JP4095354B2 - Metal substrate and manufacturing method thereof - Google Patents

Metal substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4095354B2
JP4095354B2 JP2002178004A JP2002178004A JP4095354B2 JP 4095354 B2 JP4095354 B2 JP 4095354B2 JP 2002178004 A JP2002178004 A JP 2002178004A JP 2002178004 A JP2002178004 A JP 2002178004A JP 4095354 B2 JP4095354 B2 JP 4095354B2
Authority
JP
Japan
Prior art keywords
adhesive
wiring board
metal plate
printed wiring
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178004A
Other languages
Japanese (ja)
Other versions
JP2004022922A (en
Inventor
康夫 河嶋
聡 柳浦
伊知郎 城川
政明 村上
洋一 北村
顯 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002178004A priority Critical patent/JP4095354B2/en
Publication of JP2004022922A publication Critical patent/JP2004022922A/en
Application granted granted Critical
Publication of JP4095354B2 publication Critical patent/JP4095354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、金属板とプリント配線板を接着剤により貼り合わせた金属基板に関するものである。
【0002】
【従来の技術】
従来、金属板とプリント配線板を接着する方法として、例えば特開平05−259650号広報に示されているように、金属板とプリント配線板の間に接着剤シートを挟み、加熱・加圧することにより貼り合わる技術が広く知られている。このような金属基板は、図7に示すように、金属板1と導電パターン4及びスルーホール5を有するプリント配線板3との間に、半硬化性の接着剤シート(プリプレグ)等を挟み、加熱・加圧することにより形成していた。
【0003】
【発明が解決しようとする課題】
上記従来の金属基板の製造方法では、プリント配線板3の表面の凹凸やそりを吸収するために、厚めの接着剤層2が必要となり、加熱・加圧時に接着剤がプリント配線板3に設けられたスルーホール5を通って裏面(図7の20a)に到達して、導体パターン4を汚染するという問題があった。また、金属基板の端面から接着剤がはみ出してしまい(図7の20b)、外形サイズにバラツキが生じるという問題もあった。
【0004】
また、金属基板が高周波用途に使用される場合、接着剤に導電性および高放熱性が要求され、プリント配線板3の導体パターン4と金属板1との間の接着層2を薄くする必要があり、プリント配線板3のそり、凹凸を吸収することができず、凹部内へ接着剤が充分流れ込まず、凹部〜金属板間で未接着となる等の問題があった。
【0005】
この発明は、上記のような問題点を解消するためになされたものであり、金属板とプリント配線板を貼り合わせる接着剤の基板からのはみ出しや接着不良を防止すると共に、導電性と高放熱性が要求される部分の接着剤の厚みを薄くすることを目的とする。
【0006】
【課題を解決するための手段】
請求項1の発明は、金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、導体パターンを除いた凹部に接着剤を印刷したプリント配線板と、一主面又は両主面の全面に接着剤を印刷した金属板とを貼り合わせたことを特徴とする。
【0007】
請求項2の発明は、金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、上記プリント配線板に形成された導体パターンの放熱部分および金属板との導通部分を除いた面をレジストで被覆し、上記プリント配線板の放熱部分および金属板との導通部分に導電性の接着剤を印刷し、上記導電性の接着剤を印刷したプリント配線板と全面に導電性の接着剤を印刷した金属板とを貼り合わせたことを特徴とする。
【0008】
請求項3の発明は、請求項1の発明において、プリント配線板の導体パターンを除いた凹部に、導体パターンより高さが高く、かつ導体パターンと接着剤の間に空隙が出来るように接着剤を印刷し、導体パターンより突出した接着剤の体積が上記空隙の体積と同体積になるようにしたことを特徴とする。
【0009】
請求項4の発明は、金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させた金属基板において、プリント配線板の導体パターンを除いた凹部と上記金属板の間に非導電性接着剤を、上記プリント配線板の導体パターンと上記金属板との間に導電性接着剤を形成したことを特徴とする。
【0010】
請求項5の発明は、金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、プリント配線板の導体パターンを除いた凹部非導電性接着剤を印刷したプリント配線板と、非導電性接着剤に対向する部分を除いた全面に導電性接着剤を印刷した金属板とを貼り合わせたことを特徴とする。
【0011】
請求項6の発明は、金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させた金属基板において、プリント配線板の導体パターンを除いた凹部と上記金属板の間に熱伝導性接着剤を、上記プリント配線板の導体パターンと上記金属板との間に導電性接着剤を形成したことを特徴とする。
【0012】
請求項7の発明は、金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、導体パターンを除いた凹部熱伝導性接着剤を印刷したプリント配線板と、熱伝導性接着剤に対向する部分を除いた全面に導電性接着剤を印刷した金属板とを貼り合わせたことを特徴とする。
【0014】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による金属基板の製造工程を示す断面図であり、以下、図1に基づいて、金属板とプリント配線板を接着剤で貼り付ける方法について説明する。
【0015】
まず、図1(a)及び(b)に示すように、金属板1に接着剤2aを印刷塗布する。ここで、金属板1への接着剤2aの塗布は、後述するプリント配線板3の導体パターン4から金属板1への熱抵抗を考慮した厚み、例えば10〜50μmの厚みを持つようにスクリーン印刷により形成する。
【0016】
一方、図1(c)に示すように、プリント配線板3にはその表裏面に導体パターン4が形成されている。また、プリント配線板3が例えば高周波基板の場合、高周波特性確保のために導体パターン4にはアースに接続するためのスルーホール5が多数形成されている。また、構成部品のはんだ接続のため、導体パターン4の最表層には、金めっきが施されている。
【0017】
図1(d)は上記プリント配線板3に接着剤2bを塗布した図を示し、ここでの接着剤2bは、プリント配線板3の導体パターン4を除いた部分6にのみスクリーン印刷により塗布する。この時、塗布する接着剤2bの厚みは導体パターン4の高さより大きく、また導体パターン4と接着剤2bの間には、空隙が出来るように印刷する。
【0018】
次に、図1(e)に示すように、接着剤2aが塗布された金属板1と、接着剤2bが塗布されたプリント配線板3とを貼り合わせ、図1(f)に示すように、錘7により0.1kgf/cm2の荷重を接着剤2に与え、室温〜175℃で1時間〜12時間程度、接着剤硬化を行う。
【0019】
以上のように実施の形態1によれば、金属板1とプリント配線板3の間の全面の接着面圧がほぼ一様となって、接着剤2がプリント配線板3の端面より部分的にはみ出すことが無くなり、また接着剤2がスルーホール5を通ってプリント配線板3表面の導体パターン4を短絡させることを防止し、また、プリント配線板3の導体パターン4を除いた部分6で未接着が発生することも防止できる。
【0020】
なお、接着面圧力による僅かな量の接着剤2のはみ出しは、導体パターン4と接着剤2との空隙に退避できるため、上記はみ出しによる弊害を防止することが出来る。通常、導体パターン4は最表層が金めっきのため、接着剤2との密着性に劣るが、導体パターン4を除いた部分6と接着していることにより、全体として良好な密着性が確保できる。
【0021】
実施の形態2.
図2はこの発明の実施の形態2による金属基板の製造工程を示す断面図であり、以下、図2に基づいて、金属板とプリント配線板を接着剤で貼り付ける方法について説明する。
【0022】
まず、図2(a)及び(b)に示すように、金属板1に接着剤2aを印刷塗布する。ここで、金属板1への接着剤2aの塗布は、後述するプリント配線板3の導体パターン4から金属板1への熱抵抗を考慮した厚み、例えば10〜50μmの厚みを持つようにスクリーン印刷により形成する。
【0023】
一方、図2(c)に示すように、プリント配線板3にはその表裏面に導体パターン4が形成されており、プリント配線板3が例えば高周波基板の場合、高周波特性確保のために導体パターン4にはアースに接続するためのスルーホール5が多数形成されている。また、導体パターン4の放熱/導通部分9以外の部分をレジスト8で被覆し、導体パターン4の放熱/導通部分9のみに金めっきが施されている。
【0024】
そして、図2(d)に示すように、導体パターン4の放熱/導通部分9にのみスクリーン印刷により接着剤2を印刷する。その際、接着剤2の厚みはレジスト8の高さより大きく、またレジスト8と接着剤2の間には、空隙が出来るように印刷する。
【0025】
その後は、図2(e)及び(f)に示すように、接着剤2aが塗布された金属板1と、接着剤2bが塗布されたプリント配線板3とを貼り合わせ、錘7により0.1kgf/cm2の荷重を接着剤2に与え、室温〜175℃で1時間〜12時間程度、接着剤硬化を行う。
【0026】
以上のように実施の形態2によれば、金属板1とプリント配線板3の間の全面の接着面圧がほぼ一様となって、接着剤2が部分的にはみ出すことが無くなり、接着剤2がスルーホール5を通ってプリント配線板3表面の導体パターン4を短絡させることを防止し、また、プリント配線板3の放熱/導通部分9と金属板1の間で未接着が発生することを防止できる。
【0027】
なお、接着面圧力による僅かな量の接着剤2はみ出しは、レジスト8と接着剤2bの空隙に退避できるため、上記はみ出しによる弊害を防止することが出来る。通常、放熱/導通部分9は最表層が金めっきのため、接着剤2との密着性が劣るが、レジスト8と接着していることにより、全体として良好な密着性が確保できる。
【0028】
実施の形態3.
図3はこの発明の実施の形態3による金属基板の製造工程を示す断面図であり、以下、図3に基づいて、金属板とプリント配線板を接着剤で貼り付ける方法について説明する。
【0029】
まず、図3(a)及び(b)に示すように、金属板1に接着剤2aを印刷塗布する。その後、図3(c)に示すように、金属板1の接着剤2a上に、例えばテフロン基板(テフロンは登録商標)に代表される接着剤2aが付着しにくい抑え板10を載せ、その上に錘11を搭載して接着剤2aの表面を平坦化する。
【0030】
一方、図3(d)及び(e)に示すように、プリント配線板3の導体パターン4を除いた部分6にスクリーン印刷により接着剤2bを塗布する。この時、塗布する接着剤2bの厚みは導体パターン4の高さより大きく、また導体パターン4と接着剤2bの間には、空隙が出来るように印刷する。
【0031】
次に、図3(f)に示すように、プリント配線板3に形成した接着剤2b上に、例えばテフロン基板(テフロンは登録商標)に代表される接着剤2bが付着しにくい抑え板10を載せ、その上に錘11を搭載して接着剤2bの表面を平坦化する。この時、図3(i)に示すように、プリント配線板3の接着剤2bの導体パターン4から突出した部分12の体積が、導体パターン4と接着剤2bとの境界に設けられた空隙13の体積とほぼ同じになる様に接着剤2bの高さを錘11の重量により調節する。
【0032】
その後は、図3(g)及び(h)に示すように、接着剤2aが塗布された金属板1と、接着剤2bが塗布されたプリント配線板3とを貼り合わせ、錘7により0.1kgf/cm2の荷重を接着剤2に与え、室温〜175℃で1時間〜12時間程度、接着剤硬化を行う。
【0033】
以上のように実施の形態3によれば、金属板1とプリント配線板3との間の接着面圧力による僅かな量の接着剤2のはみ出しは、導体パターン4と接着剤2との境界に設けられた空隙に退避できるため、上記はみ出しによる弊害をより高精度に防止することが出来る。
【0034】
実施の形態4.
図4はこの発明の実施の形態4による金属基板の製造工程を示す断面図であり、以下、図4に基づいて、金属板とプリント配線板を接着剤で貼り付ける方法について説明する。
【0035】
図4(c)及び(d)に示すように、プリント配線板3の導体パターン4を除いた部分6にスクリーン印刷により非導電性接着剤14を塗布する。この時、塗布する接着剤14の厚みは導体パターン4の高さより大きく、また導体パターン4と接着剤14の間には、空隙が出来るように印刷する。
【0036】
一方、図4(a)及び(b)に示すように、金属板1に、プリント配線板3に印刷された非導電性接着剤14と対向する部分を除いた全面に導電性接着剤16を印刷する。
【0037】
その後は、図2(e)及び(f)に示すように、導電性接着剤16が塗布された金属板1と、非導電性接着剤14が塗布されたプリント配線板3とを貼り合わせ、錘7による荷重を双方の接着剤に与えて貼り付ける。
【0038】
以上のように実施の形態4によれば、プリント配線板3の導体パターン4と金属板1との間に導電性接着剤16を介在させることにより放熱性と導電性を確保することができる。また、導電性接着剤16に比べて密着性に優れる非導電性接着剤14を導体パターン4を除いた部分6と金属板1の間に介在させることにより密着性を向上させることができる。更に、非導電性接着剤14の使用により、接着剤コストを低減できる。
【0039】
実施の形態5.
図5はこの発明の実施の形態5による、金属板とプリント配線板を貼り合わせた金属基板を示す断面図である。
【0040】
本実施の形態では、プリント配線板3の導体パターン4を除いた部分6にスクリーン印刷により高熱伝導性接着剤17を塗布する。この時、塗布する接着剤17の厚みは導体パターン4の高さより大きく、また導体パターン4と接着剤17の間には、空隙が出来るように印刷する。一方、金属板1には、プリント配線板3に印刷された高熱伝導性接着剤17と対向する部分を除いた全面に導電性接着剤16を印刷する。そして、導電性接着剤16が塗布された金属板1と、高熱伝導性接着剤17が塗布されたプリント配線板3とを貼り合わせ、錘7による荷重を双方の接着剤に与えて貼り付ける。
【0041】
以上のように本実施の形態によれば、プリント配線板3の導体パターン4を除いた部分6にのみ高熱伝導性接着剤17を、金属板1に導電性接着剤16を印刷して貼り合わせたので、導電性接着剤16のみで接着した場合に比べ、放熱性および密着性が向上する。
【0042】
実施の形態6.
図6はこの発明の実施の形態6による、金属板とプリント配線板を貼り合わせた金属基板を示す断面図である。
【0043】
図において、金属板1と、導電パターン4及びスルーホール5が形成されたプリント配線板3とは、双方に印刷された接着剤2により貼り合わされている。プリント配線板3と接着剤層2は、スルーホール3の位置では、最表面がAu等のめっきが施された導体パターン4と接着されているため、密着性が乏しいが、スルーホール3間では、導体パターン4を除いた凹部6と樹脂同士等の強固な接着がなされている。そして、このプリント配線板3に配設するスルーホール5間のピッチを、内外層に配線された高周波回路から発生する電磁波の波長(λ)の1/4以下でかつ最大になるようにする。また、各スルーホール5間に可能な限り導体パターン4を除いた部分6を設ける。
【0044】
本実施の形態によれば、高周波回路から発生する電磁波の漏れをシールドすることができ、他の回路に悪影響を与えることがない。その結果、高周波特性に優れかつプリント配線板と金属板との密着性に優れた金属基板を提供することができる。
【0045】
【発明の効果】
以上のようにこの発明によれば、以下に述べる効果を達成する。
【0046】
請求項1の発明によれば、プリント配線板の導体パターンを除いた凹部と金属板と間の接着が、プリント配線板側に印刷した接着剤により確実になされるため、金属板とプリント配線板の導体パターンとの接着剤膜厚を最小限にすることができる。その結果、例えば高周波プリント配線板に要求される放熱性、導電性を満足すると共に、金属基板端面からの接着剤のはみ出しやプリント配線板の導体パターンに設けられたスルーホールからの接着剤のしみ出しを防止することができる。また、プリント配線板の導体パターンは部品のはんだ付のため、通常、最表面が金めっきが施されており、一般に接着剤との密着性に劣るが、導体パターンを除いた凹部と金属板が接着されているため、全体として良好な密着性を確保することができる。
【0047】
請求項2の発明によれば、プリント配線板の導体パターンは部品のはんだ付のため、最表面が金めっきされており、一般に接着剤との密着性に劣るが、被覆されたレジストと金属板が接着されているため、全体として良好な密着性を確保することができる。また、導体パターンを分断することなく、接着がなされるため、強固なアースを設けることができ、高周波特性に優れる。
【0048】
請求項3の発明によれば、接着剤のはみ出し量をより高精度に制御することができる。
【0049】
請求項4及び請求項5の発明において、プリント配線板の導体パターンと金属板とは放熱およびアースを取るために導電性接着剤を使うが、プリント配線板の導体パターン以外の面はアースを取る必要もなく、非導電性接着剤を使用してもかまわない。一般的に非導電性接着剤は導電性接着剤に比べて接着力が強いためこのようにすることにより、接合強度を大きくすることが出来る。
【0050】
請求項6及び請求項7の発明によれば、プリント配線板の導体パターンと金属板とは放熱およびアースを取るために導電性接着剤を使うが、プリント配線板の導体パターン以外の面はアースを取る必要もなく、非導電性接着剤を使用してもかまわないが、搭載素子の発熱が大きい場合は、高熱伝導性接着剤を用いることにより、接着性を確保しつつ放熱性を高めることが出来る。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による金属基板の製造工程を示す断面図である。
【図2】 この発明の実施の形態2による金属基板の製造工程を示す断面図である。
【図3】 この発明の実施の形態3による金属基板の製造工程を示す断面図である。
【図4】 この発明の実施の形態4による金属基板の製造工程を示す断面図である。
【図5】 この発明の実施の形態5による金属基板を示す断面図である。
【図6】 この発明の実施の形態6による金属基板を示す断面図である。
【図7】 従来の金属基板を示す断面図である。
【符号の説明】
1 金属板、2,2a,2b 接着剤、3 プリント配線板、4 導体パターン、5 スルーホール、6 凹部、7 錘、8 レジスト、10 抑え板、11錘、14 非導電性接着剤、16 導電性接着剤、17 高熱伝導性接着剤。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal substrate in which a metal plate and a printed wiring board are bonded together with an adhesive.
[0002]
[Prior art]
Conventionally, as a method of adhering a metal plate and a printed wiring board, for example, as disclosed in Japanese Patent Application Laid-Open No. 05-259650, an adhesive sheet is sandwiched between the metal plate and the printed wiring board, and then applied by heating and pressing. The matching technology is widely known. As shown in FIG. 7, such a metal substrate sandwiches a semi-curable adhesive sheet (prepreg) or the like between the metal plate 1 and the printed wiring board 3 having the conductive pattern 4 and the through hole 5. It was formed by heating and pressing.
[0003]
[Problems to be solved by the invention]
In the above conventional method for manufacturing a metal substrate, a thick adhesive layer 2 is required to absorb irregularities and warpage on the surface of the printed wiring board 3, and the adhesive is provided on the printed wiring board 3 during heating and pressing. There is a problem that the conductive pattern 4 is contaminated by reaching the back surface (20a in FIG. 7) through the through-hole 5 formed. In addition, the adhesive protrudes from the end face of the metal substrate (20b in FIG. 7), and there is a problem that the outer size varies.
[0004]
When the metal substrate is used for high frequency applications, the adhesive is required to have conductivity and high heat dissipation, and the adhesive layer 2 between the conductor pattern 4 of the printed wiring board 3 and the metal plate 1 needs to be thin. There is a problem that the warp and unevenness of the printed wiring board 3 cannot be absorbed, the adhesive does not sufficiently flow into the recess, and the adhesive is not bonded between the recess and the metal plate.
[0005]
The present invention has been made to solve the above-mentioned problems, and prevents the adhesive that bonds the metal plate and the printed wiring board from sticking out from the substrate and poor adhesion, and also provides conductivity and high heat dissipation. The purpose is to reduce the thickness of the adhesive at the part where the property is required.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for manufacturing a metal substrate in which a metal plate and a printed wiring board disposed on one or both main surfaces of the metal plate are integrated with an adhesive. A printed wiring board printed with an adhesive and a metal plate printed with an adhesive on the entire surface of one main surface or both main surfaces are bonded together.
[0007]
According to a second aspect of the present invention, there is provided a metal substrate manufacturing method in which a metal plate and a printed wiring board disposed on one or both main surfaces of the metal plate are integrated with an adhesive, and formed on the printed wiring board. a surface excluding the conductive portion of the heat radiation portion and the metal plate conductor pattern was coated with resist, and printing the conductive adhesive on the conductive portion of the heat radiation portion and the metal plate of the printed wiring board, the conductive characterized in that the adhesive printed printed circuit board and the whole surface of the bonding the conductive metal plate where the adhesive is printed.
[0008]
The invention of claim 3 is an adhesive according to the invention of claim 1, in which the height of the recessed portion excluding the conductor pattern of the printed wiring board is higher than the conductor pattern and a gap is formed between the conductor pattern and the adhesive. The volume of the adhesive protruding from the conductor pattern is the same as the volume of the gap.
[0009]
The invention of claim 4 is a metal substrate in which a metal plate and a printed wiring board disposed on one or both main surfaces of the metal plate are integrated with an adhesive, and the conductor pattern of the printed wiring board is removed. A non-conductive adhesive is formed between the recess and the metal plate, and a conductive adhesive is formed between the conductor pattern of the printed wiring board and the metal plate.
[0010]
The invention of claim 5 includes a metal plate, in the manufacturing method of the metal substrate to be integrated by the adhesive printed wiring board which is arranged on one main surface or both main surfaces of the metal plate, the conductor pattern of the printed wiring board A printed wiring board printed with a non-conductive adhesive in the removed recess and a metal plate printed with a conductive adhesive on the entire surface excluding the portion facing the non-conductive adhesive .
[0011]
The invention according to claim 6 is a metal substrate in which a metal plate and a printed wiring board disposed on one or both main surfaces of the metal plate are integrated with an adhesive, and the conductor pattern of the printed wiring board is removed. A heat conductive adhesive is formed between the recess and the metal plate, and a conductive adhesive is formed between the conductor pattern of the printed wiring board and the metal plate.
[0012]
The invention of claim 7, a metal plate, in the manufacturing method of the metal substrate to be integrated by the adhesive printed wiring board which is arranged on one main surface or both main surfaces of the metal plate, the recess except for conductor patterns It is characterized in that a printed wiring board printed with a heat conductive adhesive and a metal plate printed with a conductive adhesive on the entire surface excluding a portion facing the heat conductive adhesive are bonded together.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a metal substrate manufacturing process according to Embodiment 1 of the present invention. Hereinafter, a method of attaching a metal plate and a printed wiring board with an adhesive will be described with reference to FIG.
[0015]
First, as shown in FIGS. 1A and 1B, an adhesive 2 a is printed on the metal plate 1. Here, the adhesive 2a is applied to the metal plate 1 by screen printing so as to have a thickness in consideration of the thermal resistance from the conductor pattern 4 of the printed wiring board 3 to the metal plate 1 to be described later, for example, 10 to 50 μm. To form.
[0016]
On the other hand, as shown in FIG. 1C, the printed wiring board 3 has conductor patterns 4 formed on the front and back surfaces thereof. When the printed wiring board 3 is, for example, a high-frequency board, the conductor pattern 4 has a large number of through holes 5 for connection to the ground in order to ensure high-frequency characteristics. In addition, gold plating is applied to the outermost layer of the conductor pattern 4 for solder connection of the component parts.
[0017]
FIG. 1 (d) shows a diagram in which an adhesive 2 b is applied to the printed wiring board 3, and the adhesive 2 b here is applied only to a portion 6 of the printed wiring board 3 excluding the conductor pattern 4 by screen printing. . At this time, the thickness of the adhesive 2b to be applied is larger than the height of the conductor pattern 4, and printing is performed so that a gap is formed between the conductor pattern 4 and the adhesive 2b.
[0018]
Next, as shown in FIG. 1 (e), the metal plate 1 coated with the adhesive 2a and the printed wiring board 3 coated with the adhesive 2b are bonded together, as shown in FIG. 1 (f). Then, a weight of 0.1 kgf / cm 2 is applied to the adhesive 2 by the weight 7 and the adhesive is cured at room temperature to 175 ° C. for about 1 hour to 12 hours.
[0019]
As described above, according to the first embodiment, the adhesive surface pressure on the entire surface between the metal plate 1 and the printed wiring board 3 becomes substantially uniform, and the adhesive 2 is partially from the end surface of the printed wiring board 3. This prevents the adhesive 2 from short-circuiting the conductive pattern 4 on the surface of the printed wiring board 3 through the through-hole 5, and also prevents the adhesive 6 from remaining in the portion 6 of the printed wiring board 3 excluding the conductive pattern 4. The occurrence of adhesion can also be prevented.
[0020]
In addition, since the protrusion of the slight amount of the adhesive 2 due to the adhesive surface pressure can be retreated into the gap between the conductor pattern 4 and the adhesive 2, the adverse effect due to the protrusion can be prevented. Usually, the conductive pattern 4 is inferior in adhesiveness with the adhesive 2 because the outermost layer is gold plating, but by adhering to the portion 6 excluding the conductive pattern 4, good overall adhesiveness can be secured. .
[0021]
Embodiment 2. FIG.
FIG. 2 is a cross-sectional view showing a metal substrate manufacturing process according to Embodiment 2 of the present invention. Hereinafter, a method for attaching a metal plate and a printed wiring board with an adhesive will be described with reference to FIG.
[0022]
First, as shown in FIGS. 2A and 2B, an adhesive 2 a is printed on the metal plate 1. Here, the adhesive 2a is applied to the metal plate 1 by screen printing so as to have a thickness in consideration of the thermal resistance from the conductor pattern 4 of the printed wiring board 3 to the metal plate 1 to be described later, for example, 10 to 50 μm. To form.
[0023]
On the other hand, as shown in FIG. 2 (c), the printed wiring board 3 has conductor patterns 4 formed on the front and back surfaces. When the printed wiring board 3 is a high-frequency substrate, for example, the conductive pattern is used to ensure high-frequency characteristics. A number of through holes 5 for connecting to the ground are formed in 4. Further, a portion other than the heat dissipation / conduction portion 9 of the conductor pattern 4 is covered with a resist 8, and only the heat dissipation / conduction portion 9 of the conductor pattern 4 is plated with gold.
[0024]
Then, as shown in FIG. 2 (d), the adhesive 2 is printed by screen printing only on the heat radiation / conduction portion 9 of the conductor pattern 4. At this time, the thickness of the adhesive 2 is larger than the height of the resist 8, and printing is performed so that a gap is formed between the resist 8 and the adhesive 2.
[0025]
Thereafter, as shown in FIGS. 2 (e) and 2 (f), the metal plate 1 coated with the adhesive 2 a and the printed wiring board 3 coated with the adhesive 2 b are bonded to each other with a weight 7. A load of 1 kgf / cm 2 is applied to the adhesive 2 and the adhesive is cured at room temperature to 175 ° C. for about 1 to 12 hours.
[0026]
As described above, according to the second embodiment, the adhesive surface pressure on the entire surface between the metal plate 1 and the printed wiring board 3 becomes substantially uniform, and the adhesive 2 does not partially protrude. 2 prevents the conductor pattern 4 on the surface of the printed wiring board 3 from being short-circuited through the through-hole 5, and non-adhesion occurs between the heat dissipation / conduction portion 9 of the printed wiring board 3 and the metal plate 1. Can be prevented.
[0027]
In addition, since a slight amount of the adhesive 2 protruding due to the adhesive surface pressure can be retreated into the gap between the resist 8 and the adhesive 2b, the above-described adverse effects due to the protrusion can be prevented. Usually, the heat dissipation / conduction portion 9 is inferior in adhesion to the adhesive 2 because the outermost layer is gold-plated, but by adhering to the resist 8, good adhesion can be ensured as a whole.
[0028]
Embodiment 3 FIG.
FIG. 3 is a cross-sectional view showing a metal substrate manufacturing process according to Embodiment 3 of the present invention. Hereinafter, a method of attaching a metal plate and a printed wiring board with an adhesive will be described with reference to FIG.
[0029]
First, as shown in FIGS. 3A and 3B, an adhesive 2 a is printed on the metal plate 1. Thereafter, as shown in FIG. 3 (c), on the adhesive 2a of the metal plate 1, for example, a restraining plate 10 to which an adhesive 2a typified by a Teflon substrate (Teflon is a registered trademark) hardly adheres is placed. The weight 11 is mounted on the surface to flatten the surface of the adhesive 2a.
[0030]
On the other hand, as shown in FIGS. 3D and 3E, an adhesive 2b is applied to the portion 6 of the printed wiring board 3 excluding the conductor pattern 4 by screen printing. At this time, the thickness of the adhesive 2b to be applied is larger than the height of the conductor pattern 4, and printing is performed so that a gap is formed between the conductor pattern 4 and the adhesive 2b.
[0031]
Next, as shown in FIG. 3 (f), on the adhesive 2b formed on the printed wiring board 3, for example, a holding plate 10 on which an adhesive 2b represented by a Teflon substrate (Teflon is a registered trademark) is difficult to adhere. The weight 11 is mounted thereon, and the surface of the adhesive 2b is flattened. At this time, as shown in FIG. 3I, the volume of the portion 12 protruding from the conductor pattern 4 of the adhesive 2b of the printed wiring board 3 is the gap 13 provided at the boundary between the conductor pattern 4 and the adhesive 2b. The height of the adhesive 2b is adjusted by the weight of the weight 11 so as to be substantially the same as the volume of the weight 11.
[0032]
Thereafter, as shown in FIGS. 3 (g) and (h), the metal plate 1 coated with the adhesive 2a and the printed wiring board 3 coated with the adhesive 2b are bonded together, and the weight 7 is adjusted to 0.5. A load of 1 kgf / cm 2 is applied to the adhesive 2 and the adhesive is cured at room temperature to 175 ° C. for about 1 to 12 hours.
[0033]
As described above, according to the third embodiment, a slight amount of the adhesive 2 protruding due to the adhesive surface pressure between the metal plate 1 and the printed wiring board 3 is at the boundary between the conductor pattern 4 and the adhesive 2. Since it is possible to retreat into the provided gap, it is possible to prevent the adverse effects caused by the protrusions with higher accuracy.
[0034]
Embodiment 4 FIG.
FIG. 4 is a cross-sectional view showing a metal substrate manufacturing process according to Embodiment 4 of the present invention. Hereinafter, a method of attaching a metal plate and a printed wiring board with an adhesive will be described with reference to FIG.
[0035]
As shown in FIGS. 4C and 4D, a non-conductive adhesive 14 is applied to the portion 6 of the printed wiring board 3 excluding the conductor pattern 4 by screen printing. At this time, the thickness of the adhesive 14 to be applied is larger than the height of the conductor pattern 4, and printing is performed so that a gap is formed between the conductor pattern 4 and the adhesive 14.
[0036]
On the other hand, as shown in FIGS. 4A and 4B, the conductive adhesive 16 is applied to the entire surface of the metal plate 1 except for the portion facing the nonconductive adhesive 14 printed on the printed wiring board 3. Print.
[0037]
After that, as shown in FIGS. 2E and 2F, the metal plate 1 coated with the conductive adhesive 16 and the printed wiring board 3 coated with the non-conductive adhesive 14 are bonded together. The load by the weight 7 is applied to both adhesives and pasted.
[0038]
As described above, according to the fourth embodiment, heat dissipation and conductivity can be ensured by interposing the conductive adhesive 16 between the conductor pattern 4 of the printed wiring board 3 and the metal plate 1. Further, the adhesion can be improved by interposing the non-conductive adhesive 14, which is superior in adhesion as compared with the conductive adhesive 16, between the portion 6 excluding the conductor pattern 4 and the metal plate 1. Further, the use of the non-conductive adhesive 14 can reduce the adhesive cost.
[0039]
Embodiment 5. FIG.
FIG. 5 is a sectional view showing a metal substrate on which a metal plate and a printed wiring board are bonded together according to Embodiment 5 of the present invention.
[0040]
In the present embodiment, the high thermal conductive adhesive 17 is applied to the portion 6 of the printed wiring board 3 excluding the conductor pattern 4 by screen printing. At this time, the thickness of the adhesive 17 to be applied is larger than the height of the conductor pattern 4, and printing is performed so that a gap is formed between the conductor pattern 4 and the adhesive 17. On the other hand, the conductive adhesive 16 is printed on the entire surface of the metal plate 1 except for the portion facing the high thermal conductive adhesive 17 printed on the printed wiring board 3. Then, the metal plate 1 to which the conductive adhesive 16 is applied and the printed wiring board 3 to which the high thermal conductive adhesive 17 is applied are bonded together, and the load by the weight 7 is applied to both the adhesives to be bonded.
[0041]
As described above, according to the present embodiment, the high thermal conductive adhesive 17 is printed only on the portion 6 of the printed wiring board 3 excluding the conductor pattern 4 and the conductive adhesive 16 is printed on the metal plate 1 and bonded together. Therefore, compared with the case where it adhere | attaches only with the conductive adhesive 16, heat dissipation and adhesiveness improve.
[0042]
Embodiment 6 FIG.
FIG. 6 is a cross-sectional view showing a metal substrate on which a metal plate and a printed wiring board are bonded according to Embodiment 6 of the present invention.
[0043]
In the figure, a metal plate 1 and a printed wiring board 3 on which a conductive pattern 4 and a through hole 5 are formed are bonded together by an adhesive 2 printed on both sides. The printed wiring board 3 and the adhesive layer 2 have poor adhesion because the outermost surface is adhered to the conductive pattern 4 plated with Au or the like at the position of the through-hole 3. The concave portion 6 excluding the conductor pattern 4 is firmly bonded to the resin or the like. Then, the pitch between the through holes 5 arranged on the printed wiring board 3 is set to ¼ or less of the wavelength (λ) of the electromagnetic wave generated from the high frequency circuit wired on the inner and outer layers. Further, a portion 6 excluding the conductor pattern 4 as much as possible is provided between the through holes 5.
[0044]
According to the present embodiment, leakage of electromagnetic waves generated from the high frequency circuit can be shielded, and other circuits are not adversely affected. As a result, it is possible to provide a metal substrate that has excellent high-frequency characteristics and excellent adhesion between the printed wiring board and the metal plate.
[0045]
【The invention's effect】
As described above, according to the present invention, the following effects are achieved.
[0046]
According to the first aspect of the present invention, since the adhesion between the concave portion excluding the conductor pattern of the printed wiring board and the metal plate is surely made by the adhesive printed on the printed wiring board side, the metal plate and the printed wiring board. It is possible to minimize the adhesive film thickness with the conductor pattern. As a result, for example, it satisfies the heat dissipation and electrical conductivity required for high-frequency printed wiring boards, and the adhesive sticks out from the end face of the metal substrate and through the through holes provided in the conductor pattern of the printed wiring board. It is possible to prevent the sticking out. In addition, the conductor pattern of the printed wiring board is usually soldered to the parts, so the outermost surface is usually gold-plated and generally has poor adhesion to the adhesive. Since it is bonded, it is possible to ensure good adhesion as a whole.
[0047]
According to the invention of claim 2, the conductive pattern of the printed wiring board is gold-plated on the outermost surface for soldering parts, and is generally inferior in adhesion to the adhesive, but the coated resist and metal plate As a result, it is possible to ensure good adhesion as a whole. Further, since the bonding is performed without dividing the conductor pattern, a strong ground can be provided and the high frequency characteristics are excellent.
[0048]
According to invention of Claim 3, the protrusion amount of an adhesive agent can be controlled with higher precision.
[0049]
In the inventions of claim 4 and claim 5, the conductive pattern of the printed wiring board and the metal plate use a conductive adhesive for heat dissipation and grounding, but the surface other than the conductive pattern of the printed wiring board is grounded. There is no need, and a non-conductive adhesive may be used. In general, a non-conductive adhesive has a stronger adhesive strength than a conductive adhesive, and thus the bonding strength can be increased.
[0050]
According to the invention of claim 6 and claim 7, the conductive pattern of the printed wiring board and the metal plate use the conductive adhesive for heat dissipation and grounding, but the surface other than the conductive pattern of the printed wiring board is grounded. It is possible to use non-conductive adhesive, but if the mounted element generates a large amount of heat, use a highly thermally conductive adhesive to increase heat dissipation while ensuring adhesiveness. I can do it.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a metal substrate manufacturing process according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing a metal substrate manufacturing process according to a second embodiment of the present invention.
FIG. 3 is a sectional view showing a metal substrate manufacturing process according to a third embodiment of the present invention.
FIG. 4 is a sectional view showing a metal substrate manufacturing process according to a fourth embodiment of the present invention.
FIG. 5 is a sectional view showing a metal substrate according to a fifth embodiment of the present invention.
FIG. 6 is a sectional view showing a metal substrate according to a sixth embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a conventional metal substrate.
[Explanation of symbols]
1 Metal plate, 2, 2a, 2b Adhesive, 3 Printed wiring board, 4 Conductor pattern, 5 Through hole, 6 Recess, 7 Weight, 8 Resist, 10 Restraining plate, 11 Weight, 14 Non-conductive adhesive, 16 Conductive Adhesive, 17 High thermal conductive adhesive.

Claims (7)

金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、
導体パターンを除いた凹部に接着剤を印刷したプリント配線板と、一主面又は両主面の全面に接着剤を印刷した金属板とを貼り合わせたことを特徴とする金属基板の製造方法。
In the method of manufacturing a metal substrate, in which a metal plate and a printed wiring board disposed on one main surface or both main surfaces of the metal plate are integrated by an adhesive,
A method for producing a metal substrate, comprising: a printed wiring board having an adhesive printed in a recess excluding a conductor pattern; and a metal plate having an adhesive printed on the entire surface of one main surface or both main surfaces.
金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、
上記プリント配線板に形成された導体パターンの放熱部分および金属板との導通部分を除いた面をレジストで被覆し、上記プリント配線板の放熱部分および金属板との導通部分に導電性の接着剤を印刷し、上記導電性の接着剤を印刷したプリント配線板と全面に導電性の接着剤を印刷した金属板とを貼り合わせたことを特徴とする金属基板の製造方法。
In the method of manufacturing a metal substrate, in which a metal plate and a printed wiring board disposed on one main surface or both main surfaces of the metal plate are integrated by an adhesive,
Covering the surface except the conduction portion of the heat radiation portion and the metal plate conductor pattern formed on the printed wiring board with a resist, a conductive adhesive to a conductive portion of the heat radiation portion and the metal plate of the printed circuit board the print method for producing a metal substrate, characterized in that bonding the above conductive printed wiring board and the adhesive is printed in the entire surface metal was printed conductive adhesive plate.
上記プリント配線板の導体パターンを除いた凹部に、導体パターンより高さが高く、かつ導体パターンと接着剤の間に空隙が出来るように接着剤を印刷し、導体パターンより突出した接着剤の体積が上記空隙の体積と同体積になるようにしたことを特徴とする請求項1に記載の金属基板の製造方法。  The volume of the adhesive protruding from the conductor pattern is printed on the concave portion of the printed wiring board excluding the conductor pattern so that the height is higher than the conductor pattern and a gap is formed between the conductor pattern and the adhesive. The metal substrate manufacturing method according to claim 1, wherein the volume is the same as the volume of the gap. 金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させた金属基板において、
上記プリント配線板の導体パターンを除いた凹部と上記金属板の間に非導電性接着剤を、上記プリント配線板の導体パターンと上記金属板との間に導電性接着剤を形成したことを特徴とする金属基板。
In a metal substrate in which a metal plate and a printed wiring board arranged on one main surface or both main surfaces of this metal plate are integrated with an adhesive,
A non-conductive adhesive is formed between the concave portion excluding the conductive pattern of the printed wiring board and the metal plate, and a conductive adhesive is formed between the conductive pattern of the printed wiring board and the metal plate. Metal substrate.
金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、
上記プリント配線板の導体パターンを除いた凹部非導電性接着剤を印刷したプリント配線板と、上記非導電性接着剤に対向する部分を除いた全面に導電性接着剤を印刷した金属板とを貼り合わせたことを特徴とする金属基板の製造方法。
In the method of manufacturing a metal substrate, in which a metal plate and a printed wiring board disposed on one main surface or both main surfaces of the metal plate are integrated by an adhesive,
A printed wiring board in which a non-conductive adhesive is printed in a recess excluding a conductor pattern of the printed wiring board, and a metal plate in which a conductive adhesive is printed on the entire surface excluding a portion facing the non-conductive adhesive; A method for producing a metal substrate, characterized in that:
金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させた金属基板において、
上記プリント配線板の導体パターンを除いた凹部と上記金属板の間に熱伝導性接着剤を、上記プリント配線板の導体パターンと上記金属板との間に導電性接着剤を形成したことを特徴とする金属基板。
In a metal substrate in which a metal plate and a printed wiring board arranged on one main surface or both main surfaces of this metal plate are integrated with an adhesive,
A heat conductive adhesive is formed between the concave portion excluding the conductor pattern of the printed wiring board and the metal plate, and a conductive adhesive is formed between the conductor pattern of the printed wiring board and the metal plate. Metal substrate.
金属板と、この金属板の一主面又は両主面に配置されたプリント配線板を接着剤により一体化させる金属基板の製造方法において、
導体パターンを除いた凹部熱伝導性接着剤を印刷したプリント配線板と、上記熱伝導性接着剤に対向する部分を除いた全面に導電性接着剤を印刷した金属板とを貼り合わせたことを特徴とする金属基板の製造方法。
In the method of manufacturing a metal substrate, in which a metal plate and a printed wiring board disposed on one main surface or both main surfaces of the metal plate are integrated by an adhesive,
A printed wiring board printed with a heat conductive adhesive in the recesses excluding the conductor pattern and a metal plate printed with a conductive adhesive on the entire surface excluding the portion facing the heat conductive adhesive A metal substrate manufacturing method characterized by the above.
JP2002178004A 2002-06-19 2002-06-19 Metal substrate and manufacturing method thereof Expired - Fee Related JP4095354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178004A JP4095354B2 (en) 2002-06-19 2002-06-19 Metal substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178004A JP4095354B2 (en) 2002-06-19 2002-06-19 Metal substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004022922A JP2004022922A (en) 2004-01-22
JP4095354B2 true JP4095354B2 (en) 2008-06-04

Family

ID=31175853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178004A Expired - Fee Related JP4095354B2 (en) 2002-06-19 2002-06-19 Metal substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4095354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740059B2 (en) * 2006-07-27 2011-08-03 スター精密株式会社 Microphone housing and condenser microphone
JP7238330B2 (en) 2018-10-18 2023-03-14 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7225746B2 (en) 2018-12-07 2023-02-21 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP2004022922A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US6246014B1 (en) Printed circuit assembly and method of manufacture therefor
JP4145730B2 (en) Module with built-in semiconductor
CN101896037B (en) Rigid-flex wiring board and method for producing same
TW564481B (en) Multilayered substrate for semiconductor device
JPH0378795B2 (en)
JPH07240496A (en) Semiconductor device, its manufacture method and board for testing semiconductor and manufacture of test board
JP2003086949A (en) Method for manufacturing printed substrate and printed substrate formed thereby
KR20120049144A (en) Wiring board with electronic component, and method of manufacturing the same
JPH1126631A (en) Semiconductor device and manufacture thereof
JP2007235111A (en) Printed circuit board assembly and manufacturing method thereof
JP4095354B2 (en) Metal substrate and manufacturing method thereof
JPH0563112B2 (en)
JP3743716B2 (en) Flexible wiring board and semiconductor element mounting method
JPH1027952A (en) Printed wiring board and manufacture thereof
JP4821276B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
US6755229B2 (en) Method for preparing high performance ball grid array board and jig applicable to said method
JP2001068604A (en) Fixing resin, anisotropic conductive resin, semiconductor device and manufacture thereof, circuit board and electronic equipment
JPH06204651A (en) Connecting method for electric circuit component to circuit board
JP2597051B2 (en) Multilayer printed circuit board
JPH0446479B2 (en)
TWI407874B (en) Muti-layer printed circuit board and method for manufacturing the same
JP2571960B2 (en) Double-sided flexible circuit board and manufacturing method thereof
JP3027171B2 (en) Electric circuit members
JP2007115952A (en) Interposer substrate and manufacturing method thereof
JP2004241468A (en) Multilayer printed circuit board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees