JPH09292329A - Turbidimeter - Google Patents

Turbidimeter

Info

Publication number
JPH09292329A
JPH09292329A JP10530496A JP10530496A JPH09292329A JP H09292329 A JPH09292329 A JP H09292329A JP 10530496 A JP10530496 A JP 10530496A JP 10530496 A JP10530496 A JP 10530496A JP H09292329 A JPH09292329 A JP H09292329A
Authority
JP
Japan
Prior art keywords
concentration
cell
turbidity
low
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10530496A
Other languages
Japanese (ja)
Inventor
Katsunobu Abe
勝信 安部
Yoshiro Ito
善郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CORONA DENKI KK
CORONA ELECTRIC
Original Assignee
CORONA DENKI KK
CORONA ELECTRIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CORONA DENKI KK, CORONA ELECTRIC filed Critical CORONA DENKI KK
Priority to JP10530496A priority Critical patent/JPH09292329A/en
Publication of JPH09292329A publication Critical patent/JPH09292329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the frequency of cleanings inside cells and to decrease the load of maintenance control by using a plurality of sample cells as the cells for high- concentration samples and the cells for low-concentration samples. SOLUTION: An iron-concentration monitor is constituted by combining a first turbidity detecting part and a second turbidity detecting part B, having an identical structure. At the time of the continuous measurement of water quality in clean-up at the starting time after the disassembled cleaning in a steam turbine, e.g. high- concentration sample liquid is supplied into a cell 6 of the turbidity detecting part A from a water supply port 7, and monitoring is performed. When after starting, the iron concentration becomes low by the elapse of time and the measured result of an amplifier operator 13 becomes the turbidity of switching target of the high- concentration monitor and the low-concentration monitor preset beforehand, the detecting part is changed to the turbidity detector B by a switching device 16. Low- concentration sample liquid is supplied into the cell 6' of the turbidity detector B, and the low-concentration monitoring at the time of the so-called ordinary operation is performed. Thus, the number of times of the cleanings inside the cells 6 and 6' can be decreased, and the cell 6 used for the high-concentration monitoring can be cleansed during the low-concentration monitoring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、濁度計、特に、散
乱光/透過光比率により光学的に濁度を求める濁度計に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbidimeter, and more particularly to a turbidimeter for optically determining turbidity by a scattered light / transmitted light ratio.

【0002】[0002]

【従来の技術】光学的に濁度を求める濁度測定方式は、
電子工業、製薬、食品、化粧品分野での水質管理、火力
発電所、原子力発電所用水の水質管理の一貫として広く
用いられており、特に用水中に含まれる鉄濃度を測定す
る鉄濃度モニタに利用されている。
2. Description of the Related Art A turbidity measuring method for optically obtaining turbidity is as follows.
Widely used as an integral part of water quality management in the electronics industry, pharmaceuticals, food, and cosmetics, as well as water quality management for thermal power plants and nuclear power plants.Used especially for iron concentration monitors that measure the concentration of iron in service water. Have been.

【0003】図3は火力発電所等で使用される鉄濃度モ
ニタの構成図を示すもので、この方式は、工業用水試験
方法JISK0101に準拠した散乱光/透過光比率の
光学的濁度測定方法に基づいて構成されている。
FIG. 3 shows a block diagram of an iron concentration monitor used in a thermal power plant, etc. This method is an optical turbidity measuring method of scattered light / transmitted light ratio in accordance with JISK0101 for industrial water test method. It is based on.

【0004】図3において、1は光源、2はコンデンサ
レンズ、3はピンホール、4はコリメータレンズ、5は
フィルタ、6は給水口7及び排水口8が設けられている
試料測定用のセル、9は集光レンズ、10は透過光検出
器、11及び12は散乱光検出器、13は透過光検出器
10及び散乱光検出器11、12による検出値の増幅
器、演算器、14は表示メータ、15はセル6内の試料
液が光学系に漏洩しないように境界に設置されているガ
ラス窓を示している。
In FIG. 3, 1 is a light source, 2 is a condenser lens, 3 is a pinhole, 4 is a collimator lens, 5 is a filter, 6 is a sample measuring cell provided with a water supply port 7 and a drainage port 8, Reference numeral 9 is a condenser lens, 10 is a transmitted light detector, 11 and 12 are scattered light detectors, 13 is an amplifier of the detected values by the transmitted light detector 10 and the scattered light detectors 11 and 12, a calculator, and 14 is a display meter. , 15 are glass windows installed at the boundary so that the sample liquid in the cell 6 does not leak to the optical system.

【0005】このような構成を有する鉄濃度モニタにお
いては、光源1の光をコンデンサレンズ2、ピンホール
3、コリメータレンズ4、フィルタ5からなる光学系に
よって平行光束とし、セル6内に誘導する。セル6内に
は、例えば、コロイド状鉄を含んだ試料液が、給水口7
から流入し、排水口8から流出する。
In the iron concentration monitor having such a configuration, light from the light source 1 is converted into a parallel light flux by an optical system including a condenser lens 2, a pinhole 3, a collimator lens 4, and a filter 5, and is guided into a cell 6. In the cell 6, for example, a sample solution containing colloidal iron is supplied with a water supply port 7.
And flows out from the drain 8.

【0006】光束がセル6内の試料液に照射されると液
中に浮遊する鉄の粒子(粒径0.1〜10μm)により
透過した光と散乱した光とに別れ、それぞれ透過光検出
器10及び散乱光検出器11、12に入り、光電信号と
して増幅器、演算器13に入力する。増幅器、演算器1
3では、散乱光/透過光の比率を演算し鉄濃度(濁度)
として表示メータ14に表示される。
When the light beam is irradiated on the sample liquid in the cell 6, the light is separated into light transmitted and scattered by the iron particles (particle diameter: 0.1 to 10 μm) suspended in the liquid, and each of the transmitted light detectors is used. 10 and the scattered light detectors 11 and 12 are input to the amplifier and the arithmetic unit 13 as photoelectric signals. Amplifier, arithmetic unit 1
In 3, calculate the ratio of scattered light / transmitted light and calculate iron concentration (turbidity)
Is displayed on the display meter 14.

【0007】濃度の演算は、The calculation of the density is as follows:

【0008】[0008]

【数1】T=Ts/(nTs+Tt) ここで、Tは濁度、Tsは散乱光の強度、Ttは透過光
の強度、nは係数である。
T = Ts / (nTs + Tt) where T is turbidity, Ts is the intensity of scattered light, Tt is the intensity of transmitted light, and n is a coefficient.

【0009】によって行われる。[0009]

【0010】濁度の測定値から鉄濃度に換算するには、
濁度値とTP−TZ法による鉄濃度との回帰分析を行い
得られたパラメータを換算係数として用いる。鉄濃度モ
ニタの測定値とTP−TZ法による手分析値との相関
は、相関係数が0.9以上の相関性があることが実験に
より確認されている。
To convert the measured turbidity value into iron concentration,
A parameter obtained by performing regression analysis of the turbidity value and the iron concentration by the TP-TZ method is used as a conversion coefficient. It has been experimentally confirmed that the correlation between the measured value of the iron concentration monitor and the manual analysis value by the TP-TZ method has a correlation coefficient of 0.9 or more.

【0011】なお、TP−TZ法はJISに決められて
いるように、TP−TZ試薬と鉄イオンとの反応によっ
て、発色する青色の吸光度を測定する比色分析法である
が、試料水の前処理に時間がかかり、測定もオフライン
で行うのでやはり時間がかかる。また、試薬を使用する
ので試薬の調整や補給が必要であり、取扱いが複雑で高
価となる。
The TP-TZ method, which is a colorimetric analysis method for measuring the absorbance of a blue color developed by a reaction between a TP-TZ reagent and iron ions, as specified in JIS, is a colorimetric method. Pre-processing takes time, and measurement is also done offline, which is also time-consuming. Further, since a reagent is used, adjustment and replenishment of the reagent are required, which makes the handling complicated and expensive.

【0012】これに対して、濁度測定方式による鉄濃度
測定方式は、TP−TZ法の不具合を解決するもので、
最初に濁度値とTP−TZ法による手分析値との相関を
とっておけば、オンライで連続して鉄濃度を測定表示が
できるので発電所などのクリーンアップ時の洗浄水の傾
向管理や、連続管理に有効な手段である。
On the other hand, the iron concentration measuring method by the turbidity measuring method solves the problem of the TP-TZ method.
By first correlating the turbidity value with the manual analysis value by the TP-TZ method, the iron concentration can be continuously measured and displayed online, so that it is possible to control the tendency of cleaning water during cleanup at power plants, etc. , Is an effective means for continuous management.

【0013】[0013]

【発明が解決しようとする課題】火力発電所の発電機は
年に1回定期検査が行われる。蒸気タービン内の分解清
掃後、水洗浄を行うが、そのとき鉄濃度モニタを用いて
起動時クリンアップの水質連続測定を行い、その後通常
運転時の水質監視を継続している。すなわち、クリーン
アップ時の高濃度モニタ(2000ppb以上)として
の使用から通常運転時の低濃度モニタ(数ppb以下)
としての使用まで一貫して使用されるので、高濃度モニ
タとして動作している間にセル内が汚れるので、低濃度
モニタとして精度よく濁度の測定を行うためには、2〜
3週間に一回のセル内洗浄が必要である。セル内洗浄を
行う場合には、洗浄後にスパン調整をそれぞれの測定箇
所毎に行う必要があるので、保守管理上の負担となって
いる。
The generator of a thermal power plant undergoes a periodic inspection once a year. After disassembly and cleaning in the steam turbine, water cleaning is performed. At that time, continuous measurement of cleanup water quality at startup using an iron concentration monitor is performed, and then water quality monitoring during normal operation is continued. That is, from the use as a high concentration monitor (2000 ppb or more) at the time of cleanup, to the low concentration monitor (several ppb or less) during normal operation.
Since the cell is contaminated during operation as a high-concentration monitor because it is used consistently until the use as a
Intracellular washing is required once every three weeks. When cleaning the inside of the cell, it is necessary to perform span adjustment for each measurement point after cleaning, which is a burden on maintenance management.

【0014】本発明は、高濃度モニタ及び低濃度モニタ
として使用する濁度計のセル内洗浄の回数を減少させ、
保守管理の負担の軽減を可能とすることを目的とするも
のである。
The present invention reduces the number of times of in-cell cleaning of a turbidimeter used as a high concentration monitor and a low concentration monitor,
The purpose is to reduce the burden of maintenance management.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
にとられた本発明はの構成は次の如くである。
SUMMARY OF THE INVENTION The present invention, which has been made to solve the above problems, has the following constitution.

【0016】(1) 微粒体の懸濁する試料液が継続し
て送給される試料液用のセルに光束を照射し、入射光に
対する透過光又は散乱光の比率から前記試料液の濁度を
求める濁度計において、前記試料液用のセルを少なくと
も二個有し、該試料液用のセルの一部を高濃度試料用セ
ル、一部を低濃度試料用セルとして切り換え可能な構造
になっていることを特徴とする。
(1) A sample liquid cell in which a sample liquid in which fine particles are suspended is continuously fed is irradiated with a light beam, and the turbidity of the sample liquid is determined from the ratio of transmitted light or scattered light to incident light. In a turbidimeter for determining the above, a structure having at least two cells for the sample solution, and a part of the cells for the sample solution can be switched as a high-concentration sample cell and a part as a low-concentration sample cell It is characterized by becoming.

【0017】(2) (1)において、前記高濃度試料
用のセルと前記低濃度試料用のセルがそれぞれ1個より
なり、あらかじめ設定した濁度において、前記セルへの
前記試料液の供給、該試料液への前記光束の照射、前記
透過光、前記散乱光の検出器に対する電源の供給等を切
り換える、前記高濃度試料用のセルによる測定を前記低
濃度試料用のセルによる測定に切り換える手段を有する
ことを特徴とする。
(2) In (1), there is one cell for the high-concentration sample and one cell for the low-concentration sample, and the sample solution is supplied to the cell at a preset turbidity. Means for switching the measurement by the cell for the high-concentration sample to the measurement by the cell for the low-concentration sample, switching the irradiation of the light flux to the sample solution, the supply of power to the detector of the transmitted light, the scattered light, etc. It is characterized by having.

【0018】(3) (1)又は(2)において、前記
高濃度試料用のセルと、前記低濃度試料用セルの光源が
単一光源よりなることを特徴とする。
(3) In (1) or (2), the light source of the cell for the high concentration sample and the light source of the cell for the low concentration sample consist of a single light source.

【0019】(4) (1)又は(2)又は(3)にお
いて、前記濁度計が、用水中に含まれる鉄濃度を測定す
る鉄濃度モニタであることを特徴とする。
(4) In (1), (2) or (3), the turbidimeter is an iron concentration monitor for measuring the concentration of iron contained in the water.

【0020】[0020]

【発明の実施の形態】図1は本発明の濁度計の実施の形
態における鉄濃度モニタの構成を示す説明図で、この鉄
濃度モニタは同一構造の第1濁度検出部A及び第2濁度
検出部Bの2系統を組み合わせて構成されており、図3
と同一の部品については同一の符号を付してあり、第2
の濁度検出部Bの部品にはダッシュ(’)が付してあ
る。16は第1濁度検出部Aと第2濁度検出部Bとの切
換器を示している。
FIG. 1 is an explanatory view showing the structure of an iron concentration monitor in an embodiment of a turbidimeter of the present invention. The iron concentration monitor has a first turbidity detection section A and a second turbidity detection unit which have the same structure. It is configured by combining two systems of the turbidity detection unit B.
The same parts as those of
Parts of the turbidity detection unit B are marked with a dash ('). Reference numeral 16 denotes a switch between the first turbidity detecting section A and the second turbidity detecting section B.

【0021】この鉄濃度モニタにおいては、例えば、第
1の濁度検出部Aを高濃度モニタとして用い、第2の濁
度検出部Bを低濃度モニタとして用いる。
In this iron concentration monitor, for example, the first turbidity detector A is used as a high concentration monitor and the second turbidity detector B is used as a low concentration monitor.

【0022】蒸気タービン内の分解清掃後、起動時クリ
ーンアップの水質連続測定の際には、高濃度の試料液
は、給水口7から第1の濁度検出部Aのセル6内に供給
され、排水口8から排出される。この第1の濁度検出部
Aは、所謂、高濃度モニタとして作用し、この場合、光
源1からの光はコンデンサレンズ2、ピンホール3、コ
リメータレンズ4、フィルタ5及びガラス窓15を経て
セル6に入る。セル6内の試料液の中の鉄の微粒子に照
射した光は、散乱光と透過光に別れて、透過光検出器1
0、散乱光検出器11、12に入り、光電信号として増
幅器、演算器13に入力する。
After disassembling and cleaning the inside of the steam turbine, at the time of continuous water quality measurement at start-up, a high-concentration sample liquid is supplied from the water supply port 7 into the cell 6 of the first turbidity detection unit A. , Discharged from the drainage port 8. The first turbidity detector A acts as a so-called high-concentration monitor. In this case, the light from the light source 1 passes through the condenser lens 2, the pinhole 3, the collimator lens 4, the filter 5 and the glass window 15, and the cell. Enter 6. The light irradiated on the iron fine particles in the sample solution in the cell 6 is divided into scattered light and transmitted light, and the transmitted light detector 1
0, the scattered light detectors 11 and 12 are input, and are input to the amplifier and the calculator 13 as photoelectric signals.

【0023】起動時から時間が経過し、鉄濃度の低くな
った試料液は第1の濁度検出部Aから第2の濁度検出部
Bによる測定に切り換えられる。第2の濁度検出部Bに
よる測定は第1の濁度検出部Aと全く同様に行われる。
After a lapse of time from the time of start-up, the sample solution having a low iron concentration is switched from the first turbidity detecting section A to the second turbidity detecting section B for measurement. The measurement by the second turbidity detection unit B is performed in exactly the same manner as the first turbidity detection unit A.

【0024】第1の濁度検出部Aと第2の濁度検出部B
の切り換えは切換器16で行われ、表示メータ14に表
示される。切換器16内部には、第1の濁度検出部Aの
セル6の濃度をモニタして、前もって設定した濃度と比
較する機能を有しており、その出力信号で切り換えるよ
うになっている。また、第1の濁度検出部Aと第2の濁
度検出部Bにおける試料液の系統も同じ信号で切り換え
るようになっている。
First turbidity detecting section A and second turbidity detecting section B
Is switched by the switch 16 and displayed on the display meter 14. The switch 16 has a function of monitoring the concentration of the cell 6 of the first turbidity detection unit A and comparing it with a preset concentration, and the output signal thereof is used for switching. Further, the system of the sample liquid in the first turbidity detecting section A and the second turbidity detecting section B is also switched by the same signal.

【0025】従って、高濃度モニタとして動作させてい
る場合、切換器16への増幅器、演算器13の測定結果
があらかじめ設定しておいた高濃度モニタと低濃度モニ
タとの切り換え目標の濁度となったときには、高濃度モ
ニタ側ヘの試料液の供給、排出を停止し、透過光検出器
10、散乱光検出器11、12への電源の供給を停止
し、低濃度モニタ側ヘの試料液の供給、排出を開始し、
透過光検出器10、散乱光検出器11、12への電源の
供給を行うようにして、高濃度モニタと低濃度モニタと
の切り換えの自動化が可能となっている。
Therefore, when operating as a high-concentration monitor, the measurement result of the amplifier and the arithmetic unit 13 for the switching device 16 and the turbidity of the switching target of the high-concentration monitor and the low-concentration monitor set in advance are set. When this happens, the supply and discharge of the sample solution to the high-concentration monitor side is stopped, the power supply to the transmitted light detector 10 and the scattered light detectors 11 and 12 is stopped, and the sample solution to the low-concentration monitor side is stopped. Supply and discharge of
By supplying power to the transmitted light detector 10 and the scattered light detectors 11 and 12, switching between the high concentration monitor and the low concentration monitor can be automated.

【0026】図4は散乱光における濃度と光出力電圧の
関係図で、横軸、縦軸には、それぞれ、濃度(pp
b)、光出力電圧(mV)がとってあり、図5はクリー
ンアップ時間と濃度の関係図で、横軸、縦軸には、それ
ぞれ、時間(hr)、濃度(ppb)がとってある。図
4と図5の関係より、第1の濁度検出部Aと第2の濁度
検出部Bとの切り換え時期をきめることができる。この
実施の態様における鉄濃度モニタにおいては、4時間後
の20ppbでセルの切り換えを行うようにした。即
ち、高濃度試料液をセル6で4時間測定を行い、給水口
7(電磁弁)を閉じて、セル2’の給水口7’(電磁
弁)を開き低濃度モニタとしての測定を継続するような
構造とすることによって、時間と共に少しずつ汚れてき
て低濃度測定に性能が保持出来ないという問題が解決さ
れた。
FIG. 4 is a diagram showing the relationship between the density of scattered light and the light output voltage. The horizontal axis and the vertical axis respectively represent the density (pp
b), the optical output voltage (mV) is taken, and FIG. 5 is a relationship diagram of the cleanup time and the concentration. The horizontal axis and the vertical axis show the time (hr) and the concentration (ppb), respectively. . From the relationship between FIG. 4 and FIG. 5, it is possible to determine the timing of switching between the first turbidity detection unit A and the second turbidity detection unit B. In the iron concentration monitor in this embodiment, the cells were switched at 20 ppb after 4 hours. That is, the high-concentration sample solution is measured in the cell 6 for 4 hours, the water inlet 7 (solenoid valve) is closed, and the water inlet 7 '(solenoid valve) of the cell 2'is opened to continue the measurement as a low concentration monitor. With such a structure, the problem that the performance is not maintained for low-concentration measurement due to little stains over time has been solved.

【0027】従来の鉄濃度モニタはセルが1つであっ
て、高濃度から低濃度までの液の測定に使用していたの
で、2〜3週間毎にセルの洗浄をしなければならなかっ
た。この実施の態様の鉄濃度モニタにおいては、セルを
例えば2個のセルを有する構造としてあるので、高濃度
用セルとして使用するものと低濃度セルとして使用する
ものを分け、切り換えて使用することにより低濃度モニ
タの使用期間を長くすることが可能になり、セルの洗浄
は3〜6か月に1回で済むようになった。すなわち、セ
ル内の洗浄の回数を減らすことが可能になり、また前も
って設定した濃度で自動的に切り換えることができ、高
濃度モニタとして使用したセルは、低濃度モニタによる
測定中に洗浄作業を行うことができるので、連続測定が
可能である。
Since the conventional iron concentration monitor has only one cell and is used for measuring a liquid having a high concentration to a low concentration, the cell must be washed every 2-3 weeks. . In the iron concentration monitor of this embodiment, since the cell has a structure having, for example, two cells, the one used as the high concentration cell and the one used as the low concentration cell are divided and used by switching. It has become possible to extend the period of use of the low-concentration monitor, and the cell can be cleaned once every 3 to 6 months. That is, it is possible to reduce the number of washings in the cell, and it is possible to switch automatically at a preset concentration, and the cell used as a high-concentration monitor performs washing work during measurement by the low-concentration monitor. Therefore, continuous measurement is possible.

【0028】図2は本発明の他の実施の態様の鉄濃度モ
ニタで、図1の鉄濃度モニタで高濃度用モニタの光源と
低濃度用モニタの光源を1個の光源で動作可能としたも
ので、光源1及び1’を光源位置可変器17で切り換え
可能(図2の光源1及び1’は同一光源の位置を切り換
えた状態を示している)にし、切り換え器16による試
料液の供給口7、7’、排出口8、8’の開閉、増幅
器、演算器13及び13’の切り換え時に光源位置可変
器17の切り換えを実施できるようになっている。
FIG. 2 shows an iron concentration monitor according to another embodiment of the present invention. In the iron concentration monitor of FIG. 1, the light source for the high concentration monitor and the light source for the low concentration monitor can be operated by one light source. Therefore, the light sources 1 and 1 ′ can be switched by the light source position changer 17 (the light sources 1 and 1 ′ in FIG. 2 show a state in which the positions of the same light source are changed), and the supply of the sample solution by the switch 16 The light source position varying device 17 can be switched when the ports 7, 7 ', the outlets 8, 8'are opened and closed, and the amplifiers and the arithmetic units 13 and 13' are switched.

【0029】このような構成の鉄濃度モニタも、図1の
鉄濃度モニタと同様に作用し同様の効果を得ることがで
き、さらに光源は1個あれば良いので光源のバラツキの
影響を除くことができる。
The iron concentration monitor having such a structure operates in the same manner as the iron concentration monitor of FIG. 1 and can obtain the same effect. Further, since only one light source is required, the influence of variations in the light source can be eliminated. You can

【0030】[0030]

【発明の効果】本発明は、高濃度モニタ及び低濃度モニ
タとして使用する濁度計のセル内洗浄の回数を減少さ
せ、保守管理の負担の軽減を可能とするもので、産業上
の効果の大なるものである。
INDUSTRIAL APPLICABILITY The present invention reduces the number of times of washing in a turbidimeter used as a high-concentration monitor and a low-concentration monitor in a cell, and can reduce the burden of maintenance management. It is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の濁度計の実施の態様の鉄濃度モニタの
説明図である。
FIG. 1 is an explanatory diagram of an iron concentration monitor according to an embodiment of a turbidimeter of the present invention.

【図2】同じく他の鉄濃度モニタの説明図である。FIG. 2 is an explanatory diagram of another iron concentration monitor.

【図3】従来用いられている鉄濃度モニタの概略構成図
である。
FIG. 3 is a schematic configuration diagram of a conventionally used iron concentration monitor.

【図4】本発明の原理を説明するための濃度と光出力電
圧との関係図である。
FIG. 4 is a relationship diagram of concentration and optical output voltage for explaining the principle of the present invention.

【図5】本発明の原理を説明するためのクリーンアップ
時間と濃度の関係図である。
FIG. 5 is a relationship diagram of cleanup time and concentration for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

A…第1の濁度検出部、B…第2の濁度検出部、1、
1’…光源、2、2’…コンデンサレンズ、3、3’…
ピンホール、4、4’…コリメータレンズ、5、5’…
フィルタ、6、6’…セル、7、7’…給水口、8、
8’…排水口、9、9’…集光用レンズ、10、10’
…透過光検出器、11、11’、12、12’…散乱光
検出器、13、13’…増幅器、演算器、14…表示メ
ータ、15、15’…ガラス窓、16…切換器、17…
光源位置可変器。
A ... 1st turbidity detection part, B ... 2nd turbidity detection part, 1,
1 '... light source, 2 2' ... condenser lens 3, 3 '...
Pinholes 4, 4 '... Collimator lenses 5, 5' ...
Filter, 6, 6 '... Cell, 7, 7' ... Water inlet, 8,
8 '... Drainage port, 9, 9' ... Condensing lens 10, 10 '
... Transmitted light detector, 11, 11 ', 12, 12' ... Scattered light detector, 13, 13 '... Amplifier, calculator, 14 ... Display meter, 15, 15' ... Glass window, 16 ... Switching device, 17 …
Light source position variable device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 微粒体の懸濁する試料液が継続して送給
される試料液用のセルに光束を照射し、入射光に対する
透過光又は散乱光の比率から前記試料液の濁度を求める
濁度計において、前記試料液用のセルを少なくとも二個
有し、該試料液用のセルの一部を高濃度試料用セル、一
部を低濃度試料用セルとして切り換え可能な構造になっ
ていることを特徴とする濁度計。
1. A turbidity of the sample solution is determined from the ratio of transmitted light or scattered light to incident light by irradiating a light beam to a sample solution cell to which a sample solution in which fine particles are suspended is continuously fed. The turbidimeter to be obtained has at least two cells for the sample solution, and has a structure in which some of the cells for the sample solution can be switched as cells for high-concentration sample and some as cells for low-concentration sample. Turbidimeter characterized by
【請求項2】 前記高濃度試料用のセルと前記低濃度試
料用のセルがそれぞれ1個よりなり、あらかじめ設定し
た濁度において、前記セルへの前記試料液の供給、該試
料液への前記光束の照射、前記透過光、前記散乱光の検
出器に対する電源の供給等を切り換える、前記高濃度試
料用のセルによる測定を前記低濃度試料用のセルによる
測定に切り換える手段を有する請求項1に記載されてい
る濁度計。
2. The cell for the high-concentration sample and the cell for the low-concentration sample are each one, and the sample solution is supplied to the cell and the sample solution is supplied to the cell at a preset turbidity. The means for switching the measurement by the cell for the high-concentration sample to the measurement by the cell for the low-concentration sample, which switches the irradiation of the light flux, the supply of power to the detector of the transmitted light, the scattered light, and the like. Turbidimeter described.
【請求項3】 前記高濃度試料用のセルと、前記低濃度
試料用セルの光源が単一光源よりなる請求項1又は2に
記載されている濁度計。
3. The turbidimeter according to claim 1, wherein the light source of the high concentration sample cell and the light source of the low concentration sample cell are a single light source.
【請求項4】 前記濁度計が、用水中に含まれる鉄濃度
を測定する鉄濃度モニタである請求項1又は2又は3に
記載されている濁度計。
4. The turbidimeter according to claim 1, 2 or 3, wherein the turbidimeter is an iron concentration monitor that measures the concentration of iron contained in the water.
JP10530496A 1996-04-25 1996-04-25 Turbidimeter Pending JPH09292329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10530496A JPH09292329A (en) 1996-04-25 1996-04-25 Turbidimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10530496A JPH09292329A (en) 1996-04-25 1996-04-25 Turbidimeter

Publications (1)

Publication Number Publication Date
JPH09292329A true JPH09292329A (en) 1997-11-11

Family

ID=14403970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10530496A Pending JPH09292329A (en) 1996-04-25 1996-04-25 Turbidimeter

Country Status (1)

Country Link
JP (1) JPH09292329A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234606A (en) * 2005-02-25 2006-09-07 Yokogawa Electric Corp Turbidimeter
JP2008064594A (en) * 2006-09-07 2008-03-21 Yokogawa Electric Corp Turbidimeter
JP2014153265A (en) * 2013-02-12 2014-08-25 Shinko Electric Ind Co Ltd Micro flow passage, manufacturing method thereof, and optical analyzer
CN104838252A (en) * 2012-07-27 2015-08-12 哈赫公司 Continuous turbidimetric total iron monitoring
CN109696423A (en) * 2017-10-23 2019-04-30 无锡物博新仪电子科技有限公司 A kind of automatic switching range high-precision transmissometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234606A (en) * 2005-02-25 2006-09-07 Yokogawa Electric Corp Turbidimeter
JP2008064594A (en) * 2006-09-07 2008-03-21 Yokogawa Electric Corp Turbidimeter
CN104838252A (en) * 2012-07-27 2015-08-12 哈赫公司 Continuous turbidimetric total iron monitoring
JP2014153265A (en) * 2013-02-12 2014-08-25 Shinko Electric Ind Co Ltd Micro flow passage, manufacturing method thereof, and optical analyzer
CN109696423A (en) * 2017-10-23 2019-04-30 无锡物博新仪电子科技有限公司 A kind of automatic switching range high-precision transmissometer

Similar Documents

Publication Publication Date Title
JP3172153B2 (en) Oil pollution degree measuring device
US20010046051A1 (en) Turbidimeter array system
CN102156100A (en) Multispectral-based multipoint sampling multiparameter water quality on-line analytical system
CN106226257A (en) COD on-Line Monitor Device and monitoring method thereof in a kind of water
CN213398205U (en) High-stability multi-parameter water quality online monitoring device based on spectrum method
JPH09292329A (en) Turbidimeter
JP3842982B2 (en) Gas calorific value measuring device, gasifier, gas calorific value measuring method and gasifying method
JPH09292328A (en) Turbidimeter
JP4160866B2 (en) Optical measuring device
JP2005024249A (en) Laser measuring apparatus
US20220268753A1 (en) Systems, subsystems and methods for measuring water characteristics in a water facility
JPH1048134A (en) Process turbidimeter
JP5325091B2 (en) Gas component measuring apparatus and gas component analyzing method
JPH07294429A (en) Turbidity meter and turbid chromaticity meter
JP2012093151A (en) Fluorescent x-ray water quality meter and water quality management system
JP2000146833A (en) Abnormality detecting method of test water passage in continuous organic pollution monitor
JP2756298B2 (en) Sample test equipment
JPS62289747A (en) Concentration analyzing device
KR102615508B1 (en) System for diagnosis and turbidity
JPH0493638A (en) Continuous measurement device of low density absorbance
JPH08271519A (en) Method for determining accuracy of photometric system in automatic chemical analyzer
JPH049750A (en) Thermostatic tank dipping type analyser
CN221528436U (en) Synchronous online real-time quantitative detection system for electrolyte in dialysate
KR102607667B1 (en) Method for measurement of turbidity
CN221594757U (en) Monitoring system