JP4085899B2 - LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE - Google Patents

LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE Download PDF

Info

Publication number
JP4085899B2
JP4085899B2 JP2003187115A JP2003187115A JP4085899B2 JP 4085899 B2 JP4085899 B2 JP 4085899B2 JP 2003187115 A JP2003187115 A JP 2003187115A JP 2003187115 A JP2003187115 A JP 2003187115A JP 4085899 B2 JP4085899 B2 JP 4085899B2
Authority
JP
Japan
Prior art keywords
emitting device
led chip
substrate
side conductive
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003187115A
Other languages
Japanese (ja)
Other versions
JP2005026276A5 (en
JP2005026276A (en
Inventor
良治 杉浦
雅治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2003187115A priority Critical patent/JP4085899B2/en
Publication of JP2005026276A publication Critical patent/JP2005026276A/en
Publication of JP2005026276A5 publication Critical patent/JP2005026276A5/ja
Application granted granted Critical
Publication of JP4085899B2 publication Critical patent/JP4085899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光デバイスを量産するための発光デバイス用基板およびこの基板により製造される発光デバイスに関する。
【0002】
【従来の技術】
携帯電話機、カメラ等の各種電気機器に組み込まれている表示パネルは、バックライト用光源としてLEDチップを搭載した表面実装型の発光デバイスを用いている。この種の発光デバイスは、絶縁基板上にLEDチップを搭載し、透光性樹脂によって封止したものが一般的である(例えば、特許文献1参照)。なお、出願人は本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に密接に関連する先行技術文献を出願時までに見つけ出すことはできなかった。
【0003】
【特許文献1】
特開平8−213660号公報(段落「0005」、「0006」、図14)
【0004】
図19は上記した特開平8−213660号公報に示された発光デバイスの正面図で、これを概略説明すると、符号70は発光デバイス、71は絶縁基板、72,73は金属メッキ層(金メッキ)からなる電極パターン、74はLED(発光ダイオード)チップ、75はボンディングワイヤ、76は透光性樹脂である。LEDチップ74は、n形の半導体層74aとp形の半導体層74bとからなり、これらを相互にp−n接合したものであって、p形の半導体層74bが一方の電極パターン72に電気的に接続され、n形の半導体層74aが他方の電極パターン73にボンディングワイヤ75を介して電気的に接続されている。
【0005】
【発明が解決しようとする課題】
上記した従来の発光デバイス70においては、電極パターン72,73を金メッキによって形成しているため、図20に示すように可視光のうち波長が長い赤系統の光に対しては反射率が高い反面、波長が短い青系統の光に対しては反射率が著しく低く、高輝度の青系統の発光デバイスを得ることができないという問題があり、LEDチップ74の発光波長毎に導電パターン72,73の材料を変える必要があった。
【0006】
そこで、最近では波長が短い青系統の光に対して高い反射率を得る場合は、銀色系のメッキでかつワイヤボンディングが可能な金属としてAg(銀)によって電極パターン72,73を形成していた。しかし、Agは他の金属に比べて酸化し易い金属であり、電食現象が最も発生し易い金属であるため、発光デバイスの信頼性、安定性、耐久性に欠けるという問題があった。このため、電食対策としてハロゲンを含まない透光性樹脂によってLEDチップを封止する必要があり、樹脂材料にも制約を受ける。
【0007】
また、銀メッキによって電極パターン72,73を形成した場合は、透光性樹脂76から外部に露出し外気と接触する部分に対して他の安定した金属を後工程でメッキするなどの特殊な処理を施す必要がある。
また、Agが酸化するとボンディング性が著しく低下するため、特殊な保管方法やAgの酸化物を除去するためにLEDチップ74を実装してワイヤボンディングを行う以前にプラズマ処理を行う等の処理が必要とされ、製造コストが高くなる。
【0008】
また、Agは湿度の高い状態で発光デバイス70を使用した場合、マイグレーションを起こし易く、導電パターン72,73が短絡するおそれがある。
【0009】
さらに、発光デバイスの利用分野として、比較的点灯時間が短く、使用環境の良好な製品(例えば携帯電話器等)に限定されるため、屋外の大型の表示板等には使用できないなど、多くの問題があった。
【0010】
そこで、Ag以外の金属、例えばAl(アルミニウム)によって電極パターン72,73を形成することも知られている。しかしながら、この場合も金からなるボンディングワイヤ75を異種金属からなる導電パターンに対してボンディングするため、Agの場合と同様に酸化や電食によりボンディング性が劣化し、デバイスの信頼性、安定性、耐久性に問題が生じる。
【0011】
本発明は上記した従来の問題を解決するためになされたもので、その目的とするところは、金のメッキ層の一部をLEDチップの接続領域として残し、それ以外の部分に銀以外であって略全域にわたる可視光に対して良好な反射特性を有する金属の蒸着反射膜層を形成することにより、電食や酸化によるボンディング性の劣化やマイグレーションの発生を防止し得るようにするとともに、赤から青までどのような発光波長のLEDチップに対しても共通に使用し得るようにした発光デバイス用基板および発光デバイスを提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、第1の発明に係る発光デバイス用基板は、絶縁基板の表面側にそれぞれ金メッキされた複数の表面側導電パターンをマトリックス状に形成し、前記絶縁基板の裏面側で前記各表面側導電パターンに対応する部位に裏面側導電パターンをそれぞれ設け、これらの表裏面側導電パターンどうしを前記絶縁基板に設けた孔の内壁面を覆うメッキ層および前記表面側導通パターンの一部の裏面を覆うメッキ層を介して電気的に接続してなる絶縁基板であって、前記各表面側導電パターンの表面で互いに隣接する端縁部にLEDチップの接続領域を設定し、この接続領域以外の表面部分に、この表面部分を平坦化するためのアンダーコートを介して銀以外の金属による蒸着反射膜層を形成したものである。
【0013】
この構成においては、表面側導電パターンの端縁部に設けられたLEDチップの接続領域が蒸着反射膜層によって覆われておらず、金のメッキ層のまま残っているため、酸化したり電食したりすることがなく、良好なボンディング性を確保することができる。また、銀以外の蒸着反射膜層は、銀に比べて耐マイグレーション性に優れている。
【0014】
第2の発明に係る発光デバイス用基板は、上記第1の発明において、前記蒸着反射膜層がAl、h、Zn、Niのうちのいずれか1つの金属によって形成されているものである。
【0015】
この構成においては、蒸着反射膜層をAl、h、Znのうちのいずれか1つによって形成した場合は、可視光の略全域にわって良好な反射特性を得ることができ、発光波長の異なるLEDチップに対して共通に使用することができる。Niで形成した場合は、Al、h、Znに比べて波長が短い青色系の光に対して反射特性が低くなるが、金メッキよりは良好な反射特性を得ることができる。また、Niの蒸着反射膜層は安価に製作することができる。
【0016】
第3の発明に係る発光デバイス用基板は、上記第1または第2の発明において、隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなるLEDチップ実装用パッド部と、ワイヤボンディング部をそれぞれ形成しており、前記LEDチップ実装用パッド部にLEDチップがそのp−n接合面を基板表面と平行になるように実装されるものである。
【0017】
この構成においては、LEDチップ実装用パッド部にLEDチップが実装され、ワイヤボンディング部にボンディングワイヤの一端がボンディングされる。
【0018】
第4の発明に係る発光デバイス用基板は、上記第1または第2の発明において、隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなる電極接合部をそれぞれ形成しており、これらの電極接合部間にLEDチップがそのp−n接合面を基板表面と垂直になるように架設され、p側とn側の電極がそれぞれ接合されるものである。
【0019】
この構成においては、LEDチップが隣り合う電極接合部間にそのp−n接合面を基板表面に対して垂直な状態となるように架設され、各電極が各電極接合に対して半田または導電ペーストによって接合される。したがって、ボンディングワイヤを必要とせず、外力によるワイヤの断線事故が生じることがない。
【0020】
第5の発明に係る発光デバイスは、絶縁基板と、この絶縁基板の表面に実装されたLEDチップと、前記絶縁基板の表面全体を覆い前記LEDチップを封止する透光性樹脂とからなる発光デバイスにおいて、前記絶縁基板の表面側にそれぞれ金メッキされた複数の表面側導電パターンを形成し、前記絶縁基板の裏面側で前記各表面側導電パターンに対応する部位に裏面側導電パターンをそれぞれ設け、これらの表裏面側導電パターンどうしを前記絶縁基板の側面適宜箇所に形成した溝の内壁面を覆うメッキ層および前記表面側導通パターンの一部の裏面を覆うメッキ層を介して電気的に接続し、前記各表面側導電パターンの表面で互いに隣接する端縁部に接続領域を設定してLEDチップを実装または架設し、この接続領域以外の表面部分に、この表面部分を平坦化するためのアンダーコートを介して銀以外の金属による蒸着反射膜層を形成したものである。
【0021】
この構成においては、表面側導電パターンのLEDチップが実装または架設される接続領域には蒸着反射膜層が形成されていないので、電食や酸化によるボンディング性の劣化を防止することができ、安定性、信頼性、耐久性を向上させることができる。また、銀以外の蒸着反射膜層は、銀に比べて耐マイグレーション性に優れている。
【0022】
第6の発明に係る発光デバイスは、上記第5の発明において、前記蒸着反射膜層が、Al、h、Zn、Niのうちのいずれか1つの金属によって形成されているものである。
【0023】
この構成においては、蒸着反射膜層をAl、h、Znのうちのいずれか1つによって形成した場合は、可視光の略全域にわって良好な反射特性を得ることができ、発光波長の異なるLEDチップに対して共通に使用することができる。Niで形成した場合は、Al、h、Znに比べて波長が短い青色系の光に対して反射特性が低くなるが、金メッキよりは良好な反射特性を得ることができる。また、Niの蒸着反射膜層は安価に製作することができる。
【0024】
第7の発明に係る発光デバイスは、上記第5または第6の発明において、隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなるLEDチップ実装用パッド部と、ワイヤボンディング部をそれぞれ形成しており、前記チップ実装用パッド部に前記LEDチップがそのp−n接合面を基板表面と平行になるように実装されているものである。
【0025】
この構成においては、表面側導電パターンのパッド部を形成する接続領域にLEDチップが実装され、表面側導電パターンのワイヤボンディング部を形成する接続領域にボンディングワイヤの一端がボンディングされる。
【0026】
第8の発明に係る発光デバイスは、上記第5または第6の発明において、隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなる電極接合部を形成しており、これらの電極接合部間に前記LEDチップがそのp−n接合面を基板表面と垂直になるように架設され、p側とn側の電極がそれぞれ接合されているものである。
【0027】
この構成においては、LEDチップが隣り合う電極接合部間にそのp−n接合面を基板表面に対して垂直な状態のなるように架設され、各電極が電極接合部に対して半田または導電ペーストによって接合される。したがって、ボンディングワイヤを必要とせず、外力によるワイヤの断線事故が生じることがなく、透光性樹脂の薄形化を可能にするとともに、デバイスの信頼性、耐久性を向上させることができる。
【0028】
【発明の実施の形態】
以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。
図1は本発明に係る発光デバイスの一実施の形態を示す外観斜視図、図2は同デバイスの断面図、図3は本発明に係る発光デバイス用基板の一実施の形態を示す平面図、図4は図3のA−A線拡大断面図、図5はLEDチップ実装基板の平面図、図6は図5のB−B線拡大断面図である。
【0029】
先ず、本発明に係る発光デバイスを図1および図2に基づいて詳述する。全体を符号1で示す発光デバイスは、絶縁基板2と、この絶縁基板2の表面側に実装されたLEDチップ3と、前記絶縁基板2の表面全体を覆い前記LEDチップ3およびボンディングワイヤ13を封止する透光性樹脂4等で構成されている。
【0030】
前記絶縁基板2は、ガラスエポキシ樹脂、コンポジット材等によって適宜な長さ、幅および厚さ(例えば、1.6mm×0.8mm×0.2mm程度)の直方体に形成され、表面側に適宜な表面積を有する2つの表面側導電パターン5,6が絶縁基板2の長手方向に離間して設けられている。
【0031】
前記各表面側導電パターン5,6は、銅箔7と、この銅箔7の表面全体に形成された銅メッキ層8と、同じくこの銅メッキ層8の表面全体に形成された金メッキ層9とでそれぞれ形成されている。また、2つの表面側導電パターン5,6の表面で互いに対向する内側の端縁部は、前記LEDチップ3の接続領域11,12をそれぞれ形成している。
【0032】
この場合、一方の表面側導電パターン5の接続領域11は、LEDチップ3が搭載され導電ペースト等の導電性接合材によって接合されるためLEDチップ実装用パッド部(以下、パッド部と略称する)を形成し、他方の表面側導電パターン6の接続領域12は、金線からなるボンディングワイヤ13の一端が接続されるためワイヤボンディング部を形成している。また、この接続領域12は、他方の表面側導電パターン6の内側端縁部より一方の表面側導電パターン5方向に若干突出して形成されている。
【0033】
前記LEDチップ3は、n形の半導体層3Aとp形の半導体層3Bとからなり、これらをp−n接合した通常の可視光LEDチップ(例えば、発光色が赤色のGaP(Zn−O)LEDチップ、中心の発光波長700nm)であって、n形の半導体層3Aとp形の半導体層3Bの表面にn側電極14とp側電極15がそれぞれ積層され導電ペースト等によって接合されている。そして、このようなLEDチップ3は、そのp−n接合面16が絶縁基板2の表面と平行になるようにp形半導体層3Bを下にして一方の表面側導電パターン5の接続領域11上に載置され、p側電極15が前記接続領域11に導電ペーストによって接合され、n側電極14に前記ボンディングワイヤ13の他端が接続されている。
【0034】
前記各表面側導電パターン5,6の表面でかつ前記接続領域11,12以外の部分には、アンダーコート層17がそれぞれ形成され、さらにその上に蒸着反射膜層18がそれぞれ形成されている。すなわち、本発明は前記各接続領域11,12を金メッキ層9のまま残し、これらの接続領域11,12をLEDチップ3の電極またはボンディングワイヤの接続部とし、それ以外の表面部分を可視光に対して有効な反射面として用いるようにしている。前記アンダーコート層17は、高精度な平滑面からなる蒸着反射膜層18を得るために予め形成されるもので、エポキシ樹脂等によって形成されている。
【0035】
前記蒸着反射膜層18は、銀以外の金属であってAl、Rh(ロジウム)、Zn(亜鉛)、Ni(ニッケル)のうちのいずれか1つによって形成されている。これらの金属のうちAl、Rh、Znは、いずれもAgに比べて発光波長の短い可視光から長い可視光まで略全域にわたる可視光に対して良好な反射特性を有している。Niは、Al、h、Znに比べて波長が短い青色系の光に対して反射特性が低くなるが、金メッキよりは良好な反射特性を得ることができる。また、Niの場合は蒸着反射膜層18を安価に製作することができる利点がある。
【0036】
さらに前記絶縁基板2には、2つの裏面側導電パターン21,22と、これらの裏面側導電パターン21,22と前記表面側導電パターン5,6を電気的に接続する2つの非貫通導通溝23,24が形成されている。
【0037】
前記各裏面側導電パターン21,22は、それぞれ銅箔25と、この銅箔25の表面全体に形成された銅メッキ層26と、同じくこの銅メッキ層26の表面全体に形成された金メッキ層27とからなり、前記各表面側導電パターン5,6と絶縁基板2を挟んで対向するように絶縁基板2の裏面でかつ長手方向の両端部に前記各非貫通導通溝23,24の周縁部を取り囲むようにそれぞれ設けられている。
【0038】
前記各貫通導通溝23,24は、前記各表面側導電パターン5,6の最下層を形成する銅箔7の一部と、絶縁基板2の長手方向において対向する短辺側の各側面に形成した半円形の溝28の内壁面および前記銅箔7の裏面の一部とを覆う溝壁銅メッキ層26Aと、この溝壁銅メッキ層26Aの表面全体を覆う溝壁金メッキ層27Aとで構成されている。これにより表面側導電パターン5と裏面側導電パターン21が非貫通導通溝23によって電気的に導通し、表面側導電パターン6と裏面側導電パターン22が同じく非貫通導通溝24によって電気的に導通している。前記表面側導電パターン5,6の銅メッキ層8と、裏面側導電パターン21,22の銅メッキ層26とは同時に形成される。また、表面側導電パターン5,6の金メッキ層9と、裏面側導電パターン21,22の金メッキ層27とは同時に形成される。前記溝壁銅メッキ層26Aと溝壁金メッキ層27Aは、前記裏面側導電パターン21,22を構成する前記銅メッキ層26と金メッキ層27の形成時に溝28の内部にまで延長して形成されたメッキ部分である。なお、裏面側導電パターン21,22は、発光デバイス1が実装される図示しない配線基板のパッド部に対して導電ペースト等の導電性接合材によって電気的に接続される端子部として用いられる。
【0039】
このような構造からなる発光デバイス1は、図3および図4に示す発光デバイス用基板30に多数のLEDチップ3をX、Y方向にマトリックス状に実装して透光性樹脂4により封止することにより、図5および図6に示すLEDチップ実装基板31を製作した後、このLEDチップ実装基板31を互いに直交する分割切断線33a〜33h,34a〜34dに沿って各LEDチップ3毎にダイシングカットすることにより同時に多数製造される。
【0040】
次に、発光デバイス用基板を図3および図4に基づいて説明する。
全体を符号30で示す発光デバイス用基板30は、所要の大きさを有する1枚の絶縁基板2を有し、その表面に多数、例えばX方向(列方向)に8個、Y方向(行方向)に5個、合計40個の表面側導電パターン41(41a〜41h、42a〜42h、・・・45a〜45h)がXおよびY方向にそれぞれ所定の間隔をおいてマトリックス状に形成され、裏面側には同じく40個の裏面側導電パターン46が前記表面側導電パターン41と絶縁基板2とを挟んで対向するようにマトリックス状に形成されている。また、絶縁基板2には、互いに対向する表面側導電パターン41と裏面側導電パターン46を電気的に導通させる40個の非貫通導通穴47がマトリックス状に形成されている。
【0041】
発光デバイス用基板30の左右両端部、厳密には左端の分割切断線33aより左側部分と右端の分割切断線33hより右側部分(図3の斜線部)は、切断除去される余長部分であり、それ以外の部分が発光デバイス1として有効に使用される。
【0042】
前記各表面側導電パターン41は、分割切断線33a〜33hに沿って分割されると図2に示す発光デバイス1の表面側導電パターン5,6となるパターンであり、絶縁基板2の表面に設けられた銅箔7と、この銅箔7の表面全体を覆う銅メッキ層8と、この銅メッキ層8の表面全体を覆う金メッキ層9とで構成されている。この場合、両端の表面側導電パターン41a〜45aと41h〜45hは、前記分割切断線33a,33hから切断除去される部分(斜線部)を含んでいるため、それ以外の列の表面側導電パターン41b〜41g、42b〜42g、43b〜43g、44b〜44g、45b〜45gとは若干パターンの形状が異なっている。すなわち、左端の表面側導電パターン41a〜45aは、表面の右端部にのみLEDチップ3のパッド部を形成する接続領域11が設けられ、それ以外の表面部分にはアンダーコート層17を介して蒸着反射膜層18が形成されている。また、右端の表面側導電パターン41h〜45hは、表面の左端部にのみワイヤボンディング部を形成する接続領域12が設けられ、それ以外の表面部分にはアンダーコート層17を介して蒸着反射膜層18が形成されている。左から2列目〜7列目の表面側導電パターン41b〜41g、42b〜42g、43b〜43g、44b〜44g、45b〜45gは全て同一のパターンを呈し、表面の左端部にワイヤボンディング部を形成する接続領域12が設けられ、右端部にLEDチップ3のパッド部を形成する接続領域11がそれぞれ設けられ、それ以外の表面部分にはアンダーコート層17を介して蒸着反射膜層18が形成されている。したがって、接続端部11と12は、X方向に隣り合う表面側導電パターン41どうしの互いに対向する端縁部の表面にそれぞれ対向するように設けられている。
【0043】
前記絶縁基板2のY方向の分割切断線33a〜33hは、Y方向に並ぶ非貫通導通穴47の中心を通る分割切断線である。絶縁基板2のX方向の分割切断線34a〜34dは、Y方向に隣り合う表面側導電パターン41aと42a、42aと43a・・・の中間を通る分割切断線である。
【0044】
前記裏面側導電パターン46は、分割切断線33a〜33hに沿ってそれぞれ分割されると、図2に示す発光デバイス1の裏面側導電パターン21,22となるパターンであり、前記絶縁基板2の裏面に非貫通導電穴43の周縁を取り囲むように設けられたリング状の銅箔25と、この銅箔25の表面全体を覆う銅メッキ層26と、この銅メッキ層26の表面全体を覆う金メッキ層27とで構成されている。
【0045】
前記非貫通導通穴47は、分割切断線33a〜33hに沿ってそれぞれ分割されると、図2に示す発光デバイス1の非貫通導通溝23,24となる部分で、前記絶縁基板2に形成した穴48の上方側開口部を閉塞する表面側導電パターン40の銅箔7の一部と、前記穴47の内壁面および前記銅箔7の一部の裏面に形成された穴壁銅メッキ層26Aと、この穴壁銅メッキ層26Aを覆う穴壁金メッキ層27Aとで構成されている。穴壁銅メッキ層26Aと穴壁金メッキ層27Aは、前記裏面側導電パターン46の銅メッキ層26と金メッキ層27を形成するときに同時に延長して形成され、分割切断線33a〜33hに沿ってそれぞれ分割されることにより、前述した溝壁銅メッキ層26Aと溝壁金メッキ層27Aとなる。
【0046】
図5はLEDチップ実装基板を示す平面図、図6は図5のB−B線拡大断面図である。
これらの図において、全体を符号31で示すLEDチップ実装基板31は、図3および図4に示した発光デバイス用基板30にLEDチップ3を各表面側導電パターン41の接続領域11に実装してLEDチップ3と接続領域12とをボンディングワイヤ13によって電気的に接続し、次いで透光性樹脂4によって絶縁基板2の表面全体をモールドすることにより製作される。
【0047】
次に、前述した発光デバイス用基板30、LEDチップ実装基板31および発光デバイス1の製造方法を図7〜図16に基づいて説明する。
先ず、図7に示すように所要の大きさの絶縁基板2の表裏面全体に銅箔7,25をそれぞれ接着した両面銅張り積層板50を用意する。
【0048】
この場合、絶縁基板2の両面に銅箔7,25を接着剤によって接合する代わりに、無電解銅メッキによって絶縁基板を下地処理し、次いで通常の電気銅メッキによって銅箔7,25を形成したものであってもよい。要は絶縁基板2の両面に所要厚さの銅箔7,25が形成されているものであればよい。絶縁基板2の厚さは200μm(0.2mm)程度であり、銅箔7,25の厚さは18μm程度である。
【0049】
次に、穴明け加工によって絶縁基板2の裏面側に表面側の銅箔7の裏面にまで達する複数個の穴48をX、Y方向に所定の間隔をおいてマトリックス状に形成する(図8)。この穴48は、先ずエッチングによって裏面側の銅箔25の所定箇所に円形の穴を形成した後、さらにこの穴にレーザー光を照射することにより形成される。
【0050】
次に、銅メッキ工程によって表面側と裏面側の銅箔7,25の表面全体および穴48の内壁面全体に銅メッキ層8,26,26Aをそれぞれ形成する(図9)。銅メッキ層8,26,26Aは、予め無電解銅メッキによって穴48の内壁面に下地層を形成した後、通常の電気銅メッキを行うことにより形成される。
【0051】
この後、表裏面の銅メッキ層8,26をマスキングし、これらのメッキ層および前記銅箔7,25を所定のパターンにエッチングし、各穴48毎に分離する(図10)。
【0052】
次に、エッチングによって分離した各銅メッキ層8,26および穴48内の銅メッキ層26Aの表面に金メッキ層9,27,27Aをそれぞれ形成する(図11)。金メッキ層9,27,27Aは、予め下地層としてNiメッキを施した後その上に形成される。Niメッキ層の厚さは3〜7μm程度、金メッキ層9,27,27Aの厚さは0.1〜0.5μm程度である。これにより、図4に示す表面側導電パターン41、裏面側導電パターン46および不貫通導通穴47がそれぞれ形成される。
【0053】
次に、各表面側導電パターン41の表面で接続領域11,12以外の部分にアンダーコート層17を形成する(図12)。ただし、左端と右端の表面側導電パターン41については、上記した通り内側の端縁部にのみ接続領域11または12が設定されており、それ以外の部分にアンダーコート層17がそれぞれ形成される。
【0054】
さらに、アンダーコート層17の表面全体にAl等の金属による蒸着反射膜層18を形成する(図13)。これによって、図3および図4に示した発光デバイス用基板30が完成する。
【0055】
アンダーコート層17は、蒸着反射膜層18を形成する工程以前に金メッキ層9の表面を平坦化しておくために形成されるもので、絶縁基板2の表面をマスキングしておき、スプレー塗装によってエポキシ樹脂等を吹き付けることにより形成される。その厚さは20〜100μm程度で、蒸着反射膜層18の厚さは200〜500Å程度である。
【0056】
次に、図14に示すように、各表面側導電パターン41(ただし、右端の導電パターンは除く)の右端部に設けられている接続領域11上にLEDチップ3をそのp−n接合面16(図2参照)が基板表面と平行になるように立てて載置し、下側のp側電極15を導電ペーストによって接続領域11に接合する。さらに、ボンディングワイヤ13のボンディングによってLEDチップ3のn側電極14と当該チップの右側に位置する表面側導電パターン41の接続領域12とを電気的に導通させる。そして、LEDチップ3を順次実装し、ワイヤボンディングしていく。
【0057】
次に、全てのLEDチップ3の実装とワイヤボンディングが終了すると、図15に示すように絶縁基板2の表面全体を透光性樹脂4によってモールドし、全てのLEDチップ3とボンディングワイヤ13を封止する。これによって図5および図6に示したLEDチップ実装基板31が完成する。
【0058】
この後、図16に示すように透光性樹脂4によって覆われたLEDチップ実装基板31を各LEDチップ3毎にダイシングカットする。すなわち、各非貫通導通穴47の中心を通るY方向の切断分割線33a〜33hと、X方向の切断分割線34a〜34d(図3参照)に沿って絶縁基板2をダイシングカットすると、図1に示した発光デバイス1が同時に多数個製作される。Y方向の切断分割線33a〜33hに沿って絶縁基板2を切断分離すると、表面側導電パターン41は図1および図2に示す表面側導電パターン5,6となり、裏面側導電パターン46は裏面側導電パターン21,22となり、非貫通導通穴47は非貫通導通溝23,24となる。
【0059】
このように本発明に係る発光デバイス1およびLEDチップ用基板30によれば、表面側導電パターン5,6の表面を形成する金メッキ層17の一部をLEDチップ3が搭載される接続領域11とボンディングワイヤ13が接続される接続領域12として残し、それ以外の部分に銀以外の金属による蒸着反射膜層18を形成したので、ボンディング用接続領域12が電食や酸化したりすることがなく、ボンディング性に優れ、発光デバイス1の信頼性、安定性、耐久性を向上させることができる。
【0060】
また、蒸着反射膜層18をAl、h、Zn、Niのうちのいずれか1つによって形成したので、Agによって形成した場合に比べて耐食性および耐マイグレーション性に優れている。また特に、Al、hまたはZnによる蒸着反射膜層18は図20に示すように波長の長い可視光から波長の短い可視光まで略全域の可視光に対して良好な反射特性が得られるため、赤色に限らず各種の発光色、例えば発光波長が短い青色のGaNLEDチップ(発光中心波長490nm)に対しても発光デバイス用基板30を共通に使用することができる。また、Niからなる蒸着反射膜層18はAl、h、Znに比べて反射特性が低いが、それでも金メッキよりは良好な反射特性が得られ、しかもNiの蒸着は容易に製作でき安価である。
【0061】
また、発光デバイス用基板30の非貫通導通穴47は絶縁基板2の表面側に開放していないので、LEDチップ3をモールドするとき、溶融樹脂が絶縁基板2の裏面側に回り込むこともない。
【0062】
図17は本発明に係る発光デバイスの他の実施の形態を示す外観斜視図、図18は同発光デバイスの断面図である。
この実施の形態に係る発光デバイス55は、LEDチップ3を、そのp−n接合面16が絶縁基板2の表面に対して垂直になるように横にして隣り合う表面側導電パターン5,6の接続領域11,12上に架け渡し、n側電極14とp側電極15を前記各接続領域11,12に対して導電ペースト53によってそれぞれ接合したものである。
【0063】
各表面側導電パターン5,6の各接続領域11,12は、各表面側導電パターン5,6の表面で互いに対向する側端縁に沿って同一形状に形成されており、LEDチップ3の電極接合部をそれぞれ形成している。このため、表面側導電パターン6の電極接続部12は、表面側導電パターン6の側端縁から対向する表面側導電パターン5方向に突出していない。その他の構造は、図1に示した発光デバイス1と全く同一であるため、同一部品、部分については同一符号をもって示しその説明を省略する。
【0064】
このような構造からなる発光デバイス55においては、ボンディングワイヤを用いていないので、外力によってワイヤが断線するといった事故が起こらず、透光性樹脂4を薄く形成することが可能である。
【0065】
なお、上記した実施の形態はいずれも1つのLEDチップ3を実装した発光デバイス1,55について示したが、本発明はこれに何ら限定されるものではなく、例えば発光波長が異なる複数個のLEDチップを実装することも可能であり、その場合はLEDチップ3の実装個数に応じて表裏面の導電パターンと非貫通導通溝の数を増加すればよい。
【0066】
【発明の効果】
以上説明したように本発明に係る発光デバイス用基板および発光デバイスによれば、電食や酸化によるボンディング性の劣化やマイグレーションの発生を防止することができ、信頼性、安定性および耐久性を向上させることができる。
【0067】
また、Al、h、ZnまたはNiからなる蒸着反射膜層は、Agによって形成した場合に比べて耐食性および耐マイグレーション性に優れている。特に、Al、hまたはZnによる反射膜層は、波長の長い可視光から波長の短い可視光まで略全域の可視光に対して良好な反射特性が得られるため、赤色に限らず各種の発光色、例えば発光波長が短い青色のLEDチップに対しても発光デバイス用基板を共通に使用することができる。
【0068】
Niからなる反射膜層はAl、h、Znに比べて反射特性が低いが、金メッキよりは良好な反射特性が得られ、しかもNiの蒸着は容易に安価に製作することができる。
【図面の簡単な説明】
【図1】 本発明に係る発光デバイスの一実施の形態を示す外観斜視図である。
【図2】 同発光デバイスの断面図である。
【図3】 本発明に係る発光デバイス用基板の一実施の形態を示す平面図である。
【図4】 図3のA−A線拡大断面図である。
【図5】 LEDチップ実装基板の平面図である。
【図6】 図5のB−B線拡大断面図である。
【図7】 発光デバイスの製造工程を説明するための図である。
【図8】 発光デバイスの製造工程を説明するための図である。
【図9】 発光デバイスの製造工程を説明するための図である。
【図10】 発光デバイスの製造工程を説明するための図である。
【図11】 発光デバイスの製造工程を説明するための図である。
【図12】 発光デバイスの製造工程を説明するための図である。
【図13】 発光デバイスの製造工程を説明するための図である。
【図14】 発光デバイスの製造工程を説明するための図である。
【図15】 発光デバイスの製造工程を説明するための図である。
【図16】 発光デバイスの製造工程を説明するための図である。
【図17】 本発明の他の実施の形態を示す発光デバイスの外観斜視図である。
【図18】 同発光デバイスの断面図である。
【図19】 発光デバイスの従来例を示す正面図である。
【図20】 発光波長と蒸着金属の反射率との関係を示す図である。
【符号の説明】
1…発光デバイス、2…絶縁基板、3…LEDチップ、3A…n形半導体層、3B…p形半導体層、4…透光性樹脂、5,6…表面側導電パターン、7…銅箔、8…銅メッキ層、9…金メッキ層、11,12…接続領域、13…ボンディングワイヤ、14,15…電極、16…p−n接合面、17…アンダーコート層、18…蒸着反射膜層、21,22…裏面側導電パターン、23,24…非貫通導通溝、25…銅箔、26…銅メッキ層、27…金メッキ層、28…溝、30…発光デバイス用基板、31…LEDチップ実装基板、33a〜33h,34a〜34d…切断分割線、41…表面側導電パターン、42…裏面側導電パターン、47…非貫通導通穴、53…導電ペースト、55…発光デバイス。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device substrate for mass production of light emitting devices and a light emitting device manufactured by the substrate.
[0002]
[Prior art]
A display panel incorporated in various electric devices such as a mobile phone and a camera uses a surface-mounted light-emitting device on which an LED chip is mounted as a light source for backlight. This type of light emitting device is generally one in which an LED chip is mounted on an insulating substrate and sealed with a translucent resin (see, for example, Patent Document 1). The applicant has not been able to find prior art documents closely related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-213660 (paragraphs “0005” and “0006”, FIG. 14)
[0004]
FIG. 19 is a front view of the light emitting device disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-213660. This will be schematically described. Reference numeral 70 denotes a light emitting device, 71 denotes an insulating substrate, and 72 and 73 denote metal plating layers (gold plating). , 74 is an LED (light emitting diode) chip, 75 is a bonding wire, and 76 is a translucent resin. The LED chip 74 includes an n-type semiconductor layer 74 a and a p-type semiconductor layer 74 b, which are pn-junctioned to each other, and the p-type semiconductor layer 74 b is electrically connected to one electrode pattern 72. The n-type semiconductor layer 74a is electrically connected to the other electrode pattern 73 via a bonding wire 75.
[0005]
[Problems to be solved by the invention]
In the conventional light emitting device 70 described above, since the electrode patterns 72 and 73 are formed by gold plating, the reflectance is high for red light having a long wavelength among visible light as shown in FIG. There is a problem that the reflectance of the blue light having a short wavelength is remarkably low, and a blue light emitting device with high luminance cannot be obtained. It was necessary to change the material.
[0006]
Therefore, recently, in order to obtain a high reflectance for blue light having a short wavelength, the electrode patterns 72 and 73 are formed of Ag (silver) as a metal that can be silver-plated and wire-bonded. . However, Ag is a metal that is more easily oxidized than other metals, and is a metal that is most susceptible to galvanic corrosion. Therefore, there is a problem that the light emitting device lacks in reliability, stability, and durability. For this reason, it is necessary to seal the LED chip with a translucent resin not containing halogen as a measure against electrolytic corrosion, and the resin material is also restricted.
[0007]
In addition, when the electrode patterns 72 and 73 are formed by silver plating, a special process such as plating other stable metal in a later process on the portion exposed to the outside from the translucent resin 76 and in contact with the outside air. It is necessary to apply.
In addition, bonding properties are significantly degraded when Ag is oxidized. Therefore, a special storage method and processing such as plasma processing before wire bonding is performed before the LED chip 74 is mounted in order to remove the oxide of Ag are required. This increases the manufacturing cost.
[0008]
Moreover, when Ag uses the light emitting device 70 in a high humidity state, migration is likely to occur, and the conductive patterns 72 and 73 may be short-circuited.
[0009]
Furthermore, as the field of use of light-emitting devices, it is limited to products with a relatively short lighting time and a good use environment (for example, mobile phones), so that it cannot be used for large outdoor display boards. There was a problem.
[0010]
Therefore, it is also known to form the electrode patterns 72 and 73 with a metal other than Ag, such as Al (aluminum). However, in this case as well, since the bonding wire 75 made of gold is bonded to a conductive pattern made of a different metal, the bonding property deteriorates due to oxidation or electrolytic corrosion as in the case of Ag, and the reliability, stability, There is a problem with durability.
[0011]
The present invention has been made in order to solve the above-described conventional problems. The object of the present invention is to leave a part of the gold plating layer as a connection region of the LED chip and to use a part other than silver in the other part. By forming a metal-deposited reflective film layer that has good reflection characteristics for visible light over almost the entire area, it is possible to prevent deterioration of bonding properties and migration due to electrolytic corrosion and oxidation, and An object of the present invention is to provide a light emitting device substrate and a light emitting device which can be used in common for LED chips having any light emission wavelength from blue to blue.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a substrate for a light emitting device according to a first aspect of the present invention is to form a plurality of front side conductive patterns plated with gold on the surface side of an insulating substrate in a matrix, and on the back side of the insulating substrate. A back side conductive pattern is provided in a portion corresponding to each of the front side conductive patterns, and the front and back side conductive patterns are arranged. Through a plating layer covering the inner wall surface of the hole provided in the insulating substrate and a plating layer covering a part of the back surface of the surface-side conduction pattern It is an insulating substrate that is electrically connected, and sets the connection region of the LED chip at the edge portions adjacent to each other on the surface of each surface side conductive pattern, and on the surface portion other than this connection region, Through an undercoat to flatten this surface area A deposited reflective film layer made of a metal other than silver is formed.
[0013]
In this configuration, the connection area of the LED chip provided at the edge of the surface-side conductive pattern is not covered with the vapor deposition reflective film layer, and remains as a gold plating layer. And good bonding properties can be ensured. Moreover, the vapor deposition reflective film layer other than silver is excellent in migration resistance compared with silver.
[0014]
A substrate for a light emitting device according to a second invention is the above first invention, wherein the vapor deposition reflective film layer is Al, R It is formed of any one of h, Zn, and Ni.
[0015]
In this configuration, the deposited reflective film layer is made of Al, R When formed by any one of h and Zn, good reflection characteristics can be obtained over almost the entire visible light range, and it can be used in common for LED chips having different emission wavelengths. . When formed of Ni, Al, R Although the reflection characteristic is low for blue light having a shorter wavelength than h and Zn, a reflection characteristic better than that of gold plating can be obtained. Moreover, the vapor deposition reflective film layer of Ni can be manufactured at low cost.
[0016]
The light emitting device substrate according to a third aspect of the present invention is the LED chip mounting pad portion of the first or second aspect, wherein the connection region of the opposite edge portions of the adjacent surface side conductive patterns is made of a gold plating layer. Wire bonding portions are formed, and the LED chip is mounted on the LED chip mounting pad portion so that its pn junction surface is parallel to the substrate surface.
[0017]
In this configuration, the LED chip is mounted on the LED chip mounting pad portion, and one end of the bonding wire is bonded to the wire bonding portion.
[0018]
The light emitting device substrate according to a fourth aspect of the present invention is the first or second aspect of the present invention, wherein the connection regions of the opposing edge portions of the adjacent surface-side conductive patterns respectively form electrode joints made of a gold plating layer. The LED chip is installed between these electrode joints so that the pn junction surface thereof is perpendicular to the substrate surface, and the p-side and n-side electrodes are joined to each other.
[0019]
In this configuration, the LED chip is laid between adjacent electrode joints such that the pn junction surface is perpendicular to the substrate surface, and each electrode is soldered or conductive paste to each electrode junction. Joined by. Therefore, a bonding wire is not required, and a wire breakage accident due to external force does not occur.
[0020]
A light emitting device according to a fifth aspect of the present invention is a light emission comprising an insulating substrate, an LED chip mounted on the surface of the insulating substrate, and a translucent resin that covers the entire surface of the insulating substrate and seals the LED chip. In the device, forming a plurality of gold-plated surface-side conductive patterns on the surface side of the insulating substrate, and providing a back-side conductive pattern in a portion corresponding to each surface-side conductive pattern on the back side of the insulating substrate, These front and back side conductive patterns were formed at appropriate locations on the side surface of the insulating substrate. Via a plating layer that covers the inner wall surface of the groove and a plating layer that covers a part of the back surface of the surface-side conductive pattern Electrically connected and set or connected to an LED chip by setting a connection region on the edge portions adjacent to each other on the surface of each surface-side conductive pattern, on the surface portion other than this connection region, Through an undercoat to flatten this surface area A deposited reflective film layer made of a metal other than silver is formed.
[0021]
In this configuration, since the vapor deposition reflective film layer is not formed in the connection region where the LED chip having the surface-side conductive pattern is mounted or erected, it is possible to prevent deterioration of the bonding property due to electrolytic corrosion or oxidation, and to stabilize , Reliability and durability can be improved. Moreover, the vapor deposition reflective film layer other than silver is excellent in migration resistance compared with silver.
[0022]
A light emitting device according to a sixth invention is the light emitting device according to the fifth invention, wherein the vapor deposition reflective film layer is Al, R It is formed of any one of h, Zn, and Ni.
[0023]
In this configuration, the deposited reflective film layer is made of Al, R When formed by any one of h and Zn, good reflection characteristics can be obtained over almost the entire visible light range, and it can be used in common for LED chips having different emission wavelengths. . When formed of Ni, Al, R Although the reflection characteristic is low for blue light having a shorter wavelength than h and Zn, a reflection characteristic better than that of gold plating can be obtained. Moreover, the vapor deposition reflective film layer of Ni can be manufactured at low cost.
[0024]
A light emitting device according to a seventh invention is the light emitting device according to the fifth or sixth invention, wherein the connection region of the edge portions facing each other of the adjacent surface side conductive patterns is an LED chip mounting pad portion made of a gold plating layer, Wire bonding portions are respectively formed, and the LED chips are mounted on the chip mounting pad portions so that their pn junction surfaces are parallel to the substrate surface.
[0025]
In this configuration, the LED chip is mounted in a connection region that forms the pad portion of the surface-side conductive pattern, and one end of the bonding wire is bonded to the connection region that forms the wire bonding portion of the surface-side conductive pattern.
[0026]
A light emitting device according to an eighth invention is the light emitting device according to the fifth or sixth invention, wherein the connection region of the edge portions facing each other of the adjacent surface side conductive patterns forms an electrode joint portion made of a gold plating layer. The LED chip is installed between these electrode joints so that the pn junction surface thereof is perpendicular to the substrate surface, and the p-side and n-side electrodes are joined to each other.
[0027]
In this configuration, LED chips are installed between adjacent electrode joints so that their pn junction surfaces are perpendicular to the substrate surface, and each electrode is soldered or conductive paste to the electrode joints. Joined by. Therefore, a bonding wire is not required, a wire disconnection accident due to an external force does not occur, the translucent resin can be made thin, and the reliability and durability of the device can be improved.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is an external perspective view showing an embodiment of a light emitting device according to the present invention, FIG. 2 is a sectional view of the device, and FIG. 3 is a plan view showing an embodiment of a substrate for a light emitting device according to the present invention. 4 is an enlarged sectional view taken along line AA in FIG. 3, FIG. 5 is a plan view of the LED chip mounting substrate, and FIG. 6 is an enlarged sectional view taken along line BB in FIG.
[0029]
First, the light emitting device according to the present invention will be described in detail with reference to FIGS. The light-emitting device generally indicated by reference numeral 1 includes an insulating substrate 2, an LED chip 3 mounted on the surface side of the insulating substrate 2, and covers the entire surface of the insulating substrate 2 and encapsulates the LED chip 3 and the bonding wire 13. It consists of translucent resin 4 etc. which stops.
[0030]
The insulating substrate 2 is formed in a rectangular parallelepiped having an appropriate length, width and thickness (for example, about 1.6 mm × 0.8 mm × 0.2 mm) using a glass epoxy resin, a composite material, etc. Two surface-side conductive patterns 5 and 6 having a surface area are provided apart in the longitudinal direction of the insulating substrate 2.
[0031]
Each of the surface-side conductive patterns 5 and 6 includes a copper foil 7, a copper plating layer 8 formed on the entire surface of the copper foil 7, and a gold plating layer 9 formed on the entire surface of the copper plating layer 8. Are formed respectively. In addition, inner edge portions facing each other on the surfaces of the two surface-side conductive patterns 5 and 6 form connection regions 11 and 12 of the LED chip 3, respectively.
[0032]
In this case, since the LED chip 3 is mounted on the connection region 11 of the one surface side conductive pattern 5 and is bonded by a conductive bonding material such as a conductive paste, an LED chip mounting pad portion (hereinafter, abbreviated as a pad portion). The connection region 12 of the other surface-side conductive pattern 6 forms a wire bonding portion because one end of a bonding wire 13 made of a gold wire is connected. The connection region 12 is formed so as to slightly protrude from the inner edge of the other surface-side conductive pattern 6 in the direction of the one surface-side conductive pattern 5.
[0033]
The LED chip 3 is composed of an n-type semiconductor layer 3A and a p-type semiconductor layer 3B, and a normal visible light LED chip (for example, GaP (Zn—O) whose emission color is red) having a pn junction therebetween. LED chip, center emission wavelength 700 nm), n-side electrode 14 and p-side electrode 15 are laminated on the surface of n-type semiconductor layer 3A and p-type semiconductor layer 3B, respectively, and bonded by a conductive paste or the like. . The LED chip 3 has a p-type semiconductor layer 3B facing down so that its pn junction surface 16 is parallel to the surface of the insulating substrate 2, and is on the connection region 11 of the one surface side conductive pattern 5. The p-side electrode 15 is bonded to the connection region 11 with a conductive paste, and the other end of the bonding wire 13 is connected to the n-side electrode 14.
[0034]
An undercoat layer 17 is formed on the surface of each of the surface-side conductive patterns 5 and 6 and on portions other than the connection regions 11 and 12, and a vapor deposition reflective film layer 18 is formed thereon. That is, according to the present invention, the connection regions 11 and 12 are left as the gold plating layer 9, the connection regions 11 and 12 are used as the connection portions of the electrodes or bonding wires of the LED chip 3, and other surface portions are made visible. On the other hand, it is used as an effective reflecting surface. The undercoat layer 17 is formed in advance in order to obtain the vapor deposition reflective film layer 18 having a highly accurate smooth surface, and is formed of an epoxy resin or the like.
[0035]
The vapor deposition reflective film layer 18 is a metal other than silver, and is formed of any one of Al, Rh (rhodium), Zn (zinc), and Ni (nickel). Of these metals, Al, Rh, and Zn all have good reflection characteristics with respect to visible light over almost the entire region from visible light having a short emission wavelength to long visible light as compared with Ag. Ni is Al, R Although the reflection characteristic is low for blue light having a shorter wavelength than h and Zn, a reflection characteristic better than that of gold plating can be obtained. In the case of Ni, there is an advantage that the vapor deposition reflective film layer 18 can be manufactured at low cost.
[0036]
Further, the insulating substrate 2 includes two back-side conductive patterns 21 and 22 and two non-penetrating conductive grooves 23 that electrically connect the back-side conductive patterns 21 and 22 and the front-side conductive patterns 5 and 6. , 24 are formed.
[0037]
Each of the backside conductive patterns 21 and 22 includes a copper foil 25, a copper plating layer 26 formed on the entire surface of the copper foil 25, and a gold plating layer 27 formed on the entire surface of the copper plating layer 26. The peripheral portions of the non-penetrating conductive grooves 23, 24 are formed on the back surface of the insulating substrate 2 and at both ends in the longitudinal direction so as to face the surface-side conductive patterns 5, 6 across the insulating substrate 2. Each is provided so as to surround it.
[0038]
Each Non The through-conduction grooves 23 and 24 are formed on each side surface on the short side facing a part of the copper foil 7 forming the lowermost layer of the surface-side conductive patterns 5 and 6 in the longitudinal direction of the insulating substrate 2. The groove wall copper plating layer 26A that covers the inner wall surface of the circular groove 28 and a part of the back surface of the copper foil 7, and the groove wall gold plating layer 27A that covers the entire surface of the groove wall copper plating layer 26A. Yes. Thereby, the surface side conductive pattern 5 and the back surface side conductive pattern 21 are electrically connected by the non-penetrating conductive groove 23, and the surface side conductive pattern 6 and the back surface side conductive pattern 22 are also electrically connected by the non-penetrating conductive groove 24. ing. The copper plating layer 8 of the front surface side conductive patterns 5 and 6 and the copper plating layer 26 of the back surface side conductive patterns 21 and 22 are formed simultaneously. Further, the gold plating layer 9 of the front surface side conductive patterns 5 and 6 and the gold plating layer 27 of the back surface side conductive patterns 21 and 22 are formed simultaneously. The groove wall copper plating layer 26 </ b> A and the groove wall gold plating layer 27 </ b> A were formed to extend to the inside of the groove 28 when the copper plating layer 26 and the gold plating layer 27 constituting the back side conductive patterns 21 and 22 were formed. It is a plating part. The back surface side conductive patterns 21 and 22 are used as terminal portions that are electrically connected to a pad portion of a wiring board (not shown) on which the light emitting device 1 is mounted by a conductive bonding material such as a conductive paste.
[0039]
In the light-emitting device 1 having such a structure, a large number of LED chips 3 are mounted in a matrix in the X and Y directions on the light-emitting device substrate 30 shown in FIGS. 3 and 4 and sealed with a translucent resin 4. Thus, after the LED chip mounting substrate 31 shown in FIGS. 5 and 6 is manufactured, the LED chip mounting substrate 31 is diced for each LED chip 3 along the divided cutting lines 33a to 33h and 34a to 34d orthogonal to each other. Many are manufactured simultaneously by cutting.
[0040]
Next, the light emitting device substrate will be described with reference to FIGS.
A light emitting device substrate 30 indicated as a whole by reference numeral 30 has a single insulating substrate 2 having a required size, and a large number, for example, eight in the X direction (column direction) and Y direction (row direction) on the surface thereof. ), A total of 40 surface-side conductive patterns 41 (41a to 41h, 42a to 42h,... 45a to 45h) are formed in a matrix at predetermined intervals in the X and Y directions, respectively. Similarly, 40 back side conductive patterns 46 are formed in a matrix on the side so as to face each other with the front side conductive pattern 41 and the insulating substrate 2 interposed therebetween. The insulating substrate 2 is formed with 40 non-penetrating conduction holes 47 in a matrix form that electrically connect the front-side conductive pattern 41 and the back-side conductive pattern 46 facing each other.
[0041]
The left and right ends of the light emitting device substrate 30, strictly speaking, the left portion from the leftmost divided cutting line 33a and the right portion from the rightmost divided cutting line 33h (shaded portion in FIG. 3) are extra length portions to be cut and removed. The other portions are effectively used as the light emitting device 1.
[0042]
Each of the surface-side conductive patterns 41 is a pattern that becomes the surface-side conductive patterns 5 and 6 of the light emitting device 1 shown in FIG. 2 when divided along the dividing cutting lines 33a to 33h, and is provided on the surface of the insulating substrate 2. The formed copper foil 7, a copper plating layer 8 that covers the entire surface of the copper foil 7, and a gold plating layer 9 that covers the entire surface of the copper plating layer 8. In this case, since the surface-side conductive patterns 41a to 45a and 41h to 45h at both ends include portions (hatched portions) cut and removed from the divided cutting lines 33a and 33h, the surface-side conductive patterns in the other columns. The shape of the pattern is slightly different from 41b to 41g, 42b to 42g, 43b to 43g, 44b to 44g, and 45b to 45g. That is, the left side surface-side conductive patterns 41 a to 45 a are provided with the connection region 11 for forming the pad portion of the LED chip 3 only at the right end portion of the surface, and are vapor-deposited through the undercoat layer 17 on the other surface portions. A reflective film layer 18 is formed. Further, the right-side surface-side conductive patterns 41h to 45h are provided with a connection region 12 for forming a wire bonding portion only at the left-end portion of the surface, and a vapor deposition reflective film layer through an undercoat layer 17 on the other surface portion. 18 is formed. The surface side conductive patterns 41b to 41g, 42b to 42g, 43b to 43g, 44b to 44g, and 45b to 45g in the second to seventh rows from the left all exhibit the same pattern, and the wire bonding portion is provided at the left end portion of the surface. The connection region 12 to be formed is provided, the connection region 11 for forming the pad portion of the LED chip 3 is provided at the right end portion, and the vapor deposition reflective film layer 18 is formed on the other surface portion through the undercoat layer 17. Has been. Therefore, the connection end portions 11 and 12 are provided so as to face the surfaces of the edge portions of the surface side conductive patterns 41 adjacent to each other in the X direction that face each other.
[0043]
Divided cut lines 33a to 33h in the Y direction of the insulating substrate 2 are divided cut lines passing through the centers of the non-penetrating conduction holes 47 arranged in the Y direction. The division | segmentation cutting lines 34a-34d of the X direction of the insulated substrate 2 are division | segmentation cutting lines which pass through the intermediate | middle of the surface side conductive patterns 41a and 42a, 42a, and 43a ... adjacent to the Y direction.
[0044]
The back side conductive pattern 46 is a pattern that becomes the back side conductive patterns 21 and 22 of the light emitting device 1 shown in FIG. 2 when divided along the division cutting lines 33 a to 33 h, and the back side of the insulating substrate 2. A ring-shaped copper foil 25 provided so as to surround the periphery of the non-penetrating conductive hole 43, a copper plating layer 26 covering the entire surface of the copper foil 25, and a gold plating layer covering the entire surface of the copper plating layer 26 27.
[0045]
The non-penetrating conduction holes 47 are formed in the insulating substrate 2 at portions that become non-penetrating conducting grooves 23 and 24 of the light emitting device 1 shown in FIG. 2 when divided along the division cutting lines 33a to 33h. A hole wall copper plating layer 26 </ b> A formed on a part of the copper foil 7 of the surface-side conductive pattern 40 that closes the opening on the upper side of the hole 48, the inner wall surface of the hole 47, and a part of the back surface of the copper foil 7. And a hole wall gold plating layer 27A covering the hole wall copper plating layer 26A. The hole wall copper plating layer 26 </ b> A and the hole wall gold plating layer 27 </ b> A are formed to extend simultaneously with the formation of the copper plating layer 26 and the gold plating layer 27 of the back side conductive pattern 46, and along the divided cutting lines 33 a to 33 h. By dividing each of them, the aforementioned groove wall copper plating layer 26A and groove wall gold plating layer 27A are obtained.
[0046]
FIG. 5 is a plan view showing the LED chip mounting substrate, and FIG. 6 is an enlarged sectional view taken along line BB of FIG.
In these drawings, an LED chip mounting substrate 31 indicated generally by 31 is mounted on the connection region 11 of each surface-side conductive pattern 41 by mounting the LED chip 3 on the light emitting device substrate 30 shown in FIGS. 3 and 4. The LED chip 3 and the connection region 12 are electrically connected by the bonding wire 13, and then the entire surface of the insulating substrate 2 is molded by the translucent resin 4.
[0047]
Next, the manufacturing method of the light emitting device substrate 30, the LED chip mounting substrate 31, and the light emitting device 1 described above will be described with reference to FIGS.
First, as shown in FIG. 7, a double-sided copper-clad laminate 50 in which copper foils 7 and 25 are respectively bonded to the entire front and back surfaces of an insulating substrate 2 having a required size is prepared.
[0048]
In this case, instead of bonding the copper foils 7 and 25 to both surfaces of the insulating substrate 2 with an adhesive, the insulating substrate was subjected to a ground treatment by electroless copper plating, and then the copper foils 7 and 25 were formed by ordinary electrolytic copper plating. It may be a thing. The point is that the copper foils 7 and 25 having the required thickness are formed on both surfaces of the insulating substrate 2. The thickness of the insulating substrate 2 is about 200 μm (0.2 mm), and the thickness of the copper foils 7 and 25 is about 18 μm.
[0049]
Next, a plurality of holes 48 reaching the back surface of the copper foil 7 on the front surface side are formed in a matrix at predetermined intervals in the X and Y directions on the back surface side of the insulating substrate 2 by drilling (FIG. 8). ). The hole 48 is formed by first forming a circular hole at a predetermined portion of the copper foil 25 on the back surface side by etching, and further irradiating the hole with laser light.
[0050]
Next, copper plating layers 8, 26 and 26A are respectively formed on the entire surface of the copper foils 7 and 25 on the front surface side and the back surface side and the entire inner wall surface of the hole 48 by a copper plating process (FIG. 9). The copper plating layers 8, 26, and 26A are formed by forming a base layer on the inner wall surface of the hole 48 in advance by electroless copper plating and then performing normal electrolytic copper plating.
[0051]
Thereafter, the copper plating layers 8 and 26 on the front and back surfaces are masked, and the plating layers and the copper foils 7 and 25 are etched into a predetermined pattern and separated into the holes 48 (FIG. 10).
[0052]
Next, gold plating layers 9, 27, 27A are respectively formed on the surfaces of the copper plating layers 8, 26 separated by etching and the copper plating layer 26A in the hole 48 (FIG. 11). The gold plating layers 9, 27, 27A are formed on Ni plating as a base layer in advance and then formed thereon. The thickness of the Ni plating layer is about 3-7 μm, and the thickness of the gold plating layers 9, 27, 27A is about 0.1-0.5 μm. Thereby, the front surface side conductive pattern 41, the back surface side conductive pattern 46, and the non-through conductive hole 47 shown in FIG. 4 are formed.
[0053]
Next, the undercoat layer 17 is formed on the surface of each surface-side conductive pattern 41 in portions other than the connection regions 11 and 12 (FIG. 12). However, with respect to the surface-side conductive pattern 41 at the left end and the right end, the connection region 11 or 12 is set only at the inner edge as described above, and the undercoat layer 17 is formed at the other portions.
[0054]
Further, a vapor deposition reflective film layer 18 made of a metal such as Al is formed on the entire surface of the undercoat layer 17 (FIG. 13). Thus, the light emitting device substrate 30 shown in FIGS. 3 and 4 is completed.
[0055]
The undercoat layer 17 is formed in order to planarize the surface of the gold plating layer 9 before the step of forming the vapor deposition reflective film layer 18. The surface of the insulating substrate 2 is masked and epoxy is applied by spray coating. It is formed by spraying resin or the like. The thickness is about 20 to 100 μm, and the thickness of the vapor deposition reflective film layer 18 is about 200 to 500 mm.
[0056]
Next, as shown in FIG. 14, the LED chip 3 is placed on the connection region 11 provided at the right end of each surface-side conductive pattern 41 (excluding the rightmost conductive pattern), and its pn junction surface 16. (See FIG. 2) is placed upright so as to be parallel to the substrate surface, and the lower p-side electrode 15 is joined to the connection region 11 with a conductive paste. Further, the n-side electrode 14 of the LED chip 3 and the connection region 12 of the surface-side conductive pattern 41 located on the right side of the chip are electrically connected by bonding of the bonding wires 13. Then, the LED chips 3 are sequentially mounted and wire bonded.
[0057]
Next, when the mounting of all the LED chips 3 and the wire bonding are completed, the entire surface of the insulating substrate 2 is molded with the translucent resin 4 as shown in FIG. 15, and all the LED chips 3 and the bonding wires 13 are sealed. Stop. As a result, the LED chip mounting substrate 31 shown in FIGS. 5 and 6 is completed.
[0058]
Thereafter, as shown in FIG. 16, the LED chip mounting substrate 31 covered with the translucent resin 4 is diced for each LED chip 3. That is, when the insulating substrate 2 is diced and cut along the cutting division lines 33a to 33h in the Y direction and the cutting division lines 34a to 34d (see FIG. 3) in the X direction passing through the centers of the respective non-through conduction holes 47, FIG. A large number of the light emitting devices 1 shown in FIG. When the insulating substrate 2 is cut and separated along the cutting division lines 33a to 33h in the Y direction, the surface-side conductive pattern 41 becomes the surface-side conductive patterns 5 and 6 shown in FIGS. 1 and 2, and the back-side conductive pattern 46 is the back-side side. The conductive patterns 21 and 22 become non-penetrating conductive holes 47 and non-penetrating conductive grooves 23 and 24.
[0059]
As described above, according to the light emitting device 1 and the LED chip substrate 30 according to the present invention, a part of the gold plating layer 17 forming the surface of the surface side conductive patterns 5 and 6 is connected to the connection region 11 on which the LED chip 3 is mounted. Since the deposited reflective film layer 18 made of a metal other than silver is formed in the remaining portion as the connection region 12 to which the bonding wire 13 is connected, the bonding connection region 12 is not subject to electrolytic corrosion or oxidation. The bonding property is excellent, and the reliability, stability, and durability of the light emitting device 1 can be improved.
[0060]
Further, the deposited reflective film layer 18 is made of Al, R Since it is formed of any one of h, Zn, and Ni, it is excellent in corrosion resistance and migration resistance as compared with the case of forming with Ag. In particular, Al, R As shown in FIG. 20, the deposited reflective film layer 18 made of h or Zn provides good reflection characteristics for visible light in a substantially entire region from visible light having a long wavelength to visible light having a short wavelength. The light emitting device substrate 30 can also be used in common for the blue GaN LED chip (emission center wavelength 490 nm) having a short emission wavelength, for example. Further, the vapor deposition reflecting film layer 18 made of Ni is made of Al, R Although the reflection characteristics are lower than those of h and Zn, still better reflection characteristics than gold plating can be obtained, and the deposition of Ni can be easily manufactured and inexpensive.
[0061]
Further, since the non-penetrating conduction hole 47 of the light emitting device substrate 30 is not open to the front surface side of the insulating substrate 2, the molten resin does not wrap around the back surface side of the insulating substrate 2 when the LED chip 3 is molded.
[0062]
FIG. 17 is an external perspective view showing another embodiment of the light emitting device according to the present invention, and FIG. 18 is a sectional view of the light emitting device.
In the light emitting device 55 according to this embodiment, the LED chip 3 is placed between the surface-side conductive patterns 5 and 6 adjacent to each other so that the pn junction surface 16 is perpendicular to the surface of the insulating substrate 2. The n-side electrode 14 and the p-side electrode 15 are joined to each of the connection regions 11 and 12 by a conductive paste 53 over the connection regions 11 and 12.
[0063]
The connection regions 11 and 12 of the surface-side conductive patterns 5 and 6 are formed in the same shape along the side edges facing each other on the surface of the surface-side conductive patterns 5 and 6, and the electrodes of the LED chip 3. Each joint is formed. For this reason, the electrode connection part 12 of the surface side conductive pattern 6 does not protrude in the direction of the surface side conductive pattern 5 which opposes from the side edge of the surface side conductive pattern 6. Since the other structure is completely the same as that of the light emitting device 1 shown in FIG.
[0064]
In the light emitting device 55 having such a structure, since no bonding wire is used, an accident that the wire is disconnected by an external force does not occur, and the translucent resin 4 can be formed thin.
[0065]
In the above embodiments, the light emitting devices 1 and 55 each mounted with one LED chip 3 are shown. However, the present invention is not limited to this, and for example, a plurality of LEDs having different emission wavelengths. It is also possible to mount a chip. In this case, the number of conductive patterns on the front and back surfaces and the number of non-penetrating conductive grooves may be increased according to the number of LED chips 3 mounted.
[0066]
【The invention's effect】
As described above, according to the light emitting device substrate and the light emitting device according to the present invention, it is possible to prevent deterioration of bonding property and migration due to electrolytic corrosion or oxidation, and improve reliability, stability and durability. Can be made.
[0067]
Al, R The vapor deposition reflective film layer made of h, Zn or Ni is superior in corrosion resistance and migration resistance as compared with the case where it is formed of Ag. In particular, Al, R The reflection film layer made of h or Zn has good reflection characteristics for visible light in almost the entire region from visible light having a long wavelength to visible light having a short wavelength. The light emitting device substrate can be commonly used for the short blue LED chip.
[0068]
The reflective film layer made of Ni is Al, R Although the reflection characteristics are lower than those of h and Zn, better reflection characteristics than gold plating can be obtained, and deposition of Ni can be easily manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing an embodiment of a light emitting device according to the present invention.
FIG. 2 is a sectional view of the light emitting device.
FIG. 3 is a plan view showing an embodiment of a light emitting device substrate according to the present invention.
4 is an enlarged sectional view taken along line AA in FIG. 3;
FIG. 5 is a plan view of an LED chip mounting substrate.
6 is an enlarged cross-sectional view taken along the line BB of FIG.
FIG. 7 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 8 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 9 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 10 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 11 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 12 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 13 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 14 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 15 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 16 is a diagram for explaining a manufacturing process of the light-emitting device.
FIG. 17 is an external perspective view of a light-emitting device showing another embodiment of the present invention.
FIG. 18 is a cross-sectional view of the light emitting device.
FIG. 19 is a front view showing a conventional example of a light emitting device.
FIG. 20 is a diagram showing the relationship between the emission wavelength and the reflectance of the deposited metal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light emitting device, 2 ... Insulating substrate, 3 ... LED chip, 3A ... N-type semiconductor layer, 3B ... P-type semiconductor layer, 4 ... Translucent resin, 5, 6 ... Surface side conductive pattern, 7 ... Copper foil, DESCRIPTION OF SYMBOLS 8 ... Copper plating layer, 9 ... Gold plating layer, 11, 12 ... Connection area | region, 13 ... Bonding wire, 14, 15 ... Electrode, 16 ... pn junction surface, 17 ... Undercoat layer, 18 ... Deposition reflective film layer, 21, 22 ... back side conductive pattern, 23, 24 ... non-penetrating conductive groove, 25 ... copper foil, 26 ... copper plated layer, 27 ... gold plated layer, 28 ... groove, 30 ... light emitting device substrate, 31 ... LED chip mounting Substrate, 33a to 33h, 34a to 34d ... cutting dividing line, 41 ... front side conductive pattern, 42 ... back side conductive pattern, 47 ... non-through conductive hole, 53 ... conductive paste, 55 ... light emitting device.

Claims (8)

絶縁基板の表面側にそれぞれ金メッキされた複数の表面側導電パターンをマトリックス状に形成し、前記絶縁基板の裏面側で前記各表面側導電パターンに対応する部位に裏面側導電パターンをそれぞれ設け、これらの表裏面側導電パターンどうしを前記絶縁基板に設けた孔の内壁面を覆うメッキ層および前記表面側導通パターンの一部の裏面を覆うメッキ層を介して電気的に接続してなる絶縁基板であって、前記各表面側導電パターンの表面で互いに隣接する端縁部にLEDチップの接続領域を設定し、この接続領域以外の表面部分に、この表面部分を平坦化するためのアンダーコートを介して銀以外の金属による蒸着反射膜層を形成したことを特徴とする発光デバイス用基板。A plurality of front side conductive patterns plated with gold on the front side of the insulating substrate are formed in a matrix, and a rear side conductive pattern is provided at a portion corresponding to each front side conductive pattern on the rear side of the insulating substrate. An insulating substrate in which the front and back conductive patterns are electrically connected via a plating layer that covers the inner wall surface of the hole provided in the insulating substrate and a plating layer that covers a part of the back surface of the conductive pattern. An LED chip connection region is set at the edge portions adjacent to each other on the surface of each surface-side conductive pattern, and an undercoat for flattening the surface portion is provided on the surface portion other than the connection region. A substrate for a light-emitting device, characterized in that a deposited reflective film layer made of a metal other than silver is formed. 請求項1記載の発光デバイス用基板において、
前記蒸着反射膜層は、Al、Rh、Zn、Niのうちのいずれか1つの金属によって形成されていることを特徴とする発光デバイス用基板。
The light emitting device substrate according to claim 1,
The substrate for a light-emitting device, wherein the vapor deposition reflective film layer is formed of any one metal of Al, Rh, Zn, and Ni.
請求項1または2記載の発光デバイス用基板において、
隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなるLEDチップ実装用パッド部と、ワイヤボンディング部をそれぞれ形成しており、前記LEDチップ実装用パッド部にLEDチップがそのp−n接合面を基板表面と平行になるように実装されることを特徴とする発光デバイス用基板。
The light emitting device substrate according to claim 1 or 2,
The connection regions of the edge portions of the adjacent surface side conductive patterns facing each other form an LED chip mounting pad portion made of a gold plating layer and a wire bonding portion, and the LED chip mounting pad portion has the LED chip mounting portion. Is mounted so that its pn junction surface is parallel to the substrate surface.
請求項1または2記載の発光デバイス用基板において、
隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなる電極接合部をそれぞれ形成しており、これらの電極接合部間にLEDチップがそのp−n接合面を基板表面と垂直になるように架設され、p側とn側の電極がそれぞれ接合されることを特徴とする発光デバイス用基板。
The light emitting device substrate according to claim 1 or 2,
The connection regions of the edge portions of the adjacent surface side conductive patterns facing each other form electrode junctions made of a gold plating layer, and the LED chip has a pn junction surface between these electrode junctions as a substrate. A substrate for a light-emitting device, wherein the substrate is constructed so as to be perpendicular to a surface, and p-side and n-side electrodes are respectively joined.
絶縁基板と、この絶縁基板の表面に実装されたLEDチップと、前記絶縁基板の表面全体を覆い前記LEDチップを封止する透光性樹脂とからなる発光デバイスにおいて、
前記絶縁基板の表面側にそれぞれ金メッキされた複数の表面側導電パターンを形成し、前記絶縁基板の裏面側で前記各表面側導電パターンに対応する部位に裏面側導電パターンをそれぞれ設け、これらの表裏面側導電パターンどうしを前記絶縁基板の側面適宜箇所に形成した溝の内壁面を覆うメッキ層および前記表面側導通パターンの一部の裏面を覆うメッキ層を介して電気的に接続し、前記各表面側導電パターンの表面で互いに隣接する端縁部に接続領域を設定してLEDチップを実装または架設し、この接続領域以外の表面部分に、この表面部分を平坦化するためのアンダーコートを介して銀以外の金属による蒸着反射膜層を形成したことを特徴とする発光デバイス。
In a light emitting device comprising an insulating substrate, an LED chip mounted on the surface of the insulating substrate, and a translucent resin that covers the entire surface of the insulating substrate and seals the LED chip,
A plurality of front side conductive patterns plated with gold are formed on the front side of the insulating substrate, and back side conductive patterns are provided on the back side of the insulating substrate at portions corresponding to the front side conductive patterns. The backside conductive patterns are electrically connected via a plating layer that covers the inner wall surface of the groove formed at an appropriate side of the insulating substrate and a plating layer that covers a part of the backside of the surface side conductive pattern, An LED chip is mounted or erected on the edge of the surface side conductive pattern that is adjacent to each other, and an LED chip is mounted or installed on the surface area other than the connection area via an undercoat for flattening the surface area. emitting device, characterized in that the formation of the deposited reflective layer of a metal other than silver Te.
請求項5記載の発光デバイスにおいて、
前記蒸着反射膜層は、Al、Rh、Zn、Niのうちのいずれか1つの金属によって形成されていることを特徴とする発光デバイス。
The light-emitting device according to claim 5.
The light-emitting device, wherein the vapor deposition reflective film layer is made of any one of Al, Rh, Zn, and Ni.
請求項5または6記載の発光デバイスにおいて、
隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなるLEDチップ実装用パッド部と、ワイヤボンディング部をそれぞれ形成しており、前記チップ実装用パッド部に前記LEDチップがそのp−n接合面を基板表面と平行になるように実装されていることを特徴とする発光デバイス。
The light-emitting device according to claim 5 or 6,
The connection regions of the edge portions of the adjacent surface-side conductive patterns facing each other form an LED chip mounting pad portion made of a gold plating layer and a wire bonding portion, respectively, and the LED chip is mounted on the chip mounting pad portion. Is mounted so that its pn junction surface is parallel to the substrate surface.
請求項5または6記載の発光デバイスにおいて、
隣り合う表面側導電パターンの互いに対向する端縁部の接続領域は、金メッキ層からなる電極接合部を形成しており、これらの電極接合部間に前記LEDチップがそのp−n接合面を基板表面と垂直になるように架設され、p側とn側の電極がそれぞれ接合されていることを特徴とする発光デバイス。
The light-emitting device according to claim 5 or 6,
The connection region of the edge portions of the adjacent surface side conductive patterns facing each other forms an electrode bonding portion made of a gold plating layer, and the LED chip has a pn bonding surface between these electrode bonding portions as a substrate. A light-emitting device, wherein the light-emitting device is constructed so as to be perpendicular to a surface, and p-side and n-side electrodes are joined to each other.
JP2003187115A 2003-06-30 2003-06-30 LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE Expired - Lifetime JP4085899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187115A JP4085899B2 (en) 2003-06-30 2003-06-30 LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187115A JP4085899B2 (en) 2003-06-30 2003-06-30 LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE

Publications (3)

Publication Number Publication Date
JP2005026276A JP2005026276A (en) 2005-01-27
JP2005026276A5 JP2005026276A5 (en) 2005-06-30
JP4085899B2 true JP4085899B2 (en) 2008-05-14

Family

ID=34186062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187115A Expired - Lifetime JP4085899B2 (en) 2003-06-30 2003-06-30 LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE

Country Status (1)

Country Link
JP (1) JP4085899B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2262006A3 (en) 2003-02-26 2012-03-21 Cree, Inc. Composite white light source and method for fabricating
EP2264798B1 (en) 2003-04-30 2020-10-14 Cree, Inc. High powered light emitter packages with compact optics
KR100638868B1 (en) * 2005-06-20 2006-10-27 삼성전기주식회사 Led package with metal reflection layer and method of manufacturing the same
JP2007035748A (en) * 2005-07-25 2007-02-08 Nichia Chem Ind Ltd Support for mounting semiconductor element, and semiconductor device
KR100737822B1 (en) 2006-09-27 2007-07-10 서울반도체 주식회사 Light emitting diode package employing leadframe with plated layer of high brightness
WO2008038997A1 (en) * 2006-09-27 2008-04-03 Seoul Semiconductor Co., Ltd. Light emitting diode package employing leadframe with plated layer of high brightness
KR100840208B1 (en) * 2006-12-29 2008-06-23 서울반도체 주식회사 Light emitting diode package
JP5114773B2 (en) * 2007-08-10 2013-01-09 スタンレー電気株式会社 Surface mount light emitting device
JP5109620B2 (en) * 2007-11-26 2012-12-26 豊田合成株式会社 LIGHT EMITTING DEVICE, SUBSTRATE DEVICE, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
JP5532021B2 (en) * 2011-06-28 2014-06-25 豊田合成株式会社 Light emitting device
JP2014003260A (en) * 2012-06-21 2014-01-09 Sumitomo Electric Printed Circuit Inc Printed wiring board, printed wiring board assembly, manufacturing method of printed wiring board, and lighting device
KR101403640B1 (en) * 2012-11-20 2014-06-05 주식회사 세미콘라이트 Semiconductor light emitting device and method of encapsulating the same
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
TWI684835B (en) * 2018-12-25 2020-02-11 同泰電子科技股份有限公司 Substrate structure with high reflectivity and manufacturing method thereof
CN110277378B (en) * 2019-04-25 2023-11-14 深圳市聚飞光电股份有限公司 Aggregate substrate, light-emitting device and manufacturing method thereof
CN112331639B (en) * 2020-09-28 2023-10-20 惠州市聚飞光电有限公司 Substrate for manufacturing LED light source, manufacturing method and LED light source assembly
CN112331638B (en) * 2020-09-28 2023-06-06 惠州市聚飞光电有限公司 Light emitting diode and backlight module

Also Published As

Publication number Publication date
JP2005026276A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4085899B2 (en) LIGHT EMITTING DEVICE SUBSTRATE AND LIGHT EMITTING DEVICE
JP2007043155A (en) Led package, manufacturing method thereof, and led array module using the led package
WO2006030671A1 (en) Reflector for led and led device
JP3219881U (en) Light emitting device package
WO2013150882A1 (en) Led light emitting apparatus
US20170250333A1 (en) Substrate for Optical Device
JP2000236116A (en) Light source equipment
CN105742469A (en) Semiconductor light emitting chip
CN105898982A (en) High-voltage flexible circuit board and multi-layer flexible circuit board
EP2629591B1 (en) Light-emitting element mounting package, light-emitting element package, and method of manufacturing the same
CN104064655A (en) LED package and manufacturing method thereof
US20070278483A1 (en) Light emitting device and method of manufacturing the same
JP4072084B2 (en) Light emitting element storage package and light emitting device
JP2012124248A (en) Lead frame substrate for mounting led chip, method for manufacturing the same and led package
US9543279B2 (en) Method of manufacturing a single light-emitting structure
JP2019216250A (en) Semiconductor light-emitting device
CN113966447A (en) Lamp strip substrate, manufacturing method thereof and finished lamp strip
JP6116560B2 (en) Light emitting device
JP3302203B2 (en) Light emitting diode
CN109935556A (en) The manufacturing method of light-emitting diode encapsulation structure, heat-radiating substrate and heat-radiating substrate
CN111162063A (en) LED device, display screen and packaging process thereof
CN205645865U (en) Semiconductor luminescence chip
JP2960882B2 (en) Surface mount type LED element and method of manufacturing the same
CN210865434U (en) Flexible transparent LED display screen
KR20020026619A (en) Light-emitting compound semiconductor divice and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5