JP4078815B2 - Electroformed thin blade whetstone - Google Patents

Electroformed thin blade whetstone Download PDF

Info

Publication number
JP4078815B2
JP4078815B2 JP2001209583A JP2001209583A JP4078815B2 JP 4078815 B2 JP4078815 B2 JP 4078815B2 JP 2001209583 A JP2001209583 A JP 2001209583A JP 2001209583 A JP2001209583 A JP 2001209583A JP 4078815 B2 JP4078815 B2 JP 4078815B2
Authority
JP
Japan
Prior art keywords
cbn
diamond
electroformed thin
superabrasive grains
thin blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209583A
Other languages
Japanese (ja)
Other versions
JP2003025231A (en
Inventor
吉隆 池田
昌徳 鳥坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001209583A priority Critical patent/JP4078815B2/en
Publication of JP2003025231A publication Critical patent/JP2003025231A/en
Application granted granted Critical
Publication of JP4078815B2 publication Critical patent/JP4078815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子材料等の切断加工に用いられる電鋳薄刃砥石に関し、とくに、ポリイミドテープ等の延性材料層とモールド樹脂等の硬性材料層とを有する電子材料の切断加工に用いられる電鋳薄刃砥石に関するものである。
【0002】
【従来の技術】
従来、電子部品を製造する方法として、例えば、一枚のポリイミドテープからなる延性材料層の上に、個々の電子部品の基材となるモールド樹脂層からなる硬性材料層を一つ一つ隙間を介して複数形成し、さらに、それらモールド樹脂層の上にそれぞれCu等からなるパターンを形成した後、樹脂によってこのパターンを封止した電子材料を、パンチによって個々のモールド樹脂層同士の間に位置するポリイミドテープの部分を打ち抜いたり、カッターによって同じく個々のモールド樹脂層同士の間に位置するポリイミドテープの部分を切断するようにして電子部品を製造していた。
【0003】
ところが最近では、一度に製造できる電子部品の数を増やすことや、ポリイミドテープの効率的な利用が考慮され、一枚のポリイミドテープの上に、個々のモールド樹脂層をそれぞれ間隔をおいて複数形成するのではなくて、一枚のモールド樹脂層を形成してから切断することにより電子部品を製造する方法が採用されている。
すなわち、図3に示すように、一枚のポリイミドテープ2の上に、その全面に亘ってモールド樹脂層3を形成し、さらに、そのモールド樹脂層3の上に、個々の電子部品のパターンを一つ一つ形成した後、樹脂によってこのパターンを封止した電子材料1を、図3における切断線Aで、ポリイミドテープ2及びモールド樹脂層3をともに切断することにより個々の電子部品を製造することになる。
この場合、ポリイミドテープ2のみならず、その上に位置する硬いモールド樹脂層3までも切断する必要が生じてくるため、従来のようにパンチやカッターではなく、例えば、ダイヤあるいはcBNの超砥粒を金属結合相中に分散配置してなる電鋳薄刃砥石を用いて上記のような電子材料1を切断加工していた。
【0004】
【発明が解決しようとする課題】
しかしながら、ダイヤの超砥粒を金属結合相中に分散配置してなる電鋳薄刃砥石を用いて、上記のような電子材料1を切断した場合には、ダイヤ自身は摩耗しないため、長い寿命を得ることができるものの、この超砥粒として使用されるダイヤの形状に関わらず、モールド樹脂層3の下に位置するポリイミドテープ2の切断加工跡に過大なバリが発生してしまうことになる。
一方、cBNの超砥粒を金属結合相中に分散配置してなる電鋳薄刃砥石を用いて、上記のような電子材料を切断加工したとしても、加工初期のうちはポリイミドテープ2にバリが発生するのを抑制する効果が得られるが、この超砥粒として使用されるcBNが耐摩耗性に乏しいために寿命が短いという欠点があり、しかも硬いモールド樹脂層3を切断加工していくうちに、その耐摩耗性の欠乏ゆえにcBN自身が摩耗してくると、研削抵抗が上昇し、やはりポリイミドテープ2の切断加工跡にバリが発生してしまうことは免れない。
【0005】
本発明は、上記課題に鑑みてなされたもので、たとえ延性材料と硬性材料とからなるワークに対してもバリの発生を抑制でき、かつ、寿命の長い電着薄刃砥石を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決して、このような目的を達成するために、本発明は、金属結合相中に超砥粒が分散配置され、ポリイミドテープからなる延性材料層とモールド樹脂からなる硬質材料層とを有する電子材料の切断加工に用いられる電鋳薄刃砥石において、前記超砥粒として、cBNとダイヤとの混粒が用いられており、前記cBNの平均粒径は、前記ダイヤの平均粒径の50〜200%であって、前記金属結合相中に、前記cBNとダイヤとが均一に分散するように配置されていることを特徴とする。
このような構成とすると、cBNとダイヤとの相乗効果によって、たとえ、延性材料と硬性材料とからなるワークを切断加工したとしても、硬性材料を確実に切断加工できるとともに延性材料の切断加工跡にバリが発生するの抑制し、かつ、長い寿命を確保することが可能になる。
また、前記cBNの平均粒径は、前記ダイヤの平均粒径の50〜200%であるので、耐摩耗性の向上と、バリの抑制とを両立できるという優れた効果を、より確実なものとすることができる。ここで、cBNの平均粒径が、ダイヤの平均粒径の50%より小さいと、cBNよりもダイヤの特性が目立つこととなり、バリの発生を抑制しきれない。一方、cBNの平均粒径が、ダイヤの平均粒径の200%より大きいと、ダイヤよりもcBNの特性が目立つこととなり、耐摩耗性が劣ってしまう。
【0007】
また、前記超砥粒は、前記金属結合相の5〜35vol%であることを特徴とする。
ここで、超砥粒が金属結合相の5vol%より小さいと、超砥粒の含有量が少なすぎるため、切断加工が不可能になってしまう。一方、超砥粒が金属結合相の35vol%より大きいと、超砥粒の含有量が多すぎるため、金属結合相の強度が低下するとともに、一度にワークに作用する超砥粒の数が多くなって切れ味が劣化してしまう。
【0008】
また、前記cBNは、前記超砥粒の20〜90vol%であることを特徴とする。
ここで、cBNが超砥粒の20vol%より小さいと、ダイヤに対してcBNの割合が小さすぎてしまい、バリの発生を抑制する効果が得られず、一方、cBNが超砥粒の90vol%より大きいと、cBNに対してダイヤの割合が小さすぎることとなり、耐摩耗性を向上させる効果が得られない。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を添付した図面を参照しながら説明する。
図1は本実施形態による電鋳薄刃砥石の刃先部の拡大断面図、図2は同電鋳薄刃砥石の平面図である。
【0011】
本実施形態による電鋳薄刃砥石10は、図1及び図2に示すように、厚みが数十μm〜数百μmの範囲に設定された略リング型薄板状を呈し、その全体が砥粒層とされるとともに、外周側部分がリング状をなす刃先部11とされる。
この電鋳薄刃砥石10は、例えばNi,Coまたはこれらの合金等からなる金属結合相12中に、超砥粒15として、cBN13とダイヤ14との混粒を分散配置したものであり、より詳しくは、金属結合相12中に、cBN13とダイヤ14とがともに均一に分散するように配置されている。
【0012】
また、cBN13及びダイヤ14からなる超砥粒15は、金属結合相12に対して15〜35vol%とされ、かつ、cBN13が超砥粒15に対して20〜90vol%とされている。
さらに、cBN13の平均粒径は、ダイヤ15の平均粒径の50〜200%とされている。
【0013】
また、刃先部11には、切断加工時に生じる削り屑を取り込むとともに外部に排出しやすくして目詰まりを生じにくくし、かつ、冷却水を切断加工面により多く導く目的から、外周縁から径方向内周側に向けて所定間隔で複数のスリット16が形成されている。このスリット16は、例えば電鋳薄刃砥石10の外周縁を、ワイヤー等を用いた放電加工、または砥石等を用いた研削加工を施して所定の形状に削り取ることで形成されるものである。
【0014】
このような電鋳薄刃砥石10は、その内周側部分が取り付け用フランジで挟持されて砥石軸に装着されるとともにナットで締め付け固定され、そして、砥石軸の軸線回りに回転されつつ外周側部分の刃先部11で、図3に示すようなポリイミドテープ2とモールド樹脂層3とが積層されてなる電子材料1を切断線Aに沿って切断加工していく。
【0015】
本実施形態による電鋳薄刃砥石10によれば、超砥粒15として、cBN13とダイヤ14との混粒を用いたことにより、それらの相乗効果、すなわち、cBNのバリを抑制する効果とダイヤによる耐摩耗性の確保という効果の両立を図ることが可能となり、たとえ、上記のようなポリイミドテープ2の上にモールド樹脂層3が積層されている電子材料1を切断加工する際であっても、この硬いモールド樹脂層3を確実に切断加工できるとともに、ポリイミドテープ2の切断跡にバリが発生するのを抑制することが可能となり、しかも、耐摩耗性を確保して長い寿命を得ることができる。
【0016】
また、超砥粒15の、金属結合相12に対する割合が小さすぎると、切断加工に供される超砥粒が少なくなりすぎ、切断加工が不可能になってしまう。一方、超砥粒15の金属結合相12に対する割合が大きすぎると、金属結合相12の強度が低下するとともに、一度にワークに作用する超砥粒の数が多くなって切れ味が劣化してしまう。それゆえ、本実施形態においては、超砥粒15を金属結合相12の5〜35vol%と最適な範囲に設定したことにより、安定した切断加工を維持しつつ、しかも、金属結合相12の強度低下を招いたり、切れ味を落としてしまってバリの発生を促してしまうこともない。
なお、上述したような効果をより確実なものとするためには、超砥粒15が、金属結合相12の10〜30vol%の範囲となるように設定するのが好ましい。
【0017】
また、cBN13の超砥粒15に対する割合が小さすぎると、ダイヤ14に対してcBN13の量が小さくなりすぎ、バリの発生を抑制する効果が得られず、一方、cBN13の超砥粒15に対する割合が大きすぎると、cBN13に対してダイヤ14の量が小さすぎてしまい、耐摩耗性を向上させる効果が得られない。それゆえ、本実施形態においては、cBN13を超砥粒15の20〜90vol%と最適な範囲に設定したことにより、耐摩耗性の向上と、バリの抑制とを両立できることとなる。
なお、上述したような効果をより確実なものとするためには、cBN13が、超砥粒15の50〜70vol%の範囲となるように設定するのが好ましい。
【0018】
また、cBN13の平均粒径がダイヤ14の平均粒径に対して小さすぎると、cBNによってもたらされる効果が薄れ、ダイヤの特性のみが目立つことで、バリの発生を抑制しきれないこととなり、一方、cBN13の平均粒径がダイヤ14の平均粒径に対して大きすぎると、ダイヤによってもたらされる効果が薄れ、cBNの特性のみが目立つことで、耐摩耗性が劣ってしまう。それゆえ、本実施形態においては、cBN12の平均粒径を、ダイヤ13の平均粒径の50〜200%と最適な範囲に設定したことにより、耐摩耗性の向上と、バリの抑制とを両立できるという優れた効果を、より確実なものとすることができる。
【0019】
【発明の効果】
以上説明したように、本発明による電鋳薄刃砥石は、超砥粒として、cBNとダイヤとの混粒を用い、cBNの平均粒径を、ダイヤの平均粒径の50〜200%として、金属結合相中に、cBNとダイヤとを均一に分散するように配置したことにより、これらcBNとダイヤとの相乗効果によって、たとえ、延性材料と硬性材料とからなるワークを切断加工したとしても、硬性材料を確実に切断加工できるとともに延性材料にバリが発生するのを抑制することができ、しかも、耐摩耗性を確保して寿命の延長を図ることが可能になる。
【図面の簡単な説明】
【図1】 本実施形態による電鋳薄刃砥石の刃先部の拡大断面図である。
【図2】 本実施形態による電鋳薄刃砥石の平面図である。
【図3】 ワークとしての電子材料を示す断面図である。
【符号の説明】
1 電子材料(ワーク)
2 ポリイミドテープ(延性材料層)
3 モールド樹脂(硬質材料層)
10 電鋳薄刃砥石
11 刃先部
12 金属結合相
13 cBN
14 ダイヤ
15 超砥粒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electroformed thin blade grindstone used for cutting of electronic materials and the like, and in particular, an electroformed thin blade used for cutting of electronic materials having a ductile material layer such as polyimide tape and a hard material layer such as a mold resin. It relates to a grindstone.
[0002]
[Prior art]
Conventionally, as a method of manufacturing an electronic component, for example, a hard material layer composed of a mold resin layer serving as a base material of each electronic component is formed on a ductile material layer composed of a single piece of polyimide tape. After forming a pattern made of Cu or the like on each of the mold resin layers, the electronic material sealed with this pattern is placed between the mold resin layers by punching. An electronic component is manufactured by punching out a portion of the polyimide tape to be cut or cutting a portion of the polyimide tape located between the individual mold resin layers with a cutter.
[0003]
However, recently, considering the increase in the number of electronic components that can be manufactured at one time and the efficient use of polyimide tape, a plurality of individual mold resin layers are formed on a single polyimide tape at intervals. Instead, a method of manufacturing an electronic component by forming a single mold resin layer and then cutting it is employed.
That is, as shown in FIG. 3, a mold resin layer 3 is formed over the entire surface of a single polyimide tape 2, and further, individual electronic component patterns are formed on the mold resin layer 3. After forming each one, the electronic material 1 whose pattern is sealed with resin is cut along the cutting line A in FIG. 3 to cut the polyimide tape 2 and the mold resin layer 3 together to produce individual electronic components. It will be.
In this case, since it is necessary to cut not only the polyimide tape 2 but also the hard mold resin layer 3 located on the polyimide tape 2, it is not a punch or a cutter as in the prior art, but, for example, diamond or cBN superabrasive grains The electronic material 1 as described above has been cut using an electroformed thin-blade grindstone that is dispersed in a metal binder phase.
[0004]
[Problems to be solved by the invention]
However, when the above-described electronic material 1 is cut using an electroformed thin blade grindstone in which diamond superabrasive grains are dispersed and arranged in a metal binder phase, the diamond itself does not wear, and thus a long life is obtained. Although it can be obtained, regardless of the shape of the diamond used as the superabrasive grain, an excessive burr is generated in the cutting trace of the polyimide tape 2 located under the mold resin layer 3.
On the other hand, even if the above-mentioned electronic material is cut using an electroformed thin blade whetstone in which cBN superabrasive grains are dispersed and arranged in a metal binder phase, burrs are not formed on the polyimide tape 2 in the initial stage of processing. Although the effect of suppressing the generation is obtained, cBN used as the superabrasive grains has a short life because of its poor wear resistance, and while the hard mold resin layer 3 is being cut and processed In addition, if cBN itself wears due to the lack of wear resistance, it is inevitable that grinding resistance will increase and burrs will be generated on the cut trace of polyimide tape 2.
[0005]
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an electrodeposited thin blade grindstone that can suppress the occurrence of burrs even for a workpiece made of a ductile material and a hard material, and has a long life. And
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve such an object, the present invention provides a hard material layer made of a ductile material layer made of polyimide tape and a hard resin layer in which superabrasive grains are dispersed and arranged in a metal binder phase. In the electroformed thin-blade grindstone used for cutting an electronic material having the above, a mixed grain of cBN and diamond is used as the superabrasive grain, and the average grain diameter of the cBN is the average grain diameter of the diamond The cBN and diamond are arranged so as to be uniformly dispersed in the metal bonded phase.
With such a configuration, due to the synergistic effect of cBN and diamond, even if a workpiece made of a ductile material and a hard material is cut and processed, the hard material can be cut reliably, and the cut trace of the ductile material can be obtained. It is possible to suppress the generation of burrs and ensure a long life.
In addition, since the average particle size of the cBN is 50 to 200% of the average particle size of the diamond, the excellent effect that both improvement of wear resistance and suppression of burrs can be achieved more reliably. can do. Here, when the average particle size of cBN is smaller than 50% of the average particle size of diamond, diamond characteristics are more conspicuous than cBN, and the generation of burrs cannot be suppressed. On the other hand, when the average particle size of cBN is larger than 200% of the average particle size of diamond, the characteristics of cBN are more conspicuous than diamond and wear resistance is inferior.
[0007]
The superabrasive grains may be 5 to 35 vol% of the metal binder phase.
Here, when the superabrasive grains are smaller than 5 vol% of the metal binder phase, the content of the superabrasive grains is too small, so that the cutting process becomes impossible. On the other hand, when the superabrasive grain is larger than 35 vol% of the metal binder phase, the content of the superabrasive grain is too large, so that the strength of the metal binder phase is reduced and the number of superabrasive grains acting on the workpiece at a time is large. The sharpness will deteriorate.
[0008]
The cBN is 20 to 90 vol% of the superabrasive grains.
Here, when cBN is smaller than 20 vol% of the superabrasive grains, the ratio of cBN to the diamond is too small, and the effect of suppressing the generation of burrs cannot be obtained. On the other hand, cBN is 90 vol% of the superabrasive grains. If it is larger, the ratio of diamond to cBN is too small, and the effect of improving wear resistance cannot be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an enlarged sectional view of a cutting edge portion of an electroformed thin blade grindstone according to the present embodiment, and FIG. 2 is a plan view of the electroformed thin blade grindstone.
[0011]
As shown in FIGS. 1 and 2, the electroformed thin blade whetstone 10 according to the present embodiment has a substantially ring-shaped thin plate shape whose thickness is set in the range of several tens μm to several hundred μm, and the whole is an abrasive layer. At the same time, the outer peripheral portion is a cutting edge portion 11 having a ring shape.
This electroformed thin blade whetstone 10 is formed by dispersing mixed grains of cBN 13 and diamond 14 as superabrasive grains 15 in a metallic binder phase 12 made of, for example, Ni, Co, or an alloy thereof. Are arranged so that both the cBN 13 and the diamond 14 are uniformly dispersed in the metal bonded phase 12.
[0012]
Further, the superabrasive grains 15 composed of the cBN 13 and the diamond 14 are 15 to 35 vol% with respect to the metal binder phase 12, and the cBN 13 is 20 to 90 vol% with respect to the super abrasive grains 15.
Furthermore, the average particle size of cBN13 is 50 to 200% of the average particle size of diamond 15.
[0013]
In addition, the cutting edge portion 11 captures the shavings generated during the cutting process and easily discharges them to the outside so that clogging is less likely to occur. A plurality of slits 16 are formed at predetermined intervals toward the inner peripheral side. The slit 16 is formed, for example, by scraping the outer peripheral edge of the electroformed thin blade grindstone 10 into a predetermined shape by performing electric discharge machining using a wire or the like or grinding using a grindstone or the like.
[0014]
Such an electroformed thin-blade grindstone 10 has an inner peripheral portion sandwiched between mounting flanges and attached to the grindstone shaft, and is fastened and fixed by a nut, and is rotated around the axis of the grindstone shaft while the outer peripheral portion The cutting edge portion 11 cuts the electronic material 1 in which the polyimide tape 2 and the mold resin layer 3 as shown in FIG.
[0015]
According to the electroformed thin blade whetstone 10 according to the present embodiment, by using a mixed grain of cBN 13 and diamond 14 as superabrasive grains 15, their synergistic effect, that is, the effect of suppressing burr of cBN and the diamond. It becomes possible to achieve both the effects of ensuring wear resistance, even when cutting the electronic material 1 in which the mold resin layer 3 is laminated on the polyimide tape 2 as described above, This hard mold resin layer 3 can be reliably cut and processed, and it is possible to suppress the occurrence of burrs on the cut traces of the polyimide tape 2, and it is possible to ensure wear resistance and obtain a long life. .
[0016]
Moreover, when the ratio with respect to the metal binder phase 12 of the superabrasive grain 15 is too small, the superabrasive grain provided for a cutting process will decrease too much and a cutting process will become impossible. On the other hand, when the ratio of the superabrasive grains 15 to the metal binder phase 12 is too large, the strength of the metal binder phase 12 is reduced, and the number of superabrasive grains acting on the workpiece at a time increases and the sharpness deteriorates. . Therefore, in the present embodiment, the superabrasive grains 15 are set in an optimal range of 5 to 35 vol% of the metal binder phase 12, thereby maintaining a stable cutting process and, furthermore, the strength of the metal binder phase 12. It does not lead to a drop, or the sharpness is lost and the occurrence of burrs is not promoted.
In order to make the above-described effect more reliable, it is preferable to set the superabrasive grains 15 in a range of 10 to 30 vol% of the metal binder phase 12.
[0017]
Moreover, when the ratio of cBN13 to superabrasive grains 15 is too small, the amount of cBN13 is too small with respect to diamond 14, and the effect of suppressing the generation of burrs cannot be obtained. On the other hand, the ratio of cBN13 to superabrasive grains 15 If it is too large, the amount of diamond 14 is too small relative to cBN13, and the effect of improving the wear resistance cannot be obtained. Therefore, in this embodiment, by setting cBN13 in the optimal range of 20 to 90 vol% of the superabrasive grains 15, both improvement in wear resistance and suppression of burrs can be achieved.
In addition, in order to make the above-described effect more reliable, it is preferable to set the cBN 13 to be in the range of 50 to 70 vol% of the superabrasive grains 15.
[0018]
On the other hand, if the average particle size of cBN13 is too small with respect to the average particle size of diamond 14, the effect brought about by cBN is reduced, and only the diamond characteristics are conspicuous, so that the generation of burrs cannot be suppressed. When the average particle size of cBN13 is too large with respect to the average particle size of diamond 14, the effect produced by the diamond is reduced, and only the properties of cBN are conspicuous, resulting in poor wear resistance. Therefore, in this embodiment, the average particle size of cBN12 is set to an optimal range of 50 to 200% of the average particle size of diamond 13, thereby improving both wear resistance and suppressing burrs. The excellent effect of being able to be made can be made more reliable .
[0019]
【The invention's effect】
As described above, the electroformed thin-blade grindstone according to the present invention uses a mixed grain of cBN and diamond as superabrasive grains, and the average particle diameter of cBN is 50 to 200% of the average grain diameter of diamond. By arranging so that cBN and diamond are uniformly dispersed in the binder phase , even if a work made of a ductile material and a hard material is cut by the synergistic effect of these cBN and diamond, It is possible to reliably cut the hard material and to suppress the occurrence of burrs in the ductile material, and to ensure wear resistance and extend the life.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a cutting edge portion of an electroformed thin blade grindstone according to the present embodiment.
FIG. 2 is a plan view of an electroformed thin blade grindstone according to the present embodiment.
FIG. 3 is a cross-sectional view showing an electronic material as a workpiece.
[Explanation of symbols]
1 Electronic material (work)
2 Polyimide tape (ductile material layer)
3 Mold resin (hard material layer)
10 Electroformed Thin Blade Grinding Wheel 11 Cutting Edge 12 Metal Bond Phase 13 cBN
14 Diamond 15 Super abrasive

Claims (3)

金属結合相中に超砥粒が分散配置され、ポリイミドテープからなる延性材料層とモールド樹脂からなる硬質材料層とを有する電子材料の切断加工に用いられる電鋳薄刃砥石において、
前記超砥粒として、cBNとダイヤとの混粒が用いられており、前記cBNの平均粒径は、前記ダイヤの平均粒径の50〜200%であって、前記金属結合相中に、前記cBNとダイヤとが均一に分散するように配置されていることを特徴とする電鋳薄刃砥石。
In an electroformed thin blade grindstone used for cutting an electronic material in which superabrasive grains are dispersed and arranged in a metal binder phase and have a ductile material layer made of polyimide tape and a hard material layer made of mold resin ,
As the superabrasive grains, a mixed grain of cBN and diamond is used, and the average grain size of the cBN is 50 to 200% of the average grain size of the diamond, An electroformed thin-blade grindstone, wherein cBN and diamond are arranged so as to be uniformly dispersed.
請求項1に記載の電鋳薄刃砥石において、
前記超砥粒は、前記金属結合相の5〜35vol%であることを特徴とする電鋳薄刃砥石。
In the electroformed thin blade grindstone according to claim 1,
The superabrasive grain is 5 to 35 vol% of the metal binder phase.
請求項1または請求項2に記載の電鋳薄刃砥石において、
前記cBNは、前記超砥粒の20〜90vol%であることを特徴とする電鋳薄刃砥石。
In the electroformed thin blade grindstone according to claim 1 or claim 2,
The electroformed thin-blade grindstone, wherein the cBN is 20 to 90 vol% of the superabrasive grains.
JP2001209583A 2001-07-10 2001-07-10 Electroformed thin blade whetstone Expired - Fee Related JP4078815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209583A JP4078815B2 (en) 2001-07-10 2001-07-10 Electroformed thin blade whetstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209583A JP4078815B2 (en) 2001-07-10 2001-07-10 Electroformed thin blade whetstone

Publications (2)

Publication Number Publication Date
JP2003025231A JP2003025231A (en) 2003-01-29
JP4078815B2 true JP4078815B2 (en) 2008-04-23

Family

ID=19045212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209583A Expired - Fee Related JP4078815B2 (en) 2001-07-10 2001-07-10 Electroformed thin blade whetstone

Country Status (1)

Country Link
JP (1) JP4078815B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017203848A1 (en) * 2016-05-27 2019-03-22 株式会社アライドマテリアル Superabrasive wheel

Also Published As

Publication number Publication date
JP2003025231A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
CN204604125U (en) Plating hub type saw blade
KR101151051B1 (en) Sharp-edge grinding wheel
JP5042208B2 (en) Superabrasive tool and manufacturing method thereof
JP4078815B2 (en) Electroformed thin blade whetstone
JP4852892B2 (en) Truing tool and grinding tool truing method
JP3969024B2 (en) Electroformed thin blade whetstone
JP2006082187A (en) Thin blade grinding wheel
US20050016517A1 (en) Abrasive blade
JP3380646B2 (en) Electroplated blade
JP2003326464A (en) Cutting wheel and method of manufacturing the wheel
US7086394B2 (en) Grindable self-cleaning singulation saw blade and method
JP3791397B2 (en) Electroformed thin blade whetstone
JP4661025B2 (en) Metal bond grindstone and manufacturing method thereof
JP2008126369A (en) Dicing blade
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JPH079349A (en) Compound abrasive grain tool
JP3411233B2 (en) Manufacturing method of grinding tool
JP2001038636A (en) Thin blade of wheel cutter
JP5676324B2 (en) Resin bond grindstone
JP5729809B2 (en) Agglomerated abrasive
JP2972629B2 (en) Inner peripheral blade
CN107953224A (en) Cutting tool
JP2002301666A (en) Cut-off tool
JP3006458B2 (en) Inner circumference grinding wheel
JP2003326463A (en) Electrocast thin grinding wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees