount difference in the radiator that is the water heat exchanger 14 between the cycle A in FIG. 8A and the cycle B in FIG. 8A, and the temperature of water entering the heat exchange path 11 is high. If it rises, the enthalpy difference in the heat dissipation process will become narrow, and the hot water heating capacity and COP will decrease. On the other hand, when the liquid gas heat exchanger 25 is provided, the refrigerant amount difference on the high pressure side due to the change in the incoming water temperature is absorbed, and the density of the outlet refrigerant of the liquid gas heat exchanger 25 even when the incoming water temperature is high. Is large and forms a normal cycle as shown in FIG. 8B.

このように、上記ヒートポンプ式給湯装置では、水熱交換器14から流出して減圧機構15に流入する高圧冷媒と、空気熱交換器16から流出した低圧冷媒との熱交換を行なう液ガス熱交換器25を設けているので、水熱交換器(ガス冷却器)14からの冷媒に過冷却を付与し、また、圧縮機13に入る冷媒を加熱することができる。このため、圧縮機13の湿り圧縮を防止することができ、安定した運転が可能となる。   As described above, in the heat pump hot water supply apparatus, liquid gas heat exchange is performed to exchange heat between the high-pressure refrigerant that flows out of the water heat exchanger 14 and flows into the decompression mechanism 15 and the low-pressure refrigerant that flows out of the air heat exchanger 16. Since the unit 25 is provided, supercooling can be given to the refrigerant from the water heat exchanger (gas cooler) 14 and the refrigerant entering the compressor 13 can be heated. For this reason, wet compression of the compressor 13 can be prevented, and stable operation is possible.

特願2003−432416Japanese Patent Application No. 2003-432416

ところで、上記液ガス熱交換器25は、上述したように水熱交換器14からの高圧冷媒が流れるパイプ状の第1通路26と、この第1通路26と並設して設けられているパイプ状の第2通路27とで構成されている。そして、液ガス熱交換器25の第1通路26は、液側主管と、この液側主管の両端に接続されている液側入口管及び液側出口管とで構成されており、また、第2通路27はガス側主管と、このガス側主管の両端に接続されているガス側入口管及びガス側出口管とで構成されている。従来の液ガス熱交換器25の液側主管とガス側主管の外径は、両端の液側入口管、液側出口管及びガス側入口管、ガス側出口管と同径か、または大口径のものを用いていた。そのため、液ガス熱交換器25自体が大型化すると共に、コストが高いという問題があった。   By the way, the liquid gas heat exchanger 25 includes a pipe-shaped first passage 26 through which the high-pressure refrigerant from the water heat exchanger 14 flows and a pipe provided in parallel with the first passage 26 as described above. And a second passage 27 having a shape. The first passage 26 of the liquid gas heat exchanger 25 includes a liquid side main pipe and a liquid side inlet pipe and a liquid side outlet pipe connected to both ends of the liquid side main pipe. The two passages 27 are composed of a gas side main pipe and a gas side inlet pipe and a gas side outlet pipe connected to both ends of the gas side main pipe. The outer diameter of the liquid side main pipe and the gas side main pipe of the conventional liquid gas heat exchanger 25 is the same as the liquid side inlet pipe, the liquid side outlet pipe, the gas side inlet pipe, and the gas side outlet pipe at both ends, or has a large diameter. Was used. For this reason, the liquid gas heat exchanger 25 itself is increased in size, and the cost is high.

本発明は上述の問題点に鑑みて提供したものであって、液ガス熱交換器をコンパクトにし、低コスト化を図ることを目的としたヒートポンプ式給湯装置を提供するものである。   The present invention has been provided in view of the above-mentioned problems, and provides a heat pump type hot water supply apparatus for the purpose of making the liquid gas heat exchanger compact and reducing the cost.

そこで、本発明の請求項1に記載のヒートポンプ式給湯装置では、圧縮機13と水熱交換器14と減圧機構15と空気熱交換器16とを順次接続したヒートポンプユニット4を備え、上記水熱交換器14にて構成される熱交換路11に未加熱水を供給してこの未加熱水を加熱する沸上運転を可能とし、上記水熱交換器14から流出して減圧機構15に流入する高圧冷媒と、上記空気熱交換器16から流出した低圧冷媒との熱交換を行なう液ガス熱交換器25を設けたヒートポンプ式給湯装置において、上記液ガス熱交換器25は、パイプ状の第1通路26とパイプ状の第2通路27とを併設して構成されており、上記各通路26、27における各主管70、72は、その両端にそれぞれ接続される各入口管71、74及び各出口管72、75よりも小径としていることを特徴としている。   Therefore, the heat pump hot water supply apparatus according to claim 1 of the present invention includes the heat pump unit 4 in which the compressor 13, the water heat exchanger 14, the decompression mechanism 15, and the air heat exchanger 16 are sequentially connected, and the water heat A boiling operation for supplying unheated water to the heat exchange path 11 constituted by the exchanger 14 to heat the unheated water is enabled, and the water is discharged from the water heat exchanger 14 and flows into the pressure reducing mechanism 15. In the heat pump type hot water supply apparatus provided with the liquid gas heat exchanger 25 for performing heat exchange between the high pressure refrigerant and the low pressure refrigerant flowing out from the air heat exchanger 16, the liquid gas heat exchanger 25 has a pipe-shaped first. The passage 26 and the pipe-like second passage 27 are provided side by side, and the main pipes 70 and 72 in the passages 26 and 27 are respectively connected to the inlet pipes 71 and 74 and the outlets respectively connected to both ends thereof. Tubes 72, 75 It is characterized in that it is a remote small diameter.

請求項2のヒートポンプ式給湯装置は、上記液ガス熱交換器(25)の略中央部分をヘアピン状に折り曲げていることを特徴としている。   The heat pump type hot water supply apparatus according to claim 2 is characterized in that a substantially central portion of the liquid gas heat exchanger (25) is bent into a hairpin shape.

本発明の請求項1に記載のヒートポンプ式給湯装置によれば、各主管を、各入口管及び各出口管より小径としているので、液ガス熱交換器をコンパクトにでき、また低コスト化を図ることができる。さらに、各主管を細径としているので、折曲し易くなり、組み立ての作業効率の向上を図ることができる。   According to the heat pump type hot water supply apparatus of the first aspect of the present invention, since each main pipe has a smaller diameter than each inlet pipe and each outlet pipe, the liquid gas heat exchanger can be made compact and the cost can be reduced. be able to. Furthermore, since each main pipe has a small diameter, it becomes easy to bend, and the assembly work efficiency can be improved.

請求項2に記載のヒートポンプ式給湯装置によれば、液ガス熱交換器は、略中央部分をヘアピン状折り曲げているので、パイプ状の液ガス熱交換器を複数本用いた形となって、液ガス熱交換器自体の距離を長くとることができ、そのため、高圧冷媒と低圧冷媒との熱交換を行なうべく必要な有効長をコンパクトに得ることができる。   According to the heat pump type hot water supply apparatus according to claim 2, since the liquid gas heat exchanger is bent in a hairpin shape at a substantially central portion, a plurality of pipe-like liquid gas heat exchangers are used. The distance of the liquid gas heat exchanger itself can be increased, so that the effective length necessary for heat exchange between the high-pressure refrigerant and the low-pressure refrigerant can be obtained in a compact manner.

以下、本発明の実施の形態を図面を参照して詳細に説明する。なお、本発明は、液ガス熱交換器25の配置構造に特徴を有するものであり、ヒートポンプ式給湯装置の配管構成は図7の場合と同様である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention has the characteristics in the arrangement structure of the liquid gas heat exchanger 25, and the piping structure of a heat pump type hot-water supply apparatus is the same as that of the case of FIG.

図1は主要な構成部材だけを表したヒートポンプユニット4の分解斜視図を示し、金属製の底板40の上面に立設した仕切板41の一方側を圧縮機13等を配置している機械室42とし、仕切板41の他方側を空気熱交換器16、ファン22等が配置されるファン室43としている。また、ファン22の前面側には天板44を一体化した前板45が配置され、この略格子状の前板45の内面側にベルマウス46がネジ47により固定されるようになっている。なお、ファン22が回転駆動されることで、空気が前板45、ベルマウス46の円形の開口部48を介して吹き出され、その風が空気熱交換器16を通過することで、該空気熱交換器16が冷却される。   FIG. 1 is an exploded perspective view of a heat pump unit 4 showing only main components, and a machine room in which a compressor 13 and the like are arranged on one side of a partition plate 41 erected on the upper surface of a metal bottom plate 40. 42, and the other side of the partition plate 41 is a fan chamber 43 in which the air heat exchanger 16, the fan 22, and the like are arranged. Further, a front plate 45 integrated with a top plate 44 is disposed on the front side of the fan 22, and a bell mouth 46 is fixed to the inner surface side of the substantially lattice-shaped front plate 45 with screws 47. . When the fan 22 is driven to rotate, air is blown out through the front opening 45 and the circular opening 48 of the bell mouth 46, and the air passes through the air heat exchanger 16 so that the air heat is The exchanger 16 is cooled.

図2は空気熱交換器16の背面側から見た分解斜視図であり、図3は要部拡大断面図を示している。空気熱交換器16は略L型に形成されており、この空気熱交換器16を支持固定する支持板51も略L型に形成されていて、この支持板51の上面に空気熱交換器16が支持固定されている。支持板51の下部は、底板40の端縁より立ち上がっているフランジ52の内側に位置して該支持板51が底板40側に配置される。なお、図3に示すように、支持板51の上片53の上面に形成されている台座部54の上面に空気熱交換器16が位置決め固定されている。   FIG. 2 is an exploded perspective view of the air heat exchanger 16 as seen from the back side, and FIG. The air heat exchanger 16 is formed in a substantially L shape, and a support plate 51 for supporting and fixing the air heat exchanger 16 is also formed in a substantially L shape, and the air heat exchanger 16 is formed on the upper surface of the support plate 51. Is supported and fixed. The lower portion of the support plate 51 is located inside the flange 52 rising from the edge of the bottom plate 40, and the support plate 51 is disposed on the bottom plate 40 side. As shown in FIG. 3, the air heat exchanger 16 is positioned and fixed on the upper surface of the pedestal portion 54 formed on the upper surface of the upper piece 53 of the support plate 51.

また、図3に示すように、底板40の上面であってファン室43に位置する箇所(空気熱交換器16の下部の位置)には水熱交換器14が配置されており、この水熱交換器14は、外殻が断熱材55で構成されていて、この断熱材55の内部にパイプ状で二重構造とした水熱交換器部材56が上下方向に積層して配管されている。なお、水熱交換器部材56の上部は、高温冷媒が流れるように配管され、水熱交換器部材56の下部は低温冷媒が流れるように配管されている。   Further, as shown in FIG. 3, the water heat exchanger 14 is disposed at a position (a position below the air heat exchanger 16) located on the upper surface of the bottom plate 40 and in the fan chamber 43. The exchanger 14 has an outer shell made of a heat insulating material 55, and a water heat exchanger member 56 having a pipe-like and double structure is laminated inside the heat insulating material 55 in the vertical direction. The upper part of the water heat exchanger member 56 is piped so that the high-temperature refrigerant flows, and the lower part of the water heat exchanger member 56 is piped so that the low-temperature refrigerant flows.

次に、液ガス熱交換器25の構成、配置位置について説明する。この液ガス熱交換器25は、図4に示すように、水熱交換器14からの高温冷媒が流れるパイプ状の第1通路26と、この第1通路26の径より大径としたパイプ状の第2通路27とで構成されている。そして、第1通路26及び第2通路27は長手方向に平行に並設されていて、両通路26、27はロウ付けにて固着されている。液ガス熱交換器25の略中央部分の折り返し部60にて略コ字型であってヘアピン状に折り曲げられており、上下方向に両通路26、27が位置するように折曲してある。また、液ガス熱交換器25は水熱交換器14の周囲に配置すべく、液ガス熱交換器25の途中の折曲部61で略90°に折曲されている。   Next, the configuration and arrangement position of the liquid gas heat exchanger 25 will be described. As shown in FIG. 4, the liquid gas heat exchanger 25 includes a pipe-like first passage 26 through which high-temperature refrigerant from the water heat exchanger 14 flows, and a pipe-like shape having a diameter larger than the diameter of the first passage 26. And the second passage 27. The first passage 26 and the second passage 27 are arranged in parallel in the longitudinal direction, and both the passages 26 and 27 are fixed by brazing. The folded portion 60 at the substantially central portion of the liquid gas heat exchanger 25 is substantially U-shaped and bent into a hairpin shape, and is bent so that both the passages 26 and 27 are positioned in the vertical direction. Further, the liquid gas heat exchanger 25 is bent at approximately 90 ° at a bent portion 61 in the middle of the liquid gas heat exchanger 25 so as to be disposed around the water heat exchanger 14.

また、液ガス熱交換器25の第1通路26は、液側主管70と、この液側主管70の一方に接続されている液側入口管71と、液側主管70の他方に接続されている液側出口管72とで構成されている。さらに、第2通路27は、ガス側主管73と、このガス側主管73の一方に接続されているガス側入口管74と、ガス側主管73の他方に接続されているガス側出口管75とで構成されている。そして、第1通路26の液側主管70の外径は、両端に接続している液側入口管71及び液側出口管72の外径より小径としている。また、第2通路27のガス側主管73の外径は、両端に接続しているガス側入口管74及びガス側出口管75の外径より小径としている。なお、上記及び以下の記載において、液とは高圧冷媒を意味し、ガスとは低圧冷媒を意味するものとする。   The first passage 26 of the liquid gas heat exchanger 25 is connected to the liquid side main pipe 70, the liquid side inlet pipe 71 connected to one of the liquid side main pipes 70, and the other of the liquid side main pipe 70. And a liquid outlet pipe 72. Further, the second passage 27 includes a gas side main pipe 73, a gas side inlet pipe 74 connected to one of the gas side main pipe 73, and a gas side outlet pipe 75 connected to the other of the gas side main pipe 73. It consists of The outer diameter of the liquid side main pipe 70 of the first passage 26 is smaller than the outer diameters of the liquid side inlet pipe 71 and the liquid side outlet pipe 72 connected to both ends. The outer diameter of the gas side main pipe 73 of the second passage 27 is smaller than the outer diameters of the gas side inlet pipe 74 and the gas side outlet pipe 75 connected to both ends. In the description above and below, the liquid means a high-pressure refrigerant, and the gas means a low-pressure refrigerant.

また、液ガス熱交換器25の第1通路26の一方の液側入口管71の端部を液が流入する液側入口部62とし、第1通路26の他方の液側出口管72の端部を液が流出する液側出口部63としている。また、第2通路27の一方のガス側入口管74の端部をガスが流入するガス側入口部64とし、第2通路27の他方のガス側出口管75の端部をガスが流出するガス側出口部65としている。すなわち、液ガス熱交換器25の第1通路26の液が流れる方向と、第2通路27の液が流れる方向とが逆方向となるようにしている。   Further, the end of one liquid side inlet pipe 71 of the first passage 26 of the liquid gas heat exchanger 25 is used as a liquid side inlet portion 62 into which liquid flows, and the end of the other liquid side outlet pipe 72 of the first passage 26 is used. This portion is a liquid side outlet portion 63 from which the liquid flows out. Further, the end of one gas side inlet pipe 74 of the second passage 27 is used as a gas side inlet section 64 into which gas flows, and the gas from which gas flows out of the end of the other gas side outlet pipe 75 of the second passage 27. A side outlet 65 is provided. That is, the direction in which the liquid in the first passage 26 of the liquid gas heat exchanger 25 flows is opposite to the direction in which the liquid in the second passage 27 flows.

図5はヒートポンプユニット4の簡略図を示しており、冷媒通路18が液ガス熱交換器25の第1通路26の液側入口管71の液側入口部62に接続され、冷媒通路36が液側出口管72の液側出口部63に接続される。また、冷媒通路37が液ガス熱交換器25の第2通路27のガス側入口管74のガス側入口部64に接続され、ガス側出口管75のガス側出口部65に冷媒通路21が接続される。   FIG. 5 shows a simplified diagram of the heat pump unit 4, in which the refrigerant passage 18 is connected to the liquid side inlet portion 62 of the liquid side inlet pipe 71 of the first passage 26 of the liquid gas heat exchanger 25, and the refrigerant passage 36 is liquid. The liquid outlet portion 63 of the side outlet pipe 72 is connected. The refrigerant passage 37 is connected to the gas side inlet portion 64 of the gas side inlet pipe 74 of the second passage 27 of the liquid gas heat exchanger 25, and the refrigerant passage 21 is connected to the gas side outlet portion 65 of the gas side outlet pipe 75. Is done.

図6は上記液ガス熱交換器25の概略構成図を示しており、上述したように、液ガス熱交換器25の第1通路26を構成している液側主管70の径は、両端の液側入口管71及び液側出口管72の径より小径としている。また、第2通路27を構成しているガス側主管73の径は、両端のガス側入口管74及びガス側出口管75の径より小径としている。ここで、液側主管70の外径を例えば、3.2〜3.3mm(肉厚:0.5mm)とした場合、液側入口管71及び液側出口管72の外径は共に4mm(肉厚:0.5mm)としている。また、ガス側主管73の外径を例えば、6.4〜8mm(肉厚:0.8〜1.0mm)とした場合、ガス側入口管74及びガス側出口管75の外径は共に、9.5mm(肉厚:0.8〜1.2mm)としている。   FIG. 6 shows a schematic configuration diagram of the liquid gas heat exchanger 25. As described above, the diameter of the liquid side main pipe 70 constituting the first passage 26 of the liquid gas heat exchanger 25 is set at both ends. The diameter is smaller than the diameter of the liquid side inlet pipe 71 and the liquid side outlet pipe 72. The diameter of the gas side main pipe 73 constituting the second passage 27 is smaller than the diameters of the gas side inlet pipe 74 and the gas side outlet pipe 75 at both ends. Here, when the outer diameter of the liquid side main pipe 70 is, for example, 3.2 to 3.3 mm (thickness: 0.5 mm), the outer diameters of the liquid side inlet pipe 71 and the liquid side outlet pipe 72 are both 4 mm ( (Wall thickness: 0.5 mm). Further, when the outer diameter of the gas side main pipe 73 is, for example, 6.4 to 8 mm (thickness: 0.8 to 1.0 mm), the outer diameters of the gas side inlet pipe 74 and the gas side outlet pipe 75 are both It is 9.5 mm (wall thickness: 0.8 to 1.2 mm).

一対のパイプ状の第1通路26及び第2通路27で上述のようにして構成されている液ガス熱交換器25は、全体形状としては、図2及び図4に示すように、略L型に形成されており、この略L型に形成されている液ガス熱交換器25を水熱交換器14の周囲を囲むように配置している。また、このように液ガス熱交換器25を水熱交換器14の背面から側面にかけて配置した場合、図3に示すように、液ガス熱交換器25は空気熱交換器16の下方に配置された状態となっている。   As shown in FIGS. 2 and 4, the liquid gas heat exchanger 25 configured as described above with the pair of pipe-like first passages 26 and second passages 27 is substantially L-shaped. The liquid gas heat exchanger 25 formed in a substantially L shape is arranged so as to surround the periphery of the water heat exchanger 14. Further, when the liquid gas heat exchanger 25 is disposed from the back surface to the side surface of the water heat exchanger 14 as described above, the liquid gas heat exchanger 25 is disposed below the air heat exchanger 16 as shown in FIG. It is in the state.

つまり、空気熱交換器16は図2に示すように略L型に形成されていて、この略L型に形状に対応させるように液ガス熱交換器25も略L型に形成し、平面状における液ガス熱交換器25の大きさも空気熱交換器16と略同じくらいの大きさとしている。これにより、空気熱交換器16の下方の位置に液ガス熱交換器25を配置でき、また、図3に示すように、支持板51の上片53を境に、上側に空気熱交換器16が配置され、上片53の下側に液ガス熱交換器25が配置される構造となっている。また、支持板51の内側面と水熱交換器14との間に形成されるスペース67に液ガス熱交換器25が配置されることになり、スペース67を有効に利用している。   That is, the air heat exchanger 16 is formed in a substantially L shape as shown in FIG. 2, and the liquid gas heat exchanger 25 is also formed in a substantially L shape so as to correspond to the shape of the substantially L shape. The size of the liquid gas heat exchanger 25 is approximately the same size as the air heat exchanger 16. Thereby, the liquid gas heat exchanger 25 can be arrange | positioned in the position below the air heat exchanger 16, and as shown in FIG. 3, with the upper piece 53 of the support plate 51 as a boundary, the air heat exchanger 16 is on the upper side. Is arranged, and the liquid gas heat exchanger 25 is arranged below the upper piece 53. Moreover, the liquid gas heat exchanger 25 will be arrange | positioned in the space 67 formed between the inner surface of the support plate 51, and the water heat exchanger 14, and the space 67 is utilized effectively.

また、一対のパイプ状の第1通路26及び第2通路27を長手方向に平行に接触させて構成した液ガス熱交換器25を、略中央部分の折り返し部60にてヘアピン状の折り曲げると共に、空気熱交換器16の略L型の形状に対応させるように水熱交換器14の背面側と側面側にかけて略L型に折曲しているので、ガスと液との熱交換を行なうべく必要な有効長をコンパクトに得ることができる。また、液ガス熱交換器25を空気熱交換器16の下方に配置しているので、ファン22による風が液ガス熱交換器25に当たることもなく、そのため、送風による液ガス熱交換器25の放熱ロスを少なくすることができる。   In addition, the liquid gas heat exchanger 25 configured by bringing the pair of pipe-shaped first passage 26 and the second passage 27 into contact with each other in parallel in the longitudinal direction is bent in a hairpin shape at the folded portion 60 in the substantially central portion, Since it is bent into a substantially L shape over the back side and the side of the water heat exchanger 14 so as to correspond to the substantially L shape of the air heat exchanger 16, it is necessary to perform heat exchange between the gas and the liquid. Effective length can be obtained in a compact manner. In addition, since the liquid gas heat exchanger 25 is arranged below the air heat exchanger 16, the wind from the fan 22 does not hit the liquid gas heat exchanger 25. Heat dissipation loss can be reduced.

このように本実施形態では、液ガス熱交換器25の液側主管70の外径を両端に接続している液側入口管71及び液側出口管72の外径より小径とし、また、ガス側主管73の外径を、両端に接続しているガス側入口管74及びガス側出口管75の外径より小径としているので、液ガス熱交換器25をコンパクトにでき、また低コスト化を図ることができる。さらに、液側主管70及びガス側主管73を細径としているので、折曲し易くなり、組み立ての作業効率の向上を図ることができる。   Thus, in this embodiment, the outer diameter of the liquid side main pipe 70 of the liquid gas heat exchanger 25 is smaller than the outer diameters of the liquid side inlet pipe 71 and the liquid side outlet pipe 72 connected to both ends, and the gas Since the outer diameter of the side main pipe 73 is smaller than the outer diameters of the gas side inlet pipe 74 and the gas side outlet pipe 75 connected to both ends, the liquid gas heat exchanger 25 can be made compact and the cost can be reduced. Can be planned. Furthermore, since the liquid side main pipe 70 and the gas side main pipe 73 have a small diameter, it is easy to bend, and the assembly work efficiency can be improved.

本発明の実施の形態におけるヒートポンプユニットの要部分解斜視図である。It is a principal part disassembled perspective view of the heat pump unit in embodiment of this invention. 本発明の実施の形態における空気熱交換器及び液ガス熱交換器の配置状態を示す分解斜視図である。It is a disassembled perspective view which shows the arrangement | positioning state of the air heat exchanger and liquid gas heat exchanger in embodiment of this invention. 本発明の実施の形態における空気熱交換器及び液ガス熱交換器の要部拡大断面図である。It is a principal part expanded sectional view of the air heat exchanger and liquid gas heat exchanger in embodiment of this invention. (a)(b)は本発明の実施の形態における液ガス熱交換器の平面図及び正面図である。(A) (b) is the top view and front view of a liquid-gas heat exchanger in embodiment of this invention. 本発明の実施の形態におけるヒートポンプユニットの配管簡略図である。It is a piping simplified figure of the heat pump unit in an embodiment of the invention. 本発明の実施の形態における液ガス熱交換器の概略構成図である。It is a schematic block diagram of the liquid gas heat exchanger in embodiment of this invention. ヒートポンプ式給湯装置の配管簡略図である。It is a piping simplification figure of a heat pump type hot-water supply apparatus. 入水温度が低温状態であるときと高温状態であるときとの比較を示し、(a)は液ガス熱交換器が無い場合のグラフ図であり、(b)は液ガス熱交換器が有る場合のグラフ図である。The comparison between when the incoming water temperature is low and when it is high is shown, (a) is a graph when there is no liquid gas heat exchanger, and (b) is when there is a liquid gas heat exchanger. FIG.

符号の説明Explanation of symbols

4 ヒートポンプユニット
11 熱交換路
14 水熱交換器
15 減圧機構
16 空気熱交換器
25 液ガス熱交換器
26 第1通路
27 第2通路
70 液側主管
71 液側入口管
72 液側出口管
73 ガス側主管
74 ガス側入口管
75 ガス側出口管
4 Heat Pump Unit 11 Heat Exchange Path 14 Water Heat Exchanger 15 Depressurization Mechanism 16 Air Heat Exchanger 25 Liquid Gas Heat Exchanger 26 First Passage 27 Second Passage 70 Liquid Side Main Pipe 71 Liquid Side Inlet Pipe 72 Liquid Side Outlet Pipe 73 Gas Side main pipe 74 Gas side inlet pipe 75 Gas side outlet pipe

Claims (2)

圧縮機(13)と水熱交換器(14)と減圧機構(15)と空気熱交換器(16)とを順次接続したヒートポンプユニット(4)を備え、上記水熱交換器(14)にて構成される熱交換路(11)に未加熱水を供給してこの未加熱水を加熱する沸上運転を可能とし、上記水熱交換器(14)から流出して減圧機構(15)に流入する高圧冷媒と、上記空気熱交換器(16)から流出した低圧冷媒との熱交換を行なう液ガス熱交換器(25)を設けたヒートポンプ式給湯装置において、上記液ガス熱交換器(25)は、パイプ状の第1通路(26)とパイプ状の第2通路(27)とを併設して構成されており、上記各通路(26)(27)における各主管(70)(72)は、その両端にそれぞれ接続される各入口管(71)(74)及び各出口管(72)(75)よりも小径としていることを特徴とするヒートポンプ式給湯装置。   A heat pump unit (4) in which a compressor (13), a water heat exchanger (14), a pressure reducing mechanism (15), and an air heat exchanger (16) are sequentially connected is provided, and the water heat exchanger (14) A heating operation in which unheated water is supplied to the configured heat exchange path (11) to heat the unheated water is enabled, and flows out from the water heat exchanger (14) into the pressure reducing mechanism (15). In the heat pump hot water supply apparatus provided with the liquid gas heat exchanger (25) for exchanging heat between the high pressure refrigerant to be exchanged with the low pressure refrigerant flowing out from the air heat exchanger (16), the liquid gas heat exchanger (25) The pipe-shaped first passage (26) and the pipe-shaped second passage (27) are provided side by side, and the main pipes (70), (72) in the passages (26), (27) are Each inlet pipe (71) (74) and each outlet connected to both ends Tube (72) (75) a heat pump type hot water supply apparatus characterized by being smaller in diameter than. 上記液ガス熱交換器(25)を、略中央部分をヘアピン状に折り曲げていることを特徴とする請求項1に記載のヒートポンプ式給湯装置。   The heat pump type hot water supply apparatus according to claim 1, wherein the liquid gas heat exchanger (25) has a substantially central portion bent into a hairpin shape.
JP2005305669A 2005-10-20 2005-10-20 Heat pump type water heater Pending JP2007113841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305669A JP2007113841A (en) 2005-10-20 2005-10-20 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305669A JP2007113841A (en) 2005-10-20 2005-10-20 Heat pump type water heater

Publications (1)

Publication Number Publication Date
JP2007113841A true JP2007113841A (en) 2007-05-10

Family

ID=38096195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305669A Pending JP2007113841A (en) 2005-10-20 2005-10-20 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP2007113841A (en)

Similar Documents

Publication Publication Date Title
JP4277871B2 (en) Heat pump type water heater
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
CN103370592A (en) Water-cooled heat rejection brazing sheet heat exchanger used for refrigeration cycle
JP6460236B2 (en) Heat pump equipment
CN103542618B (en) Heat exchanger
JP2009133593A (en) Cooling apparatus
JP2014163567A (en) Water heater
JP2014163566A (en) Water heater
JP5555220B2 (en) Integrated air conditioning assembly including heat exchanger and heat exchanger
JP6288377B2 (en) Heat pump equipment
JP2006200777A (en) Heat pump water heater
JP2015102290A (en) Heat exchanger
JP4946848B2 (en) Heat pump type water heater
JP2014052087A (en) Heat exchanger for hot water supply
JP4096968B2 (en) Heat pump type water heater
JP4096969B2 (en) Heat pump type water heater
JP4805179B2 (en) Water refrigerant heat exchanger
JP4123265B2 (en) Heat pump type water heater
JP2007064540A (en) Geothermal heat pump type water heater
JP2007113841A (en) Heat pump type water heater
JP4893047B2 (en) Heat pump type water heater
JP4123264B2 (en) Heat pump type water heater
JP2005241092A (en) Heat pump water heater
JP3913629B2 (en) Heat exchanger and heat pump water heater equipped with the heat exchanger
JP2007333270A (en) Heat-pump heat source equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304