JP4074492B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP4074492B2
JP4074492B2 JP2002229610A JP2002229610A JP4074492B2 JP 4074492 B2 JP4074492 B2 JP 4074492B2 JP 2002229610 A JP2002229610 A JP 2002229610A JP 2002229610 A JP2002229610 A JP 2002229610A JP 4074492 B2 JP4074492 B2 JP 4074492B2
Authority
JP
Japan
Prior art keywords
measurement
waste liquid
particle size
size distribution
circulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229610A
Other languages
Japanese (ja)
Other versions
JP2004069512A (en
Inventor
英幸 池田
拓司 黒住
喜昭 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002229610A priority Critical patent/JP4074492B2/en
Publication of JP2004069512A publication Critical patent/JP2004069512A/en
Application granted granted Critical
Publication of JP4074492B2 publication Critical patent/JP4074492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、粒径分布測定装置の改良に関する。
【0002】
【従来の技術】
粒径分布測定装置の一つに、試料を分散媒中に分散させて試料液とする分散バスとフローセルと循環用ポンプとを循環流路を介して接続した測定循環系を備え、前記フローセルに試料液を供給している状態で、当該フローセルにレーザ光を照射し、試料液中の粒子による光の回折または散乱現象を利用して粒径分布測定を行うものがある。
【0003】
ところで、上記粒径分布測定装置においては、ある試料に対する測定が終了すると、測定循環系に付設した開閉弁を開いて試料液を排水した後、前記開閉弁を閉じて測定循環系内を洗浄液で洗浄し、再度開閉弁を開いて洗浄後の液を排水して次の試料の測定に備えるように用いられる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の粒径分布測定装置においては、測定終了後、測定循環系内に存在する試料水や洗浄後の洗浄水などを廃液として測定循環系から排出する場合、所謂自然排出の形態をとるものが多く、この場合、排水用のホースの先端が装置外部の排水路内の排水中に浸っているような場合やホースが長い場合などにおいては、廃液排出に時間がかかり、その結果、次の測定までに時間を要することとなり、特に多数の試料を連続して測定するような場合、短時間で効率よく所望の測定を行うことができなかった。
【0005】
この発明は、上述の事柄に留意してなされたもので、その目的は、測定循環系内の測定後の廃液を効率よく排水することができ、複数の測定を連続して行うような場合、一つの測定とこれの次に行う測定との間における準備時間を可及的に少なくして、所望の測定を短時間で効率よく行うことができる粒径分布測定装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、この発明では、試料を分散媒中に分散させて試料液とする分散バスとフローセルと循環用ポンプとを循環流路を介して接続した測定循環系を備えた粒径分布測定装置において、前記測定循環系の循環流路に、該循環流路の配管よりも太く、かつ、短い排水管が接続され、この排水管には開閉弁が設けられているとともに、該排水管の下流端には廃液貯留タンクが接続されており、この廃液貯留タンクの内容量は、1回の測定に使用される試料液の全量と測定後に前記測定循環系を洗浄するために使用される洗浄液の全量の合計よりも大きく設定され、かつ、前記廃液貯留タンクには、空気抜き配管並びに排液流路が接続されていることを特徴としている。
【0007】
上記粒径分布測定装置においては、一つの測定が終了すると、測定循環系と廃液貯留タンクとの間の排水管に設けた開閉弁を開いて、測定循環系内に存在する測定後の試料液を廃液貯留タンクに排出する。この試料液の排出後、前記開閉弁を閉じて、測定循環系内を洗浄液で洗浄し、その洗浄に用いた液を、開閉弁を開いて廃液貯留タンクに排出する。その後、前記開閉弁を閉じて次の測定に待機する。このようにすることにより、従来に比べて、測定後の廃液を測定循環系から短時間で排水することができるので、次の測定までの待ち時間が短くなり、複数の測定を連続して行う場合、所望の測定を短時間で効率よく行うことができる。そして、廃液貯留タンクに排出された廃液は、次の測定が終了するまでに排水路に適宜排出すればよい。
【0008】
【発明の実施の形態】
以下、この発明の詳細を、図を参照しながら説明する。図1および図2は、この発明の一つの実施の形態を示す。まず、図1は、この発明の粒径分布測定装置の構成の一例を概略的に示すもので、この図において、1は測定装置本体で、次のように構成されている。すなわち、2は分散バスで、その内部にはモータ3によって回転する攪拌羽根4が設けられているとともに、その底部の外部には発振器によって振動する超音波振動子5が設けられており、適宜秤量された試料としての粒子(例えば粉体や粒体)6と分散媒タンク7から分散媒供給管8を介して供給される分散媒9とを調整して試料液(懸濁液ともいう)10とするものである。そして、11は分散媒供給管8に設けられる常閉型の電磁弁などの開閉弁である。また、12は洗浄液13を収容する洗浄液タンクで、常閉型の電磁弁などの開閉弁14を備えた洗浄液供給管15を介して分散バス2に洗浄液13を供給するものである。
【0009】
16は試料セルとしてのフローセルで、分散バス2とは循環用ポンプ17を備えた循環流路18によって接続され、これらの部材2,17,18とともに測定循環系19を形成している。そして、この測定循環系19のフローセル16と循環用ポンプ17との間には、常閉型の電磁弁などの開閉弁20を介して排水管21が接続され、さらに、この排水管21の下流側には廃液貯留タンク22が接続されている。この場合、排水管21は循環流路18を構成する配管よりかなり太めのものであって、かつ、可及的に短いものが用いられている。
【0010】
前記廃液貯留タンク22は、例えば測定装置本体1内に設けられ、空気抜き配管22aを備えるとともに、その底部には、常閉型の電磁弁などの開閉弁23および排出ポンプ24を備えた排液流路25が接続されている。この排液流路25の下流側は、装置外部の排水路(図示していない)に接続されている。なお、この廃液貯留タンク22の内容量は、1回の測定に使用される試料液10の全量と、測定後に測定循環系19を洗浄するために使用される洗浄液13の全量の合計より大きく、例えば5倍程度の液(廃液)を収容できる程度に設定されている。
【0011】
そして、26はフローセル16の一方の側に設けられるレーザ光源、27,28はフローセル16の他方の側に設けられる集光レンズおよび光検出器で、光検出器28は例えば複数のディテクタをリング状に配設してなる所謂リングディテクタよりなり、入射した散乱光を電気信号に変換する。
【0012】
また、29は光検出器28からの電気信号を順次切り換え出力するマルチプレクサなどの信号切換回路、30は前記電気信号をディジタル量に変換するAD変換器である。
【0013】
さらに、31は前記測定装置本体1の各部を制御するとともに各種の演算を行う演算制御装置で、例えばパソコンなどのコンピュータである。このコンピュータ31は、CPU32、ROM33、RAM34、キーボードなどの入力装置35、表示操作装置36やプリンタ(図示していない)などを備えている。
【0014】
そして、前記ROM33には、各種の制御プログラムのほか、入力された試料や分散媒に依存するパラメータを用いて粒径分布演算定数を計算するプログラムや、粒径分布演算定数ファイルに基づいて粒度分布を求めるためのプログラムなどを備えている。また、前記RAM34は、CPU32で演算処理された結果や入力装置35によって入力された情報を格納するとともに、各種のパラメータや粒径分布演算定数ファイルなどを格納している。さらに、表示操作装置36は、CPU32の処理結果やRAM34に格納されているデータや各種の入力情報を表示するとともに、その画面上において制御情報などを対話形式で入力できるように構成されている。
【0015】
次に、上記構成の粒径分布測定装置の作動について、図2をも参照しながら説明する。まず、コンピュータ31の表示操作装置36の画面上におけるファンクションキー「注入」(図示していない)を操作する。これによって、開閉弁11が開き、適宜量の分散媒9が分散バス2に導入される(ステップS1)。
【0016】
そして、前記画面上のファンクションキー「循環」(図示していない)を操作する。これによって、攪拌循環用ポンプ17が動作し、分散媒9が循環流路18に沿って測定循環系19内を循環し、フローセル16内が分散媒9で満たされる(ステップS2)。
【0017】
次いで、前記画面上のファンクションキー「ブランク」(図示していない)を操作する。これによって、前記循環している分散媒9が充満しているフローセル16に対してレーザ光源26からレーザ光が照射され、粒子がない状態で散乱(回折)光量が測定(ブランク測定)される。このときのデータはCPU32にメモリされる(ステップS3)。
【0018】
前記ブランク測定後、適宜量の試料6を分散バス2に投入する(ステップS4)。
【0019】
前記画面上のファンクションキー「攪拌」(図示していない)を操作する。これによって、モータ3が動作し、攪拌羽根4が回転し、試料6を含んだ分散媒7が攪拌される。この動作とともに、前記画面上のファンクションキー「超音波」(図示していない)を操作する。これによって、超音波振動子5が動作して、試料6が分散媒9中に均一に分散されるように超音波分散処理が行われ、所定の試料液10が得られる(ステップS5)。そして、この超音波分散処理の開始と同時に、ファンクションキー「循環」を操作する。これによって、循環用ポンプ17が動作して、測定循環系19内を試料液10が循環する。この状態でフローセル16にレーザ光を照射する(ステップS6)ことにより、試料液10を用いた本測定が行われる。
【0020】
前記レーザ光の照射によって生ずる散乱光が光検出器28に取り込まれる(ステップS6)。
【0021】
そして、光検出器28からは前記散乱光の強度に対応した信号が出力され、この信号は、信号切換回路29、AD変換器30を介してCPU32に入力される。CPU32においては、前記ブランク測定のときのデータを考慮にいれて粒度分布演算が行われる(ステップS7)。
【0022】
そして、前記粒度分布演算の結果は、粒度分布グラフとして、表示操作装置36の表示画面上に表示される(ステップS8)。
【0023】
所望の測定を行った後は、前記画面上のファンクションキー「ドレイン」(図示していない)を操作することにより、開閉弁20が開き(ステップS9)、測定循環系19内の試料液10は全て排出され(ステップS10)、排水管21を経て廃液貯留タンク22内に貯留される。この場合、排水管21は、測定循環系19における循環流路18に比べて太くかつ可及的に短くしてあるとともに、廃液貯留タンク22に空気抜き用配管22aが設けてあるので、前記試料液10は測定循環系19から一気に(速やかに)排出される。
【0024】
その後、前記画面上のファンクションキー「洗浄」(図示していない)を操作することにより、開閉弁20が閉じられる(ステップS11)とともに、開閉弁14が開かれる。この開閉弁14が開くことにより、洗浄液タンク12から洗浄液13が分散バス2を経由して測定循環系19に供給され、これを循環させることにより、測定循環系19内の全ての部分が洗浄される(ステップS12)。
【0025】
前記洗浄が終わると、開閉弁14が閉じられるとともに、開閉弁20が開かれ(ステップS13)、測定循環系19内の洗浄液13は全て排出され(ステップS14)、排水管21を経て廃液貯留タンク22内に貯留される。この洗浄液13の測定循環系19からの排出は、前記試料液10の排出と同様の理由で速やかに行われる。その後、開閉弁20が閉じられ(ステップS15)、次の測定への待機状態となる。
【0026】
そして、前記廃液貯留タンク22内に排出された測定後の試料液10および洗浄液13などの廃液は、廃液貯留タンク22内に一時的に貯留されるが、この廃液は、次の測定までの間に廃液貯留タンク22から排液流路25を介して装置外部の排水路(図示していない)にゆっくりと排出しても、前記次の測定に何らの支障を来すことがなく、前記洗浄された測定循環系19に新たに試料液10を供給し、これを循環させて、ブランク測定を行ったり、本測定を行うことができるのである。
【0027】
上述のように、上記実施の形態における粒径分布測定装置においては、一つの測定が終了したとき、その測定に用いた試料液10や測定循環系19の洗浄に用いた洗浄液13などの廃液を、従来のように、装置外部の排水路に対して直接自然排出させるのではなく、装置1内に設けた廃液貯留タンク22内に一気に排出されるようにして、測定循環系19を可及的に短い時間で次の測定への待機状態としているので、複数の測定を連続して行うような場合、測定と次の測定との間の準備時間を短縮することができ、複数の測定を連続して行う場合、所望の測定を短時間で効率よく行うことができる。
【0028】
そして、上記粒径分布測定装置においては、測定循環系19と廃液貯留タンク22との間を連結する排水管21として、測定循環系19の循環流路18に比べて太くかつ可及的に短くしたものを使用しているので、測定循環系19内の廃液を一気に排出することができ、しかも、廃液貯留タンク22に空気抜き配管22aが設けられているので、廃液貯留タンク22内の空気と液体との置換が速やかに行われ、前記廃液は測定循環系19からきわめて速やかに排出される。
【0029】
なお、廃液貯留タンク22内に一時的に貯留された廃液は、排液流路25に設けた開閉弁23を開き、排出ポンプ24を動作させることにより装置外部の排水路に排出される。なお、開閉弁23および排出ポンプ24は必ずしも設ける必要はない。また、排出ポンプ24に代えて、廃液貯留タンク22に空気を圧送し、その内部の廃液を速やかに排出するようにしてもよい。
【0030】
そして、上記実施の形態における粒径分布測定装置は、フローセル16に対してレーザ光を照射し、フローセル16内の試料液10中の粒子による光の回折または散乱現象を利用して粒径分布測定を行う所謂静的光散乱式粒径分布測定装置として構成されていたが、この発明はこれに限られるものではなく、試料6を分散媒9中に分散させる分散バスとフローセル16と循環用ポンプ17とを循環流路18を介して接続した測定循環系19を備えた粒径分布測定装置であれば、同様に適用することができる。したがって、上記測定循環系19を持つものであれば、分散媒中に分散しブラウン運動する粒子に対して光を照射し、前記粒子による散乱光のドップラーシフトによって生じた干渉光を電気的な検出信号に変換し、この検出信号を適宜の演算処理を施して粒径分布を算出するところの動的光散乱式粒径分布測定装置にも同様に適用することができる。
【0031】
【発明の効果】
以上説明したように、この発明の粒径分布測定装置によれば、測定循環系内の測定後の試料液および洗浄液などの廃液を効率よく排水することができ、複数の測定を連続して行うような場合、一つの測定とこれの次に行う測定との間における準備時間を可及的に少なくすることができ、所望の測定を短時間で効率よく行うことができる。したがって、多数の試料を効率よく短時間で測定することができる。
【図面の簡単な説明】
【図1】 この発明の粒径分布測定装置の構成の一例を概略的に示す図である。
【図2】 前記粒径分布測定装置の作動を説明するためのフローチャートである。
【符号の説明】
2…分散バス、6…試料、9…分散媒、10…試料液、16…フローセル、17…循環用ポンプ、19…測定循環系、20…開閉弁、21…排水管、22…廃液貯留タンク、22a…空気抜き配管、25…排液流路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a particle size distribution measuring apparatus.
[0002]
[Prior art]
One of the particle size distribution measuring devices is equipped with a measurement circulation system in which a dispersion bath, a flow cell, and a circulation pump, in which a sample is dispersed in a dispersion medium and connected as a sample liquid, are connected via a circulation channel. In some cases, a sample liquid is supplied to the flow cell with laser light, and particle size distribution measurement is performed using a light diffraction or scattering phenomenon caused by particles in the sample liquid.
[0003]
By the way, in the above particle size distribution measuring apparatus, when the measurement on a certain sample is completed, the on-off valve attached to the measurement circulation system is opened to drain the sample liquid, and then the on-off valve is closed and the inside of the measurement circulation system is washed with the cleaning liquid. It is used to wash and open the on-off valve again to drain the washed liquid and prepare for the next sample measurement.
[0004]
[Problems to be solved by the invention]
However, in the conventional particle size distribution measuring apparatus, when the sample water existing in the measurement circulation system or the wash water after washing is discharged from the measurement circulation system as waste liquid after the measurement is completed, the so-called natural discharge form is taken. In this case, when the tip of the drainage hose is immersed in the drainage in the drainage channel outside the device or when the hose is long, it takes time to drain the waste liquid. It takes time until the measurement, and particularly when many samples are continuously measured, the desired measurement cannot be performed efficiently in a short time.
[0005]
This invention was made in consideration of the above-mentioned matters, and its purpose is to efficiently drain the waste liquid after the measurement in the measurement circulation system, and when performing a plurality of measurements continuously, It is an object of the present invention to provide a particle size distribution measuring apparatus capable of efficiently performing a desired measurement in a short time by minimizing the preparation time between one measurement and the next measurement.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a particle diameter provided with a measurement circulation system in which a sample is dispersed in a dispersion medium to form a sample solution, a dispersion bath, a flow cell, and a circulation pump are connected via a circulation channel. In the distribution measuring apparatus, a drainage pipe that is thicker and shorter than the pipe of the circulation path is connected to the circulation path of the measurement circulation system, and the drainage pipe is provided with an open / close valve. A waste liquid storage tank is connected to the downstream end of the pipe, and the internal volume of this waste liquid storage tank is used to clean the measurement circulation system after the total amount of sample liquid used for one measurement and the measurement. It is set to be larger than the total of the total amount of cleaning liquids, and an air vent pipe and a drainage flow path are connected to the waste liquid storage tank.
[0007]
In the particle size distribution measuring apparatus, when one measurement is completed, the on- off valve provided in the drain pipe between the measurement circulation system and the waste liquid storage tank is opened, and the sample liquid after measurement existing in the measurement circulation system is opened. Is discharged into a waste liquid storage tank. After the sample liquid is discharged, the on-off valve is closed, the inside of the measurement circulation system is washed with the cleaning liquid, and the liquid used for the cleaning is opened and discharged to the waste liquid storage tank. Thereafter, the on-off valve is closed and the next measurement is waited for. In this way, compared to the conventional case, the waste liquid after measurement can be drained from the measurement circulation system in a short time, so the waiting time until the next measurement is shortened and multiple measurements are performed continuously. In this case, desired measurement can be performed efficiently in a short time. And the waste liquid discharged | emitted by the waste liquid storage tank should just be discharged | emitted suitably to a drainage channel before the next measurement is complete | finished.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described with reference to the drawings. 1 and 2 show one embodiment of the present invention. First, FIG. 1 schematically shows an example of the configuration of a particle size distribution measuring apparatus according to the present invention. In this figure, reference numeral 1 denotes a measuring apparatus body, which is configured as follows. That is, reference numeral 2 denotes a dispersion bath, inside which a stirring blade 4 that is rotated by a motor 3 is provided, and an ultrasonic vibrator 5 that is vibrated by an oscillator is provided outside the bottom thereof. A sample liquid (also referred to as a suspension) 10 is prepared by adjusting particles (for example, powders or granules) 6 as a sample and a dispersion medium 9 supplied from a dispersion medium tank 7 through a dispersion medium supply pipe 8. It is what. Reference numeral 11 denotes an on-off valve such as a normally closed electromagnetic valve provided in the dispersion medium supply pipe 8. A cleaning liquid tank 12 stores the cleaning liquid 13 and supplies the cleaning liquid 13 to the dispersion bath 2 through a cleaning liquid supply pipe 15 having an on-off valve 14 such as a normally closed electromagnetic valve.
[0009]
Reference numeral 16 denotes a flow cell as a sample cell, which is connected to the dispersion bath 2 by a circulation flow path 18 provided with a circulation pump 17, and forms a measurement circulation system 19 together with these members 2, 17 and 18. A drain pipe 21 is connected between the flow cell 16 of the measurement circulation system 19 and the circulation pump 17 via an on-off valve 20 such as a normally closed electromagnetic valve. A waste liquid storage tank 22 is connected to the side. In this case, the drain pipe 21 is considerably thicker than the pipe constituting the circulation flow path 18 and is as short as possible.
[0010]
The waste liquid storage tank 22 is provided, for example, in the measuring apparatus main body 1 and includes an air vent pipe 22a, and a drain flow including an open / close valve 23 such as a normally closed electromagnetic valve and a discharge pump 24 at the bottom thereof. A path 25 is connected. The downstream side of the drainage channel 25 is connected to a drainage channel (not shown) outside the apparatus. The internal volume of the waste liquid storage tank 22 is larger than the total of the total amount of the sample liquid 10 used for one measurement and the total amount of the cleaning liquid 13 used for cleaning the measurement circulation system 19 after the measurement, For example, it is set to a level that can accommodate about five times as much liquid (waste liquid).
[0011]
Reference numeral 26 denotes a laser light source provided on one side of the flow cell 16, reference numerals 27 and 28 denote a condenser lens and a photodetector provided on the other side of the flow cell 16, and the photodetector 28 includes, for example, a plurality of detectors in a ring shape. It comprises a so-called ring detector disposed on the surface, and converts incident scattered light into an electrical signal.
[0012]
Reference numeral 29 denotes a signal switching circuit such as a multiplexer for sequentially switching and outputting electrical signals from the photodetector 28, and 30 denotes an AD converter for converting the electrical signals into digital quantities.
[0013]
Further, reference numeral 31 denotes an arithmetic control device that controls each part of the measuring apparatus main body 1 and performs various calculations, and is a computer such as a personal computer. The computer 31 includes a CPU 32, a ROM 33, a RAM 34, an input device 35 such as a keyboard, a display operation device 36, a printer (not shown), and the like.
[0014]
In the ROM 33, in addition to various control programs, a program for calculating particle size distribution calculation constants using parameters depending on the input sample and dispersion medium, and a particle size distribution based on a particle size distribution calculation constant file. It has a program to find out. In addition, the RAM 34 stores the results of calculation processing by the CPU 32 and information input by the input device 35, and stores various parameters, particle size distribution calculation constant files, and the like. Further, the display operation device 36 is configured to display the processing results of the CPU 32, data stored in the RAM 34, and various input information, and to input control information and the like on the screen in an interactive manner.
[0015]
Next, the operation of the particle size distribution measuring apparatus having the above configuration will be described with reference to FIG. First, a function key “injection” (not shown) on the screen of the display operation device 36 of the computer 31 is operated. As a result, the on-off valve 11 is opened, and an appropriate amount of the dispersion medium 9 is introduced into the dispersion bath 2 (step S1).
[0016]
Then, the function key “circulation” (not shown) on the screen is operated. As a result, the agitation pump 17 operates, the dispersion medium 9 circulates in the measurement circulation system 19 along the circulation flow path 18, and the flow cell 16 is filled with the dispersion medium 9 (step S2).
[0017]
Next, a function key “blank” (not shown) on the screen is operated. As a result, laser light is irradiated from the laser light source 26 to the flow cell 16 filled with the circulating dispersion medium 9, and the amount of scattered (diffracted) light is measured (blank measurement) in the absence of particles. The data at this time is stored in the CPU 32 (step S3).
[0018]
After the blank measurement, an appropriate amount of sample 6 is put into the dispersion bath 2 (step S4).
[0019]
The function key “stirring” (not shown) on the screen is operated. As a result, the motor 3 operates, the stirring blade 4 rotates, and the dispersion medium 7 including the sample 6 is stirred. Along with this operation, a function key “ultrasound” (not shown) on the screen is operated. As a result, the ultrasonic transducer 5 operates to perform ultrasonic dispersion processing so that the sample 6 is uniformly dispersed in the dispersion medium 9, and a predetermined sample liquid 10 is obtained (step S5). Then, simultaneously with the start of the ultrasonic dispersion processing, the function key “circulation” is operated. As a result, the circulation pump 17 operates and the sample solution 10 circulates in the measurement circulation system 19. By irradiating the flow cell 16 with laser light in this state (step S6), the main measurement using the sample liquid 10 is performed.
[0020]
Scattered light generated by the laser beam irradiation is taken into the photodetector 28 (step S6).
[0021]
Then, a signal corresponding to the intensity of the scattered light is output from the photodetector 28, and this signal is input to the CPU 32 via the signal switching circuit 29 and the AD converter 30. In the CPU 32, the particle size distribution calculation is performed in consideration of the data at the time of the blank measurement (step S7).
[0022]
The result of the particle size distribution calculation is displayed on the display screen of the display operation device 36 as a particle size distribution graph (step S8).
[0023]
After the desired measurement is performed, by operating a function key “drain” (not shown) on the screen, the on-off valve 20 is opened (step S9), and the sample liquid 10 in the measurement circulation system 19 is All are discharged (step S10) and stored in the waste liquid storage tank 22 through the drain pipe 21. In this case, the drain pipe 21 is thicker and shorter than the circulation flow path 18 in the measurement circulation system 19 and the waste liquid storage tank 22 is provided with an air vent pipe 22a. 10 is discharged from the measurement circulation system 19 at once (rapidly).
[0024]
Thereafter, by operating a function key “wash” (not shown) on the screen, the on-off valve 20 is closed (step S11) and the on-off valve 14 is opened. When the on-off valve 14 is opened, the cleaning liquid 13 is supplied from the cleaning liquid tank 12 to the measurement circulation system 19 via the dispersion bath 2 and is circulated to clean all parts in the measurement circulation system 19. (Step S12).
[0025]
When the cleaning is finished, the on-off valve 14 is closed and the on-off valve 20 is opened (step S13), and all the cleaning liquid 13 in the measurement circulation system 19 is discharged (step S14), and the waste liquid storage tank passes through the drain pipe 21. 22 is stored. The cleaning liquid 13 is quickly discharged from the measurement circulation system 19 for the same reason as the discharging of the sample liquid 10. Thereafter, the on-off valve 20 is closed (step S15), and a standby state for the next measurement is entered.
[0026]
And the waste liquid such as the sample liquid 10 and the cleaning liquid 13 after the measurement discharged into the waste liquid storage tank 22 is temporarily stored in the waste liquid storage tank 22, and this waste liquid is stored until the next measurement. Even if the waste liquid is slowly discharged from the waste liquid storage tank 22 to the drainage channel (not shown) outside the apparatus via the drainage channel 25, the cleaning is performed without any trouble in the next measurement. The sample solution 10 is newly supplied to the measured circulation system 19 and is circulated to perform a blank measurement or a main measurement.
[0027]
As described above, in the particle size distribution measuring apparatus in the above embodiment, when one measurement is completed, the waste liquid such as the sample liquid 10 used for the measurement or the cleaning liquid 13 used for cleaning the measurement circulation system 19 is removed. Instead of directly discharging directly to the drainage channel outside the apparatus as in the prior art, the measurement circulation system 19 is made as much as possible by discharging it into the waste liquid storage tank 22 provided in the apparatus 1 at once. Because it is in a standby state for the next measurement in a short time, when multiple measurements are performed continuously, the preparation time between the measurements can be shortened, and multiple measurements can be performed continuously. Thus, the desired measurement can be efficiently performed in a short time.
[0028]
In the particle size distribution measuring apparatus, the drain pipe 21 connecting the measurement circulation system 19 and the waste liquid storage tank 22 is thicker and shorter than the circulation flow path 18 of the measurement circulation system 19. Since the waste liquid in the measurement circulation system 19 can be discharged all at once, and the air vent pipe 22a is provided in the waste liquid storage tank 22, the air and liquid in the waste liquid storage tank 22 are used. And the waste liquid is discharged from the measurement circulation system very quickly.
[0029]
The waste liquid temporarily stored in the waste liquid storage tank 22 is discharged to the drainage channel outside the apparatus by opening the on-off valve 23 provided in the drainage channel 25 and operating the discharge pump 24. The on-off valve 23 and the discharge pump 24 are not necessarily provided. Further, instead of the discharge pump 24, air may be pumped to the waste liquid storage tank 22 so that the waste liquid therein is quickly discharged.
[0030]
The particle size distribution measuring apparatus in the above embodiment irradiates the flow cell 16 with laser light, and uses the light diffraction or scattering phenomenon caused by the particles in the sample liquid 10 in the flow cell 16 to measure the particle size distribution. However, the present invention is not limited to this, and the dispersion bath 2 , the flow cell 16, and the circulation device for dispersing the sample 6 in the dispersion medium 9 are configured. Any particle size distribution measuring apparatus including a measurement circulation system 19 connected to the pump 17 via a circulation flow path 18 can be similarly applied. Therefore, if the measurement circulation system 19 is provided, light is irradiated to particles that are dispersed in a dispersion medium and perform Brownian motion, and interference light generated by Doppler shift of scattered light by the particles is electrically detected. The present invention can be similarly applied to a dynamic light scattering particle size distribution measuring apparatus that converts a signal into signals and applies a suitable arithmetic process to calculate the particle size distribution.
[0031]
【The invention's effect】
As described above, according to the particle size distribution measuring apparatus of the present invention, the waste liquid such as the sample liquid and the cleaning liquid after the measurement in the measurement circulation system can be efficiently drained, and a plurality of measurements are continuously performed. In such a case, the preparation time between one measurement and the next measurement can be reduced as much as possible, and a desired measurement can be efficiently performed in a short time. Therefore, many samples can be measured efficiently in a short time.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of the configuration of a particle size distribution measuring apparatus according to the present invention.
FIG. 2 is a flowchart for explaining the operation of the particle size distribution measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... Dispersion bath, 6 ... Sample, 9 ... Dispersion medium, 10 ... Sample liquid, 16 ... Flow cell, 17 ... Circulation pump, 19 ... Measurement circulation system, 20 ... Open / close valve, 21 ... Drain pipe, 22 ... Waste liquid storage tank 22a ... Air vent piping, 25 ... Drainage flow path.

Claims (1)

試料を分散媒中に分散させて試料液とする分散バスとフローセルと循環用ポンプとを循環流路を介して接続した測定循環系を備えた粒径分布測定装置において、前記測定循環系の循環流路に、該循環流路の配管よりも太く、かつ、短い排水管が接続され、この排水管には開閉弁が設けられているとともに、該排水管の下流端には廃液貯留タンクが接続されており、この廃液貯留タンクの内容量は、1回の測定に使用される試料液の全量と測定後に前記測定循環系を洗浄するために使用される洗浄液の全量の合計よりも大きく設定され、かつ、前記廃液貯留タンクには、空気抜き配管並びに排液流路が接続されていることを特徴とする粒径分布測定装置。In a particle size distribution measuring apparatus having a measurement circulation system in which a dispersion bath, a flow cell, and a circulation pump, in which a sample is dispersed in a dispersion medium, are connected via a circulation channel, circulation of the measurement circulation system A drain pipe that is thicker and shorter than the circulation channel pipe is connected to the flow path, and an open / close valve is provided on the drain pipe, and a waste liquid storage tank is connected to the downstream end of the drain pipe. The internal volume of the waste liquid storage tank is set to be larger than the sum of the total amount of the sample liquid used for one measurement and the total amount of the cleaning liquid used for cleaning the measurement circulation system after the measurement. And the particle size distribution measuring apparatus characterized by the air vent piping and the drainage flow path being connected to the said waste liquid storage tank.
JP2002229610A 2002-08-07 2002-08-07 Particle size distribution measuring device Expired - Fee Related JP4074492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229610A JP4074492B2 (en) 2002-08-07 2002-08-07 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229610A JP4074492B2 (en) 2002-08-07 2002-08-07 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2004069512A JP2004069512A (en) 2004-03-04
JP4074492B2 true JP4074492B2 (en) 2008-04-09

Family

ID=32015933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229610A Expired - Fee Related JP4074492B2 (en) 2002-08-07 2002-08-07 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4074492B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549394B2 (en) * 2010-06-10 2014-07-16 株式会社島津製作所 Particle size distribution measuring device
JP2019191013A (en) 2018-04-25 2019-10-31 ソニー株式会社 Microparticle measurement device

Also Published As

Publication number Publication date
JP2004069512A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JPH06123692A (en) Laser diffraction type measuring method for grain size distribution
JP6853584B2 (en) Optical characteristic measuring device and optical characteristic measuring method
US4330385A (en) Dissolved oxygen measurement instrument
JP6558049B2 (en) Cleaning device and kitchen sink
JP4074492B2 (en) Particle size distribution measuring device
JP3704035B2 (en) Automatic analyzer
WO2020213338A1 (en) Photoanalysis method and photoanalysis system
JPS6344149A (en) Method and apparatus for detecting particulate material
JP3425093B2 (en) Drainage method of sample liquid and cleaning liquid in light scattering type particle size distribution measuring device
US7689026B2 (en) Method for testing image processing circuit, particle image analyzer, and storage medium
JP2000146817A (en) Grain size distribution measuring device
JP4354121B2 (en) Dynamic light scattering particle size distribution analyzer
JPH11108822A (en) Method and device for measuring concentration
JPH0236334A (en) Device for sampling suspended liquid for measuring particle size distribution
JPH0587725A (en) Grain size distribution measuring device
JP4505158B2 (en) Particle size distribution measuring device and control program for particle size distribution measuring device
JPH11183356A (en) Laser diffraction and scattering type particle size distribution measuring device
JP4101217B2 (en) Particle size distribution measuring device
JPWO2020195043A1 (en) Automatic analyzer
JP4153987B2 (en) Particle size distribution measuring device
JP3049908B2 (en) Particle size distribution analyzer
JPH0541405Y2 (en)
JPH08136434A (en) Analyzing method for particle size distribution
JP2008249724A (en) Device for measuring particle size distribution
JPH0725676Y2 (en) Sampling device for measuring magnetic powder particle size distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees