JP4123264B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP4123264B2
JP4123264B2 JP2005305665A JP2005305665A JP4123264B2 JP 4123264 B2 JP4123264 B2 JP 4123264B2 JP 2005305665 A JP2005305665 A JP 2005305665A JP 2005305665 A JP2005305665 A JP 2005305665A JP 4123264 B2 JP4123264 B2 JP 4123264B2
Authority
JP
Japan
Prior art keywords
heat exchanger
water
air
liquid gas
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005305665A
Other languages
Japanese (ja)
Other versions
JP2007113837A (en
Inventor
真一 坂本
昌弘 村上
滋彦 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005305665A priority Critical patent/JP4123264B2/en
Publication of JP2007113837A publication Critical patent/JP2007113837A/en
Application granted granted Critical
Publication of JP4123264B2 publication Critical patent/JP4123264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、液ガス熱交換器を用いたヒートポンプ式給湯装置に関するものである。   The present invention relates to a heat pump type hot water supply apparatus using a liquid gas heat exchanger.

ヒートポンプ式給湯装置の冷凍サイクルの途中に液ガス熱交換器を用いたのが提供されている。この液ガス熱交換器は、水熱交換器から流出して減圧機構に流入する高圧冷媒と、空気熱交換器から流出した低圧冷媒との熱交換を行なうものである。この液ガス熱交換器を設けることによって、水熱交換器(ガス冷却器)からの冷媒に過冷却を付与し、また、圧縮機に入る冷媒を加熱して、圧縮機の湿り圧縮を防止するようにしている。   It has been provided that a liquid gas heat exchanger is used in the middle of the refrigeration cycle of a heat pump hot water supply apparatus. This liquid gas heat exchanger performs heat exchange between the high-pressure refrigerant that flows out of the water heat exchanger and flows into the decompression mechanism, and the low-pressure refrigerant that flows out of the air heat exchanger. By providing this liquid gas heat exchanger, the refrigerant from the water heat exchanger (gas cooler) is supercooled, and the refrigerant entering the compressor is heated to prevent wet compression of the compressor. I am doing so.

図7に該液ガス熱交換器を用いたヒートポンプ式給湯装置の簡略図を示している(特許文献1参照)。このヒートポンプ式給湯装置は、貯湯タンク1を有するタンクユニット2と、冷凍サイクル3を有するヒートポンプユニット4とを備えている。そして、タンクユニット2の貯湯タンク1には、その底壁に給水口5が設けられると共に、その上壁に出湯口6が設けられている。この給水口5から貯湯タンク1に水道水が供給され、出湯口6から高温の温湯が出湯される。また、貯湯タンク1には、その底壁に取水口7が開設されると共に、側壁(周壁)の上部に湯入口8が開設され、取水口7と湯入口8とが循環路9にて連結されている。そして、この循環路9に水循環用ポンプ10と熱交換路11とが介設されている。すなわち、水循環用ポンプ10が駆動すると、貯湯タンク1内の未加熱水が取水口7から循環路9に流出して、熱交換路11を介して湯入口8から貯湯タンク1内に返流する。   FIG. 7 shows a simplified diagram of a heat pump type hot water supply apparatus using the liquid gas heat exchanger (see Patent Document 1). The heat pump type hot water supply apparatus includes a tank unit 2 having a hot water storage tank 1 and a heat pump unit 4 having a refrigeration cycle 3. The hot water storage tank 1 of the tank unit 2 is provided with a water supply port 5 on its bottom wall and a hot water outlet 6 on its upper wall. Tap water is supplied from the water supply port 5 to the hot water storage tank 1, and hot hot water is discharged from the hot water outlet 6. In addition, the hot water storage tank 1 has a water intake 7 at the bottom wall and a hot water inlet 8 at the top of the side wall (peripheral wall), and the water intake 7 and the hot water inlet 8 are connected by a circulation path 9. Has been. The circulation path 9 is provided with a water circulation pump 10 and a heat exchange path 11. That is, when the water circulation pump 10 is driven, unheated water in the hot water storage tank 1 flows out from the water intake 7 to the circulation path 9 and returns to the hot water storage tank 1 from the hot water inlet 8 through the heat exchange path 11. .

次に、冷凍サイクル3は、圧縮機13と、上記熱交換路11を構成する水熱交換器14と、電動膨張弁(減圧機構)15と、空気熱交換器16とを順に接続して構成されている。すなわち、圧縮機13の吐出口と水熱交換器14とを冷媒通路17にて接続し、水熱交換器14と電動膨張弁15とを冷媒通路18、36にて接続し、電動膨張弁15と空気熱交換器16とを冷媒通路19にて接続し、空気熱交換器16と圧縮機13とを冷媒通路37及び冷媒通路21にて接続している。そして、冷媒としては、例えば、高圧側を超臨界圧力で使用する炭酸ガス等の自然冷媒が用いられる。   Next, the refrigeration cycle 3 is configured by connecting a compressor 13, a water heat exchanger 14 that constitutes the heat exchange path 11, an electric expansion valve (decompression mechanism) 15, and an air heat exchanger 16 in this order. Has been. That is, the discharge port of the compressor 13 and the water heat exchanger 14 are connected by the refrigerant passage 17, the water heat exchanger 14 and the electric expansion valve 15 are connected by the refrigerant passages 18 and 36, and the electric expansion valve 15 And the air heat exchanger 16 are connected by a refrigerant passage 19, and the air heat exchanger 16 and the compressor 13 are connected by a refrigerant passage 37 and a refrigerant passage 21. And as a refrigerant | coolant, natural refrigerant | coolants, such as a carbon dioxide gas which uses a high voltage | pressure side by a supercritical pressure, are used, for example.

また、冷凍サイクル3は、水熱交換器14から流出した高圧冷媒を冷却する液ガス熱交換器25を備えている。この場合、液ガス熱交換器25は、水熱交換器14から流出した高圧冷媒が通過する第1通路26と、空気熱交換器16から流出した低圧冷媒が通過する第2通路27とを備えている。そして、第1通路26を通過する高温高圧の冷媒と、第2通路27を通過する低温低圧の冷媒との間で熱交換が行なわれる。   The refrigeration cycle 3 includes a liquid gas heat exchanger 25 that cools the high-pressure refrigerant that has flowed out of the water heat exchanger 14. In this case, the liquid gas heat exchanger 25 includes a first passage 26 through which the high-pressure refrigerant flowing out from the water heat exchanger 14 passes, and a second passage 27 through which the low-pressure refrigerant flowing out from the air heat exchanger 16 passes. ing. Then, heat exchange is performed between the high-temperature and high-pressure refrigerant passing through the first passage 26 and the low-temperature and low-pressure refrigerant passing through the second passage 27.

次に、このヒートポンプ式給湯装置の運転動作(湯沸かし運転)を説明する。圧縮機13を駆動すると共に、水循環用ポンプ10を駆動(作動)する。すると、貯湯タンク1の底部に設けた取水口7から貯溜水(温湯)が流出し、これが循環路9の熱交換路11を流通する。また、圧縮機13からの吐出冷媒が、水熱交換器14、減圧機構15、空気熱交換器16とを順次経由して上記圧縮機13へと返流する。そのため、循環路9の熱交換路11を流通する水がガス冷却器である水熱交換器14によって加熱され(沸き上げられ)、湯入口8から貯湯タンク1の上部に返流される。そして、このような動作を継続して行なうことによって、貯湯タンク1に高温の温湯が貯湯されることになる。   Next, the operation of the heat pump type hot water supply apparatus (water heater operation) will be described. The compressor 13 is driven and the water circulation pump 10 is driven (actuated). Then, stored water (hot water) flows out from the water intake 7 provided at the bottom of the hot water storage tank 1, and this flows through the heat exchange path 11 of the circulation path 9. Further, the refrigerant discharged from the compressor 13 returns to the compressor 13 via the water heat exchanger 14, the decompression mechanism 15, and the air heat exchanger 16 in order. Therefore, the water flowing through the heat exchange path 11 of the circulation path 9 is heated (boiling) by the water heat exchanger 14 that is a gas cooler, and returned to the upper part of the hot water storage tank 1 from the hot water inlet 8. Then, by continuously performing such an operation, hot hot water is stored in the hot water storage tank 1.

ところで、上記ヒートポンプユニット4において、液ガス熱交換器25が無ければ、熱交換路11への入水温度が低温であるときには、図8(a)のAのようなサイクルを構成するが、熱交換路11への入水温度が高温であるときには、図8(a)のBのようなサイクルとなる。すなわち、図8(a)のAのサイクルと、図8(a)のBのサイクルとでは水熱交換器14である放熱器内の冷媒量差が大きく、熱交換路11への入水温度が上昇すれば、放熱過程でのエンタルピ差が狭くなって、湯加熱能力及びCOPが減少することになる。これに対して、液ガス熱交換器25を備えている場合には、入水温度変化による高圧側の冷媒量差を吸収し、入水温度が高温時でも液ガス熱交換器25の出口冷媒の密度が大きく、図8(b)のCのような正常のサイクルを形成する。   By the way, in the heat pump unit 4, if there is no liquid gas heat exchanger 25, a cycle such as A in FIG. 8A is configured when the temperature of water entering the heat exchange path 11 is low. When the temperature of water entering the path 11 is high, the cycle is as shown in B of FIG. That is, there is a large refrigerant amount difference in the radiator that is the water heat exchanger 14 between the cycle A in FIG. 8A and the cycle B in FIG. 8A, and the temperature of water entering the heat exchange path 11 is high. If it rises, the enthalpy difference in the heat dissipation process will become narrow, and the hot water heating capacity and COP will decrease. On the other hand, when the liquid gas heat exchanger 25 is provided, the refrigerant amount difference on the high pressure side due to the change in the incoming water temperature is absorbed, and the density of the outlet refrigerant of the liquid gas heat exchanger 25 even when the incoming water temperature is high. Is large and forms a normal cycle as shown in FIG. 8B.

このように、上記ヒートポンプ式給湯装置では、水熱交換器14から流出して減圧機構15に流入する高圧冷媒と、空気熱交換器16から流出した低圧冷媒との熱交換を行なう液ガス熱交換器25を設けているので、水熱交換器(ガス冷却器)14からの冷媒に過冷却を付与し、また、圧縮機13に入る冷媒を加熱することができる。このため、圧縮機13の湿り圧縮を防止することができ、安定した運転が可能となる。   As described above, in the heat pump hot water supply apparatus, liquid gas heat exchange is performed to exchange heat between the high-pressure refrigerant that flows out of the water heat exchanger 14 and flows into the decompression mechanism 15 and the low-pressure refrigerant that flows out of the air heat exchanger 16. Since the unit 25 is provided, supercooling can be given to the refrigerant from the water heat exchanger (gas cooler) 14 and the refrigerant entering the compressor 13 can be heated. For this reason, wet compression of the compressor 13 can be prevented, and stable operation is possible.

特願2003−432416Japanese Patent Application No. 2003-432416

しかしながら、特許文献1に示す従来例においては、上記液ガス熱交換器25を、圧縮機13等を配設している狭い機械室に配置していたため、充分な有効長が得られず、また、機械室を冷却するための風が液ガス熱交換器25に当たり、放熱ロスが大きいという問題があった。   However, in the conventional example shown in Patent Document 1, since the liquid gas heat exchanger 25 is disposed in a narrow machine room in which the compressor 13 and the like are disposed, a sufficient effective length cannot be obtained. The wind for cooling the machine room hits the liquid gas heat exchanger 25 and there is a problem that the heat dissipation loss is large.

本発明は上述の問題点に鑑みて提供したものであって、送風の影響を受けにくくし、空気熱交換器、ファンモータ等の温度の影響を受けにくくして放熱ロスを少なくすることを目的としたヒートポンプ式給湯装置を提供するものである。   The present invention has been provided in view of the above-mentioned problems, and is intended to reduce the heat dissipation loss by making it less susceptible to ventilation and less susceptible to the effects of temperature such as air heat exchangers and fan motors. A heat pump type hot water supply apparatus is provided.

そこで、本発明の請求項1に記載のヒートポンプ式給湯装置では、圧縮機13と水熱交換器14と減圧機構15と空気熱交換器16とを順次接続したヒートポンプユニット4を備え、上記水熱交換器14にて構成される熱交換路11に未加熱水を供給してこの未加熱水を加熱する沸上運転を可能とし、上記水熱交換器14から流出して減圧機構15に流入する高圧冷媒と、上記空気熱交換器16から流出した低圧冷媒との熱交換を行なう液ガス熱交換器25を設けたヒートポンプ式給湯装置において、上記ヒートポンプユニット4のファン室25においては、ファン22を駆動して空気を前面側へと吹き出すことによって空気が背面側の空気熱交換器16を通過するように構成し、ファン室43の底板40の背面側端部に立設した支持板51の内側面と水熱交換器14との間のスペース67であって、水熱交換器14の近傍のファン22による風が当らない箇所に上記液ガス熱交換器25を配置していることを特徴としている。 Therefore, the heat pump hot water supply apparatus according to claim 1 of the present invention includes the heat pump unit 4 in which the compressor 13, the water heat exchanger 14, the decompression mechanism 15, and the air heat exchanger 16 are sequentially connected, and the water heat A boiling operation for supplying unheated water to the heat exchange path 11 constituted by the exchanger 14 to heat the unheated water is enabled, and the water is discharged from the water heat exchanger 14 and flows into the pressure reducing mechanism 15. In the heat pump type hot water supply apparatus provided with the liquid gas heat exchanger 25 for performing heat exchange between the high pressure refrigerant and the low pressure refrigerant flowing out from the air heat exchanger 16, the fan 22 is provided in the fan chamber 25 of the heat pump unit 4. The support plate 51 is constructed so that the air passes through the air heat exchanger 16 on the back side by driving and blowing air to the front side, and is erected on the back side end of the bottom plate 40 of the fan chamber 43. A space 67 between the inner surface and the water heat exchanger 14, characterized in that arranged above liquid-gas heat exchanger 25 to a location where the wind is not hit by the vicinity of the fan 22 of the water heat exchanger 14 It is said.

請求項2に記載のヒートポンプ式給湯装置では、上記水熱交換器14の外殻は、断熱材55で構成されていることを特徴としている。
The heat pump type hot water supply apparatus according to claim 2 is characterized in that the outer shell of the water heat exchanger 14 is composed of a heat insulating material 55 .

請求項3に記載のヒートポンプ式給湯装置では、上記空気熱交換器16の下方に、平面状における大きさが空気熱交換器16とはほぼ同じ大きさの液ガス熱交換器25が配置されており、上記水熱交換器14の長さを上記液ガス熱交換器25の長さとほぼ同じにしていることを特徴としている。
In the heat pump type hot water supply apparatus according to claim 3, a liquid gas heat exchanger 25 having a plane size substantially the same as that of the air heat exchanger 16 is disposed below the air heat exchanger 16. The length of the water heat exchanger 14 is substantially the same as the length of the liquid gas heat exchanger 25 .

本発明の請求項1〜請求項3に記載のヒートポンプ式給湯装置によれば、上記液ガス熱交換器を上記ファン室のファンによる風が当たらない箇所に配置しているので、送風による影響を受けにくくし、ファンモータなどの温度の影響を受けにくくすることができる。また、上記液ガス熱交換器をファン室の底面に沿わせて配置しているので、ファンによる送風の影響を受けにくくでき、さらに、該水熱交換器の近傍に上記液ガス熱交換器を配置しているので、ファンによる送風の影響を受けにくくできる。この結果、液ガス熱交換器の放熱ロスを少なくすることができる。
According to the heat pump type hot water supply apparatus of the first to third aspects of the present invention, the liquid gas heat exchanger is disposed at a location where the wind from the fan of the fan chamber does not hit, so that the influence of the air blowing is affected. and less susceptible, Ru can be less susceptible to the influence of temperature, such as a fan motor. In addition, since the liquid gas heat exchanger is arranged along the bottom surface of the fan chamber, the liquid gas heat exchanger can be hardly affected by the air blown by the fan, and the liquid gas heat exchanger is disposed in the vicinity of the water heat exchanger. Since it is arranged, it can be hardly affected by the air blown by the fan. As a result, the heat loss of the liquid gas heat exchanger can be reduced.

以下、本発明の実施の形態を図面を参照して詳細に説明する。なお、本発明は、液ガス熱交換器25の配置構造に特徴を有するものであり、ヒートポンプ式給湯装置の配管構成は図7の場合と同様である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention has the characteristics in the arrangement structure of the liquid gas heat exchanger 25, and the piping structure of a heat pump type hot-water supply apparatus is the same as that of the case of FIG.

図1は主要な構成部材だけを表したヒートポンプユニット4の分解斜視図を示し、金属製の底板40の上面に立設した仕切板41の一方側を圧縮機13等を配置している機械室42とし、仕切板41の他方側を空気熱交換器16、ファン22等が配置されるファン室43としている。また、ファン22の前面側には天板44を一体化した前板45が配置され、この略格子状の前板45の内面側にベルマウス46がネジ47により固定されるようになっている。なお、ファン22が回転駆動されることで、空気が前板45、ベルマウス46の円形の開口部48を介して吹き出され、その風が空気熱交換器16を通過することで、該空気熱交換器16が冷却される。   FIG. 1 is an exploded perspective view of a heat pump unit 4 showing only main components, and a machine room in which a compressor 13 and the like are arranged on one side of a partition plate 41 erected on the upper surface of a metal bottom plate 40. 42, and the other side of the partition plate 41 is a fan chamber 43 in which the air heat exchanger 16, the fan 22, and the like are arranged. Further, a front plate 45 integrated with a top plate 44 is disposed on the front side of the fan 22, and a bell mouth 46 is fixed to the inner surface side of the substantially lattice-shaped front plate 45 with screws 47. . When the fan 22 is driven to rotate, air is blown out through the front opening 45 and the circular opening 48 of the bell mouth 46, and the air passes through the air heat exchanger 16 so that the air heat is The exchanger 16 is cooled.

図2は空気熱交換器16の背面側から見た分解斜視図であり、図3は要部拡大断面図を示している。空気熱交換器16は略L型に形成されており、この空気熱交換器16を支持固定する支持板51も略L型に形成されていて、この支持板51の上面に空気熱交換器16が支持固定されている。支持板51の下部は、底板40の端縁より立ち上がっているフランジ52の内側に位置して該支持板51が底板40側に配置される。なお、図3に示すように、支持板51の上片53の上面に形成されている台座部54の上面に空気熱交換器16が位置決め固定されている。   FIG. 2 is an exploded perspective view of the air heat exchanger 16 as seen from the back side, and FIG. The air heat exchanger 16 is formed in a substantially L shape, and a support plate 51 for supporting and fixing the air heat exchanger 16 is also formed in a substantially L shape, and the air heat exchanger 16 is formed on the upper surface of the support plate 51. Is supported and fixed. The lower portion of the support plate 51 is located inside the flange 52 rising from the edge of the bottom plate 40, and the support plate 51 is disposed on the bottom plate 40 side. As shown in FIG. 3, the air heat exchanger 16 is positioned and fixed on the upper surface of the pedestal portion 54 formed on the upper surface of the upper piece 53 of the support plate 51.

また、図3に示すように、底板40の上面であってファン室43に位置する箇所(空気熱交換器16の下部に位置)には水熱交換器14が配置されており、この水熱交換器14は、外殻が断熱材55で構成されていて、この断熱材55の内部にパイプ状で二重構造とした水熱交換器部材56が上下方向に積層して配管されている。なお、水熱交換器部材56の上部は、高温冷媒が流れるように配管され、水熱交換器部材56の下部は低温冷媒が流れるように配管されている。   Further, as shown in FIG. 3, a water heat exchanger 14 is disposed at a position (located below the air heat exchanger 16) on the upper surface of the bottom plate 40 and located in the fan chamber 43. The exchanger 14 has an outer shell made of a heat insulating material 55, and a water heat exchanger member 56 having a pipe-like and double structure is laminated inside the heat insulating material 55 in the vertical direction. The upper part of the water heat exchanger member 56 is piped so that the high-temperature refrigerant flows, and the lower part of the water heat exchanger member 56 is piped so that the low-temperature refrigerant flows.

次に、液ガス熱交換器25の構成、配置位置について説明する。この液ガス熱交換器25は、図4に示すように、水熱交換器14からの高圧冷媒が流れるパイプ状の第1通路26と、この第1通路26の径より大径としたパイプ状の第2通路27とで構成されている。そして、第1通路26及び第2通路27は長手方向に沿って平行に並設されていて、両通路26、27はロウ付けにて固着されている。液ガス熱交換器25の略中央部分の折り返し部60にて略コ字型であってヘアピン状に折り曲げられており、上下方向に両通路26、27が対向するように折曲してある。また、液ガス熱交換器25は水熱交換器14の周囲に配置すべく、液ガス熱交換器25の途中の折曲部61で略90°に折曲されている。   Next, the configuration and arrangement position of the liquid gas heat exchanger 25 will be described. As shown in FIG. 4, the liquid gas heat exchanger 25 includes a pipe-shaped first passage 26 through which the high-pressure refrigerant from the water heat exchanger 14 flows, and a pipe shape having a diameter larger than the diameter of the first passage 26. And the second passage 27. The first passage 26 and the second passage 27 are arranged in parallel along the longitudinal direction, and both the passages 26 and 27 are fixed by brazing. The folded portion 60 at the substantially central portion of the liquid gas heat exchanger 25 is substantially U-shaped and bent into a hairpin shape, and is bent so that both the passages 26 and 27 face each other in the vertical direction. Further, the liquid gas heat exchanger 25 is bent at approximately 90 ° at a bent portion 61 in the middle of the liquid gas heat exchanger 25 so as to be disposed around the water heat exchanger 14.

液ガス熱交換器25の第1通路26の一方の端部を液(高圧冷媒のこと、以下同じ)が流入する液側入口部62とし、第1通路26の他方の端部を液が流出する液側出口部63としている。また、第2通路27の一方の端部をガス(低圧冷媒のこと、以下同じ)が流入するガス側入口部64とし、第2通路27の他方の端部をガスが流出するガス側出口部65としている。そして、液ガス熱交換器25の第1通路26の液が流れる方向と、第2通路27のガスが流れる方向とが逆方向となるようにしている。   One end portion of the first passage 26 of the liquid gas heat exchanger 25 is a liquid side inlet portion 62 into which liquid (high pressure refrigerant, the same applies hereinafter) flows, and the liquid flows out from the other end portion of the first passage 26. The liquid side outlet portion 63 is used. In addition, one end of the second passage 27 is a gas side inlet portion 64 through which gas (a low-pressure refrigerant, the same applies hereinafter) flows, and the other end of the second passage 27 is a gas side outlet portion through which gas flows out. 65. The direction in which the liquid in the first passage 26 of the liquid gas heat exchanger 25 flows is opposite to the direction in which the gas in the second passage 27 flows.

図5はヒートポンプユニット4の簡略図を示しており、冷媒通路18が液ガス熱交換器25の第1通路26の液側入口部62に接続され、冷媒通路36が液側出口部63に接続される。また、冷媒通路37が液ガス熱交換器25の第2通路27のガス側入口部64に接続され、ガス側出口部65に冷媒通路21が接続される。   FIG. 5 shows a simplified diagram of the heat pump unit 4, wherein the refrigerant passage 18 is connected to the liquid side inlet portion 62 of the first passage 26 of the liquid gas heat exchanger 25, and the refrigerant passage 36 is connected to the liquid side outlet portion 63. Is done. The refrigerant passage 37 is connected to the gas side inlet portion 64 of the second passage 27 of the liquid gas heat exchanger 25, and the refrigerant passage 21 is connected to the gas side outlet portion 65.

一対のパイプ状の第1通路26及び第2通路27で構成される液ガス熱交換器25は、全体形状としては、図2及び図4に示すように、略L型に形成されており、この略L型に形成されている液ガス熱交換器25をファン室43内であってファン22の風が当たらない箇所に配置するようにしている。具体的には、図3に示すように、液ガス熱交換器25をファン室43の底面(底板40)に沿わせて、空気熱交換器16の下部に配置している。   The liquid gas heat exchanger 25 constituted by a pair of pipe-like first passage 26 and second passage 27 is formed in an approximately L shape as shown in FIGS. 2 and 4 as an overall shape. The liquid gas heat exchanger 25 formed in a substantially L shape is arranged in the fan chamber 43 at a location where the wind of the fan 22 does not hit. Specifically, as shown in FIG. 3, the liquid gas heat exchanger 25 is disposed below the air heat exchanger 16 along the bottom surface (bottom plate 40) of the fan chamber 43.

つまり、空気熱交換器16は図2に示すように略L型に形成されていて、この略L型に形状に対応させるように液ガス熱交換器25も略L型に形成し、平面状における液ガス熱交換器25の大きさも空気熱交換器16と略同じくらいの大きさとしている。これにより、空気熱交換器16の下方の位置となるファン室43の底面に沿わせて液ガス熱交換器25を配置している。また、図3に示すように、支持板51の上片53を境に、上側に空気熱交換器16が配置され、上片53の下側に液ガス熱交換器25が配置される構造となっている。また、支持板51の内側面と水熱交換器14との間に形成されるスペース67に液ガス熱交換器25が配置されることになり、スペース67を有効に利用している。   That is, the air heat exchanger 16 is formed in a substantially L shape as shown in FIG. 2, and the liquid gas heat exchanger 25 is also formed in a substantially L shape so as to correspond to the shape of the substantially L shape. The size of the liquid gas heat exchanger 25 is approximately the same as that of the air heat exchanger 16. Thereby, the liquid gas heat exchanger 25 is arranged along the bottom surface of the fan chamber 43 that is located below the air heat exchanger 16. Further, as shown in FIG. 3, with the upper piece 53 of the support plate 51 as a boundary, the air heat exchanger 16 is arranged on the upper side, and the liquid gas heat exchanger 25 is arranged on the lower side of the upper piece 53. It has become. Moreover, the liquid gas heat exchanger 25 will be arrange | positioned in the space 67 formed between the inner surface of the support plate 51, and the water heat exchanger 14, and the space 67 is utilized effectively.

また、一対のパイプ状の第1通路26及び第2通路27を長手方向に平行に接触させて構成した液ガス熱交換器25を、略中央部分の折り返し部60にてヘアピン状の折り曲げると共に、空気熱交換器16の略L型の形状に対応させるように水熱交換器14の背面側と側面側にかけて略L型に折曲しているので、ガスと液との熱交換を行なうべく必要な有効長をコンパクトに得ることができる。また、液ガス熱交換器25をファン22の風の影響を受けにくいファン室43の底面に沿わせて配置しているので、ファン22による風が液ガス熱交換器25に当たることもなく、そのため、送風による液ガス熱交換器25の放熱ロスを少なくすることができる。また、液ガス熱交換器25をファン室43の底面に沿わせて配置しているので、該液ガス熱交換器25の上方に配置されている空気熱交換器16や、ファン22を駆動するモータの温度の影響が受けにくく、液ガス熱交換器25の放熱ロスを少なくすることができる。   In addition, the liquid gas heat exchanger 25 configured by bringing the pair of pipe-shaped first passage 26 and the second passage 27 into contact with each other in parallel in the longitudinal direction is bent in a hairpin shape at the folded portion 60 in the substantially central portion, Since it is bent into a substantially L shape over the back side and the side of the water heat exchanger 14 so as to correspond to the substantially L shape of the air heat exchanger 16, it is necessary to perform heat exchange between the gas and the liquid. Effective length can be obtained in a compact manner. Further, since the liquid gas heat exchanger 25 is arranged along the bottom surface of the fan chamber 43 which is not easily affected by the wind of the fan 22, the wind from the fan 22 does not hit the liquid gas heat exchanger 25, and therefore The heat loss of the liquid gas heat exchanger 25 caused by blowing can be reduced. Further, since the liquid gas heat exchanger 25 is disposed along the bottom surface of the fan chamber 43, the air heat exchanger 16 and the fan 22 disposed above the liquid gas heat exchanger 25 are driven. It is difficult to be affected by the temperature of the motor, and the heat radiation loss of the liquid gas heat exchanger 25 can be reduced.

なお、図6はファン22を上下方向に2台設けている場合のヒートポンプユニット4の概略構成図を示し、液ガス熱交換器25を図中イに示すファン室43の底面に沿わせて配置することができる。なお、参考ではあるが、あるいは、上下のファン22の間のファン22による送風の影響を受けにくい箇所(図中ロ)に配置するようにしても良い。
6 shows a schematic configuration diagram of the heat pump unit 4 when two fans 22 are provided in the vertical direction, and the liquid gas heat exchanger 25 is arranged along the bottom surface of the fan chamber 43 shown in FIG. can do. In addition, although it is reference, you may make it arrange | position to the location (b in the figure) which is hard to receive the influence of the ventilation by the fan 22 between the upper and lower fans 22. FIG.

なお、上記液ガス熱交換器25を配置する場合、先の実施形態における液ガス熱交換器25の長さを確保しつつ、配置箇所形状に合わせるように液ガス熱交換器25を折り曲げて配置するようにしている。 In the case of arranging the liquid-gas heat exchanger 25, by folding the liquid-gas heat exchanger 25 so while ensuring the length of the liquid-gas heat exchanger 25 in the previous embodiment, match the shape of the arrangement position I try to arrange it.

本発明の実施の形態におけるヒートポンプユニットの要部分解斜視図である。It is a principal part disassembled perspective view of the heat pump unit in embodiment of this invention. 本発明の実施の形態における空気熱交換器及び液ガス熱交換器の配置状態を示す分解斜視図である。It is a disassembled perspective view which shows the arrangement | positioning state of the air heat exchanger and liquid gas heat exchanger in embodiment of this invention. 本発明の実施の形態における空気熱交換器及び液ガス熱交換器の要部拡大断面図である。It is a principal part expanded sectional view of the air heat exchanger and liquid gas heat exchanger in embodiment of this invention. (a)(b)は本発明の実施の形態における液ガス熱交換器の平面図及び正面図である。(A) (b) is the top view and front view of a liquid-gas heat exchanger in embodiment of this invention. 本発明の実施の形態におけるヒートポンプユニットの配管簡略図である。It is a piping simplified figure of the heat pump unit in an embodiment of the invention. 本発明の実施の形態におけるファンが上下に2段配置されている場合のヒートポンプユニットの概略構成図である。It is a schematic block diagram of the heat pump unit in case the fan in embodiment of this invention is arrange | positioned two steps up and down. ヒートポンプ式給湯装置の配管簡略図である。It is a piping simplification figure of a heat pump type hot-water supply apparatus. 入水温度が低温状態であるときと高温状態であるときとの比較を示し、(a)は液ガス熱交換器が無い場合のグラフ図であり、(b)は液ガス熱交換器が有る場合のグラフ図である。The comparison between when the incoming water temperature is low and when it is high is shown, (a) is a graph when there is no liquid gas heat exchanger, and (b) is when there is a liquid gas heat exchanger. FIG.

符号の説明Explanation of symbols

4 ヒートポンプユニット
11 熱交換路
14 水熱交換器
15 減圧機構
16 空気熱交換器
22 ファン
25 液ガス熱交換器
41 仕切板
42 機械室
43 ファン室
45 前板
46 ベルマウス
4 Heat Pump Unit 11 Heat Exchange Path 14 Water Heat Exchanger 15 Pressure Reduction Mechanism 16 Air Heat Exchanger 22 Fan 25 Liquid Gas Heat Exchanger 41 Partition Plate 42 Machine Room 43 Fan Chamber 45 Front Plate 46 Bellmouth

Claims (3)

圧縮機(13)と水熱交換器(14)と減圧機構(15)と空気熱交換器(16)とを順次接続したヒートポンプユニット(4)を備え、上記水熱交換器(14)にて構成される熱交換路(11)に未加熱水を供給してこの未加熱水を加熱する沸上運転を可能とし、上記水熱交換器(14)から流出して減圧機構(15)に流入する高圧冷媒と、上記空気熱交換器(16)から流出した低圧冷媒との熱交換を行なう液ガス熱交換器(25)を設けたヒートポンプ式給湯装置において、上記ヒートポンプユニット(4)のファン室(25)においては、ファン(22)を駆動して空気を前面側へと吹き出すことによって空気が背面側の空気熱交換器(16)を通過するように構成し、ファン室(43)の底板(40)の背面側端部に立設した支持板(51)の内側面と水熱交換器(14)との間のスペース(67)であって、水熱交換器(14)の近傍のファン(22)による風が当らない箇所に上記液ガス熱交換器(25)を配置していることを特徴とするヒートポンプ式給湯装置。
A heat pump unit (4) in which a compressor (13), a water heat exchanger (14), a pressure reducing mechanism (15), and an air heat exchanger (16) are sequentially connected is provided, and the water heat exchanger (14) A heating operation in which unheated water is supplied to the configured heat exchange path (11) to heat the unheated water is enabled, and flows out from the water heat exchanger (14) into the pressure reducing mechanism (15). In the heat pump hot water supply apparatus provided with the liquid gas heat exchanger (25) for exchanging heat between the high-pressure refrigerant to be exchanged and the low-pressure refrigerant flowing out from the air heat exchanger (16), the fan chamber of the heat pump unit (4) In (25), the fan (22) is driven to blow air to the front side so that the air passes through the air heat exchanger (16) on the back side, and the bottom plate of the fan chamber (43) (40) Standing on the rear side end A plate inner surface (51) and the water heat exchanger (14) the space between the (67), the liquid at a location wind does not hit by the vicinity of the fan (22) of the water heat exchanger (14) A heat pump type hot water supply apparatus, wherein a gas heat exchanger (25) is arranged.
上記水熱交換器(14)の外殻は、断熱材(55)で構成されていることを特徴とする請求項1のヒートポンプ式給湯装置。The heat pump hot water supply apparatus according to claim 1, wherein the outer shell of the water heat exchanger (14) is formed of a heat insulating material (55). 上記空気熱交換器(16)の下方に、平面状における大きさが空気熱交換器(16)とはほぼ同じ大きさの液ガス熱交換器(25)が配置されており、上記水熱交換器(14)の長さを上記液ガス熱交換器(25)の長さとほぼ同じにしていることを特徴とする請求項1または請求項2のヒートポンプ式給湯装置。Below the air heat exchanger (16), a liquid gas heat exchanger (25) having a plane size substantially the same as that of the air heat exchanger (16) is disposed. The heat pump type hot water supply apparatus according to claim 1 or 2, wherein the length of the vessel (14) is substantially the same as the length of the liquid gas heat exchanger (25).
JP2005305665A 2005-10-20 2005-10-20 Heat pump type water heater Expired - Fee Related JP4123264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305665A JP4123264B2 (en) 2005-10-20 2005-10-20 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305665A JP4123264B2 (en) 2005-10-20 2005-10-20 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2007113837A JP2007113837A (en) 2007-05-10
JP4123264B2 true JP4123264B2 (en) 2008-07-23

Family

ID=38096191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305665A Expired - Fee Related JP4123264B2 (en) 2005-10-20 2005-10-20 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP4123264B2 (en)

Also Published As

Publication number Publication date
JP2007113837A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4277871B2 (en) Heat pump type water heater
JP6008046B2 (en) Constant temperature liquid circulation device
JP5637016B2 (en) Heat pump water heater outdoor unit
CN103370592A (en) Water-cooled heat rejection brazing sheet heat exchanger used for refrigeration cycle
JP2002107074A (en) Plate type heat exchanger and heat pump hot water supply apparatus using the same
KR101863544B1 (en) High efficiency, high performance dehumidifier using thermoelectric cooling module
JP2014163567A (en) Water heater
JP5919036B2 (en) Heat pump type water heater
JP5594220B2 (en) Heat pump type water heater
JP4946848B2 (en) Heat pump type water heater
JP2007271212A (en) Outdoor unit of heat pump water heater
JP4123264B2 (en) Heat pump type water heater
JP4096968B2 (en) Heat pump type water heater
JP4123265B2 (en) Heat pump type water heater
JP4096969B2 (en) Heat pump type water heater
JP2008517247A (en) The shape of the gas cooler integrated in the heat pump chassis
CN206018998U (en) A kind of pair of snail fans Teat pump boiler
JP4075844B2 (en) Heat pump water heater
JP3913629B2 (en) Heat exchanger and heat pump water heater equipped with the heat exchanger
JP4893047B2 (en) Heat pump type water heater
JP2005241092A (en) Heat pump water heater
JP2007113841A (en) Heat pump type water heater
WO2021161522A1 (en) Heat pump device and hot water storage type hot water supplier
JP2008224073A (en) Heat pump hot water supply device
JP5737256B2 (en) Heat source unit and hot water supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R151 Written notification of patent or utility model registration

Ref document number: 4123264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees