JP3704035B2 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP3704035B2
JP3704035B2 JP2000263853A JP2000263853A JP3704035B2 JP 3704035 B2 JP3704035 B2 JP 3704035B2 JP 2000263853 A JP2000263853 A JP 2000263853A JP 2000263853 A JP2000263853 A JP 2000263853A JP 3704035 B2 JP3704035 B2 JP 3704035B2
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
stirring
automatic analyzer
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000263853A
Other languages
Japanese (ja)
Other versions
JP2002071698A (en
Inventor
政明 小田倉
亘  重範
洋一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000263853A priority Critical patent/JP3704035B2/en
Priority to US09/814,683 priority patent/US6773672B2/en
Publication of JP2002071698A publication Critical patent/JP2002071698A/en
Application granted granted Critical
Publication of JP3704035B2 publication Critical patent/JP3704035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/87Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations transmitting the vibratory energy by means of a fluid, e.g. by means of air shock waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0367Supports of cells, e.g. pivotable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00554Mixing by a special element, e.g. stirrer using ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/112499Automated chemical analysis with sample on test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Description

【0001】
【発明の属する技術分野】
本発明は、試薬等を使用して検体の成分分析を行う自動分析装置に係わり、特に、試薬等と検体との攪拌が向上された自動分析装置に関する。
【0002】
【従来の技術】
従来の自動分析装置の攪拌部に使用されていた技術には、反応容器中に直接ヘラ状の攪拌棒等を入れ、回転または、往復運動させることにより検体と試薬等の混合、攪拌を行う方法や、特開平11−038011号公報に記載された反応容器自体を傾けて回転させることによる攪拌方法がある。
【0003】
また、特開平10−123136号公報に記載された試薬自体を磁性微粒子で合成し、外部磁気により攪拌を行う方法、特開平08−189889号公報に記載された反応容器内に障壁を設け、その反応容器の底部に液が流通可能なクリアランスを設け、空気圧により攪拌を行う方法等がある。
【0004】
しかし、反応容器にヘラ状の攪拌棒を挿入する方法では、攪拌棒の洗浄が十分に行えない場合には、攪拌棒に付着した試薬または検体が、次の分析結果に影響を与えるキャリーオーバーと言われる現象が起こる。
【0005】
このため、特開平6−58941号公報に記載されているように、攪拌棒を振動させて、攪拌棒に付着した検体や試薬等の除去を支援する方法もある。
【0006】
ところが、攪拌棒を振動させる方法では、攪拌棒の挿入および、攪拌動作の回転または、往復運動をおこなうために十分な反応容器の開口面積を確保する必要があり、大きな容量の反応容器が必要で、この大きな反応容器に収容する検体の量を大きくする必要がある。
【0007】
そこで、検体提供者の肉体的負担、および装置のランニングコストの低減を実現するために、検体量及び試薬量の低減を行うと、光学的な測定を行う場合には、反応容器の底部に近い部分で測光を行う必要があり、底部に近い部分での測定結果の精度を保つためには、反応容器に特殊な加工を施す必要がある。
【0008】
したがって、攪拌棒を振動させる方法では、結果的にコストが上昇してしまい、コスト低減の観点からは、好ましいものとはいえない。
【0009】
また、反応容器自体を傾けて回転させることにより、検体と試薬等とを混合、攪拌する方法では、液体の飛散が発生しやすく、液体の飛沫が他の分析対象に混入する可能性がある。
【0010】
また、磁性微粒子を含む試薬を用いる方法は、試薬開発の必要性があり、コスト面の問題がある。
【0011】
また、反応容器に障壁を設け、空気圧により攪拌を行う方法では、反応容器の特殊加工が必要であり、これもコスト面の問題がある。
【0012】
そこで、特開平8−146007号公報に記載されたされた技術がある。この、特開平8−146007号公報に記載された技術は、超音波により、検体と試薬等とを攪拌するものであり、検体や試薬等に非接触で攪拌が行え、他の検体や試薬等を汚染しないことと、攪拌棒が不要なため、反応容器を小型化でき、検体、および試薬の量を少なくすることが可能な方法である。
【0013】
【発明が解決しようとする課題】
上述のように、自動分析装置の攪拌部において検体と試薬等との撹拌に超音波を用いることは、検体や試薬等に非接触で攪拌が行え、他の検体や試薬等を汚染しないことと、攪拌棒が不要なため、反応容器を小型化でき、検体、および試薬の量を少なくすることができる利点がある。
【0014】
しかし、過大な超音波強度で攪拌を行った場合、反応容器内に液体試料が少ない状態もしくは、無い状態で超音波を照射したときには、反応容器壁の音波を透過している部分が発熱し、材質によっては、反応容器表面が歪んでしまうことがある。
【0015】
そのことにより、吸光度測定のために照射される光のうち、反応容器を透過する光量が減衰し、正確な吸光度測定を行えなくなる可能性がある。
【0016】
また、比色分析で用いられている試薬は多数あり、同じ強度の超音波を照射するにしても反応容器との濡れ性が高い試薬の方が流動性が発生しやすく混合能力が高い。
【0017】
このため、各試薬ごとに超音波の強度を設定する必要性が出てくるわけだが、攪拌状態、すなわち、吸光度測定をリアルタイムで監視して、超音波強度を設定し、その都度、測光位置に反応容器を移動させ、吸光度測定をしなければならず、その作業は繁雑であり、吸光度測定に時間を費やしてしまうという問題点があった。
【0018】
本発明の目的は、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定が可能な自動分析装置を実現することである。
【0019】
また、本発明の他の目的は、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定がきるとともに、超音波強度の最適化の設定を短時間で可能な自動分析装置を実現することである。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のように構成される。
(1)超音波を反応容器に照射して、前記反応容器に収容された液体を攪拌する攪拌部と、光源から前記反応容器に照射される測定光に基づき、前記反応容器中の液体の吸光度を測定する光度計と、を備えた自動分析装置であって、
前記攪拌部は、前記反応容器の側方から超音波を照射し、かつ、前記光源は、前記反応容器の側方であって、前記超音波の照射方向とほぼ直交する方向に測定光を照射するように前記攪拌部及び光源が配置されている。
【0021】
(2)複数の反応容器が配置される反応ディスクと、超音波を前記反応容器に照射して、この反応容器に収容された液体を攪拌する攪拌部と、前記反応容器の側方から照射される、光源からの測定光に基づき、前記反応容器中の液体の吸光度を測定する光度計と、を備えた自動分析装置であって、前記攪拌部は前記反応容器の側方から超音波を照射し、かつ、前記反応容器は4つの側壁部を有する角柱形状であり、前記反応容器の各側壁部は前記反応ディスクの直径方向に対してほぼ45度の角度で傾斜した状態で配置され、前記光源は、前記反応容器の側方から測定光を照射し、前記反応容器の、前記攪拌部により前記側方から超音波が照射される側壁部と、前記光源により前記側方から測定光が照射される側壁部と、は異なる側壁部となるように前記攪拌部及び光源が配置されている
【0022】
(3)好ましくは、上記(1)、(2)において、前記反応容器は、前記反応ディスクの同一の位置にて前記攪拌部からの超音波と、前記光源からの測定光とが照射される。
(4)また、好ましくは、上記(1)〜(3)において、記憶されたリファレンス値と前記光度計からの吸光度測定結果とを比較し、前記攪拌部の攪拌動作が十分か否かを判定する制御部を備える。
【0023】
反応容器は、超音波が照射される超音波照射面と、この超音波照射面とは異なる位置であり、測定光が照射される吸光度測定面とを有することができ、吸光度測定面は、超音波が照射されることがないように構成する。
【0024】
このため、超音波照射面に照射される超音波が過大となり、たとえ超音波照射面が変形したとしても、吸光度測定面は、超音波は照射されることはないので、超音波により変形されることから回避することができる。
【0025】
したがって、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定が可能な自動分析装置を実現することができる。
【0026】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。
図1は、本発明の第1の実施形態である自動分析装置の概略構成図である。また、図2は、本発明の第1の実施形態における反応ディスク15の上面図である。
【0027】
図1及び図2において、自動分析装置1は、制御部2、格納部3、分析部4、攪拌部5により構成されている。
【0028】
制御部2は、各部の詳細な動作制御を行う電子回路や記憶装置により構成され、装置の動作を統括制御する。
【0029】
格納部3は、検体6を入れた検体格納部7と試薬9を入れた試薬格納部14から構成されている。
【0030】
また、攪拌部5は、検体格納部7から反応容器8に吐出された検体6と、試薬格納部14から反応容器8に吐出された試薬9とを、圧電素子10で発生した超音波11による音響放射圧の効果による旋回流44により攪拌を行う。
また、圧電素子10を、反応容器8の下方及び側方に設置し、下方から超音波11を照射することにより、検体7と試薬9の混合物の液面を隆起させた後、液面の隆起した部分に側方から超音波11を液体に照射することにより、音響放射圧による旋回流44を発生させて撹拌を行う。
【0031】
攪拌部5及び分析部4にある反応容器8は、反応槽12に蓄えられた水を代表とする保温媒体13に浸っており、一定の温度に保たれている。
【0032】
また、これら複数の反応容器8は、反応ディスク15上に配置され、反応ディスク用軸16で反応ディスクモータ17に接続されている。
【0033】
そして、反応ディスクモータ17を制御部2による制御で、応ディスク15と共に回転または移動し、攪拌部5と分光器18との間を行き来する。
分析部4は、この分析部4の反応容器8中で、検体6と試薬9とを混合し、反応させたものを、分光器18で組成分析を行う。
【0034】
また、攪拌位置24において、検体格納部7から反応容器8に吐出された検体と、試薬格納部14から反応容器8に吐出された試薬9とを、圧電素子10が発生した超音波11により攪拌する。
【0035】
複数の反応容器8は、反応ディスク15の上面側から見て、この反応ディスク15を4分割し、互いに直交する2つの交線20に対して、反応容器8の側壁部が光線20に直交せず、ほぼ45度程度の角度で傾斜した状態で配置されている。
【0036】
この配置関係により、反応容器8は、照射される超音波に、ほぼ直交する超音波照射面22と、照射される測定光にほぼ直交する吸光度測定面21とを有し、この吸光度測定面21は、超音波が照射されることがないように、撹拌部5と光度計18とを配置する構成とすることができる。
【0037】
次に、攪拌部5により試料の攪拌が終了したら、反応ディスク15を回転し、反応容器8を測光位置25に移動し、光度計で吸光度測定を行う。
【0038】
以上のように、本発明の第1の実施形態によれば、複数の反応容器8は、反応ディスク15の上面側から見て、この反応ディスク15を4分割し、互いに直交する2つの交線20に対して、反応容器8の側壁部が光線20に直交せず、ほぼ45度程度の角度で傾斜した状態で配置されている。
【0039】
この配置関係により、反応容器8は、照射される超音波にほぼ直交する超音波照射面22と、照射される測定光にほぼ直交する吸光度測定面21とを有することができ、超音波照射面22と吸光度測定面21とを異なる面として、この吸光度測定面21は、超音波が照射されることがないように構成することができる。
【0040】
このため、超音波照射面22に照射される超音波が過大となり、たとえ超音波照射面22が変形したとしても、吸光度測定面21は、超音波は照射されることはないので、超音波により変形されることから回避することができる。
【0041】
したがって、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定が可能な自動分析装置を実現することができる。
【0042】
図3は、本発明の第2の実施形態である自動分析装置の反応ディスク15の上面図である。 本発明の第2の実施形態を、図1及び図3を参照して説明する。
上述した第1の実施形態においては、反応ディスク15上において、反応容器8の、攪拌位置24と測光位置25とを別々の位置に設けていた。
【0043】
これに対して、本発明の第2の実施形態においては、反応ディスク15上の同一位置にて、反応容器8に収容された液体試料の攪拌および吸光度測定を行えるように各機構を構成する。
【0044】
つまり、反応ディスク15上の撹拌/測光位置26にて、撹拌部5から反応容器8の超音波照射面22に超音波11を照射すると同時に、光度計18からの吸光度測定用の光を反応容器8の吸光度測定面21に照射することができるように、撹拌部5及び光度計18を配置する。
【0045】
これによって、撹拌を行うと同時に、リアルタイムで攪拌状態を監視することができる。
【0046】
なお、他の構成は、図1及び図2に示す構成と同一となっているため、詳細な説明は省略する。
【0047】
図1及び図3において、検体格納部7から反応容器8に吐出された検体6と、試薬格納部14から反応容器8に吐出された試薬9とを、反応ディスク15を回転し、測定対象試料を攪拌/測光位置26に移動する。
制御部2は、超音波11を発生さるためのトリガ信号を電力供給部19に送り、この電力供給部19を介して圧電素子10に加える。
【0048】
圧電素子10は、電力供給部19から供給された電圧強度、周波数に比例した超音波11を反応容器8に照射し液体試料の攪拌を行う。
ところで、従来から一般的に使用されている、へらを用いる攪拌方法では、物理的に光度計18に隣接する位置に攪拌機構を設置することが困難であり、仮に、撹拌機構を光度計18に隣接して設置できた場合でも反応容器8にへらを挿入して攪拌していることから、撹拌動作とリアルタイムでは攪拌状態を確認することができない。
【0049】
これに対して、本発明の第2の実施形態においては、超音波11を利用して攪拌する攪拌部5を用いたことにより、制御部2では、攪拌と同時に光度計18から送られてくる吸光度データすなわち攪拌状態の確認をリアルタイムで行うことが可能になる。
【0050】
以上のように、本発明の第2の実施形態によれば、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定ができるとともに、超音波強度の最適化の設定を短時間で可能な自動分析装置を実現することができる。
【0051】
次に、本発明の第3の実施形態を図1を参照して説明をする。
この第3の実施形態は、上記第1の実施形態又は第2の実施形態の構成を前提とした例である。
【0052】
ところで、試料と試薬との反応は、一般に比色反応と呼ばれ、その名が示すように特定の波長域の吸光度が変化するものであり、試料内の測定成分濃度が高くなると、最も吸光の影響を受ける波長の吸光量は増加し、対応する光検知器に入射する光量は低下する。
【0053】
そのことから、攪拌調整用試薬を準備し、その試薬と検体(蒸留水もしくは脱気した水)とを攪拌した試料の吸光度測定を行う。その吸光度は、試薬と検体との分注量で決まってくることから、制御部2では、その値をリファレンス値として記憶する。
【0054】
その後は、その吸光度になるように、制御部2は、光度計18から送られてくる吸光度測定結果とリファレンス値とをリアルタイムで比較し、撹拌部の5の撹拌動作が十分か否かを判定し、攪拌不十分であれば超音波11を発生させるためのトリガ信号強度を可変する。
【0055】
そのことにより、超音波強度も比例して変わり、測定した吸光度がリファレンス値すなわち最適な攪拌状態になるまで超音波強度を可変し、最適な超音波強度を速やかに設定することができる。
【0056】
また、超音波強度を可変しても吸光度がリファレンス値に到達しない場合には、攪拌部5もしくは光度計18を含む光学系の故障が考えられることから、オペレーターにブザー等で警告を促すことも可能である。
【0057】
以上のように、本発明の第3の実施形態によれば、上記第1の実施形態又は第2の実施形態の構成を備え、かつ、撹拌調整用試薬と検体とを撹拌して、超音波強度を設定するように構成したので、上記第1の実施形態又は第2の実施形態と同様な効果を得ることができる他、最適な超音波強度を短時間に設定することが可能な自動分析装置を実現することができる。
【0058】
なお、上述した例においては、複数の反応容器8は、反応ディスク15の上面側から見て、この反応ディスク15を4分割し、互いに直交する2つの交線20に対して、反応容器8の側壁部が光線20に直交せず、ほぼ45度程度の角度で傾斜した状態で配置されるように構成したが、撹拌部5が、反応容器8の超音波照射面に超音波を照射し、光源からの測定光は、反応容器8の、超音波照射面とは異なる位置の測定光照射面に測定光を照射するような構成であれば、反応容器8の側壁部が光線20に、ほぼ直交するような状態で配置されるように構成してもよい。
【0059】
また、上述した例においては、反応容器8は角柱形状となっているが、この形状に限らず、円柱形状であっても、本発明は適用可能である。
【0060】
【発明の効果】
本発明によれば、自動分析装置の撹拌部に使用する超音波発生源を有し、反応容器を反応ディスクの交線に対して傾斜を持たせて配置したことを特徴とする自動分析装置を発明したことにより、次に挙げる効果が発生する。
【0061】
反応容器に超音波照射面と吸光度測定の面とを別々に持つことができる。その結果、吸光度測定面には超音波を照射することが無くなるので、超音波照射面に照射される超音波が過大となり、たとえ超音波照射面が変形したとしても、吸光度測定面は超音波は照射されることはなく、超音波により変形されることから回避することができる。
【0062】
したがって、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定が可能な自動分析装置を実現することができる。
【0063】
また、攪拌位置と測光位置とを同一にすることにより、検体と試薬等との撹拌のための超音波強度が過大となった場合でも、正確な吸光度測定がきるとともに、超音波強度の最適化の設定を、リアルタイムでかつ短時間で可能な自動分析装置を実現することができる。
【0064】
また、攪拌調整用試薬を用いたことにより、最適な超音波強度を短時間に設定することが可能な自動分析装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態における自動分析装置の概略構成図である。
【図2】本発明の第1の実施形態における自動分析装置の反応ディスク上面図である。
【図3】本発明の第2の実施形態における自動分析装置の反応ディスク上面図である。
【符号の説明】
1 自動分析装置
2 制御部
3 格納部
4 分析部
5 攪拌部
6 検体
7 検体容器
8 反応容器
9 試薬
10 圧電素子
11 超音波
12 反応槽
13 保温媒体
14 試薬容器
15 反応ディスク
16 反応ディスク用軸
17 反応ディスクモータ
18 光度計
19 電力供給部
20 交線
21 吸光度測定面
22 超音波照射面
23 光軸
24 攪拌位置
25 測光位置
26 攪拌/測光位置
27 旋回流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic analyzer that analyzes a component of a specimen using a reagent or the like, and more particularly to an automatic analyzer that improves the stirring of a reagent or the like and a specimen.
[0002]
[Prior art]
The technology used in the stirring section of conventional automatic analyzers is a method of mixing and stirring specimens and reagents, etc. by placing a spatula-like stirring rod directly in a reaction vessel and rotating or reciprocating it. Alternatively, there is a stirring method by tilting and rotating the reaction vessel itself described in JP-A-11-038011.
[0003]
Further, a method of synthesizing the reagent itself described in JP-A-10-123136 with magnetic fine particles and stirring with external magnetism, a barrier is provided in a reaction vessel described in JP-A-08-189889, There is a method in which a clearance through which the liquid can flow is provided at the bottom of the reaction vessel, and stirring is performed by air pressure.
[0004]
However, in the method of inserting a spatula-like stir bar into the reaction vessel, if the stir bar cannot be sufficiently washed, the reagent or sample attached to the stir bar may cause carryover that affects the next analysis result. The phenomenon that is said occurs.
[0005]
For this reason, as described in JP-A-6-58941, there is also a method of assisting the removal of the specimen, reagent, etc. adhering to the stirring rod by vibrating the stirring rod.
[0006]
However, in the method of vibrating the stirring rod, it is necessary to secure a sufficient opening area of the reaction vessel for inserting the stirring rod and rotating or reciprocating the stirring operation, which requires a large capacity reaction vessel. Therefore, it is necessary to increase the amount of specimen accommodated in this large reaction container.
[0007]
Therefore, in order to reduce the physical burden on the sample provider and the running cost of the apparatus, if the amount of the sample and the amount of the reagent are reduced, the optical measurement is close to the bottom of the reaction container. It is necessary to perform photometry at the part, and in order to maintain the accuracy of the measurement result at the part near the bottom, it is necessary to perform special processing on the reaction vessel.
[0008]
Therefore, the method of vibrating the stirring bar results in an increase in cost, which is not preferable from the viewpoint of cost reduction.
[0009]
In addition, in the method of mixing and stirring the specimen and the reagent by tilting and rotating the reaction container itself, liquid scattering is likely to occur, and there is a possibility that the liquid splash may be mixed into another analysis target.
[0010]
In addition, the method using a reagent containing magnetic fine particles requires the development of a reagent and has a problem of cost.
[0011]
Moreover, in the method of providing a barrier in the reaction vessel and stirring by air pressure, special processing of the reaction vessel is required, which also has a problem of cost.
[0012]
Therefore, there is a technique described in JP-A-8-146007. This technique described in JP-A-8-146007 stirs a specimen and a reagent by ultrasonic waves, and can stir the specimen and the reagent in a non-contact manner. In this method, the reaction vessel can be miniaturized and the amount of specimen and reagent can be reduced.
[0013]
[Problems to be solved by the invention]
As described above, the use of ultrasonic waves for stirring the specimen and the reagent in the stirring section of the automatic analyzer can perform stirring without contacting the specimen and the reagent, and does not contaminate other specimens and reagents. Since a stirring bar is unnecessary, there is an advantage that the reaction vessel can be miniaturized and the amount of specimen and reagent can be reduced.
[0014]
However, when stirring is performed with excessive ultrasonic intensity, when the ultrasonic wave is irradiated in a state where there is little or no liquid sample in the reaction vessel, the portion of the reaction vessel wall through which sound waves are transmitted generates heat, Depending on the material, the reaction vessel surface may be distorted.
[0015]
As a result, the amount of light that passes through the reaction vessel out of the light that is irradiated for absorbance measurement may be attenuated, and accurate absorbance measurement may not be performed.
[0016]
In addition, there are many reagents used in colorimetric analysis, and even if the ultrasonic wave having the same intensity is irradiated, the reagent having higher wettability with the reaction container is more likely to generate fluidity and has higher mixing ability.
[0017]
For this reason, it is necessary to set the ultrasonic intensity for each reagent, but the stirring state, that is, the absorbance measurement is monitored in real time, and the ultrasonic intensity is set. The reaction container had to be moved and the absorbance measurement had to be performed, and the work was complicated, and there was a problem that time was required for the absorbance measurement.
[0018]
An object of the present invention is to realize an automatic analyzer that can accurately measure the absorbance even when the ultrasonic intensity for stirring the specimen and the reagent is excessive.
[0019]
Another object of the present invention is that, even when the ultrasonic intensity for agitation between the specimen and the reagent becomes excessive, accurate absorbance measurement can be performed and the setting of optimization of the ultrasonic intensity can be performed in a short time. It is to realize an automatic analyzer that is possible with
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
(1) Absorbance of the liquid in the reaction container based on a stirring unit that irradiates the reaction container with ultrasonic waves and stirs the liquid contained in the reaction container, and measurement light irradiated on the reaction container from a light source An automatic analyzer equipped with a photometer for measuring
The stirring unit irradiates ultrasonic waves from the side of the reaction vessel, and the light source irradiates measurement light in a direction substantially perpendicular to the ultrasonic wave irradiation direction at the side of the reaction vessel. The stirring unit and the light source are arranged so as to do so.
[0021]
(2) A reaction disk in which a plurality of reaction vessels are arranged, an ultrasonic wave is applied to the reaction vessel, and a stirring unit that stirs the liquid contained in the reaction vessel, and is irradiated from the side of the reaction vessel. A photometer for measuring the absorbance of the liquid in the reaction vessel based on measurement light from a light source, wherein the agitator irradiates ultrasonic waves from the side of the reaction vessel The reaction vessel has a prismatic shape having four side walls, and each side wall of the reaction vessel is disposed at an angle of approximately 45 degrees with respect to the diameter direction of the reaction disk, The light source irradiates measurement light from the side of the reaction vessel, the side wall portion of the reaction vessel irradiated with ultrasonic waves from the side by the stirring unit, and the measurement light irradiates from the side by the light source. The side wall portion is different from the side wall portion The stirring portion and the light source are arranged so as.
[0022]
(3) Preferably, in (1) and (2) above, the reaction vessel is irradiated with ultrasonic waves from the stirring unit and measurement light from the light source at the same position of the reaction disk. .
(4) Preferably, in the above (1) to (3), the stored reference value is compared with the absorbance measurement result from the photometer to determine whether or not the stirring operation of the stirring unit is sufficient. A control unit is provided.
[0023]
The reaction container can have an ultrasonic irradiation surface irradiated with ultrasonic waves and an absorbance measurement surface irradiated with measurement light at a position different from the ultrasonic irradiation surface. It is configured not to be irradiated with sound waves.
[0024]
For this reason, the ultrasonic wave irradiated onto the ultrasonic wave irradiation surface becomes excessive, and even if the ultrasonic wave irradiation surface is deformed, the absorbance measurement surface is not irradiated with the ultrasonic wave and is deformed by the ultrasonic wave. Can be avoided.
[0025]
Therefore, even when the ultrasonic intensity for stirring the specimen and the reagent becomes excessive, an automatic analyzer capable of accurate absorbance measurement can be realized.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an automatic analyzer according to the first embodiment of the present invention. FIG. 2 is a top view of the reaction disk 15 in the first embodiment of the present invention.
[0027]
1 and 2, the automatic analyzer 1 includes a control unit 2, a storage unit 3, an analysis unit 4, and a stirring unit 5.
[0028]
The control unit 2 includes an electronic circuit and a storage device that perform detailed operation control of each unit, and performs overall control of the operation of the device.
[0029]
The storage unit 3 includes a sample storage unit 7 containing a sample 6 and a reagent storage unit 14 containing a reagent 9.
[0030]
Further, the stirring unit 5 uses the ultrasonic wave 11 generated by the piezoelectric element 10 to cause the sample 6 discharged from the sample storage unit 7 to the reaction container 8 and the reagent 9 discharged from the reagent storage unit 14 to the reaction container 8. Stirring is performed by the swirl flow 44 due to the effect of the acoustic radiation pressure.
Further, the piezoelectric element 10 is placed below and on the side of the reaction vessel 8 and irradiated with the ultrasonic wave 11 from below to raise the liquid level of the mixture of the specimen 7 and the reagent 9, and then raise the liquid level. By irradiating the liquid with the ultrasonic wave 11 from the side to the part, the swirl flow 44 due to the acoustic radiation pressure is generated to perform stirring.
[0031]
The reaction vessel 8 in the stirring unit 5 and the analysis unit 4 is immersed in a heat retaining medium 13 typified by water stored in the reaction tank 12 and is kept at a constant temperature.
[0032]
The plurality of reaction vessels 8 are arranged on a reaction disk 15 and connected to a reaction disk motor 17 by a reaction disk shaft 16.
[0033]
The reaction disk motor 17 is rotated or moved together with the response disk 15 under the control of the control unit 2, and moves back and forth between the stirring unit 5 and the spectroscope 18.
The analysis unit 4 mixes and reacts the sample 6 and the reagent 9 in the reaction container 8 of the analysis unit 4, and analyzes the composition with the spectroscope 18.
[0034]
Further, at the stirring position 24, the sample discharged from the sample storage unit 7 to the reaction container 8 and the reagent 9 discharged from the reagent storage unit 14 to the reaction container 8 are stirred by the ultrasonic wave 11 generated by the piezoelectric element 10. To do.
[0035]
The plurality of reaction containers 8 are divided into four when viewed from the upper surface side of the reaction disk 15, and the side walls of the reaction containers 8 are perpendicular to the light beam 20 with respect to two intersecting lines 20 orthogonal to each other. Instead, they are arranged in an inclined state at an angle of about 45 degrees.
[0036]
Due to this arrangement relationship, the reaction vessel 8 has an ultrasonic irradiation surface 22 that is substantially orthogonal to the irradiated ultrasonic wave, and an absorbance measurement surface 21 that is approximately orthogonal to the irradiated measurement light. Can be configured such that the stirring unit 5 and the photometer 18 are arranged so as not to be irradiated with ultrasonic waves.
[0037]
Next, when the stirring of the sample is completed by the stirring unit 5, the reaction disk 15 is rotated, the reaction vessel 8 is moved to the photometric position 25, and the absorbance is measured with a photometer.
[0038]
As described above, according to the first embodiment of the present invention, the plurality of reaction vessels 8 are divided into four intersecting lines perpendicular to each other by dividing the reaction disk 15 into four when viewed from the upper surface side of the reaction disk 15. 20, the side wall of the reaction vessel 8 is not orthogonal to the light beam 20 and is inclined at an angle of about 45 degrees.
[0039]
Due to this arrangement relationship, the reaction vessel 8 can have an ultrasonic irradiation surface 22 that is substantially orthogonal to the irradiated ultrasonic wave and an absorbance measurement surface 21 that is approximately orthogonal to the irradiated measurement light. 22 and the absorbance measurement surface 21 are different surfaces, and the absorbance measurement surface 21 can be configured not to be irradiated with ultrasonic waves.
[0040]
For this reason, the ultrasonic wave irradiated to the ultrasonic irradiation surface 22 becomes excessive, and even if the ultrasonic irradiation surface 22 is deformed, the absorbance measurement surface 21 is not irradiated with ultrasonic waves. It can be avoided from being deformed.
[0041]
Therefore, even when the ultrasonic intensity for stirring the specimen and the reagent becomes excessive, an automatic analyzer capable of accurate absorbance measurement can be realized.
[0042]
FIG. 3 is a top view of the reaction disk 15 of the automatic analyzer according to the second embodiment of the present invention. A second embodiment of the present invention will be described with reference to FIGS.
In the first embodiment described above, the stirring position 24 and the photometric position 25 of the reaction vessel 8 are provided at different positions on the reaction disk 15.
[0043]
On the other hand, in the second embodiment of the present invention, each mechanism is configured so that the liquid sample accommodated in the reaction vessel 8 can be stirred and measured for absorbance at the same position on the reaction disk 15.
[0044]
That is, at the stirring / photometry position 26 on the reaction disk 15, the ultrasonic wave 11 is irradiated from the stirring unit 5 to the ultrasonic irradiation surface 22 of the reaction container 8, and at the same time, the light for measuring absorbance from the photometer 18 is received in the reaction container. The stirrer 5 and the photometer 18 are arranged so that the absorbance measurement surface 21 of 8 can be irradiated.
[0045]
This makes it possible to monitor the stirring state in real time at the same time as stirring is performed.
[0046]
Other configurations are the same as the configurations shown in FIGS. 1 and 2, and thus detailed description thereof is omitted.
[0047]
1 and 3, the sample 6 discharged from the sample storage unit 7 to the reaction container 8 and the reagent 9 discharged from the reagent storage unit 14 to the reaction container 8 are rotated on the reaction disk 15 to measure the sample to be measured. Is moved to the agitating / photometric position 26.
The control unit 2 sends a trigger signal for generating the ultrasonic wave 11 to the power supply unit 19 and applies the trigger signal to the piezoelectric element 10 via the power supply unit 19.
[0048]
The piezoelectric element 10 irradiates the reaction vessel 8 with ultrasonic waves 11 proportional to the voltage intensity and frequency supplied from the power supply unit 19 to stir the liquid sample.
By the way, in the stirring method using a spatula that is generally used conventionally, it is difficult to physically install the stirring mechanism at a position adjacent to the photometer 18. Even when it can be installed adjacently, since the spatula is inserted into the reaction vessel 8 and stirred, the stirring state cannot be confirmed in the stirring operation and in real time.
[0049]
On the other hand, in the second embodiment of the present invention, since the stirring unit 5 that stirs using the ultrasonic wave 11 is used, the control unit 2 sends the light from the photometer 18 simultaneously with stirring. Absorbance data, that is, the state of stirring can be confirmed in real time.
[0050]
As described above, according to the second embodiment of the present invention, even when the ultrasonic intensity for agitation between the specimen and the reagent becomes excessive, it is possible to perform accurate absorbance measurement and to reduce the ultrasonic intensity. An automatic analyzer capable of setting optimization in a short time can be realized.
[0051]
Next, a third embodiment of the present invention will be described with reference to FIG.
The third embodiment is an example based on the configuration of the first embodiment or the second embodiment.
[0052]
By the way, the reaction between a sample and a reagent is generally called a colorimetric reaction, and as its name indicates, the absorbance in a specific wavelength region changes. The amount of light absorbed by the affected wavelength increases and the amount of light incident on the corresponding photodetector decreases.
[0053]
Therefore, a stirring adjustment reagent is prepared, and the absorbance of the sample in which the reagent and the sample (distilled water or degassed water) are stirred is measured. Since the absorbance is determined by the dispensing amount of the reagent and the sample, the control unit 2 stores the value as a reference value.
[0054]
Thereafter, the control unit 2 compares the absorbance measurement result sent from the photometer 18 with the reference value in real time so as to obtain the absorbance, and determines whether or not the stirring operation of the stirring unit 5 is sufficient. If the stirring is insufficient, the trigger signal intensity for generating the ultrasonic wave 11 is varied.
[0055]
As a result, the ultrasonic intensity also changes proportionally, and the ultrasonic intensity can be varied until the measured absorbance reaches the reference value, that is, the optimal stirring state, and the optimal ultrasonic intensity can be set quickly.
[0056]
In addition, if the absorbance does not reach the reference value even if the ultrasonic intensity is varied, a failure of the optical system including the stirring unit 5 or the photometer 18 may be considered. Is possible.
[0057]
As described above, according to the third embodiment of the present invention, the configuration of the first embodiment or the second embodiment is provided, and the agitation adjusting reagent and the specimen are agitated and ultrasonic waves are obtained. Since it is configured to set the intensity, it is possible to obtain the same effect as the first embodiment or the second embodiment, and an automatic analysis capable of setting the optimum ultrasonic intensity in a short time. An apparatus can be realized.
[0058]
In the example described above, the plurality of reaction vessels 8 are divided into four when viewed from the upper surface side of the reaction disc 15, and the reaction vessels 8 are divided into two intersecting lines 20 orthogonal to each other. The side wall portion is not perpendicular to the light beam 20 and is arranged so as to be inclined at an angle of about 45 degrees, but the stirring portion 5 irradiates the ultrasonic irradiation surface of the reaction vessel 8 with ultrasonic waves, If the measurement light from the light source is configured to irradiate the measurement light to the measurement light irradiation surface at a position different from the ultrasonic irradiation surface of the reaction vessel 8, the side wall of the reaction vessel 8 is almost directed to the light beam 20. You may comprise so that it may arrange | position in the state which orthogonally crosses.
[0059]
Moreover, in the example mentioned above, although the reaction container 8 becomes prismatic shape, this invention is applicable even if it is not only this shape but cylindrical shape.
[0060]
【The invention's effect】
According to the present invention, there is provided an automatic analyzer having an ultrasonic wave generation source used for a stirring portion of an automatic analyzer, wherein the reaction vessel is arranged with an inclination with respect to the intersecting line of the reaction disk. By inventing, the following effects occur.
[0061]
The reaction container can have an ultrasonic irradiation surface and an absorbance measurement surface separately. As a result, the ultrasonic measurement surface is not irradiated with ultrasonic waves, so the ultrasonic wave irradiated to the ultrasonic irradiation surface becomes excessive. Even if the ultrasonic irradiation surface is deformed, the ultrasonic measurement surface It is not irradiated and can be avoided from being deformed by ultrasonic waves.
[0062]
Therefore, even when the ultrasonic intensity for stirring the specimen and the reagent becomes excessive, an automatic analyzer capable of accurate absorbance measurement can be realized.
[0063]
In addition, by making the agitation position and photometry position the same, even if the ultrasonic intensity for agitation between the specimen and the reagent becomes excessive, accurate absorbance measurement is possible and optimization of the ultrasonic intensity is possible. It is possible to realize an automatic analyzer capable of setting in real time in a short time.
[0064]
Further, by using the stirring adjustment reagent, an automatic analyzer capable of setting the optimum ultrasonic intensity in a short time can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an automatic analyzer according to an embodiment of the present invention.
FIG. 2 is a top view of a reaction disk of the automatic analyzer according to the first embodiment of the present invention.
FIG. 3 is a top view of a reaction disk of an automatic analyzer according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Control part 3 Storage part 4 Analysis part 5 Stirring part 6 Sample 7 Sample container 8 Reaction container 9 Reagent 10 Piezoelectric element 11 Ultrasonic wave 12 Reaction tank 13 Heat retention medium 14 Reagent container 15 Reaction disk 16 Reaction disk shaft 17 Reaction disk motor 18 Photometer 19 Power supply unit 20 Cross line 21 Absorbance measurement surface 22 Ultrasonic irradiation surface 23 Optical axis 24 Stirring position 25 Photometric position 26 Stirring / photometric position 27 Swirling flow

Claims (4)

超音波を反応容器に照射して、前記反応容器に収容された液体を攪拌する攪拌部と、光源から前記反応容器に照射される測定光に基づき、前記反応容器中の液体の吸光度を測定する光度計と、を備えた自動分析装置であって、
前記攪拌部は、前記反応容器の側方から超音波を照射し、かつ、前記光源は、前記反応容器の側方であって、前記超音波の照射方向とほぼ直交する方向に測定光を照射するように前記攪拌部及び光源が配置されていることを特徴とする自動分析装置。
Measure the absorbance of the liquid in the reaction container based on the stirring unit that irradiates the reaction container with ultrasonic waves and stirs the liquid contained in the reaction container and the measurement light emitted from the light source to the reaction container. An automatic analyzer equipped with a photometer,
The stirring unit irradiates ultrasonic waves from the side of the reaction vessel, and the light source irradiates measurement light in a direction substantially perpendicular to the ultrasonic wave irradiation direction at the side of the reaction vessel. The automatic analyzer is characterized in that the stirring unit and the light source are arranged.
複数の反応容器が配置される反応ディスクと、
超音波を前記反応容器に照射して、この反応容器に収容された液体を攪拌する攪拌部と、
前記反応容器の側方から照射される、光源からの測定光に基づき、前記反応容器中の液体の吸光度を測定する光度計と、
を備えた自動分析装置であって、
前記攪拌部は前記反応容器の側方から超音波を照射し、かつ、前記反応容器は4つの側壁部を有する角柱形状であり、前記反応容器の各側壁部は前記反応ディスクの直径方向に対してほぼ45度の角度で傾斜した状態で配置され、
前記光源は、前記反応容器の側方から測定光を照射し、前記反応容器の、前記攪拌部により前記側方から超音波が照射される側壁部と、前記光源により前記側方から測定光が照射される側壁部と、は異なる側壁部となるように前記攪拌部及び光源が配置されていることを特徴とする自動分析装置。
A reaction disc in which a plurality of reaction vessels are arranged;
A stirring unit that irradiates the reaction vessel with ultrasonic waves and stirs the liquid contained in the reaction vessel;
A photometer for measuring the absorbance of the liquid in the reaction vessel based on measurement light from a light source irradiated from the side of the reaction vessel;
An automatic analyzer equipped with
The stirring unit irradiates ultrasonic waves from the side of the reaction vessel, and the reaction vessel has a prismatic shape having four side walls, and each side wall of the reaction vessel is in a diameter direction of the reaction disk. Arranged at an angle of approximately 45 degrees,
The light source emits measurement light from the side of the reaction vessel, the side wall of the reaction vessel irradiated with ultrasonic waves from the side by the stirring unit, and the measurement light from the side by the light source. An automatic analyzer, wherein the stirring unit and the light source are arranged so as to be different from a side wall portion to be irradiated.
請求項1または2記載の自動分析装置において、前記反応容器は、前記反応ディスクの同一の位置にて前記攪拌部からの超音波と、前記光源からの測定光とが照射されることを特徴とする自動分析装置。  The automatic analyzer according to claim 1 or 2, wherein the reaction container is irradiated with ultrasonic waves from the stirring unit and measurement light from the light source at the same position of the reaction disk. Automatic analyzer to do. 請求項1〜3のうちのいずれか一項記載の自動分析装置において、記憶されたリファレンス値と前記光度計からの吸光度測定結果とを比較し、前記攪拌部の攪拌動作が十分か否かを判定する制御部を備えたことを特徴とする自動分析装置。  In the automatic analyzer according to any one of claims 1 to 3, the stored reference value is compared with the absorbance measurement result from the photometer, and whether or not the stirring operation of the stirring unit is sufficient. An automatic analyzer comprising a control unit for determining.
JP2000263853A 2000-08-31 2000-08-31 Automatic analyzer Expired - Lifetime JP3704035B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000263853A JP3704035B2 (en) 2000-08-31 2000-08-31 Automatic analyzer
US09/814,683 US6773672B2 (en) 2000-08-31 2001-03-15 Automatic analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263853A JP3704035B2 (en) 2000-08-31 2000-08-31 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2002071698A JP2002071698A (en) 2002-03-12
JP3704035B2 true JP3704035B2 (en) 2005-10-05

Family

ID=18751347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263853A Expired - Lifetime JP3704035B2 (en) 2000-08-31 2000-08-31 Automatic analyzer

Country Status (2)

Country Link
US (1) US6773672B2 (en)
JP (1) JP3704035B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168652A (en) * 2008-01-17 2009-07-30 Hitachi High-Technologies Corp Autoanalyzer
KR101463418B1 (en) * 2012-06-15 2014-11-21 고려대학교 산학협력단 Apparatus for measuring chemical reaction and method for measuring chemical reaction using the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9803684D0 (en) * 1998-02-24 1998-04-15 Genevac Ltd Method and apparatus for controlling temperature during evaporation of samples
US20070172866A1 (en) * 2000-07-07 2007-07-26 Susan Hardin Methods for sequence determination using depolymerizing agent
JP3892743B2 (en) * 2002-03-01 2007-03-14 日本碍子株式会社 Reaction cell and method of use thereof
WO2007015438A1 (en) * 2005-08-03 2007-02-08 Olympus Corporation Mixing device and analysis device having the mixing device
JP2007057318A (en) * 2005-08-23 2007-03-08 Olympus Corp Analyzer, feeder, stirring device and stirring method
JP4939910B2 (en) * 2006-11-29 2012-05-30 株式会社東芝 Micro chemical analysis system and micro chemical analysis device
US20130098163A1 (en) * 2010-01-20 2013-04-25 Blaze Medical Devices, LLC Erythrocyte mechanical fragility tester using disposable cartridges
JP5216621B2 (en) * 2009-02-12 2013-06-19 株式会社東芝 Automatic analyzer
EP2667180A4 (en) * 2011-01-21 2014-06-25 Hitachi High Tech Corp Automatic analysis device
JP7453678B2 (en) 2020-06-02 2024-03-21 国立大学法人 東京大学 Viscosity or elasticity measuring device and method
EP4163640A1 (en) 2020-06-08 2023-04-12 Hitachi High-Tech Corporation Automatic analysis device
EP3992610A1 (en) * 2020-10-30 2022-05-04 Hach Lange GmbH A process photometer arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762413A (en) * 1984-09-07 1988-08-09 Olympus Optical Co., Ltd. Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light
ATE139845T1 (en) * 1989-08-23 1996-07-15 Canon Kk METHOD FOR MEASURING AN IMMUNOLOGICALLY ACTIVE MATERIAL AND DEVICE SUITABLE FOR THE SAME
JP3168886B2 (en) 1994-09-20 2001-05-21 株式会社日立製作所 Chemical analyzer
JPH08189889A (en) 1994-10-19 1996-07-23 Nippon Tectron Co Ltd Photometric cell
JPH0958941A (en) 1995-08-22 1997-03-04 Hitachi Ltd Control device of elevator
JPH10123136A (en) 1996-10-24 1998-05-15 Nippon Tectron Co Ltd Automatic immunoanalysis device
JP3984748B2 (en) * 1999-03-17 2007-10-03 株式会社日立製作所 Chemical analyzer and chemical analysis system
EP1128185B8 (en) * 2000-02-25 2009-08-19 Hitachi, Ltd. Mixing device for automatic analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168652A (en) * 2008-01-17 2009-07-30 Hitachi High-Technologies Corp Autoanalyzer
KR101463418B1 (en) * 2012-06-15 2014-11-21 고려대학교 산학협력단 Apparatus for measuring chemical reaction and method for measuring chemical reaction using the same

Also Published As

Publication number Publication date
JP2002071698A (en) 2002-03-12
US6773672B2 (en) 2004-08-10
US20020025579A1 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP3704035B2 (en) Automatic analyzer
US6737021B2 (en) Automatic analyzer
JP3661076B2 (en) Chemical analyzer
JP3168886B2 (en) Chemical analyzer
JP3828818B2 (en) Chemical analysis apparatus and chemical analysis method
JP6567873B2 (en) Automatic analyzer
JP2006349582A (en) Agitating container and chemical analysis apparatus using the same
WO2020003769A1 (en) Chemical analysis device
JP2008203006A (en) Autoanalyzer
JP2000338113A (en) Chemical analyzer
JP2001215232A (en) Chemical analyzer
JP3642713B2 (en) Automatic analyzer
JP2004045113A (en) Automatic analyzer
JP3607557B2 (en) Automatic analyzer
JPH10300651A (en) Chemical analyzed
JP4045452B2 (en) Chemical analyzer
WO2006013832A1 (en) Specimen optical information recognizing device and its recognizing method
JP4377318B2 (en) Automatic analyzer
JP2000180368A (en) Chemical analyser
JP2002204939A (en) Agitator and analyzer provided therewith
US8790598B2 (en) Reaction cuvette for automatic analyzer and method of surface treatment for reaction cuvette
JP2007205816A (en) Analyzer and photometric method of it
JP2021175952A (en) Autoanalyzer
JP2007085805A (en) Automatic analyzer
JPH11271308A (en) Analyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Ref document number: 3704035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

EXPY Cancellation because of completion of term