JP4153987B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP4153987B2
JP4153987B2 JP2004249730A JP2004249730A JP4153987B2 JP 4153987 B2 JP4153987 B2 JP 4153987B2 JP 2004249730 A JP2004249730 A JP 2004249730A JP 2004249730 A JP2004249730 A JP 2004249730A JP 4153987 B2 JP4153987 B2 JP 4153987B2
Authority
JP
Japan
Prior art keywords
suspension
concentration
dispersion medium
liquid level
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004249730A
Other languages
Japanese (ja)
Other versions
JP2006064623A (en
Inventor
拓司 黒住
喜昭 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004249730A priority Critical patent/JP4153987B2/en
Priority to US11/213,358 priority patent/US7230698B2/en
Publication of JP2006064623A publication Critical patent/JP2006064623A/en
Application granted granted Critical
Publication of JP4153987B2 publication Critical patent/JP4153987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、粉粒体試料などの粒子の粒子径分布を測定する粒子径分布測定装置に関するものである。   The present invention relates to a particle size distribution measuring apparatus for measuring the particle size distribution of particles such as a granular sample.

粒子の測定技術は、薬品、食品、セラミックス、化粧品、塗料、色素など広い分野にわたって、粉粒体の性能を決定し、また、評価する上で不可欠であり、その重要性は日増しに高まっている。このような粉粒体の粒子径分布を測定する手法の一つにレーザ回折/散乱式粒子径分布測定装置がある。例えば特許文献1に示すものは、試料としての粉粒体を分散媒中に分布拡散して懸濁液とし、この懸濁液をフローセルに供給し、その状態でフローセルに対してレーザ光を照射し、そのとき懸濁液中の粒子によって散乱されたレーザ光を検出器によって検出し、これによって得られる回折及び/又は散乱光の強度を、フランホーファ回折やミー散乱理論に基づいて処理し、試料の粒子径を求めるものである。   Particle measurement technology is indispensable for determining and evaluating the performance of powders in a wide range of fields such as medicine, food, ceramics, cosmetics, paints, and pigments, and its importance is increasing day by day. Yes. One of the methods for measuring the particle size distribution of such a granular material is a laser diffraction / scattering particle size distribution measuring apparatus. For example, in Patent Document 1, a granular material as a sample is distributed and diffused in a dispersion medium to form a suspension, and this suspension is supplied to the flow cell. In this state, the flow cell is irradiated with laser light. Then, the laser light scattered by the particles in the suspension is detected by a detector, and the resulting diffraction and / or the intensity of the scattered light is processed based on the Franhofer diffraction or Mie scattering theory, The particle diameter is determined.

このようなフローセルへの懸濁液の供給のために、懸濁液を循環させる循環流路が形成されており、この循環流路には、分散媒中に試料を分散させてなる循環バスと、循環ポンプとが介在され、分散媒供給系を介して分散媒タンクから吸い上げた分散媒を循環バスに注入するようにしている。   In order to supply the suspension to such a flow cell, a circulation channel for circulating the suspension is formed, and in this circulation channel, there is a circulation bath in which a sample is dispersed in a dispersion medium. A circulation pump is interposed, and the dispersion medium sucked up from the dispersion medium tank is injected into the circulation bus through the dispersion medium supply system.

なお、循環バスには、懸濁液のオーバーフローならびに異常な液不足の防止を図るために、満水位及び渇水位を検知する水位センサが設けられ、分散媒の注入や懸濁液の適正な循環状態が確保されるようにしている。
特開2000−155088号公報
The circulation bath is equipped with a water level sensor that detects the full water level and drought level in order to prevent suspension overflow and abnormal liquid shortage. The state is ensured.
JP 2000-155088 A

ところで、試料の粒子径を適切に求めるためには、懸濁液の濃度を的確にコントロールすることが肝要である。上記特許文献1等は、懸濁液の濃度調整にあたり、循環流路に懸濁液を循環させている状態で、フローセルの検査光を照射し、この検査光の光源光量と透過光量との割合すなわち透過率に基づき濃度判定を行って、例えば濃度が濃いと判断される場合には循環流路から懸濁液を適宜量だけ排水し、しかる後、水位センサが循環バスの満水を検知するまで分散媒供給系を介して分散媒を供給し、この状態で再び循環流路に懸濁液を循環させて、検査光の照射による濃度判定を行うといった手順を、排水と満水注入を繰り返しながら行うようにしている。このため、微妙な注入等による調整が困難で、的確な濃度調整が難しく、ひいては粒子径分布測定に高い測定精度や再現性が得られないという問題を有している。   By the way, in order to appropriately determine the particle diameter of the sample, it is important to accurately control the concentration of the suspension. In adjusting the concentration of the suspension, the above-mentioned Patent Document 1 irradiates the flow cell inspection light in a state where the suspension is circulated in the circulation flow path, and the ratio between the light source amount of the inspection light and the transmitted light amount. That is, the concentration is determined based on the transmittance. For example, when it is determined that the concentration is high, the suspension is drained from the circulation channel by an appropriate amount, and then the water level sensor detects that the circulation bus is full. The procedure of supplying the dispersion medium via the dispersion medium supply system, circulating the suspension through the circulation channel again in this state, and determining the concentration by irradiating the inspection light is performed while repeating drainage and full water injection. I am doing so. For this reason, there is a problem that adjustment by subtle injection or the like is difficult, accurate concentration adjustment is difficult, and as a result, high measurement accuracy and reproducibility cannot be obtained in particle size distribution measurement.

本発明は、このような課題に着目してなされたものであって、分散媒中の粉粒体の濃度を効率的に自動調整する上で有用となる循環構造を備えた粒子径分布測定装置を提供することを目的としている。   The present invention has been made paying attention to such a problem, and is a particle size distribution measuring device having a circulation structure that is useful for efficiently and automatically adjusting the concentration of powder particles in a dispersion medium. The purpose is to provide.

本発明は、上記の目的を達成するために、次のような手段を講じたものである。   In order to achieve the above object, the present invention takes the following measures.

すなわち本発明は、この種の粒子径分布測定装置としての一般的構成を備えてなるものにおいて、循環バスにおける懸濁液の液面レベルを少なくとも多数点において検知する液レベル検知手段と、この液レベル検知手段の検知信号に基づいて前記分散媒の注入及び/又は前記懸濁液の排水を制御する制御手段とを設けており、前記制御手段が、懸濁液に含まれる粒子の濃度に関する情報を検査光の透過率等から取得する濃度情報取得部と、取得した濃度情報に基づいて懸濁液に含まれる粒子の濃度が所定濃度か否かを判断する第1の判断部と、この第1の判断部において濃いと判断した場合に必要な分散媒の注入量を算出する第1の算出部と、前記第1の算出部の算出値に基づいて分散媒の注入に必要な機器の駆動を行う駆動部とを備えることを特徴とする。
また、本発明は、この種の粒子径分布測定装置としての一般的構成を備えてなるものにおいて、循環バスにおける懸濁液の液面レベルを少なくとも多数点において検知する液レベル検知手段と、この液レベル検知手段の検知信号に基づいて前記分散媒の注入及び/又は前記懸濁液の排水を制御する制御手段とを設けており前記制御手段が、懸濁液に含まれる粒子の濃度に関する情報を検査光の透過率等から取得する濃度情報取得部と、取得した濃度情報に基づいて懸濁液に含まれる粒子の濃度が所定濃度か否かを判断する第1の判断部と、この第1の判断部において濃いと判断した場合に必要な分散媒の注入量を算出する第1の算出部と、前記注入量と前記液レベル検知手段が検知する液面レベルとから注入により満水となるか否かを判断する第2の判断部と、注入により満水となると判断した場合に必要な懸濁液の排水量及び分散媒の注入量を算出する第2の算出部と、前記第1の算出部及び/又は第2の算出部の算出値に基づいて分散媒の注入及び/又は懸濁液の排水に必要な機器の駆動を行う駆動部とを備えることを特徴とする
That is, the present invention comprises a general configuration as this kind of particle size distribution measuring apparatus, a liquid level detecting means for detecting the liquid level of the suspension in the circulation bath at at least a number of points, Control means for controlling the injection of the dispersion medium and / or drainage of the suspension based on the detection signal of the level detection means, and the control means provides information on the concentration of particles contained in the suspension. A concentration information acquisition unit that acquires the concentration of particles contained in the suspension based on the acquired concentration information, a first determination unit that determines whether the concentration of particles contained in the suspension is a predetermined concentration, A first calculation unit that calculates the injection amount of the dispersion medium required when it is determined that the determination unit is dark, and driving of equipment necessary for injection of the dispersion medium based on the calculated value of the first calculation unit Drive unit The features.
Further, the present invention comprises a general configuration as this kind of particle size distribution measuring device, a liquid level detecting means for detecting the liquid level of the suspension in the circulation bath at least at a number of points, and Control means for controlling injection of the dispersion medium and / or drainage of the suspension based on a detection signal of the liquid level detection means, and the control means relates to the concentration of particles contained in the suspension. A concentration information acquisition unit that acquires information from the transmittance of inspection light, a first determination unit that determines whether or not the concentration of particles contained in the suspension is a predetermined concentration based on the acquired concentration information, and When the first determination unit determines that the concentration is high, the first calculation unit that calculates the injection amount of the dispersion medium that is necessary, and the injection level and the liquid level detected by the liquid level detection means are filled with water. Judge whether or not A second determination unit, a second calculation unit that calculates a drainage amount of the suspension and an injection amount of the dispersion medium that are necessary when it is determined that the water is full by the injection, the first calculation unit and / or the second calculation unit And a driving unit that drives devices necessary for injecting the dispersion medium and / or draining the suspension based on the calculated values of the two calculating units .

このようなものであると、中間的な液面レベルを検知することができるので、分散媒の注入や懸濁液の排水をより細かく制御して、懸濁液の濃度調整等に有用となる循環バスの液面レベルの調整をより的確に行なうことが可能となる。   Since it is possible to detect an intermediate liquid level, it is useful for fine adjustment of the dispersion medium injection and suspension drainage to adjust the concentration of the suspension. It becomes possible to adjust the liquid level of the circulation bath more accurately.

液レベル検知手段は、複数の液レベルセンサを用いて構成してもよく、また多点検知可能ないし連続検知可能な1つの液レベルセンサによって構成してもよい。   The liquid level detection means may be configured using a plurality of liquid level sensors, or may be configured by a single liquid level sensor capable of multipoint detection or continuous detection.

液レベル検知手段の具体的な実施の態様としては、満水、渇水及びその間の1点ないし複数点を検知できる機能を有するものや、満水から渇水までの所定範囲を間欠的ないし連続的に検知できる機能を有するもの等が挙げられる。   Specific embodiments of the liquid level detection means include a function that can detect full water, drought, and one or more points between them, and a predetermined range from full water to drought can be detected intermittently or continuously. The thing etc. which have a function are mentioned.

懸濁液の濃度を自動調整可能とするためには、前記制御手段が、懸濁液に含まれる粒子の濃度に関する情報を検査光の透過率等から取得する濃度情報取得部と、取得した濃度情報に基づいて懸濁液に含まれる粒子の濃度が所定濃度か否かを判断する第1の判断部と、この第1の判断部において濃いと判断した場合に必要な分散媒の注入量を算出する第1の算出部と、前記第1の算出部の算出値に基づいて分散媒の注入に必要な機器の駆動を行う駆動部とを備えていることが望ましい。   In order to enable automatic adjustment of the concentration of the suspension, the control means acquires a concentration information acquisition unit that acquires information on the concentration of particles contained in the suspension from the transmittance of inspection light, and the acquired concentration A first determination unit that determines whether or not the concentration of the particles contained in the suspension is a predetermined concentration based on the information, and an injection amount of the dispersion medium that is necessary when the first determination unit determines that the concentration is high It is desirable to include a first calculation unit that calculates and a drive unit that drives a device necessary for injecting the dispersion medium based on the calculated value of the first calculation unit.

懸濁液の濃度を循環バスの容量に制限されずに自動調整可能とするためには、制御手段が、懸濁液に含まれる粒子の濃度に関する情報を検査光の透過率等から取得する濃度情報取得部と、取得した濃度情報に基づいて懸濁液に含まれる粒子の濃度が所定濃度か否かを判断する第1の判断部と、この第1の判断部において濃いと判断した場合に必要な分散媒の注入量を算出する第1の算出部と、前記注入量と前記液レベル検知手段が検知する液面レベルとから注入により満水となるか否かを判断する第2の判断部と、注入により満水となると判断した場合に必要な懸濁液の排水量及び分散媒の注入量を算出する第2の算出部と、前記第1の算出部及び/又は第2の算出部の算出値に基づいて分散媒の注入及び/又は懸濁液の排水に必要な機器の駆動を行う駆動部とを備えていることが望ましい。   In order to allow the suspension concentration to be automatically adjusted without being limited by the capacity of the circulation bath, the control means obtains information on the concentration of the particles contained in the suspension from the inspection light transmittance, etc. An information acquisition unit, a first determination unit that determines whether or not the concentration of particles contained in the suspension is a predetermined concentration based on the acquired concentration information, and when the first determination unit determines that the concentration is high A first calculating unit for calculating a required injection amount of the dispersion medium, and a second determination unit for determining whether or not the injection is full based on the injection amount and the liquid level detected by the liquid level detection means. And a second calculation unit that calculates a drainage amount of the suspension and an injection amount of the dispersion medium that are necessary when it is determined that the water will be full by the injection, and a calculation by the first calculation unit and / or the second calculation unit. Based on the value of the equipment required for injecting the dispersion medium and / or draining the suspension It is preferable that a driving unit that performs dynamic.

これらにおいて、制御手段は、第1の判断部において薄いと判断した場合に試料の投入を要求する要求部を更に具備していることが適切である。   In these, it is appropriate that the control means further includes a requesting unit that requests the introduction of the sample when it is determined that the first determining unit is thin.

本発明は、以上のような構成を通じて、循環バスの液面レベル調整をより細かく的確に行なうことができるので、例えば濃度調整に適用した場合等には、的確な希釈化等を通じて懸濁液を適切な濃度にコントロールし、ひいては粒子径の分布測定を高い測定精度の下に再現性良く行うことが可能となる。   The present invention can finely and accurately adjust the liquid level of the circulation bath through the above-described configuration. For example, when applied to concentration adjustment, the suspension is appropriately diluted. It is possible to control the concentration to an appropriate level and thus to measure the particle size distribution with high reproducibility with high measurement accuracy.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、この発明の一実施形態に係る光散乱式粒子径分布測定装置の構成を概略的に示す図である。この粒子径分布測定装置は、循環バス11とフローセル12の間を循環流路13を介し接続して粉粒体試料xの粒子を分散媒3a中に分散させた懸濁液1aを循環させるようにした懸濁液循環系1と、前記フローセル12内を流れる懸濁液1aに検査光であるレーザ光2aを照射しその回折及び/又は散乱光に基づいて前記懸濁液1aにおける粉粒体試料xの粒子径分布を測定する光学式測定系2と、前記懸濁液循環系1に分散媒3aを供給する分散媒供給系3と、前記循環流路1の一部に設けた排水口14から懸濁液1aを排水する懸濁液排水系4とにより構成される。   FIG. 1 is a diagram schematically showing a configuration of a light scattering particle size distribution measuring apparatus according to an embodiment of the present invention. This particle size distribution measuring apparatus connects the circulation bath 11 and the flow cell 12 via the circulation channel 13 so as to circulate the suspension 1a in which the particles of the particulate sample x are dispersed in the dispersion medium 3a. The suspension circulation system 1 and the suspension 1a flowing in the flow cell 12 are irradiated with laser light 2a as inspection light, and the granular material in the suspension 1a based on the diffraction and / or scattered light. An optical measurement system 2 for measuring the particle size distribution of the sample x, a dispersion medium supply system 3 for supplying the dispersion medium 3a to the suspension circulation system 1, and a drain port provided in a part of the circulation channel 1 14 and a suspension drainage system 4 for draining the suspension 1a.

前記懸濁液循環系1において、循環バス11は、投入される測定試料である粉粒体試料x(あるいはスラリー)とこれを分散させる分散媒3a(例えば純水やアルコールなど)を混合して懸濁液1aとするもので、上液槽部11aと下液槽部11bの間の中間液槽部11cに攪拌用モータ15aによって駆動可能な攪拌羽根15を浸漬するとともに、排水ポンプとしての役割を兼ねる遠心型の循環ポンプ16を循環バス11の底部に液密に取り付けて循環用モータ16aによって駆動可能としている。循環バス11内には、懸濁液1aの液面レベルを検出するための液レベル検知手段10(図2参照)が設けてある。そして、この循環バス11に付帯する前記循環ポンプ16の出口を循環流路13の一部をなす往路配管13aを介してフローセル12に接続し、フローセル12の出口を循環流路13の一部をなす復路配管13bを介して前記循環バス11に接続している。   In the suspension circulation system 1, the circulation bath 11 mixes a granular material sample x (or slurry) that is an input measurement sample and a dispersion medium 3 a (for example, pure water or alcohol) that disperses the powder sample. In the suspension 1a, the stirring blade 15 that can be driven by the stirring motor 15a is immersed in the intermediate liquid tank part 11c between the upper liquid tank part 11a and the lower liquid tank part 11b, and also functions as a drainage pump. A centrifugal circulation pump 16 that also serves as the above is liquid-tightly attached to the bottom of the circulation bus 11 and can be driven by a circulation motor 16a. In the circulation bath 11, liquid level detection means 10 (see FIG. 2) for detecting the liquid level of the suspension 1a is provided. Then, the outlet of the circulation pump 16 attached to the circulation bus 11 is connected to the flow cell 12 via an outgoing pipe 13a that forms a part of the circulation channel 13, and the outlet of the flow cell 12 is connected to a part of the circulation channel 13. The circulation bus 11 is connected via a return pipe 13b.

フローセル12は、試料室A内に配置され、外部から導入される懸濁液1aを一対の透光性のある透明板の間に液密に流通させて外部に導出し得るようにしたもので、透明板にレーザ光2aが照射される。   The flow cell 12 is arranged in the sample chamber A, and allows the suspension 1a introduced from the outside to flow out in a liquid-tight manner between a pair of translucent transparent plates. The plate is irradiated with laser light 2a.

往路配管13aは、途中に超音波を発生させる超音波振動子18を有しており、フローセル12に向かう懸濁液1aに粉粒体の凝集が起こることを防止している。   The forward piping 13 a has an ultrasonic transducer 18 that generates ultrasonic waves in the middle, and prevents aggregation of powder particles in the suspension 1 a toward the flow cell 12.

復路配管13bは、循環バス11内の中間液槽部11cに接続され、循環後の懸濁液1aを循環バス11に還流させるようにしている。   The return pipe 13 b is connected to the intermediate liquid tank section 11 c in the circulation bus 11 so that the circulated suspension 1 a is refluxed to the circulation bus 11.

一方、前記光学系測定系2は、図1に示すように、フローセル12を収容した試料室Aを包囲するようにレーザ光源21、投光レンズ22、狭角散乱光検出器23並びに広角散乱光検出器24を配置するとともに、狭角散乱光検出器23及び広角散乱光検出器24から出力される信号を処理する信号処理部25及び演算処理装置26から構成される。   On the other hand, as shown in FIG. 1, the optical system measurement system 2 includes a laser light source 21, a light projection lens 22, a narrow-angle scattered light detector 23, and a wide-angle scattered light so as to surround a sample chamber A containing a flow cell 12. The detector 24 is arranged, and the signal processing unit 25 and the arithmetic processing unit 26 that process signals output from the narrow-angle scattered light detector 23 and the wide-angle scattered light detector 24 are configured.

レーザ光源21は、フローセル12の対面位置に設けられ、平行なレーザ光2aを発光する。投光レンズ22はレーザ光源21とフローセル12との間に設けられ、レーザ光源21から出たレーザ光2aを適宜集光してフローセル12内の懸濁液1aに照射させる。   The laser light source 21 is provided at the facing position of the flow cell 12, and emits parallel laser light 2a. The light projection lens 22 is provided between the laser light source 21 and the flow cell 12, and appropriately collects the laser light 2 a emitted from the laser light source 21 to irradiate the suspension 1 a in the flow cell 12.

狭角散乱光検出器23は、フローセル12と直接対面しない位置、すなわちフローセル12を通過し可動ミラー23aで屈曲させたレーザ光2aが集光して焦点を結ぶ位置に配置される。この狭角散乱光検出器23は、集光レンズ22の光軸を中心として互いに半径の異なるリング状または半リング状の受光面をもつフォトセンサを複数個同心状に配列したもので、フローセル12内の粒子によって回折または散乱した集光レーザ光2xのうち比較的小さい角度で散乱/回折した光を各散乱角ごとにそれぞれ受光して、それらの光強度を測定するものである。すなわち、相対的に外周側に配置されるフォトセンサが散乱角のより大きい光を受光し、内周側に配置されるフォトセンサが散乱角のより小さい光を受光する。一般に粒子径が小さいほど散乱は大きくなるので、これにより外周側のフォトセンサの検出する光強度は粒子径のより小さい粒子の量を反映し、内周側のフォトセンサの検出する光強度は粒子径のより大きい試料粒子の量を反映していることになる。   The narrow-angle scattered light detector 23 is disposed at a position that does not directly face the flow cell 12, that is, a position where the laser light 2a that passes through the flow cell 12 and is bent by the movable mirror 23a is condensed and focused. The narrow-angle scattered light detector 23 is formed by concentrically arranging a plurality of photosensors having ring-shaped or semi-ring-shaped light receiving surfaces having different radii around the optical axis of the condenser lens 22. Of the condensed laser light 2x diffracted or scattered by the inner particles, light scattered / diffracted at a relatively small angle is received at each scattering angle, and the light intensity thereof is measured. That is, the photosensor disposed relatively on the outer peripheral side receives light having a larger scattering angle, and the photosensor disposed on the inner peripheral side receives light having a smaller scattering angle. In general, the smaller the particle size, the greater the scattering, so the light intensity detected by the outer photosensor reflects the amount of particles with a smaller particle size, and the light intensity detected by the inner photosensor This reflects the amount of sample particles with a larger diameter.

広角散乱光検出器24は、フローセル12の周囲に構成され、フローセル12内のより粒子径の小さい粒子によって回折または散乱した集光レーザ光2xのうち比較的大きい角度で散乱/回折した光を、各散乱角ごとに個別に検出する。具体的にこの広角散乱光検出器24は、狭角散乱光検出器23へ入光する集光レーザ光2xと異なる角度で散乱するレーザ光2xを受光し得る位置に設けられる複数のフォトセンサ24a〜24hからなり、それぞれの配設角度に応じて、フローセル12内の粒子による散乱光を散乱角度ごとに検出する。フォトセンサ24a〜24eが前方散乱光を、フォトセンサ24f〜24hが後方散乱光をそれぞれ検出する。   The wide-angle scattered light detector 24 is configured around the flow cell 12, and the light scattered / diffracted at a relatively large angle out of the condensed laser light 2 x diffracted or scattered by particles having a smaller particle diameter in the flow cell 12, Detect individually for each scattering angle. Specifically, the wide-angle scattered light detector 24 has a plurality of photosensors 24a provided at positions where the laser light 2x scattered at a different angle from the condensed laser light 2x incident on the narrow-angle scattered light detector 23 can be received. It consists of ˜24h, and the scattered light by the particles in the flow cell 12 is detected for each scattering angle in accordance with each arrangement angle. Photosensors 24a to 24e detect forward scattered light, and photosensors 24f to 24h detect backscattered light.

信号処理部25は、上記狭角散乱光検出器23やフォトセンサ24a〜24hから出力される信号を順次取り込み、AD変換して、演算処理装置26に入力する。   The signal processing unit 25 sequentially takes in signals output from the narrow-angle scattered light detector 23 and the photosensors 24a to 24h, performs AD conversion, and inputs the signals to the arithmetic processing unit 26.

演算処理装置26は、この実施形態においては汎用のコンピュータの機能を利用したもので、図3に示すように、CPU26a、メモリ26b、入出力インターフェース26c及びユーザーインターフェース26dを具備し、メモリ26bには、ディジタル信号に変換された狭角散乱光検出器23及びフォトセンサ24a〜24hの出力(光強度に関するディジタルデータ)をフラウンホーファ回折理論やミー散乱理論に基づき処理して粒子群における粒径分布を求めるためのプログラムや、透過光量及び照射光量に基づいて後述の濃度チェックを行うためのプログラム等が格納してある。そして、CPU26aは適宜これらのプログラムを読み出して所定の演算、加工を施し、その演算結果をメモリ26bに記憶し、或いはユーザーインターフェース26dの一部を構成するディスプレイ等に表示する。本実施形態はこのようにワイドレンジで回折光や散乱光を検出することにより、粒子群における粒径分布を、粒径の比較的大きなものから粒径の微小なものまで広い範囲にわたって一挙に求めることを可能にする。   In this embodiment, the arithmetic processing unit 26 uses a general-purpose computer function. As shown in FIG. 3, the arithmetic processing unit 26 includes a CPU 26a, a memory 26b, an input / output interface 26c, and a user interface 26d. The output of the narrow-angle scattered light detector 23 and the photosensors 24a to 24h (digital data regarding the light intensity) converted into digital signals is processed based on Fraunhofer diffraction theory and Mie scattering theory to obtain the particle size distribution in the particle group. And a program for performing a density check described later based on the transmitted light amount and the irradiated light amount are stored. The CPU 26a reads out these programs as appropriate, performs predetermined calculations and processing, stores the calculation results in the memory 26b, or displays them on a display or the like constituting a part of the user interface 26d. In this embodiment, by detecting diffracted light and scattered light in a wide range as described above, the particle size distribution in the particle group is obtained all at once from a relatively large particle size to a very small particle size. Make it possible.

なお、大粒子から微小粒子までのより幅広い測定レンジを確保するために、上記レーザ光2aのみならず、図1に示すような異なる波長のLED光2zを併用可能としている。このために本装置には、前記レーザ光源21、投光レンズ22、狭角散乱光検出器23に対応するLED光源21z、投光レンズ22z、受光器23zが設けてある。上記フォトセンサ24d、24e等はこのLED光2zの散乱光を受光するためにも用いられる。   In order to secure a wider measurement range from large particles to fine particles, not only the laser beam 2a but also LED beams 2z having different wavelengths as shown in FIG. 1 can be used in combination. For this purpose, this apparatus is provided with an LED light source 21z, a light projection lens 22z, and a light receiver 23z corresponding to the laser light source 21, the light projection lens 22, and the narrow-angle scattered light detector 23. The photosensors 24d and 24e are also used to receive the scattered light of the LED light 2z.

他方、前記分散媒供給系3は、分散媒貯留槽31と、一端をこの分散媒貯留槽31に浸漬させ他端を前記懸濁液循環系1に接続した分散媒供給配管32と、この分散媒供給配管32中に介在された注入ポンプ33とを具備するもので、注入ポンプ33を駆動することにより、分散媒貯留槽31から分散媒3aを吸い上げて懸濁液循環系1に供給するようにしている。   On the other hand, the dispersion medium supply system 3 includes a dispersion medium storage tank 31, a dispersion medium supply pipe 32 having one end immersed in the dispersion medium storage tank 31 and the other end connected to the suspension circulation system 1, and the dispersion medium. An injection pump 33 interposed in the medium supply pipe 32 is provided. By driving the injection pump 33, the dispersion medium 3 a is sucked up from the dispersion medium storage tank 31 and supplied to the suspension circulation system 1. I have to.

懸濁液排水系4は、前記懸濁液循環系1を構成する循環流路13に電磁式の切換弁17を介して接続されたもので、閉止位置で懸濁液排水系4を循環流路13から切り離し、開成位置で懸濁液排水系4の一端を循環流路13に接続して循環流路13内の懸濁液1aを他端側に位置するドレンに排出する。この切換弁17はソレノイドによって切換え駆動される。   The suspension drainage system 4 is connected to a circulation flow path 13 constituting the suspension circulation system 1 via an electromagnetic switching valve 17 and circulates through the suspension drainage system 4 at a closed position. Disconnected from the channel 13, one end of the suspension drainage system 4 is connected to the circulation channel 13 at the open position, and the suspension 1 a in the circulation channel 13 is discharged to the drain located on the other end side. The switching valve 17 is switched and driven by a solenoid.

次に、この粒子径分布測定装置の動作について説明する。先ず、循環バス11内へ粉粒体試料xを多めに投入する。次に、分散媒供給系3の注入ポンプ33を作動させて循環バス11内への分散媒の供給(注入)を開始する。このとき、切換弁17は循環モードにしておく。   Next, the operation of this particle size distribution measuring apparatus will be described. First, a large amount of the powder sample x is put into the circulation bath 11. Next, the injection pump 33 of the dispersion medium supply system 3 is operated to start supplying (injecting) the dispersion medium into the circulation bus 11. At this time, the switching valve 17 is set to the circulation mode.

循環バス11内及び循環流路13にわたって所定量の分散媒3aが供給されると、液レベル検知手段10の出力信号Sに基づいて分散媒供給系3の注入ポンプ33が停止し、分散媒3aの供給が停止する。   When a predetermined amount of the dispersion medium 3a is supplied in the circulation bus 11 and the circulation flow path 13, the injection pump 33 of the dispersion medium supply system 3 stops based on the output signal S of the liquid level detection means 10, and the dispersion medium 3a. Supply stops.

この後に、分散処理の動作を開始する操作により、循環用モータ16aが起動して循環ポンプ16が作動すると共に、超音波振動子18が作動する。これにより、粉粒体試料xの混入した懸濁液1aが、循環バス11内から循環流路13を流れ、その間にフローセル12を通過して再び循環バス11に戻るといった循環を繰り返す。   Thereafter, by the operation for starting the operation of the dispersion processing, the circulation motor 16a is activated, the circulation pump 16 is activated, and the ultrasonic transducer 18 is activated. As a result, the suspension 1a mixed with the particulate sample x is repeatedly circulated such that it flows through the circulation channel 13 from the circulation bath 11, passes through the flow cell 12 and returns to the circulation bus 11 again.

得られた懸濁液1aの濃度のチェックは、循環流路7内を循環する状態のもとで、測定系2のレーザ光源21からレーザ光2aをフローセル12に向けて照射することにより、そのときの光源光量と狭角散乱光検出器23が中心において検出する透過光量との割合すなわち透過率等に基づいて行われる。濃度チェックのためのプログラムは前述したようにメモリ26b内に格納してあり、CPU26aは分散処理の動作の開始に伴いそのプログラムを読み出して実行する。懸濁液1aの濃度が所定濃度でない場合は、分散媒3aの供給による希釈化や粉粒体試料xの投入による濃密化を経て再度濃度チェックに供され、フローセル12を流れる懸濁液1aが測定に適した濃度となったところで、粒子径分布測定が行われる。懸濁液1aが既に満水であるか或いは供給によって満水になる可能性がある場合には、先行して懸濁液排水系4を通じた懸濁液1aの排水が行われる。   The concentration of the obtained suspension 1a is checked by irradiating the flow cell 12 with laser light 2a from the laser light source 21 of the measurement system 2 in a state of circulating in the circulation channel 7. This is performed based on the ratio between the light amount of the light source and the transmitted light amount detected at the center by the narrow-angle scattered light detector 23, that is, the transmittance. The program for checking the density is stored in the memory 26b as described above, and the CPU 26a reads and executes the program as the distributed processing starts. When the concentration of the suspension 1a is not a predetermined concentration, the suspension 1a flowing through the flow cell 12 is subjected to a concentration check again after being diluted by supplying the dispersion medium 3a and being concentrated by adding the powder sample x. When the concentration is suitable for measurement, particle size distribution measurement is performed. If the suspension 1a is already full or may become full by supply, the suspension 1a is drained through the suspension drainage system 4 in advance.

以上の構成において、本実施形態は特に、図2に示す液レベル検知手段10に、多点検出式若しくは連続検出式の液レベルセンサ100を採用し、満水から渇水までの所定範囲を間欠的ないし連続的に検知するようにしている。そして、この液レベルセンサ100の検知信号Sを制御手段110に入力し、制御手段110から前記分散媒3aの注入及び/又は前記懸濁液1aの排水を制御するようにしている。   In the above configuration, the present embodiment employs a multi-point detection type or continuous detection type liquid level sensor 100 in the liquid level detection means 10 shown in FIG. It is designed to detect continuously. The detection signal S of the liquid level sensor 100 is input to the control means 110, and the control means 110 controls the injection of the dispersion medium 3a and / or the drainage of the suspension 1a.

同図の液レベルセンサ100は、リードリレーを用いたフロート式のもので、ガイド棒100aに沿ってフロート100bが昇降すると、フロート100b側に設けた図示しない端子がガイド棒100a側に軸方向に沿って設けた図示しない多点検出端子若しくは連続検出端子に接触して、液面レベルを間欠的ないし連続的に検知するものである。勿論、液レベルセンサには種々のものを用いることができ、これについては後述する。   The liquid level sensor 100 shown in the figure is a float type sensor using a reed relay. When the float 100b moves up and down along the guide rod 100a, a terminal (not shown) provided on the float 100b side extends in the axial direction on the guide rod 100a side. The liquid level is detected intermittently or continuously by contacting a multi-point detection terminal or a continuous detection terminal (not shown) provided along the line. Of course, various liquid level sensors can be used, which will be described later.

制御手段110は、本実施形態では前記演算処理手段26がその役割を兼ねるもので、メモリ26b内には液レベル制御プログラムが格納してあり、CPU26aは適宜そのプログラムを読み込み、前記入出力インターフェース26cを介して液レベルセンサ100の出力信号Sを入力し、或いはユーザーインターフェース26dを介してオペレータによる設定値の入力を得て、所定の演算加工を施す。そして、これらが協働して、図4に示す濃度情報取得部111、第1の判断部112、第1の算出部113、第2の判断部114、第2の算出部115、駆動部116、及び要求部117としての役割を果たす。   In the present embodiment, the arithmetic processing means 26 serves as the control means 110, and the liquid level control program is stored in the memory 26b. The CPU 26a reads the program as appropriate, and the input / output interface 26c. The output signal S of the liquid level sensor 100 is input via the input, or the set value input by the operator is obtained via the user interface 26d, and predetermined arithmetic processing is performed. And these cooperate, density information acquisition part 111 shown in Drawing 4, the 1st judgment part 112, the 1st calculation part 113, the 2nd judgment part 114, the 2nd calculation part 115, and drive part 116 , And the request unit 117.

濃度情報取得部111は、懸濁液1aに含まれる粒子の濃度をレーザ光2aの透過率から取得するもので、所定の演算等によって取得するほか、前述した濃度チェックプログラムの演算結果を単に取得してくるだけのものも含む。取得する濃度情報は、この実施形態のように濃度そのものの値である必要は必ずしもなく、濃度に比例するパラメータであればよい。   The concentration information acquisition unit 111 acquires the concentration of the particles contained in the suspension 1a from the transmittance of the laser light 2a. The concentration information acquisition unit 111 simply acquires the calculation result of the above-described concentration check program in addition to the predetermined calculation. Including just what comes. The acquired density information is not necessarily the value of the density itself as in this embodiment, and may be a parameter proportional to the density.

第1の判断部112は、取得した濃度に基づいて懸濁液1aに含まれる粒子の濃度が所定濃度か否かを判断する。所定濃度は予めデフォルト値として記憶されているが、オペレータが設定値を与えるようにしても勿論構わない。   The first determination unit 112 determines whether the concentration of particles contained in the suspension 1a is a predetermined concentration based on the acquired concentration. Although the predetermined density is stored in advance as a default value, it is of course possible that the operator gives a set value.

第1の算出部113は、前記第1の判断部112において濃いと判断した場合に必要な分散媒3aの注入量を算出する。濃度差と必要な注入量とは、予め数式やテーブル等により関連づけられて記憶されている。   The first calculation unit 113 calculates the injection amount of the dispersion medium 3a required when the first determination unit 112 determines that the concentration is high. The density difference and the required injection amount are stored in advance in association with mathematical formulas or tables.

第2の判断部114は、前記注入量と前記液レベルセンサ100の検知信号Sが示す液面レベルとから注入により満水となるか否かを判断する。液面レベルと満水までの注入可能量とも、必要に応じて予め数式やテーブル等により関連づけて記憶される。この第2の判断部114は、前記第1の算出部113が注入量を算出するのに先行してその判断を行う。   The second determination unit 114 determines whether or not the injection is full based on the injection amount and the liquid level indicated by the detection signal S of the liquid level sensor 100. The liquid level and the injectable amount up to full water are stored in association with each other in advance using mathematical formulas, tables, or the like as necessary. The second determination unit 114 makes the determination prior to the first calculation unit 113 calculating the injection amount.

第2の算出部115は、前記第2の判断部114が注入により満水となると判断した場合に、所要濃度を達成する上で必要な懸濁液1aの排水量及び分散媒3aの注入量を算出する。   The second calculation unit 115 calculates the amount of the drainage of the suspension 1a and the amount of injection of the dispersion medium 3a necessary to achieve the required concentration when the second determination unit 114 determines that the water will be filled by the injection. To do.

駆動部116は、前記第1の算出部113及び/又は第2の算出部115の算出値に基づいて分散媒3aの注入及び/又は懸濁液1aの排水に必要な機器の駆動を行う。この実施形態では、図2に示すように、分散媒3aの注入のために注入ポンプ33をON/OFF駆動し、懸濁液1aの排水のために切換弁17を開閉駆動する。この場合駆動部116は、算出した注入量に基づいて注入ポンプ33の吐出量を直接監視制御してもよいし、注入量に応じて目標液面レベルを割り出し、液レベルセンサ100の検知信号Sに基づいて目標レベルに到達したときに注入ポンプ33を停止するON/OFF駆動を行うようにしもよい。分散媒3が水道水のように予圧されている場合には電磁バルブが一般に用いられ、上記懸濁液1aの排出のための切換弁17にも電磁バルブが用いてあるが、これらの場合にも注入量に応じて目標液面レベルを割り出し、液レベルセンサ100の検知信号Sに基づいて目標レベルに到達したときにバルブを閉止する開閉制御を行うようにすればよい。   The driving unit 116 drives devices necessary for injecting the dispersion medium 3a and / or draining the suspension 1a based on the calculated values of the first calculating unit 113 and / or the second calculating unit 115. In this embodiment, as shown in FIG. 2, the injection pump 33 is driven ON / OFF to inject the dispersion medium 3a, and the switching valve 17 is driven to open and close to drain the suspension 1a. In this case, the drive unit 116 may directly monitor and control the discharge amount of the injection pump 33 based on the calculated injection amount, or may determine the target liquid level according to the injection amount and detect the detection signal S of the liquid level sensor 100. Based on the above, ON / OFF drive may be performed to stop the infusion pump 33 when the target level is reached. When the dispersion medium 3 is preloaded like tap water, an electromagnetic valve is generally used, and an electromagnetic valve is also used as the switching valve 17 for discharging the suspension 1a. In these cases, Alternatively, the target liquid level may be determined according to the injection amount, and the opening / closing control for closing the valve when the target level is reached based on the detection signal S of the liquid level sensor 100 may be performed.

要求部117は、前記第1の判断部112において薄いと判断した場合に粉粒体試料xの投入を要求するもので、必要に応じユーザーインターフェース26dを介してオペレータに文字や音声等で報知する。単に投入を要求するだけでなく、必要な投入量を割り出して要求するようにすれば一層好ましい。   The requesting unit 117 requests the input of the granular material sample x when the first determining unit 112 determines that it is thin, and notifies the operator by text, voice, or the like via the user interface 26d as necessary. . It is more preferable not only to request the input but to determine and request the required input amount.

図5は、この制御手段110が実行するプログラムの概要を表したフローチャートである。   FIG. 5 is a flowchart showing an outline of a program executed by the control means 110.

濃度調整が開始されると(S1)、先ず濃度を取得し(S2)、適正濃度(所定濃度)か否かを判断する(S3)。そして、濃いと判断した場合には、適正濃度にするために必要な分散媒3の注入量を算出し(S4)、算出した注入量の注入により循環バス11が満水量を越えるか否かを判断する(S5)。越えないと判断した場合には、その注入量を注入し(S6)、越えると判断した場合には、適正濃度になるために最適な懸濁液1の排出量と分散媒3の注入量を再度算出する(S7)。そして、算出量に基づいてその排出、注入を行う(S8、S9)。一方、ステップS3で薄いと判断した場合は、試料投入を促すメッセージを表示するなどして、粉粒体試料xの投入を要求する(S10)。その後、オペレータによる試料投入(S12)を待つが、オペレータがそのまま測定に移る旨を入力すると濃度調整プロセスは終了する(S14)。上記ステップS6、S9、S12後は、何れも循環、攪拌により懸濁液1aを均質化して(S13)、再度ステップS2の前に戻る。   When density adjustment is started (S1), the density is first acquired (S2), and it is determined whether or not the density is appropriate (predetermined density) (S3). When it is determined that the concentration is high, the injection amount of the dispersion medium 3 necessary to obtain an appropriate concentration is calculated (S4), and whether or not the circulation bath 11 exceeds the full water amount by injection of the calculated injection amount is determined. Judgment is made (S5). If it is determined that it does not exceed, the injection amount is injected (S6), and if it is determined that it exceeds, the optimum discharge amount of the suspension 1 and the injection amount of the dispersion medium 3 are set to obtain an appropriate concentration. Calculate again (S7). Then, discharge and injection are performed based on the calculated amount (S8, S9). On the other hand, if it is determined in step S3 that the sample is thin, a message prompting sample introduction is displayed or the like to request the introduction of the powder sample x (S10). Thereafter, the operator waits for the sample to be loaded (S12), but when the operator inputs that the measurement is to be continued, the concentration adjustment process ends (S14). After Steps S6, S9, and S12, the suspension 1a is homogenized by circulation and stirring (S13), and the process returns to Step S2 again.

なお、循環バス11が満水になるか否かを考慮しない場合には、第2の判断部114及び第2の算出部115、並びにステップS5〜S8は不要である。   In addition, when not considering whether the circulation bus 11 becomes full, the 2nd judgment part 114, the 2nd calculation part 115, and step S5-S8 are unnecessary.

以上のように、本実施形態は、循環バス11における懸濁液1aの液面レベルを少なくとも多数点において検知する液レベル検知手段10と、この液レベル検知手段10の検知信号Sに基づいて分散媒3aの注入及び/又は懸濁液1aの排水を制御する制御手段110とを設けたものである。   As described above, the present embodiment is distributed based on the liquid level detecting means 10 for detecting the liquid level of the suspension 1a in the circulation bath 11 at at least a number of points and the detection signal S of the liquid level detecting means 10. A control means 110 for controlling the injection of the medium 3a and / or the drainage of the suspension 1a is provided.

このように、本実施形態は中間的な液面レベルを検知することができるので、分散媒3aの注入や懸濁液1aの排水をより細かく制御することができ、懸濁液1aの濃度調整等に有用となる循環バス11の液面レベルの調整をより的確に行なうことが可能となる。   Thus, since this embodiment can detect an intermediate liquid level, the injection of the dispersion medium 3a and the drainage of the suspension 1a can be controlled more finely, and the concentration adjustment of the suspension 1a can be performed. It is possible to more accurately adjust the liquid level of the circulation bath 11 that is useful for the above.

特に、液レベル検知手段10に、多点検知ないし連続検知可能な1つの液レベルセンサ100を採用しているので、構造簡素にしてコンパクト化が図れ、微調整にも適した構成を実現することができる。   In particular, since one liquid level sensor 100 capable of multi-point detection or continuous detection is adopted as the liquid level detection means 10, the structure can be simplified, the size can be reduced, and a configuration suitable for fine adjustment can be realized. Can do.

また、制御手段110は、濃度取得、濃度判定、注入量の算出、注入ポンプ33及び切換弁17の駆動という一連の制御を自動的に行うように構成されているので、注入や排水を模索しながら濃度調整を行なう必要がなく、速やかに希釈による濃度調整を行なって粒子径の分布測定に速やかに移行することが可能となる。   In addition, the control means 110 is configured to automatically perform a series of controls such as concentration acquisition, concentration determination, calculation of the injection amount, and driving of the injection pump 33 and the switching valve 17, so that it searches for injection and drainage. However, it is not necessary to adjust the concentration, and it is possible to quickly shift to particle size distribution measurement by quickly adjusting the concentration by dilution.

特に、制御手段110は、注入によって循環バス11がオーバーフローするような場合にも事前にこれを判断して排水を行うようにしており、極力無駄のない希釈が行えるので、濃度調整の効率化を実効あるものにすることができる。   In particular, the control means 110 makes a determination in advance even when the circulation bus 11 overflows due to the injection, and drains the waste water, so that dilution can be performed as little as possible. It can be effective.

さらに、制御手段110は、濃度が薄いと判断した場合には粉粒体試料xの投入を要求するようにしているので、オペレータが速やかに要求に応じることで、濃度を高める必要がある状況にも効率良く対応することが可能となる。   Furthermore, since the control means 110 requests the input of the granular material sample x when it is determined that the concentration is low, the operator needs to promptly respond to the request to increase the concentration. Can be handled efficiently.

なお、各部の具体的構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、液レベル検知手段を、図6に示すように複数の液レベルセンサ200を用いれることによって安価に構成することができ、或いは、図7に示すように、光の反射率の違いや屈折角度の違いを用いた光学式、導電式、静電容量式、超音波式などの非接触センサ300を用いることによって循環バス11に物理的に浸漬して攪拌の妨げとなること等を有効に回避することが可能となる。   For example, the liquid level detecting means can be constructed at low cost by using a plurality of liquid level sensors 200 as shown in FIG. 6, or the difference in light reflectance and refraction as shown in FIG. By using the non-contact sensor 300 such as an optical type, a conductive type, a capacitance type, and an ultrasonic type using a difference in angle, it is effectively immersed in the circulation bath 11 and hindering stirring. It can be avoided.

本発明の一実施形態に係る粒子径分布測定装置の概要を示すシステム図。The system diagram which shows the outline | summary of the particle diameter distribution measuring apparatus which concerns on one Embodiment of this invention. 同実施形態における液レベル検知手段の構成を示す図。The figure which shows the structure of the liquid level detection means in the embodiment. 同実施形態で用いる演算処理装置の機能説明図。Functional explanatory drawing of the arithmetic processing unit used in the embodiment. 同実施形態における制御手段の構成を示す図。The figure which shows the structure of the control means in the same embodiment. 同実施形態において実施される濃度調整の手順を示すフローチャート。6 is a flowchart showing a density adjustment procedure performed in the embodiment. 本発明の他の実施形態を示す図。The figure which shows other embodiment of this invention. 本発明の更に他の実施形態を示す図。The figure which shows other embodiment of this invention.

符号の説明Explanation of symbols

S…検知信号
x…粉粒体
1…懸濁液循環系
1a…懸濁液
2…光学式側定系
3…分散媒供給系
3a…分散媒
4…懸濁液排水系
11…循環バス
12…フローセル
13…循環流路
10…液レベル検知手段
100、200、300…液レベルセンサ
110…制御手段
111…濃度情報取得部
112…第1の判断部
113…第1の算出部
114…第2の判断部
115…第2の算出部
116…駆動部
117…要求部
DESCRIPTION OF SYMBOLS S ... Detection signal x ... Granule 1 ... Suspension circulation system 1a ... Suspension 2 ... Optical side fixed system 3 ... Dispersion medium supply system 3a ... Dispersion medium 4 ... Suspension drainage system 11 ... Circulation bus 12 ... Flow cell 13 ... Circulating flow path 10 ... Liquid level detection means 100, 200, 300 ... Liquid level sensor 110 ... Control means 111 ... Concentration information acquisition part 112 ... First judgment part 113 ... First calculation part 114 ... Second Determination unit 115 ... second calculation unit 116 ... drive unit 117 ... request unit

Claims (5)

循環バスとフローセルとを循環流路を介し接続して粒子を分散媒中に分散させた懸濁液を循環させるようにした懸濁液循環系と、前記フローセル内を流れる懸濁液に検査光を照射しその回折及び/又は散乱光に基づいて前記懸濁液における試料の粒子径分布を測定する光学式測定系と、前記懸濁液循環系に分散媒を供給する分散媒供給系と、前記循環流路に設けた排水口から懸濁液を排水する懸濁液排水系とを具備してなるものにおいて、
前記循環バスにおける懸濁液の液面レベルを少なくとも多数点において検知する液レベル検知手段と、この液レベル検知手段の検知信号に基づいて前記分散媒の注入及び/又は前記懸濁液の排水を制御する制御手段とを設けており、
前記制御手段が、懸濁液に含まれる粒子の濃度に関する情報を検査光の透過率等から取得する濃度情報取得部と、取得した濃度情報に基づいて懸濁液に含まれる粒子の濃度が所定濃度か否かを判断する第1の判断部と、この第1の判断部において濃いと判断した場合に必要な分散媒の注入量を算出する第1の算出部と、前記第1の算出部の算出値に基づいて分散媒の注入に必要な機器の駆動を行う駆動部とを備えることを特徴とする粒子径分布測定装置。
A suspension circulation system in which a circulation bath and a flow cell are connected via a circulation channel to circulate a suspension in which particles are dispersed in a dispersion medium, and an inspection light is supplied to the suspension flowing in the flow cell. An optical measurement system that measures the particle size distribution of the sample in the suspension based on diffraction and / or scattered light, a dispersion medium supply system that supplies a dispersion medium to the suspension circulation system, In what comprises a suspension drainage system that drains suspension from a drain outlet provided in the circulation channel,
Liquid level detection means for detecting the liquid level of the suspension in the circulation bath at at least a number of points, and injection of the dispersion medium and / or drainage of the suspension based on detection signals of the liquid level detection means Control means to control,
The control means obtains information on the concentration of particles contained in the suspension from the inspection light transmittance and the like, and the concentration of particles contained in the suspension is predetermined based on the obtained concentration information. A first determination unit that determines whether the concentration is a concentration; a first calculation unit that calculates an injection amount of a dispersion medium that is required when the first determination unit determines that the concentration is high; and the first calculation unit A particle size distribution measuring apparatus comprising: a drive unit that drives a device necessary for injecting the dispersion medium based on the calculated value of
循環バスとフローセルとを循環流路を介し接続して粒子を分散媒中に分散させた懸濁液を循環させるようにした懸濁液循環系と、前記フローセル内を流れる懸濁液に検査光を照射しその回折及び/又は散乱光に基づいて前記懸濁液における試料の粒子径分布を測定する光学式測定系と、前記懸濁液循環系に分散媒を供給する分散媒供給系と、前記循環流路に設けた排水口から懸濁液を排水する懸濁液排水系とを具備してなるものにおいて、
前記循環バスにおける懸濁液の液面レベルを少なくとも多数点において検知する液レベル検知手段と、この液レベル検知手段の検知信号に基づいて前記分散媒の注入及び/又は前記懸濁液の排水を制御する制御手段とを設けており、
前記制御手段が、懸濁液に含まれる粒子の濃度に関する情報を検査光の透過率等から取得する濃度情報取得部と、取得した濃度情報に基づいて懸濁液に含まれる粒子の濃度が所定濃度か否かを判断する第1の判断部と、この第1の判断部において濃いと判断した場合に必要な分散媒の注入量を算出する第1の算出部と、前記注入量と前記液レベル検知手段が検知する液面レベルとから注入により満水となるか否かを判断する第2の判断部と、注入により満水となると判断した場合に必要な懸濁液の排水量及び分散媒の注入量を算出する第2の算出部と、前記第1の算出部及び/又は第2の算出部の算出値に基づいて分散媒の注入及び/又は懸濁液の排水に必要な機器の駆動を行う駆動部とを備えることを特徴とする粒子径分布測定装置。
A suspension circulation system in which a circulation bath and a flow cell are connected via a circulation channel to circulate a suspension in which particles are dispersed in a dispersion medium, and an inspection light is supplied to the suspension flowing in the flow cell. An optical measurement system that measures the particle size distribution of the sample in the suspension based on diffraction and / or scattered light, a dispersion medium supply system that supplies a dispersion medium to the suspension circulation system, In what comprises a suspension drainage system that drains suspension from a drain outlet provided in the circulation channel,
Liquid level detection means for detecting the liquid level of the suspension in the circulation bath at at least a number of points, and injection of the dispersion medium and / or drainage of the suspension based on detection signals of the liquid level detection means Control means to control,
The control means obtains information on the concentration of particles contained in the suspension from the inspection light transmittance and the like, and the concentration of particles contained in the suspension is predetermined based on the obtained concentration information. A first determination unit that determines whether the concentration is a concentration; a first calculation unit that calculates an injection amount of a dispersion medium required when the first determination unit determines that the concentration is high; the injection amount and the liquid A second determination unit that determines whether or not the water level is filled by injection from the liquid level detected by the level detection means, and the amount of the drainage of the suspension and the injection of the dispersion medium that are necessary when it is determined that the water level is full by the injection A second calculation unit for calculating the amount, and driving of equipment necessary for injecting the dispersion medium and / or draining the suspension based on the calculated values of the first calculation unit and / or the second calculation unit. A particle size distribution measuring device comprising: a drive unit for performing the operation.
液レベル検知手段が、満水、渇水及びその間の1点ないし複数点を検知するものである請求項1又は2記載の粒子径分布測定装置。 The particle size distribution measuring apparatus according to claim 1 or 2 , wherein the liquid level detecting means detects full water, drought, and one or more points therebetween. 液レベル検知手段が、満水から渇水までの所定範囲を間欠的ないし連続的に検知するものである請求項1又は2記載の粒子径分布測定装置。 The particle size distribution measuring apparatus according to claim 1 or 2 , wherein the liquid level detection means detects a predetermined range from full water to drought intermittently or continuously. 制御手段が、第1の判断部において薄いと判断した場合に試料の投入を要求する要求部を更に具備する請求項1、2、3又は4記載の粒子径分布測定装置。 The particle size distribution measuring apparatus according to claim 1, 2, 3, or 4 , further comprising a requesting unit that requests the introduction of a sample when the control means determines that the first determining unit is thin.
JP2004249730A 2004-08-30 2004-08-30 Particle size distribution measuring device Expired - Fee Related JP4153987B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004249730A JP4153987B2 (en) 2004-08-30 2004-08-30 Particle size distribution measuring device
US11/213,358 US7230698B2 (en) 2004-08-30 2005-08-26 Particle size distribution measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249730A JP4153987B2 (en) 2004-08-30 2004-08-30 Particle size distribution measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008149331A Division JP2008249724A (en) 2008-06-06 2008-06-06 Device for measuring particle size distribution

Publications (2)

Publication Number Publication Date
JP2006064623A JP2006064623A (en) 2006-03-09
JP4153987B2 true JP4153987B2 (en) 2008-09-24

Family

ID=36111228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249730A Expired - Fee Related JP4153987B2 (en) 2004-08-30 2004-08-30 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4153987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202334633A (en) * 2022-01-21 2023-09-01 日商堀場製作所股份有限公司 Dilution mechanism, particle diameter distribution measurement system, particle diameter distribution measurement method, and particle diameter distribution measurement computer program product

Also Published As

Publication number Publication date
JP2006064623A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US8345248B2 (en) Optical cavity enhanced turbidimeter and turbidity measuring method
US7230698B2 (en) Particle size distribution measurement device
TWI585389B (en) System and methods of determining liquid phase turbidity of multiphase wastewater
JP4915369B2 (en) Particle size distribution measuring apparatus and volume concentration calculation method using the same
EP2096441A2 (en) Automatic analyzer
SE542222C2 (en) Sensor for level and turbidity measurment
CN106053751A (en) Water quality monitoring system
JP4153987B2 (en) Particle size distribution measuring device
EP3165902A1 (en) A method and a sensor for measuring suspended solids in a liquid
JP2008249724A (en) Device for measuring particle size distribution
JPH11295220A (en) Liquid sample inspection method and device
CN207894785U (en) A kind of automatic laser particle size analyzing device for calcium carbonate production system
JP3409510B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP4101217B2 (en) Particle size distribution measuring device
EP3203210B1 (en) Particle size distribution measuring apparatus and particle size distribution measuring method
GB2490537A (en) Non-contact absorbance measurement
JP4074492B2 (en) Particle size distribution measuring device
JPS6237334B2 (en)
JP3783606B2 (en) Particle size distribution measuring device
JP2006064621A (en) Particle size distribution measuring device
JPH03122550A (en) Method and apparatus of measuring grain
JP3783574B2 (en) Particle size distribution measuring device
JPH09292329A (en) Turbidimeter
JPS595857B2 (en) Oil concentration measuring device
US20230251177A1 (en) Device and method for detecting the flocculation threshold of a colloidal medium, in particular a medium comprising asphaltenes, by addition of aliphatic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4153987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees