JP4083265B2 - 画像信号の方式変換方法および装置 - Google Patents

画像信号の方式変換方法および装置 Download PDF

Info

Publication number
JP4083265B2
JP4083265B2 JP29030797A JP29030797A JP4083265B2 JP 4083265 B2 JP4083265 B2 JP 4083265B2 JP 29030797 A JP29030797 A JP 29030797A JP 29030797 A JP29030797 A JP 29030797A JP 4083265 B2 JP4083265 B2 JP 4083265B2
Authority
JP
Japan
Prior art keywords
motion
frame
signal
motion vector
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29030797A
Other languages
English (en)
Other versions
JPH11112939A (ja
Inventor
裕弘 平野
和夫 石倉
雅人 杉山
満雄 中嶋
俊之 栗田
孝明 的野
春樹 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29030797A priority Critical patent/JP4083265B2/ja
Priority to EP98118653A priority patent/EP0909092A3/en
Publication of JPH11112939A publication Critical patent/JPH11112939A/ja
Application granted granted Critical
Publication of JP4083265B2 publication Critical patent/JP4083265B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/46Receiver circuitry for the reception of television signals according to analogue transmission standards for receiving on more than one standard at will
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/587Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal sub-sampling or interpolation, e.g. decimation or subsequent interpolation of pictures in a video sequence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • H04N21/440218Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display by transcoding between formats or standards, e.g. from MPEG-2 to MPEG-4
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/014Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/147Scene change detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/012Conversion between an interlaced and a progressive signal

Description

【0001】
【発明の属する技術分野】
本発明は画像信号の方式変換方法および装置に係り、特に、動き補正に固有な画質劣化を抑圧し、高画質な動き補正のフレームレートの変換を実現するに好適な画像信号の方式変換方法および装置に関する。
【0002】
【従来の技術】
異なるテレビジョンシステム間の信号変換である方式変換は、放送の分野では番組交換などで広く使用されている。一般に、方式変換では、走査線数やフィールド周波数の変換処理が必要なため、動き画像で滑らかさが損なわれるモーションジャダーなどの画質劣化が発生する。
【0003】
これら画質劣化を防ぐため、走査線数変換には動き適応型走査線数・順次走査変換法、フレーム数変換には動き補正型フレーム数変換法などの信号処理技術が考案されている。
【0004】
このうち、動き補正型フレーム数変換法は、動きベクトルで前後のフレームの画像の位置を移動させて内挿フレームの信号を生成するもので、動き画像のモーションジャダーの除去には極めて有効である。このため、放送関係の方式変換装置では、ほとんどがこの方法を採用している。
【0005】
しかしながら、動き補正型のフレーム数変換では、特有な画質劣化が発生する。すなわち、一様に動いている画像や同一物体の一部が孤立点的に全く別の画像に置き換わる孤立点的な劣化が発生する。また、動きによって背景が隠れたり現れたりする領域では、動画の輪郭周縁部がフリッカしたり動きが不自然に見える動画像の解像度劣化が発生する。これらの画質劣化を抑圧するため、例えば特開平7−336650号公報には、内挿フィールドの前後2つの入力フィールドを用いてアンカバード領域、カバード領域の内挿処理を行うフィールド内挿方法が開示されている。
【0006】
【発明が解決しようとする課題】
従来の技術では、画質劣化を抑圧するための信号処理が、極めて複雑となっている。したがって、この種の信号処理を行う方式変換装置は、その回路規模が大きくなり、またコストも高くなるという問題を有している。
【0007】
本発明は、上記の問題に鑑みてなされたもので、画質劣化を簡単な信号処理で抑圧し得る高画質かつ低コストの画像信号の方式変換方法および装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、画像信号の現フレームの信号と前フレームの信号から画像の動きを検出する工程と、前記動きを検出する工程により動きを検出しないブロックにはブロック単位動きベクトルとして0を割り当て、動きを検出したブロックには1フレーム期間での動きベクトルのうち最少の動き補正誤差を有するものをブロック単位動きベクトルとして割り当てるブロック単位動きベクトルを生成する工程と、前記動きを検出する工程により動きを検出しない画素には画素単位動きベクトルとして0を割り当て、動きを検出した画素には前記ブロック単位の動き補正誤差が閾値未満のときはブロック内の画素に前記ブロック単位動きベクトルを割り当て、閾値以上のときは現ブロックと隣接ブロックの動きベクトルを用いて前記ブロックを縮小したミニブロックを内包する算出領域のうち最少の動き補正誤差を有するものを画素単位動きベクトルとして割り当てる画素単位動きベクトルを生成する工程と、現フレームの信号を第1の動き補正ベクトルで位置を移動させて生成する第1の動き補正信号と前フレームの信号を第2の動き補正ベクトルで位置を移動させて生成する第2の動き補正信号との絶対値差分成分が閾値未満の場合は、前記画素単位動きベクトルに基づいて生成した画像信号の第1の内挿フレームを用い、閾値以上の場合は、画像信号のフレームの信号で生成した画像信号の第2の内挿フレームを用いて、画像信号のフレーム数を変換する工程とを備え、前記第1の動き補正ベクトルは、前記画素単位動きベクトルと、前記第1の内挿フレームと現フレームとの時間的距離に関する係数との乗算により生成され、前記第2の補正ベクトルは前記画素単位動きベクトルと前記第1の内挿フレームと前フレームとの時間的距離に関する係数との乗算により生成されることを特徴とする画像信号の方式変換方法である。
【0009】
本発明の前記第2の内挿フレームは、現フレームと前フレームのうち時間的距離が近いフレームの信号に基づいて生成したものであることを特徴とする。前記絶対値差分成分は、前記2つの動き補正信号の輝度信号成分の差分、又は輝度信号成分及び色差信号成分の差分に基づいて求められるものであることを特徴とする。前記画像信号のフレーム数を変換する工程は、画像信号の特定の動きを検出する工程を備え、前記第1の内挿フレームを用いたフレーム内挿処理の動作は前記特定の動きを検出した場合に制限することを特徴とする。前記画像信号のフレーム数を変換する工程は、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出する工程を備え、シーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いたフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする。前記画像信号のフレーム数を変換する工程は、画像信号の特定の動きを検出する工程と、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出する工程とを備え、前記特定の動きを検出した場合には前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を行い、シーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする。
【0010】
本発明は、画像信号の現フレームの信号と前フレームの信号から画像の動きを検出する動き検出部と、前記動きを検出する工程により動きを検出しないブロックにはブロック単位動きベクトルとして0を割り当て、動きを検出したブロックには1フレーム期間での動きベクトルのうち最少の動き補正誤差を有するものをブロック単位動きベクトルとして割り当てるブロック単位動きベクトルを探索するブロック単位動きベクトル探索部と、前記動きを検出する工程により動きを検出しない画素には画素単位動きベクトルとして0を割り当て、動きを検出した画素には前記ブロック単位の動き補正誤差が閾値未満のときはブロック内の画素に前記ブロック単位動きベクトルを割り当て、閾値以上のときは現ブロックと隣接ブロックの動きベクトルを用いて前記ブロックを縮小したミニブロックを内包する算出領域のうち最少の動き補正誤差を有するものを画素単位動きベクトルとして割り当てる画素単位動きベクトルを生成する画素単位動きベクトル生成部と、現フレームの信号を第1の動き補正ベクトルで位置を移動させて生成する第1の動き補正信号と前フレームの信号を第2の動き補正ベクトルで位置を移動させて生成する第2の動き補正信号との絶対値差分成分が閾値未満の場合は、前記画素単位動きベクトルに基づいて生成した画像信号の第1の内挿フレームを用い、閾値以上の場合は、画像信号のフレームの信号で生成した画像信号の第2の内挿フレームを用いて、画像信号のフレーム数を変換する動き補正内挿フレーム生成部とを備え、前記第1の動き補正ベクトルは、前記画素単位動きベクトルと、前記第1の内挿フレームと現フレームとの時間的距離に関する係数との乗算により生成され、前記第2の補正ベクトルは前記画素単位動きベクトルと前記第1の内挿フレームと前フレームとの時間的距離に関する係数との乗算により生成されることを特徴とする画像信号の方式変換装置である。
【0011】
本発明の前記第2の内挿フレームは、現フレームと前フレームのうち時間的距離が近いフレームの信号に基づいて生成したものであることを特徴とする。前記絶対値差分成分は、前記2つの動き補正信号の輝度信号成分の差分、又は輝度信号成分及び色差信号成分の差分に基づいて求められるものであることを特徴とする。前記動き補正内挿フレーム生成部は、画像信号の特定の動きを検出する動き速度検出部を備え、前記第1の内挿フレームを用いたフレーム内挿処理の動作は前記動きを検出した場合に制限することを特徴とする。前記動き補正内挿フレーム生成部は、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出するシーンチェンジ検出部を備え、シーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いたフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする。前記動き補正内挿フレーム生成部は、画像信号の特定の動きを検出する動き速度検出部と、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出するシーンチェンジ検出部とを備え、前記動き速度検出部で該当する動きを検出した場合には前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を行い、前記シーンチェンジ検出部でシーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする。前記ブロック単位動きベクトル探索部は、MPEG符号化された画像信号において、動きが検出された動画ブロックに対しては、MPEG符号化で送られる動きベクトル情報をもとにブロック単位動きベクトルを生成することを特徴とする。前記画素単位動きベクトル生成部は、動き補正誤差の算出を画像信号の輝度信号成分を用いて行うことを特徴とする。前記画素単位動きベクトル生成部は、動き補正誤差の算出を画像信号の輝度信号成分および色成分を用いて行うことを特徴とする。
【0012】
このようにすることにより、画質の劣化を簡単な信号処理で抑圧することができ、高画質かつ低コストの画像信号の方式変換方法および装置を実現することができる。
【0013】
【発明の実施の形態】
はじめに、動き補正のフレーム数変換における内挿フレーム信号生成の概略を図22(a)〜(c)を用いて説明する。同図(a)、(b)は、フレーム周波数50Hzの信号を動き補正処理により60Hzの信号に変換する場合を示すものである。60Hzフレーム順1の信号は50Hzフレーム順1の信号で生成する。一方、60Hzフレーム順2、3、4、5、6の信号系列(MC内挿と表示)は、50Hzフレーム順1、2、3、4、5、1の信号を動き補正ベクトルで内挿フレームの位置に移動させた信号で生成する。例えば、フレーム順2のMC内挿フレームの信号は、50Hzフレーム順1の前フレーム信号S3とフレーム順2の現フレーム信号S2、フレーム順3のMC内挿フレームの信号は、50Hzフレーム順2の前フレーム信号S3とフレーム順3の現フレーム信号S2、…で生成する。すなわち、現フレームS2と前フレームS3との間の動きベクトルPVをもとに、動き補正ベクトルVpr(PV*(ka/Ka+kb))とVct(PV*(kb/Ka+kb))を生成する。そして、同図(c)に示す様に、内挿フレーム上の画素A(x,y)の信号は、前フレームS3の画素A(x,y)を動き補正ベクトルVprの水平方向成分Vprx、垂直方向成分Vpryだけ移動させた点A'(x1、y1)の信号Spr=S3(x1,y1)と、現フレームS2の画素A(x,y)を動き補正ベクトルVctの水平方向成分Vctx、垂直方向成分Vctyだけ移動させた点A''(x2、y2)の信号Sct=S2(x2,y2)との平均値で生成する。
【0014】
次に、本発明における動き補正内挿フレーム生成の概略を図23と図24で説明する。
【0015】
図23は、信号処理のフローチャートである。従来技術と同様、はじめに動き補正ベクトルVpr、Vctで前、現フレームの画像の位置を移動させた補正信号SprとSctを生成する。次に、補正信号Spr、Sctの絶対値差分ER(|Spr−Sct|)を求め、これが閾値TH未満か以上かで、動き補正ベクトルの精度を判定する。
【0016】
そして、絶対値差分成分ERが閾値TH未満(ER<TH)の場合は、動き補正ベクトルの精度は高いと判定し、補正信号SprとSctの平均値で内挿フレームの信号を生成する。
【0017】
一方、絶対値差分成分ERが閾値TH以上(ER≧TH)の場合は、動き補正ベクトルの精度は低いと判定し、前、現フレームのうちで内挿フレームと時間的距離が近いフレームを選択する。そして内挿フレームの点A(x,y)の信号は、選択フレームの同一位置の信号で置換する。
【0018】
図24(a)、(b)は、内挿フレーム信号生成を示す概略図である。同図(a)は、ER<THの場合であり、補正信号SprとSctの平均値で内挿フレームの信号を生成する。一方、ER≧THの場合は、同図(b)に示すように、現フレームと前フレームのうちで内挿フレームと時間的距離が近いフレームを選択し、この選択したフレームの画素A(x,y)の信号で内挿フレームの画素A(x,y)の信号を生成する。例えば、60Hzフレーム順2、3、4、5、6のMC内挿フレームは、それぞれ50Hzフレーム順2、3、4、4、5のフレームの信号を選択し、このA(x,y)の画素の信号で置換する。
【0019】
このようにすることにより、極めて簡単な信号処理で、動き補正処理に特有な画質劣化を大幅に抑圧することが可能となる。
【0020】
本発明の第1の実施例について、図1乃至図9の図面で説明する。
【0021】
図1は、本実施例に係る方式変換装置のブロック構成図である。本装置は、同図のとおり、IP変換部1と動き補正フレーム数変換部2とを備える。動き補正フレーム数変換部2は、1フレーム遅延部3、動き検出部4、ブロック単位動きベクトル探索部5、画素単位動きベクトル生成部6、および動き補正内挿フレーム生成部7を有する。動き補正内挿フレーム生成部7は、現フレーム動き補正信号生成部8、前フレーム動き補正信号生成部9、動き補正ベクトル生成部10、および動き補正信号設定部11を有する。図1において、動き補正内挿フレーム生成部7内の各部の接続関係は概略を示すもので、詳しくは後述の図2又は図4に示すとおりである。
【0022】
IP変換部1は、飛び越し走査の入力画像信号S1(輝度信号成分と色差信号成分)を入力し、飛び越し−順次の走査変換を行う走査変換部である。例えば、輝度信号成分は動き適応型の補間処理、色差信号はライン間の補間処理で補間走査線の信号を生成し、出力に順次走査の信号系列S2(輝度信号成分と色差信号成分)を得る。なお、入力画像信号がテレシネ画像信号(映画などのフィルム画像を2ー3プルダウン処理でテレビ信号のフォーマットに変換した信号)の場合は、フィルムモードの補間処理(同一フィルムフレームに属す飛び越し走査の信号で補間走査線の信号を生成)で、フィルム画像の形態の順次走査の信号系列を生成する。
【0023】
動き補正フレーム数変換部2は、動き補正処理で内挿フレームの信号系列を生成してフレームレート変換の信号処理を行い、フレーム周波数が入力画像信号系列より高い周波数の順次走査の画像信号系列S4(輝度信号成分と色差信号成分)を出力する。
【0024】
このうち、動き検出部4は、現フレームの信号系列S2と、1フレーム遅延部3で1フレーム期間遅延させた前フレームの信号系列S3の輝度信号成分を減算して1フレーム間の差分信号を抽出し、これを2値量子化し、動き検出信号MI1、MI2を出力する。
【0025】
ブロック単位動きベクトル探索部5は、ブロックマッチング処理でブロック単位(例えば16画素×16ラインあるいは8画素×8ライン)の動きベクトルを検出する。また、画素単位動きベクトル生成部6は、ブロック単位の動きベクトルをもとに、画素単位動きベクトルPVを生成する。これらの詳細は後述する。
【0026】
動き補正内挿フレーム生成部7では、動き補正ベクトル生成部10で画素単位動きベクトルPVをもとに動き補正ベクトルを生成する。前フレーム動き補正信号生成部9は、前フレームの信号S3の画像の位置をこの動き補間ベクトルで移動させた信号で、内挿フレームの信号Sprを生成する。また、現フレーム動き補正信号生成部8は、現フレームの信号S2の画像の位置をこの動き補間ベクトルで移動させた信号で、内挿フレームの信号Sctを生成する。動き補正信号設定部11は、信号SctとSprの絶対値差分成分ERが閾値TH(例えば、8ビット量子化の場合は16レベル程度)未満の時は、信号SctとSprの平均値、閾値TH以上の時は時間的距離の近いフレームの信号を選択し、動き補正フレーム数変換した信号系列S4を出力する。
【0027】
以下、本実施例における主要ブロック部について説明する。
【0028】
図2は、本発明の主要部である動き補正内挿フレーム生成部11の第1の構成例である。
【0029】
動き補正ベクトル生成部10は、画素単位動きベクトルPVおよびフレーム順制御信号FSにより、前述の図22(a)に示した、動き補正ベクトルVctとVprを生成する。すなわち、画素単位動きベクトルPVに係数加重する係数値ka,kbを変化させ、(数1)に示す演算で補正補間動きベクトルVpr、Vctを生成する。
【0030】
【数1】
Vpr=PV*ka/(ka+kb)
Vct=−PV*kb/(ka+kb) (数1)
例えば、フレーム順が2の内挿フレームは、Vpr=PV*5/6,Vct=−PV*1/6(ka=5,kb=1)、3のものは、Vpr=PV*4/6,Vct=−PV*2/6(ka=4,kb=2)…の如く、係数値ka,kbを発生させ、時間方向での位置ずれのない動き補正ベクトルを生成する。また、フレーム順情報FS1を生成する。
【0031】
現フレーム動き補正信号生成部8では、現フレームの信号S2と動き補正ベクトルVctから動き補正信号Sctを生成する。また、前フレーム動き補正信号生成部9は、前フレームの信号S3と動き補正ベクトルVprから動き補正信号Sprを生成する。すなわち、図22(c)に示したように、現フレームの信号S2では点A(x,y)を補正補間動きベクトルVct(水平方向成分Vctx、垂直方向成分Vcty)で移動させた点A”(x2,y2)=(x−Vctx,y−Vcty)の位置の信号Sct、前フレームの信号S3では点A(x,y)を補正補間動きベクトルVpr(水平方向成分Vprx、垂直方向成分Vpry)で移動させた点A'(x1,y1)=(x+Vprx,y+Vpry)の位置の信号Sprで、内挿フレームの点A(x,y)の信号を生成する。従って、動き補正信号SprとSctは、以下の(数2)で与えられる。
【0032】
【数2】
Spr=S3(x+Vprx,y+Vpry)
Sct=S2(x−Vctx,y−Vcty) (数2)
この信号処理は、動き補正信号生成部に内蔵のメモリ回路の読み出し動作を制御することで簡単に実現できる。すなわち、読み出しのためのアドレスを動き補正ベクトルVpr、Vctの位置だけずらせたアドレスを生成し、このアドレスで点A',A”に対応した画素の信号を読み出す。
【0033】
動き補正信号設定部11は、加算部12、減算部13、制御信号生成部14、選択部15、及び時系列変換部16を有する。このうち、加算部12は動き補正信号SprとSctとの加算平均を行い、その結果を信号Smcとして出力する。減算部13は、動き補正信号SprとSctの輝度信号成分、又は輝度信号成分及び色差信号成分の減算演算を行い、その絶対値を信号ERとして出力する。
【0034】
制御信号生成部14は、信号ERとフレーム順情報FS1をもとに、選択部15で選択する信号を制御する信号SLを生成する。この動作概略を図3に示す。誤差信号ERが閾値TH未満(ER<TH)の時は、図24(a)のように、動き補正信号Smcを選択するように制御信号SLを設定する。一方、誤差信号ERが閾値TH以上(ER≧TH)の場合は、フレーム順情報FS1に応じて、内挿フレームと時間的距離の近いフレームの信号を選択するように制御信号SLを設定する。すなわち、図24(b)に示したように、60Hzフレーム順1〜4では現フレームの信号S2、5〜6では前フレームの信号S3を選択する。
【0035】
選択部15は、制御信号SLに応じて信号S2、S3、Smcのいずれかを選択する動作を行い、信号Soを出力する。
【0036】
時系列変換部16は、時間軸の圧縮と時系列並び替えの処理を行い、図24(a)、(b)に示すように、60Hzフレーム順1では信号S2、2〜6では信号Soの信号系列からなる動き補正フレーム数変換信号S4を得る。
【0037】
図4は、動き補正内挿フレーム生成部の第2の構成例図である。これは、モーションジャダー妨害が目立ちやすい速度の動き、あるいは水平パンや上下パンや文字スクロールなどの特殊な動きの場合のみ、動き補正のフレーム内挿処理を行うものである。
【0038】
同図の動き補正ベクトル生成部10では、画素単位動きベクトルPVとフレーム順制御信号FSで、第1の構成例と同様、動き補正ベクトルVctとVpr、フレーム順情報FS1を生成する。さらに本例では、画素単位動きベクトルPVの速度の絶対値成分VP1を生成する。
【0039】
制御信号生成部17は、信号ER、FS1、VP1をもとに、選択部15で選択する信号を制御する信号SLを生成する。この動作概略を図5に示す。誤差信号ERが閾値TH未満(ER<TH)で、かつ、信号VP1が設定値VPmax未満(VP1<VPmax)の時は、動き補正信号Smcを選択するように制御信号SLを設定する。一方、誤差信号ERが閾値TH(ER≧TH)以上、あるいは、信号VP1がVPmax以上(VP1≧VPmax)の時は、信号S2かS3を選択するように制御信号SLを設定する。なお、設定値VPmaxは、水平パンや垂直パン、あるいはスクロールなどの動きでモーションジャダー妨害が目立ちやすい速度の上限で、例えば、1秒/画面幅、1秒/画面高程度の速度に設定する。
【0040】
この他のものは、第1の構成例と同様な動作を行うので、説明は省略する。
【0041】
次に、ブロック単位動きベクトル探索部の一構成例を図6で説明する。静動ブロック判定部18は、ブロック単位(例えば16画素×16ラインあるいは8画素×8ライン)で、動き検出信号MI1の1の有無を検出する。そして、信号MI1が全て0の時は静止ブロックと判定し信号BMとして0を、それ以外の時は動画ブロックと判定して1を出力する。なお、動き検出信号MI1は、図1の動き検出部4で現フレームの信号S2と前フレームの信号S3の輝度信号成分の絶対値差分成分を閾値THa以上の時は1、THa未満の時は0、と2値量子化した信号である。
【0042】
ブロック単位の動きベクトルの探索は、図7に示すフローチャートの信号処理に従って実行する。上述の静止又は動画ブロックの判定は、同図の第1ステップの処理である。そして、第2ステップにおいては、信号BMが0の静止ブロックのときは、動きベクトル探索の動作は行わず、ブロック単位動きベクトルBVは0に設定する。一方、信号BMが1の動画ブロックでは、以下に述べる動きベクトル探索の動作を行う。
【0043】
ブロックマッチング第1処理部20は、図7の第2ステップの動画ブロック側の処理を行う。予め設定した複数個数の代表動きベクトルについて、現フレームの信号S2と前フレームの信号S3の輝度信号成分とでブロックマッチング処理で動き補正誤差を算出し、これが最少となるものを代表動きベクトルBV1として出力する。なお、複数個数の代表動きベクトルには、既に探索を終了した直前のブロックの動きベクトルも併用することもできる。
【0044】
ブロックマッチング第2処理部21は、図7の第3ステップの処理を行う。現フレームの信号S2と前フレームの信号S3の輝度信号成分を用いて、代表動きベクトルBV1を起点として、x成分を±DXの範囲、y成分を±DYの範囲で定まる動きベクトルについてブロックマッチング処理で動き補正誤差を算出し、これが最少となるものをブロック単位動きベクトルBVとして出力する。
【0045】
制御部19は、信号BMに従って、ブロックマッチング第1処理部20とブロックマッチング第2処理部21の動作に必要な制御信号を生成する。
【0046】
次に、画素単位動きベクトル生成部の一構成例を図8、その信号処理フローチャートを図9に示す。
【0047】
補正誤差算出部22は、図9に示す第1ステップの処理を行う。すなわち、現フレームの信号S2、前フレームの信号S3の輝度信号成分に対し、ブロック単位動きベクトルBVによる動き補正誤差を算出する。そして、この誤差の値が閾値TH’未満の場合は信号PMに0、閾値TH’以上の場合は1を出力する。
【0048】
制御部23は、信号PMと動き検出信号MI2をもとに、図9の第2、第3ステップの信号処理に必要な制御信号PC1、PC2を生成する。なお、動き検出信号MI2は、図1の動き検出部4において、フレーム間差分信号を0の時に0、それ以外の時は1、と2値量子化した信号である。
【0049】
補正誤差算出部25−1、…、25−Nは、図9の第2ステップの閾値以上の場合の信号処理を行う。すなわち、制御信号PC1が閾値以上を示す時、参照動きベクトル生成部24で生成する、現ブロックの動きベクトルV0と、これに隣接するブロックに対応する動きベクトルV1、…、VNで、ミニブロック(例えば水平MX=2、垂直MY=2の2画素×2ライン)毎に、これを内包する水平4(MX+2)画素、垂直4(MY+2)ラインの算出領域での動き補正誤差ER0、ER1、…、ERNを算出する。なお、この動き補正誤差の算出は、現フレームの信号S2と前フレームの信号S3の輝度信号成分、もしくは輝度信号成分と色差信号成分、のいずれかに対し、(数3)に示す演算で実現できる。
【0050】
【数3】
ER0=Σabs{S2(x,y)−S3(V0)}=Σabs{S2(x,y)−S3(x+V0x,y+V0y)}
ER1=Σabs{S2(x,y)−S3(V1)}=Σabs{S2(x,y)−S3(x+V1x,y+V1y)}
ER2=Σabs{S2(x,y)−S3(V2)}=Σabs{S2(x,y)−S3(x+V2x,y+V2y)}
…………………………………………………………………………
ERN=Σabs{S2(x,y)−S3(VN)}=Σabs{S2(x,y)−S3(x+VNx,y+VNy)} (数3)
ここで、S2(x,y)は算出領域内の現フレームの画素の信号、S3(VN)は動きベクトルVNで位置を移動させた前フレームの画素の信号、abs{ }は絶対値、Σは算出領域内の画素の総和、VNxは動きベクトルVNのx成分、VNyはy成分である。
【0051】
画素動きベクトル設定部26は、図9の第2ステップの閾値未満および第3ステップの信号処理を行う。すなわち、制御信号PC2が閾値未満を示す場合は、現ブロックの動きベクトルV0を画素単位動きベクトルPVに出力する。一方、閾値以上を示す場合は、動き補正誤差ER0、ER1、…、ERNの内で最少値をとる動きベクトルを各ミニブロック内の画素の動きベクトルとして出力する。また、制御信号PC2が動き検出信号MI2が0を示す画素では、画素単位動きベクトルPVに強制的に0を出力する。
【0052】
以上に述べた如く、本実施例によれば、極めて簡単な信号処理で、動き補正処理に特有な画質劣化を大幅に抑圧した高画質な画像信号の方式変換装置が実現できる。そして、低コスト化や高画質化に顕著な効果が得られる。
【0053】
次に、本発明の第2の実施例について、図10のブロック構成図で説明する。本実施例は、シーンチェンジの領域では動き補正処理の信号処理を中止する動作を行うに好適なものである。同図において、IP変換部1ないし動き補正信号設定部11は、図1の第1の実施例と同じ動作を行う。図10においても、動き補正内挿フレーム生成部7内の各部の接続関係は概略を示すもので、詳しくは図2又は図4に示すとおりである。この事情は、後述の図11、図13〜図17においても同様である。
【0054】
シーンチェンジ検出部27は、1フレーム期間でのフレーム間差分信号成分の発生形態を基にシーンチェンジの発生した領域を検出する動作を行う。一般に、シーンチェンジの領域では、画像の内容が切り替わるため、フレーム間差分信号成分は比較的大きな値を持つ。そこで、比較的高いレベルの閾値で画素毎に2値量子化する。そして、1フレーム期間で閾値以上の画素を計測し、全画面の半分以上の画素数の場合をシーンチェンジ領域と判定し、信号SCFに1フレームの期間にわたり1を出力する。これ以外の場合は0を出力する。
【0055】
動き補正ベクトル生成部28は、信号SCFが1のシーンチェンジ領域では、フレーム順情報FS1に動き補正処理の動作を中止する信号も出力する。動き補正信号設定部11は、この信号を受けた場合は、優先的に現フレームの信号S2、あるいは前フレームの信号S3を選択して出力する。
【0056】
以上に述べた如く、本実施例によれば、シーンチェンジ領域における動きベクトルの不正確さに起因する画質劣化を回避できる、高画質な画像信号の方式変換装置が実現でき、低コスト化や高画質化に顕著な効果が得られる。
【0057】
次に、本発明の第3の実施例について、図11に示すブロック構成図で説明する。本実施例は、フレーム繰り返し操作でフレームレートをアップした信号系列で動き補正変換を行うに好適なものである。
【0058】
飛び越し走査の入力画像信号S1(輝度信号成分と色差信号成分)は、IP変換部1に入力し、飛び越し−順次の走査変換を行う。例えば、輝度信号成分は動き適応型の補間処理、色差信号はライン間の補間処理で補間走査線の信号を生成し、出力に順次走査の信号系列S2(輝度信号成分と色差信号成分)を得る。
【0059】
フレームレートアップ部(FRUP)29は、フレーム繰り返し処理でフレームレートをアップした信号系列を生成する。すなわち、図12(a)に示すような50Hz順次のフレーム順が1、2、3、4、5、1の信号系列に対して、同図(b)に示すようなフレーム順が1、1、2、3、4、5、1、1の信号系列S2を生成する。
【0060】
動き補正フレーム数変換部2においては、信号S2と、1フレーム遅延部3で1フレーム期間遅延させた同図(c)に示すような信号S3に対し、動き補正処理を行う。なお、動き補正信号生成部30は、図2の時系列変換部16を省略した構成である。
【0061】
信号S2とS3とがフレーム順1の時は、両者は同一のフレームの信号であるため、フレーム間の動きベクトルは常に0となり、同図(d)に示すようなフレーム順1の信号がS4に出力される。一方、これ以外の時は、信号S2と信号S3はそれぞれ異なるフレームの信号であるので、フレーム順1と2、2と3、…で動き補正フレーム内挿(MC内挿)した信号S4を得る。
【0062】
次に、本発明の第4の実施例について、図13に示すブロック構成図で説明する。本実施例は、第3の実施例にシーンチェンジ検出部を付加し、シーンチェンジの領域では動き補正処理の信号処理を中止する動作を行うに好適なものである。
【0063】
なお、この動作は、第2、第3の実施例で容易に理解できるので説明は省略する。
【0064】
以上、第3、第4の実施例によれば、動き補正処理に特有な画質劣化を回避する高画質な画像信号の方式変換装置が実現でき、低コスト化や高画質化に顕著な効果が得られる。
【0065】
次に、本発明の第5乃至第8の実施例について、図14乃至図17のブロック構成図で説明する。これらの実施例は、ブロック単位の動きベクトルをMPEG符号化で用いられる動きベクトル情報で生成するに好適なものである。
【0066】
図14の第5の実施例は、図1の第1の実施例のブロック単位動きベクトル探索部5を、ブロック単位動きベクトル生成部31で置き換えた構成で実現する。このブロック単位動きベクトル生成部31では、MPEG符号化で用いられた動きベクトル情報MVをもとに、ブロック単位の動きベクトルを生成する。すなわち、MPEG符号化の一方向予測のPピクチャ、双方向予測のBピクチャの符号化に使われるブロック単位ないしはマクロブロック単位の動きベクトルをもとに、再生画像信号系列の1フレーム間の動きベクトルを生成し、動画ブロックではブロックマッチング処理による探索は行わず、この動きベクトルをブロック単位の動きベクトルBVに割り当てる。
【0067】
図15の第6の実施例は、図10の第2の実施例のブロック単位動きベクトル探索部5を、ブロック単位動きベクトル生成部31で置き換えた構成で実現する。
【0068】
また、図16の第7の実施例は、図11の第3の実施例のブロック単位動きベクトル探索部5を、ブロック単位動きベクトル生成部31で置き換えた構成で実現する。
【0069】
図17の第8の実施例は、図13の第4の実施例のブロック単位動きベクトル探索部5を、ブロック単位動きベクトル生成部31で置き換えた構成で実現する。
【0070】
なお、いずれの実施例においても、ブロック単位動きベクトル生成部31は、図14と同じ構成、動作を行う。
【0071】
以上述べた第5乃至第8の実施例によれば、動き補正処理に必要な動きベクトルの探索、生成をより少ない演算量で実現できる。このため、高画質化、低コスト化に顕著な効果を得る。
【0072】
次に、本発明の動き補正フレーム数変換部を、画像信号のフォーマット変換信号処理装置に適用した実施例について、図18乃至図21のブロック構成図で説明する。この信号処理装置は、テレビジョン受像機やパソコンなどの情報メディア機器としての
に用いることができる。
【0073】
図18は、その第1の実施例である。入力信号S1は、IP変換部1で、飛び越し走査の信号は走査線補間の処理で順次走査の信号S2に変換する。
【0074】
動き補正フレーム数変換部32は、その構成が本発明の第1乃至第8の実施例によるもので、動き補正フレーム数変換処理を行い、出力に動き補正フレーム内挿でフレーム数をアップした順次走査の信号S10を得る。
【0075】
スケーリング変換部33は、直線補間特性の垂直MーN変換処理(M<N)による垂直拡大の信号処理で、走査線数のN/M倍の拡大変換処理を行う。また、マルチウィンド表示のための画面サイズの拡大、縮小などの信号処理も行う。そして、スケーリング処理した順次走査の信号S11を出力する。なお、この構成は従来技術で容易に実現することができるため、説明は省略する。
【0076】
PI変換部34は、走査線の2:1の間引き処理による順次−飛び越し走査の変換を行い、飛び越し走査の信号S12を出力する。
【0077】
図19は、その第2の実施例である。入力信号S1は、IP変換部1で、飛び越し走査の信号は走査線補間の処理で順次走査の信号S2に変換する。
【0078】
スケーリング変換部33は、直線補間特性の垂直NーM変換処理(M<N)による垂直縮小の信号処理で、走査線数のM/N倍の縮小変換処理を行う。また、マルチウィンド表示のための画面サイズの拡大、縮小などの信号処理も行う。そして、スケーリング処理した順次走査の信号S10を出力する。なお、この構成は従来技術で容易に実現することができるため、説明は省略する。
【0079】
動き補正フレーム数変換部32は、その構成が本発明の第1乃至第8の実施例によるもので、動き補正フレーム数変換処理を行い、出力に動き補正フレーム内挿でフレーム数をアップした順次走査の信号S11を得る。
【0080】
一方、飛び越し走査の信号S12は、PI変換部34で走査線の2:1の間引き処理による順次−飛び越し走査の変換を行うことで生成する。
【0081】
図20に示す第3の実施例は、図18の第1の実施例におけるPI変換部34を省略した構成、図21に示す第4の実施例は図19の第2の実施例におけるPI変換部34を省略した構成で実現する。なお、これら実施例の動作は第1、第2の実施例と同様なため、説明は省略する。
【0082】
以上に述べた画像信号のフォーマット変換処理装置の第1乃至第4の実施例によれば、各種TV方式の信号やパソコンなどの画像信号を各種形態のディスプレイに表示するための画像フォーマット変換を、高画質、低コストで実現できる。そして、多種多様な入出力に柔軟に対応するテレビジョン受像機やパソコンなどの情報メディア機器の低コスト化、高画質化に顕著な効果を得る。
【0083】
【発明の効果】
本発明によれば、画質劣化を簡単な信号処理で抑圧することができ、高画質かつ低コストの画像信号の方式変換方法および装置を実現することができる。
【図面の簡単な説明】
【図1】本発明に係る方式変換装置の第1の実施例を示すブロック構成図である。
【図2】動き補正内挿フレーム生成部の第1の構成例を示す図である。
【図3】制御信号生成部と選択部における動作概略を示す図である。
【図4】動き補正内挿フレーム生成部の第2の構成例を示す図である。
【図5】制御信号生成部と選択部における動作概略を示す図である。
【図6】ブロック単位動きベクトル探索部の一構成例を示す図である。
【図7】ブロック単位動きベクトル探索の信号処理フローチャートを示す図である。
【図8】画素単位動きベクトル生成部の一構成例を示す図である。
【図9】画素単位動きベクトル生成の信号処理フローチャートを示す図である。
【図10】本発明に係る方式変換装置の第2の実施例を示すブロック構成図である。
【図11】本発明に係る方式変換装置の第3の実施例を示すブロック構成図である。
【図12】(a)〜(d)はそれぞれフレームレートアップの信号処理動作を示す概略図である。
【図13】本発明に係る方式変換装置の第4の実施例を示すブロック構成図である。
【図14】本発明に係る方式変換装置の第5の実施例を示すブロック構成図である。
【図15】本発明に係る方式変換装置の第6の実施例を示すブロック構成図である。
【図16】本発明に係る方式変換装置の第7の実施例を示すブロック構成図である。
【図17】本発明に係る方式変換装置の第8の実施例を示すブロック構成図である。
【図18】画像フォーマット変換の第1の実施例を示すブロック構成図である。
【図19】画像フォーマット変換の第2の実施例を示すブロック構成図である。
【図20】画像フォーマット変換の第3の実施例を示すブロック構成図である。
【図21】画像フォーマット変換の第4の実施例を示すブロック構成図である。
【図22】(a)〜(c)はそれぞれ動き補正フレームレート変換の内挿フレーム信号生成を示す動作概略図である。
【図23】本発明における動き補正内挿フレーム生成のフローチャートを示す図である。
【図24】(a)、(b)はそれぞれ本発明における内挿フレーム信号生成の概略を示す図である。
【符号の説明】
1 IP変換部
2 動き補正フレーム数変換部
3 1フレーム遅延部
4 動き検出部
5 ブロック単位動きベクトル探索部
6 画素単位動きベクトル生成部
7 動き補正内挿フレーム生成部
8 現フレーム動き補正信号生成部
9 前フレーム動き補正信号生成部
10 動き補正ベクトル生成部
11 動き補正信号設定部
12 加算部
13 減算部
14 制御信号生成部
15 選択部
16 時系列変換部

Claims (13)

  1. 画像信号の現フレームの信号と前フレームの信号から画像の動きを検出する工程と、
    前記動きを検出する工程により動きを検出しないブロックにはブロック単位動きベクトルとして0を割り当て、動きを検出したブロックには1フレーム期間での動きベクトルのうち最少の動き補正誤差を有するものをブロック単位動きベクトルとして割り当てるブロック単位動きベクトルを生成する工程と、
    前記動きを検出する工程により動きを検出しない画素には画素単位動きベクトルとして0を割り当て、動きを検出した画素には前記ブロック単位の動き補正誤差が閾値未満のときはブロック内の画素に前記ブロック単位動きベクトルを割り当て、閾値以上のときは現ブロックと隣接ブロックの動きベクトルを用いて前記ブロックを縮小したミニブロックを内包する算出領域のうち最少の動き補正誤差を有するものを画素単位動きベクトルとして割り当てる画素単位動きベクトルを生成する工程と、
    現フレームの信号を第1の動き補正ベクトルで位置を移動させて生成する第1の動き補正信号と前フレームの信号を第2の動き補正ベクトルで位置を移動させて生成する第2の動き補正信号との絶対値差分成分が閾値未満の場合は、前記第1の動き補正信号と第2の動き補正信号の平均値である画像信号の第1の内挿フレームを用い、閾値以上の場合は、現フレームと前フレームのうち時間的距離が近いフレームである第2の内挿フレームを用いて、画像信号のフレーム数を変換する工程とを備え、
    前記第1の動き補正ベクトルは、前記画素単位動きベクトルと、前記第1の内挿フレームと現フレームとの時間的距離に関する係数との乗算により生成され、前記第2の補正ベクトルは前記画素単位動きベクトルと前記第1の内挿フレームと前フレームとの時間的距離に関する係数との乗算により生成されることを特徴とする画像信号の方式変換方法。
  2. 前記絶対値差分成分は、前記2つの動き補正信号の輝度信号成分の差分、又は輝度信号成分及び色差信号成分の差分により求められるものであることを特徴とする請求項1記載の画像信号の方式変換方法。
  3. 前記画像信号のフレーム数を変換する工程は、画像信号の前記画素単位動きベクトルの速度の絶対値成分を検出する工程を備え、前記第1の内挿フレームを用いたフレーム内挿処理の動作は前記画素単位動きベクトルの速度の絶対値成分が設定値未満であることを検出した場合に限って行うことを特徴とする請求項1記載の画像信号の方式変換方法。
  4. 前記画像信号のフレーム数を変換する工程は、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出する工程を備え、シーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いたフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする請求項1記載の画像信号の方式変換方法。
  5. 前記画像信号のフレーム数を変換する工程は、画像信号の前記画素単位動きベクトルの速度の絶対値成分を検出する工程と、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出する工程とを備え、前記画素単位動きベクトルの速度の絶対値成分が設定値未満であることを検出した場合には前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を行い、シーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする請求項1記載の画像信号の方式変換方法。
  6. 画像信号の現フレームの信号と前フレームの信号から画像の動きを検出する動き検出部と、
    前記動きを検出する工程により動きを検出しないブロックにはブロック単位動きベクトルとして0を割り当て、動きを検出したブロックには1フレーム期間での動きベクトルのうち最少の動き補正誤差を有するものをブロック単位動きベクトルとして割り当てるブロック単位動きベクトルを探索するブロック単位動きベクトル探索部と、
    前記動きを検出する工程により動きを検出しない画素には画素単位動きベクトルとして0を割り当て、動きを検出した画素には前記ブロック単位の動き補正誤差が閾値未満のときはブロック内の画素に前記ブロック単位動きベクトルを割り当て、閾値以上のときは現ブロックと隣接ブロックの動きベクトルを用いて前記ブロックを縮小したミニブロックを内包する算出領域のうち最少の動き補正誤差を有するものを画素単位動きベクトルとして割り当てる画素単位動きベクトルを生成する画素単位動きベクトル生成部と、
    現フレームの信号を第1の動き補正ベクトルで位置を移動させて生成する第1の動き補正信号と前フレームの信号を第2の動き補正ベクトルで位置を移動させて生成する第2の動き補正信号との絶対値差分成分が閾値未満の場合は、前記第1の動き補正信号と第2の動き補正信号の平均値である画像信号の第1の内挿フレームを用い、閾値以上の場合は、現フレームと前フレームのうち時間的距離が近いフレームである第2の内挿フレームを用いて、画像信号のフレーム数を変換する動き補正内挿フレーム生成部とを備え、
    前記第1の動き補正ベクトルは、前記画素単位動きベクトルと、前記第1の内挿フレームと現フレームとの時間的距離に関する係数との乗算により生成され、前記第2の補正ベクトルは前記画素単位動きベクトルと前記第1の内挿フレームと前フレームとの時間的距離に関する係数との乗算により生成されることを特徴とする画像信号の方式変換装置。
  7. 前記絶対値差分成分は、前記2つの動き補正信号の輝度信号成分の差分、又は輝度信号成分及び色差信号成分の差分により求められるものであることを特徴とする請求項記載の画像信号の方式変換装置。
  8. 前記動き補正内挿フレーム生成部は、画像信号の前記画素単位動きベクトルの速度の絶対値成分を検出する動き速度検出部を備え、前記第1の内挿フレームを用いたフレーム内挿処理の動作は前記画素単位動きベクトルの速度の絶対値成分が設定値未満であることを検出した場合に限って行うことを特徴とする請求項記載の画像信号の方式変換装置。
  9. 前記動き補正内挿フレーム生成部は、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出するシーンチェンジ検出部を備え、シーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いたフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする請求項記載の画像信号の方式変換装置。
  10. 前記動き補正内挿フレーム生成部は、画像信号の前記画素単位動きベクトルの速度の絶対値成分を検出する動き速度検出部と、1フレーム期間における動き検出領域の累積値でシーンチェンジを検出するシーンチェンジ検出部とを備え、前記動き速度検出部で前記画素単位動きベクトルの速度の絶対値成分が設定値未満であることを検出した場合には前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を行い、前記シーンチェンジ検出部でシーンチェンジを検出したフレームでは、前記第1の内挿フレームを用いた動き補正のフレーム内挿処理の動作を中止し、現フレームの信号もしくは前フレームの信号で内挿フレームの信号を生成する動作を行うことを特徴とする請求項記載の画像信号の方式変換装置。
  11. 前記ブロック単位動きベクトル探索部は、MPEG符号化された画像信号において、動きが検出された動画ブロックに対しては、MPEG符号化で送られる動きベクトル情報をもとにブロック単位動きベクトルを生成することを特徴とする請求項記載の画像信号の方式変換装置。
  12. 前記画素単位動きベクトル生成部は、動き補正誤差の算出を画像信号の輝度信号成分を用いて行うことを特徴とする請求項記載の画像信号の方式変換装置。
  13. 前記画素単位動きベクトル生成部は、動き補正誤差の算出を画像信号の輝度信号成分および色成分を用いて行うことを特徴とする請求項記載の画像信号の方式変換装置。
JP29030797A 1997-10-07 1997-10-07 画像信号の方式変換方法および装置 Expired - Fee Related JP4083265B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29030797A JP4083265B2 (ja) 1997-10-07 1997-10-07 画像信号の方式変換方法および装置
EP98118653A EP0909092A3 (en) 1997-10-07 1998-10-02 Method and apparatus for video signal conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29030797A JP4083265B2 (ja) 1997-10-07 1997-10-07 画像信号の方式変換方法および装置

Publications (2)

Publication Number Publication Date
JPH11112939A JPH11112939A (ja) 1999-04-23
JP4083265B2 true JP4083265B2 (ja) 2008-04-30

Family

ID=17754422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29030797A Expired - Fee Related JP4083265B2 (ja) 1997-10-07 1997-10-07 画像信号の方式変換方法および装置

Country Status (2)

Country Link
EP (1) EP0909092A3 (ja)
JP (1) JP4083265B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432488B2 (en) 2009-04-23 2013-04-30 Panasonic Corporation Video processing apparatus and video processing method

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731818B1 (en) * 1999-06-30 2004-05-04 Realnetworks, Inc. System and method for generating video frames
JP3596520B2 (ja) * 2001-12-13 2004-12-02 ソニー株式会社 画像信号処理装置及び方法
JP3898606B2 (ja) 2002-09-12 2007-03-28 株式会社東芝 動きベクトル検出方法及び装置並びにフレーム補間画像作成方法及び装置
US7425990B2 (en) * 2003-05-16 2008-09-16 Sony Corporation Motion correction device and method
JP4611666B2 (ja) * 2003-06-02 2011-01-12 三星電子株式会社 走査変換装置及び走査変換方法
GB2412807A (en) * 2004-04-02 2005-10-05 Snell & Wilcox Ltd Video processing to reduce program length
JP4512982B2 (ja) * 2004-04-09 2010-07-28 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
EP1610560A1 (en) * 2004-06-24 2005-12-28 Deutsche Thomson-Brandt Gmbh Method and apparatus for generating and for decoding coded picture data
JP4359223B2 (ja) 2004-10-29 2009-11-04 株式会社 日立ディスプレイズ 映像補間装置とこれを用いたフレームレート変換装置,映像表示装置
JP4396496B2 (ja) 2004-12-02 2010-01-13 株式会社日立製作所 フレームレート変換装置、及び映像表示装置、並びにフレームレート変換方法
EP1825457B1 (en) 2004-12-15 2009-08-12 THOMSON Licensing Method and apparatus for processing video image signals
KR100755688B1 (ko) 2005-02-02 2007-09-05 삼성전자주식회사 에러 은닉 장치 및 방법
JP4961800B2 (ja) * 2006-03-31 2012-06-27 ソニー株式会社 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
US8472524B2 (en) * 2006-04-03 2013-06-25 Intel Corporation Motion compensated frame rate conversion with protection against compensation artifacts
FR2907301A1 (fr) * 2006-10-12 2008-04-18 Thomson Licensing Sas Procede d'interpolation d'une image compensee en mouvement et dispositif pour la mise en oeuvre dudit procede
JP4844370B2 (ja) 2006-12-04 2011-12-28 株式会社日立製作所 フレームレート変換装置及び表示装置
JP4950653B2 (ja) 2006-12-25 2012-06-13 株式会社東芝 画像表示装置、画像信号処理装置、及び画像信号処理方法
CN101543053B (zh) * 2007-02-07 2011-07-06 索尼株式会社 图像处理设备,成像设备,图像处理方法
WO2008102826A1 (ja) * 2007-02-20 2008-08-28 Sony Corporation 画像表示装置、映像信号処理装置および映像信号処理方法
JP5029112B2 (ja) * 2007-04-13 2012-09-19 ソニー株式会社 画像処理装置および画像処理方法、並びにプログラム
JP5023780B2 (ja) * 2007-04-13 2012-09-12 ソニー株式会社 画像処理装置および画像処理方法、並びにプログラム
EP2012532A3 (en) * 2007-07-05 2012-02-15 Hitachi Ltd. Video displaying apparatus, video signal processing apparatus and video signal processing method
JP5142373B2 (ja) * 2007-11-29 2013-02-13 パナソニック株式会社 再生装置
KR101524062B1 (ko) * 2008-07-30 2015-06-01 삼성전자주식회사 영상신호 처리장치 및 그 방법
JP4931884B2 (ja) * 2008-09-04 2012-05-16 独立行政法人科学技術振興機構 フレームレート変換装置、フレームレート変換方法及びフレームレート変換プログラム
US20100135395A1 (en) * 2008-12-03 2010-06-03 Marc Paul Servais Efficient spatio-temporal video up-scaling
EP2374278B1 (fr) * 2008-12-19 2018-05-30 Thomson Licensing DTV Codage video base sur la compensation de mouvement global
FR2940576A1 (fr) * 2008-12-19 2010-06-25 Thomson Licensing Procede de codage video base sur la compensation de mouvement global et dispositifs apparentes
US20100260255A1 (en) * 2009-04-13 2010-10-14 Krishna Sannidhi Method and system for clustered fallback for frame rate up-conversion (fruc) for digital televisions
JP2013165488A (ja) 2012-01-11 2013-08-22 Panasonic Corp 画像処理装置、撮像装置、およびプログラム
JP2016048810A (ja) * 2013-01-24 2016-04-07 パナソニック株式会社 フレームレート変換装置、及び、フレームレート変換方法
CN114501137B (zh) * 2022-01-25 2024-04-09 中铁七局集团第三工程有限公司 一种亲情耦合沉浸式安全教培视频模板系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263602B (en) * 1992-01-24 1995-06-21 Sony Broadcast & Communication Motion compensated video signal processing
GB2279844B (en) * 1993-07-07 1997-04-30 Sony Uk Ltd Motion compensated image interpolation
EP0637889B1 (en) * 1993-08-06 2001-01-17 Lg Electronics Inc. Device for converting the frame rate of an image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432488B2 (en) 2009-04-23 2013-04-30 Panasonic Corporation Video processing apparatus and video processing method

Also Published As

Publication number Publication date
JPH11112939A (ja) 1999-04-23
EP0909092A2 (en) 1999-04-14
EP0909092A3 (en) 2000-06-07

Similar Documents

Publication Publication Date Title
JP4083265B2 (ja) 画像信号の方式変換方法および装置
JP4563603B2 (ja) 両方向動きベクトルを用いたフォーマット変換装置及びその方法
US5784114A (en) Motion compensated video processing
EP0883298A2 (en) Conversion apparatus for image signals and TV receiver
CN100417188C (zh) 块模式自适应运动补偿
JP4083266B2 (ja) 動きベクトルの生成方法および装置
JP4092778B2 (ja) 画像信号の方式変換装置及びテレビジョン受像機
US5444493A (en) Method and apparatus for providing intra-field interpolation of video signals with adaptive weighting based on gradients of temporally adjacent fields
KR20060047595A (ko) 적응 시간적인 예측을 채용하는 움직임 벡터 추정
KR20060047556A (ko) 필름 모드 검출 방법과, 필름 모드 검출기와, 움직임 보상방법 및 움직임 보상기
US8355442B2 (en) Method and system for automatically turning off motion compensation when motion vectors are inaccurate
JP4119092B2 (ja) 画像信号のフレーム数変換方法および装置
US6930728B2 (en) Scan conversion apparatus
JP4092773B2 (ja) 画像信号のフレーム数変換方法および装置
JP3293561B2 (ja) 画像表示装置及び画像表示方法
US8345148B2 (en) Method and system for inverse telecine and scene change detection of progressive video
KR100968642B1 (ko) 비월된 비디오 신호로부터 움직임 벡터를 계산하기 위한 방법 및 보간 디바이스와, 보간 디바이스를 포함하는 디스플레이 디바이스와, 컴퓨터 판독가능 매체
JP2000259146A (ja) 画像表示装置
JP4222090B2 (ja) 動画像時間軸補間方法及び動画像時間軸補間装置
JP3898546B2 (ja) 画像走査変換方法及び装置
JP2004320278A (ja) 動画像時間軸補間方法及び動画像時間軸補間装置
JP4179089B2 (ja) 動画像補間用動き推定方法及び動画像補間用動き推定装置
US7944504B2 (en) Apparatus for interpolating scanning lines
KR100850710B1 (ko) 위상 정정 필드를 이용한 적응적 디-인터레이싱 방법 및그 장치와, 이를 구현하기 위한 프로그램이 기록된 기록매체
JP3022977B2 (ja) テレビジョン信号内挿方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

LAPS Cancellation because of no payment of annual fees