JP4101217B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP4101217B2
JP4101217B2 JP2004249729A JP2004249729A JP4101217B2 JP 4101217 B2 JP4101217 B2 JP 4101217B2 JP 2004249729 A JP2004249729 A JP 2004249729A JP 2004249729 A JP2004249729 A JP 2004249729A JP 4101217 B2 JP4101217 B2 JP 4101217B2
Authority
JP
Japan
Prior art keywords
circulation
suspension
dispersion medium
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004249729A
Other languages
Japanese (ja)
Other versions
JP2006064622A (en
Inventor
黒住拓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004249729A priority Critical patent/JP4101217B2/en
Priority to US11/213,358 priority patent/US7230698B2/en
Publication of JP2006064622A publication Critical patent/JP2006064622A/en
Application granted granted Critical
Publication of JP4101217B2 publication Critical patent/JP4101217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

本発明は、粉粒体試料などの粒子の粒子径分布を測定する粒子径分布測定装置に関するものである。   The present invention relates to a particle size distribution measuring apparatus for measuring the particle size distribution of particles such as a granular sample.

粒子の測定技術は、薬品、食品、セラミックス、化粧品、塗料、色素など広い分野にわたって、粉粒体の性能を決定し、また、評価する上で不可欠であり、その重要性は日増しに高まっている。このような粉粒体の粒子径分布を測定する手法の一つにレーザ回折/散乱式粒子径分布測定装置がある。例えば特許文献1に示すものは、試料としての粉粒体を分散媒中に分布拡散して懸濁液とし、この懸濁液をフローセルに供給し、その状態でフローセルに対してレーザ光を照射し、そのとき懸濁液中の粒子によって散乱されたレーザ光を検出器によって検出し、これによって得られる回折及び/又は散乱光の強度を、フランホーファ回折やミー散乱理論に基づいて処理し、試料の粒子径を求めるものである。   Particle measurement technology is indispensable for determining and evaluating the performance of powders in a wide range of fields such as medicine, food, ceramics, cosmetics, paints, and pigments, and its importance is increasing day by day. Yes. One of the methods for measuring the particle size distribution of such a granular material is a laser diffraction / scattering particle size distribution measuring apparatus. For example, in Patent Document 1, a granular material as a sample is distributed and diffused in a dispersion medium to form a suspension, and this suspension is supplied to the flow cell. In this state, the flow cell is irradiated with laser light. Then, the laser light scattered by the particles in the suspension is detected by a detector, and the resulting diffraction and / or the intensity of the scattered light is processed based on the Franhofer diffraction or Mie scattering theory, The particle diameter is determined.

このようなフローセルへの懸濁液の供給のために、懸濁液を循環させる循環流路が形成されており、この循環流路には、分散媒中に試料を分散させてなる循環バスと、循環ポンプとが介在され、分散媒供給系を介して分散媒タンクから吸い上げた分散媒を循環バスに注入するようにしている。
特開2000−155088号公報
In order to supply the suspension to such a flow cell, a circulation channel for circulating the suspension is formed, and in this circulation channel, there is a circulation bath in which a sample is dispersed in a dispersion medium. A circulation pump is interposed, and the dispersion medium sucked up from the dispersion medium tank is injected into the circulation bus through the dispersion medium supply system.
JP 2000-155088 A

ところで、かかる従来の分散媒供給系は、注入端部を循環バスの上方位置に設定し、そこから分散媒を放出して循環バスに注入するようにしている。このため、初期注入時には循環経路内に存する一部の空気を更に奥に押し込むことになり、また補給時には落下により空気が混入して、何れにしても注入後に循環経路内に空気が残り易いという不具合がある。これに対処すべく、注入後に空気抜き処理を十分に行うと準備時間が長くなるという問題があり、また、空気抜き処理によっても泡が循環経路内に残存する可能性が高いため、泡が不要な散乱光を発生させてS/N比を低下させる要因となっている。   By the way, in such a conventional dispersion medium supply system, the injection end is set at an upper position of the circulation bus, and the dispersion medium is discharged from the injection bus and injected into the circulation bus. For this reason, a part of the air existing in the circulation path is pushed further into the circulation path at the time of initial injection, and air is mixed in by dropping at the time of replenishment. There is a bug. In order to cope with this, there is a problem that the preparation time becomes long if the air venting process is sufficiently performed after injection, and there is a high possibility that the foam remains in the circulation path by the air venting process. This is a factor that reduces the S / N ratio by generating light.

本発明は、このような課題に着目してなされたものであって、循環経路に分散媒を空気の混入を伴わずに供給することができ、これにより空気残留にまつわる上記の不具合を好適に解消した粒子径分布測定装置を提供することを目的としている。   The present invention has been made paying attention to such problems, and can supply the dispersion medium to the circulation path without mixing air, thereby suitably eliminating the above-mentioned problems associated with residual air. An object of the present invention is to provide a particle size distribution measuring apparatus.

本発明は、上記の目的を達成するために、次のような手段を講じたものである。   In order to achieve the above object, the present invention takes the following measures.

すなわち本発明は、この種の粒子径分布測定装置としての一般的構成を備えてなるものにおいて、分散媒供給系を、懸濁液循環系を構成する循環流路の排水口近傍に接続し、当該分散媒供給系から循環流路に分散媒を圧送するようにしたことを特徴とする。   That is, the present invention comprises a general configuration as this kind of particle size distribution measuring apparatus, and the dispersion medium supply system is connected to the vicinity of the drain outlet of the circulation flow path constituting the suspension circulation system, The dispersion medium is pumped from the dispersion medium supply system to the circulation channel.

このようなものであると、排水口は循環流路の低位置に設けられるのが通例であるため、この部位に分散媒を導入することで、空気を追い出す作用が営まれる。しかも周辺空気の新たな混入も回避できるため、本発明によれば空気抜き処理を基本的に不要とすることができる。   In such a case, since the drain outlet is usually provided at a low position of the circulation flow path, the introduction of the dispersion medium into this portion serves to expel air. Moreover, since new contamination of ambient air can be avoided, the present invention can basically eliminate the need for air venting.

具体的な実施の態様としては、前記排水口を循環流路の最低位に位置する管路に設け、分散媒供給系をこの管路の排水口上流部に接続するようにしたものが挙げられる。   As a specific embodiment, there may be mentioned one in which the drain outlet is provided in a pipe located at the lowest position of the circulation flow path, and the dispersion medium supply system is connected to the upstream of the drain outlet of the pipe. .

測定精度を低下させることなく、循環中の粉粒体が注入配管へ混入するのを防ぐためには、分散媒供給系を弁体の開閉動作を通じて懸濁液循環系に選択的に連通させ得るように構成し、その際に閉止位置にある弁体の内方端が循環流路の管路内面に対し略面一となるようにしておくことが好ましい。   In order to prevent the circulating powder particles from entering the injection pipe without degrading the measurement accuracy, the dispersion medium supply system can be selectively communicated with the suspension circulation system through the opening / closing operation of the valve body. It is preferable that the inner end of the valve body at the closed position is substantially flush with the inner surface of the circulation passage.

空気残留の可能性を更に低減し、同時に構造の簡素化やコストダウンを図るためには、懸濁液排水系、懸濁液供給系及び循環流路の集合部を単一の筐体部品によりユニット化しておくことが望ましい。   In order to further reduce the possibility of residual air, and at the same time simplify the structure and reduce costs, the suspension drainage system, suspension supply system, and circulation channel assembly can be combined with a single housing component. It is desirable to unitize.

本発明は、以上のような構成であるから、分散媒注入後の空気抜き処理を基本的に不要にして、測定開始までに要する時間の短縮を図ることができる。特に、このような構造の下に分散媒の注入速度を上げた場合、空気の混入が増えることがないばかりか逆に残留空気のパージに奏功し、注入自体に要する時間短縮も図れることとなる。そして、これにより残留空気やその空気が泡となって不要な散乱光を発生させることも解消し、測定散乱光のS/N比も的確に向上させることが可能となる。   Since the present invention is configured as described above, it is possible to basically eliminate the need for air venting after the dispersion medium has been injected and to shorten the time required to start the measurement. In particular, when the injection speed of the dispersion medium is increased under such a structure, not only air mixing does not increase, but conversely, the remaining air is effectively purged, and the time required for injection itself can be shortened. . As a result, it is possible to eliminate residual air and the generation of unnecessary scattered light by the air becoming bubbles, and the S / N ratio of the measured scattered light can be accurately improved.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、この発明の一実施形態に係る光散乱式粒子径分布測定装置の構成を概略的に示す図である。この粒子径分布測定装置は、循環バス11とフローセル12の間を循環流路13を介し接続して粉粒体試料xの粒子を分散媒3a中に分散させた懸濁液1aを循環させるようにした懸濁液循環系1と、前記フローセル12内を流れる懸濁液1aに検査光であるレーザ光2aを照射しその回折及び/又は散乱光に基づいて前記懸濁液1aにおける粉粒体試料xの粒子径分布を測定する光学式測定系2と、前記懸濁液循環系1に分散媒3aを供給する分散媒供給系3と、前記循環流路1の一部に設けた排水口14から懸濁液1aを排水する懸濁液排水系4とにより構成される。   FIG. 1 is a diagram schematically showing a configuration of a light scattering particle size distribution measuring apparatus according to an embodiment of the present invention. This particle size distribution measuring apparatus connects the circulation bath 11 and the flow cell 12 via the circulation channel 13 so as to circulate the suspension 1a in which the particles of the particulate sample x are dispersed in the dispersion medium 3a. The suspension circulation system 1 and the suspension 1a flowing in the flow cell 12 are irradiated with laser light 2a as inspection light, and the granular material in the suspension 1a based on the diffraction and / or scattered light. An optical measurement system 2 for measuring the particle size distribution of the sample x, a dispersion medium supply system 3 for supplying the dispersion medium 3a to the suspension circulation system 1, and a drain port provided in a part of the circulation channel 1 14 and a suspension drainage system 4 for draining the suspension 1a.

前記懸濁液循環系1において、循環バス11は、投入される粉粒体試料x(あるいはスラリー)とこれを分散させる分散媒3a(例えば純水やアルコールなど)とを混合して懸濁液1aとするもので、上液槽部11aと下液槽部11bの間の中間液槽部11cに攪拌用モータ15aによって駆動可能な攪拌羽根15を浸漬するとともに、排水ポンプとしての役割を兼ねる遠心型の循環ポンプ16を循環バス11の底部に液密に取り付けて循環用モータ16aによって駆動可能としている。循環バス11内には、懸濁液1aの水位を検出するためのフロート式の水位センサ10(図2参照)が設けてある。そして、この循環バス11に付帯する前記循環ポンプ16の出口を循環流路13の一部をなす往路配管13aを介してフローセル12に接続し、フローセル12の出口を循環流路13の一部をなす復路配管13bを介して前記循環バス11に接続している。   In the suspension circulation system 1, the circulation bath 11 mixes a granular material sample x (or slurry) to be added and a dispersion medium 3 a (for example, pure water or alcohol) that disperses the powder sample x (or slurry). 1a, a stirring blade 15 that can be driven by a stirring motor 15a is immersed in an intermediate liquid tank part 11c between an upper liquid tank part 11a and a lower liquid tank part 11b, and also serves as a drain pump A circulation pump 16 of a mold is attached to the bottom of the circulation bus 11 in a liquid-tight manner and can be driven by a circulation motor 16a. In the circulation bath 11, there is provided a float type water level sensor 10 (see FIG. 2) for detecting the water level of the suspension 1a. Then, the outlet of the circulation pump 16 attached to the circulation bus 11 is connected to the flow cell 12 via an outgoing pipe 13a that forms a part of the circulation channel 13, and the outlet of the flow cell 12 is connected to a part of the circulation channel 13. The circulation bus 11 is connected via a return pipe 13b.

フローセル12は、試料室A内に配置され、外部から導入される懸濁液1aを一対の透光性のある透明板の間に液密に流通させて外部に導出し得るようにしたもので、透明板にレーザ光2aが照射される。   The flow cell 12 is arranged in the sample chamber A, and allows the suspension 1a introduced from the outside to flow out in a liquid-tight manner between a pair of translucent transparent plates. The plate is irradiated with laser light 2a.

往路配管13aは、途中に超音波を発生させる超音波振動子18を有しており、フローセル12に向かう懸濁液1aに粉粒体の凝集が起こることを防止している。   The forward piping 13 a has an ultrasonic transducer 18 that generates ultrasonic waves in the middle, and prevents aggregation of powder particles in the suspension 1 a toward the flow cell 12.

復路配管13bは、循環バス11内の中間液槽部11cに接続され、循環後の懸濁液1aを循環バス11に還流させるようにしている。   The return pipe 13 b is connected to the intermediate liquid tank section 11 c in the circulation bus 11 so that the circulated suspension 1 a is refluxed to the circulation bus 11.

一方、前記光学系測定系2は、図1に示すように、フローセル12を収容した試料室Aを包囲するようにレーザ光源21、投光レンズ22、狭角散乱光検出器23並びに広角散乱光検出器24を配置するとともに、狭角散乱光検出器23及び広角散乱光検出器24から出力される信号を処理する信号処理部25及び演算処理装置26から構成される。   On the other hand, as shown in FIG. 1, the optical system measurement system 2 includes a laser light source 21, a light projection lens 22, a narrow-angle scattered light detector 23, and a wide-angle scattered light so as to surround a sample chamber A containing a flow cell 12. The detector 24 is arranged, and the signal processing unit 25 and the arithmetic processing unit 26 that process signals output from the narrow-angle scattered light detector 23 and the wide-angle scattered light detector 24 are configured.

レーザ光源21は、フローセル12の対面位置に設けられ、平行なレーザ光2aを発光する。投光レンズ22はレーザ光源21とフローセル12との間に設けられ、レーザ光源21から出たレーザ光2aを適宜集光してフローセル12内の懸濁液1aに照射させる。   The laser light source 21 is provided at the facing position of the flow cell 12, and emits parallel laser light 2a. The light projection lens 22 is provided between the laser light source 21 and the flow cell 12, and appropriately collects the laser light 2 a emitted from the laser light source 21 to irradiate the suspension 1 a in the flow cell 12.

狭角散乱光検出器23は、フローセル12と直接対面しない位置、すなわちフローセル12を通過し可動ミラー23aで屈曲させたレーザ光2aが集光して焦点を結ぶ位置に配置される。この狭角散乱光検出器23は、集光レンズ22の光軸を中心として互いに半径の異なるリング状または半リング状の受光面をもつフォトセンサを複数個同心状に配列したもので、フローセル12内の粒子によって回折または散乱した集光レーザ光2xのうち比較的小さい角度で散乱/回折した光を各散乱角ごとにそれぞれ受光して、それらの光強度を測定するものである。すなわち、相対的に外周側に配置されるフォトセンサが散乱角のより大きい光を受光し、内周側に配置されるフォトセンサが散乱角のより小さい光を受光する。一般に粒子径が小さいほど散乱は大きくなるので、これにより外周側のフォトセンサの検出する光強度は粒子径のより小さい粒子の量を反映し、内周側のフォトセンサの検出する光強度は粒子径のより大きい試料粒子の量を反映していることになる。   The narrow-angle scattered light detector 23 is disposed at a position that does not directly face the flow cell 12, that is, a position where the laser light 2a that passes through the flow cell 12 and is bent by the movable mirror 23a is condensed and focused. The narrow-angle scattered light detector 23 is formed by concentrically arranging a plurality of photosensors having ring-shaped or semi-ring-shaped light receiving surfaces having different radii around the optical axis of the condenser lens 22. Of the condensed laser light 2x diffracted or scattered by the inner particles, light scattered / diffracted at a relatively small angle is received at each scattering angle, and the light intensity thereof is measured. That is, the photosensor disposed relatively on the outer peripheral side receives light having a larger scattering angle, and the photosensor disposed on the inner peripheral side receives light having a smaller scattering angle. In general, the smaller the particle size, the greater the scattering, so the light intensity detected by the outer photosensor reflects the amount of particles with a smaller particle size, and the light intensity detected by the inner photosensor This reflects the amount of sample particles with a larger diameter.

広角散乱光検出器24は、フローセル12の周囲に構成され、フローセル12内のより粒子径の小さい粒子によって回折または散乱した集光レーザ光2xのうち比較的大きい角度で散乱/回折した光を、各散乱角ごとに個別に検出する。具体的にこの広角散乱光検出器24は、狭角散乱光検出器23へ入光する集光レーザ光2xと異なる角度で散乱するレーザ光2xを受光し得る位置に設けられる複数のフォトセンサ24a〜24hからなり、それぞれの配設角度に応じて、フローセル12内の粒子による散乱光を散乱角度ごとに検出する。フォトセンサ24a〜24eが前方散乱光を、フォトセンサ24f〜24hが後方散乱光をそれぞれ検出する。   The wide-angle scattered light detector 24 is configured around the flow cell 12, and the light scattered / diffracted at a relatively large angle out of the condensed laser light 2 x diffracted or scattered by particles having a smaller particle diameter in the flow cell 12, Detect individually for each scattering angle. Specifically, the wide-angle scattered light detector 24 has a plurality of photosensors 24a provided at positions where the laser light 2x scattered at a different angle from the condensed laser light 2x incident on the narrow-angle scattered light detector 23 can be received. It consists of ˜24h, and the scattered light by the particles in the flow cell 12 is detected for each scattering angle in accordance with each arrangement angle. Photosensors 24a to 24e detect forward scattered light, and photosensors 24f to 24h detect backscattered light.

信号処理部25は、上記狭角散乱光検出器23やフォトセンサ24a〜24hから出力される信号を順次取り込み、AD変換して、演算処理装置26に入力する。   The signal processing unit 25 sequentially takes in signals output from the narrow-angle scattered light detector 23 and the photosensors 24a to 24h, performs AD conversion, and inputs the signals to the arithmetic processing unit 26.

演算処理装置26は、この実施形態においては汎用のコンピュータの機能を利用したもので、図3に示すように、CPU26a、メモリ26b、入出力インターフェース26c及びユーザーインターフェース26dを具備し、メモリ26bには、ディジタル信号に変換された狭角散乱光検出器23及びフォトセンサ24a〜24hの出力(光強度に関するディジタルデータ)を、フラウンホーファ回折理論やミー散乱理論に基づいて処理し、粒子群における粒径分布を求めるためのプログラムや、透過光量及び照射光量に基づいて行う後述の濃度チェックのためのプログラム等が格納してある。そして、CPU26aは適宜これらのプログラムを読み出して所定の演算、加工を施し、その演算結果をメモリ26bに記憶し、或いはユーザーインターフェース26dの一部を構成するディスプレイ等に表示する。本実施形態はこのようにワイドレンジで回折光や散乱光を検出することにより、粒子群における粒径分布を、粒径の比較的大きなものから粒径の微小なものまで広い範囲にわたって一挙に求めることを可能にする。   In this embodiment, the arithmetic processing unit 26 uses a general-purpose computer function. As shown in FIG. 3, the arithmetic processing unit 26 includes a CPU 26a, a memory 26b, an input / output interface 26c, and a user interface 26d. The output of the narrow-angle scattered light detector 23 and the photosensors 24a to 24h converted into digital signals (digital data regarding the light intensity) is processed based on the Fraunhofer diffraction theory or the Mie scattering theory, and the particle size distribution in the particle group And a program for density check described below based on the transmitted light amount and the irradiated light amount. The CPU 26a reads out these programs as appropriate, performs predetermined calculations and processing, stores the calculation results in the memory 26b, or displays them on a display or the like constituting a part of the user interface 26d. In this embodiment, by detecting diffracted light and scattered light in a wide range as described above, the particle size distribution in the particle group is obtained all at once from a relatively large particle size to a very small particle size. Make it possible.

なお、大粒子から微小粒子までのより幅広い測定レンジを確保するためには、上記レーザ光2aのみならず、図1に示すような異なる波長のLED光2zを併用することもできる。この装置には、そのために前記レーザ光源21、投光レンズ22、狭角散乱光検出器23に対応するLED光源21z、投光レンズ22z、受光器23zが設けてある。上記フォトセンサ24d、24e等はこのLED光2zの散乱光を受光するためにも用いられる。   In order to secure a wider measurement range from large particles to fine particles, not only the laser beam 2a but also LED beams 2z having different wavelengths as shown in FIG. 1 can be used in combination. For this purpose, the apparatus is provided with an LED light source 21z, a light projection lens 22z, and a light receiver 23z corresponding to the laser light source 21, the light projection lens 22, and the narrow-angle scattered light detector 23. The photosensors 24d and 24e are also used to receive the scattered light of the LED light 2z.

他方、前記分散媒供給系3は、分散媒貯留槽31と、一端をこの分散媒貯留槽31に浸漬させ他端を前記懸濁液循環系1に接続した分散媒供給配管32と、この分散媒供給配管32中に介在された注入ポンプ33とを具備するもので、注入ポンプ33を駆動することにより、分散媒貯留槽31から分散媒3aを吸い上げて懸濁液循環系1に供給するようにしている。   On the other hand, the dispersion medium supply system 3 includes a dispersion medium storage tank 31, a dispersion medium supply pipe 32 having one end immersed in the dispersion medium storage tank 31 and the other end connected to the suspension circulation system 1, and the dispersion medium. An injection pump 33 interposed in the medium supply pipe 32 is provided. By driving the injection pump 33, the dispersion medium 3 a is sucked up from the dispersion medium storage tank 31 and supplied to the suspension circulation system 1. I have to.

懸濁液排水系4は、前記懸濁液循環系1を構成する循環流路13に電磁式の切換弁17を介して接続されたもので、閉止位置で懸濁液排水系4を循環流路13から切り離し、開成位置で懸濁液排水系4の一端を循環流路13に接続して循環流路13内の懸濁液1aを他端側に位置するドレンに排出する。この切換弁17はソレノイドによって切換え駆動される。   The suspension drainage system 4 is connected to a circulation flow path 13 constituting the suspension circulation system 1 via an electromagnetic switching valve 17 and circulates through the suspension drainage system 4 at a closed position. Disconnected from the channel 13, one end of the suspension drainage system 4 is connected to the circulation channel 13 at the open position, and the suspension 1 a in the circulation channel 13 is discharged to the drain located on the other end side. The switching valve 17 is switched and driven by a solenoid.

次に、この粒子径分布測定装置の動作について説明する。先ず、循環バス11内へ粉粒体試料xを多めに投入する。次に、分散媒供給系3の注入ポンプ33を作動させて循環バス11内への分散媒3aの供給(注入)を開始する。このとき、切換弁17は循環モードにしておく。   Next, the operation of this particle size distribution measuring apparatus will be described. First, a large amount of the powder sample x is put into the circulation bath 11. Next, the injection pump 33 of the dispersion medium supply system 3 is operated to start supplying (injecting) the dispersion medium 3 a into the circulation bus 11. At this time, the switching valve 17 is set to the circulation mode.

循環バス11内及び循環流路13にわたって所定量の分散媒3aが供給されると、水位センサ10の出力信号に基づいて分散媒供給系3の供給ポンプ33が停止し、分散媒3aの供給が停止する。   When a predetermined amount of the dispersion medium 3a is supplied over the circulation bus 11 and the circulation flow path 13, the supply pump 33 of the dispersion medium supply system 3 is stopped based on the output signal of the water level sensor 10, and the supply of the dispersion medium 3a is stopped. Stop.

この後に、分散処理の動作を開始する操作により、循環用モータ16aが起動して循環ポンプ16が作動すると共に、超音波振動子18が作動する。これにより、粉粒体試料xの混入した懸濁液1aが、循環バス11内から循環流路13を流れ、その間にフローセル12を通過して再び循環バス11に戻るといった循環を繰り返す。   Thereafter, by the operation for starting the operation of the dispersion processing, the circulation motor 16a is activated, the circulation pump 16 is activated, and the ultrasonic transducer 18 is activated. As a result, the suspension 1a mixed with the particulate sample x is repeatedly circulated such that it flows through the circulation channel 13 from the circulation bath 11, passes through the flow cell 12 and returns to the circulation bus 11 again.

得られた懸濁液1aの濃度のチェックは、循環流路7内を循環する状態のもとで、測定系2のレーザ光源21からレーザ光2aをフローセル12に向けて照射することにより、そのときの光源光量と狭角散乱光検出器23が検出する透過光量との割合に基づいて行われる。濃度チェックのためのプログラムは前述したようにメモリ26b内に格納してあり、CPU26aは分散処理の動作の開始に伴いそのプログラムを読み出して実行する。懸濁液1aの濃度が適正濃度でない場合は、分散媒3aの供給による希釈化や粉粒体試料xの投入による濃密化を経て再度濃度チェックに供され、フローセル12を流れる懸濁液1aが測定に適した濃度となったところで、粒子径分布測定が行われる。懸濁液1aが既に満水であるか或いは供給によって満水になる可能性がある場合には、先行して懸濁液排水系4を通じた懸濁液1aの排水が行われる。   The concentration of the obtained suspension 1a is checked by irradiating the flow cell 12 with laser light 2a from the laser light source 21 of the measurement system 2 in a state of circulating in the circulation channel 7. Is performed based on the ratio between the light amount of the light source and the transmitted light amount detected by the narrow-angle scattered light detector 23. The program for checking the density is stored in the memory 26b as described above, and the CPU 26a reads and executes the program as the distributed processing starts. When the concentration of the suspension 1a is not an appropriate concentration, the suspension 1a flowing through the flow cell 12 is subjected to a concentration check again after being diluted by supplying the dispersion medium 3a and being concentrated by adding the powder sample x. When the concentration is suitable for measurement, particle size distribution measurement is performed. If the suspension 1a is already full or may become full by supply, the suspension 1a is drained through the suspension drainage system 4 in advance.

以上の構成において、本実施形態は特に、前記分散媒供給系3を前記懸濁液循環系1を構成する循環流路13の排水口14近傍に接続し、当該分散媒供給系3から循環流路13に分散媒3aを圧送するようにしている。   In the above configuration, the present embodiment particularly connects the dispersion medium supply system 3 to the vicinity of the drain port 14 of the circulation flow path 13 constituting the suspension circulation system 1, and the circulation flow from the dispersion medium supply system 3. The dispersion medium 3 a is pumped to the path 13.

具体的には、本実施形態において前記排水口14は、図2に示すように、循環流路13の最低位に位置する管路すなわち、往路配管13aの途中の管路に開口させてあり、分散媒供給系3を構成する分散媒供給配管32をその管路の排水口上流部13xに接続している。図1では排水口14の直上に分散媒供給配管32が接続してあるように見えるが、同図は全体の概略的なシステム図であって、実際には図2に示すように往路配管13aのうち最低位に位置する部位に略水平に延びる管路に開口する排水口14と略同じ高さに位置する排水口上流部13xに接続される。勿論、厳格に最低位とせずとも本発明の作用効果は十分に奏されるし、分散媒供給配管32の接続は鉛直下方から行っても、水平方向から行っても構わない。   Specifically, in the present embodiment, as shown in FIG. 2, the drainage port 14 is opened to a pipeline located at the lowest position of the circulation channel 13, that is, a pipeline in the middle of the forward piping 13a. A dispersion medium supply pipe 32 constituting the dispersion medium supply system 3 is connected to a drain outlet upstream portion 13x of the pipe line. In FIG. 1, it seems that the dispersion medium supply pipe 32 is connected directly above the drain port 14, but this figure is an overall schematic system diagram, and in fact, as shown in FIG. 2, the forward pipe 13 a. The drain outlet upstream portion 13x located at substantially the same height as the drain outlet 14 that opens to a pipe line extending substantially horizontally at the lowest position. Of course, the effects of the present invention can be sufficiently achieved without strictly setting the lowest position, and the connection of the dispersion medium supply pipe 32 may be performed from the vertically lower side or from the horizontal direction.

図4は分散媒供給配管32が循環流路13と交わる位置に設けられる逆止弁34を示している。この逆止弁34は、弁体34aの開閉動作を通じて分散媒供給配管32を循環流路13の往路配管13aに選択的に連通させるもので、弁体34aはバルブハウジング34b内を進退可能であって、バルブハウジング34bの一端部に設けたテーパ状のシート34cに対して弁体34aに設けたテーパ部34dが着脱することにより開閉動作を行う。バルブハウジング34bと弁体34aの間に設けたスプリング34eによって、当該弁体34aはシート34cに着座する方向に弾性付勢されている。この逆止弁34は、注入ポンプ33が作動することによって弁体34aが上動して開成し、注入ポンプ33が停止することによってスプリング34eの付勢力及び循環流路13内の静圧により閉止するものである。   FIG. 4 shows a check valve 34 provided at a position where the dispersion medium supply pipe 32 intersects the circulation flow path 13. The check valve 34 selectively connects the dispersion medium supply pipe 32 to the forward pipe 13a of the circulation flow path 13 through the opening / closing operation of the valve body 34a. The valve body 34a can advance and retreat in the valve housing 34b. Thus, the opening / closing operation is performed by attaching / detaching the tapered portion 34d provided on the valve body 34a to / from the tapered seat 34c provided on one end portion of the valve housing 34b. A spring 34e provided between the valve housing 34b and the valve body 34a elastically biases the valve body 34a in the direction of seating on the seat 34c. The check valve 34 is opened by opening the valve element 34a when the injection pump 33 is operated, and is closed by the biasing force of the spring 34e and the static pressure in the circulation flow path 13 when the injection pump 33 is stopped. To do.

そして、閉止位置にある弁体34aの内方端すなわち上面34a1が循環流路13の管路内面13yに対し略面一となるように設定している。   The inner end, that is, the upper surface 34 a 1 of the valve body 34 a in the closed position is set to be substantially flush with the pipe inner surface 13 y of the circulation channel 13.

以上のように本実施形態は、分散媒供給系3を、懸濁液循環系1を構成する循環流路13の低位に位置する排水口13xの近傍に接続し、当該分散媒供給系3から循環流路13に分散媒3aを圧送するようにしているため、循環流路13内に存在する空気を追い出しつつ新たな空気の混入も回避して、空気抜き処理を基本的に不要とすることができる。このため、測定開始までに要する時間を有効に短縮することが可能となる。特に、このような構造の下に分散媒3aの注入速度を上げると、空気の混入が増えることがないばかりか逆に残留空気を追い出す作用が高くなるため、注入自体に要する時間短縮が図れ、空気残留率の一層の低減化も図れるものとなる。そして、これに伴って不要な散乱光の発生要因の除去が果たされ、測定散乱光のS/N比も有効に向上させることが可能となる。   As described above, in the present embodiment, the dispersion medium supply system 3 is connected to the vicinity of the drain port 13x located at the lower position of the circulation flow path 13 constituting the suspension circulation system 1, and the dispersion medium supply system 3 Since the dispersion medium 3a is pumped to the circulation flow path 13, the air existing in the circulation flow path 13 is expelled and new air is prevented from being mixed. it can. For this reason, it is possible to effectively shorten the time required to start the measurement. In particular, when the injection speed of the dispersion medium 3a is increased under such a structure, not only the air mixing does not increase, but also the action of expelling residual air is increased, so that the time required for the injection itself can be shortened, Further reduction in the residual air rate can be achieved. Along with this, the generation factor of unnecessary scattered light is removed, and the S / N ratio of the measured scattered light can be effectively improved.

具体的には、前記排水口14を循環流路13の最低位に位置する往路配管13aの管路に設け、分散媒供給配管32をこの管路の排水口上流部13xに接続するようにしているので、ほぼ最大の空気追い出し効果を期待することができる。   More specifically, the drain port 14 is provided in the pipeline of the forward piping 13a located at the lowest position of the circulation channel 13, and the dispersion medium supply piping 32 is connected to the drain port upstream portion 13x of this pipeline. Therefore, you can expect almost the maximum air expelling effect.

特に、分散媒供給配管32を弁体34の開閉動作を通じて懸濁液循環系1の循環流路13に選択的に連通させ得るように構成しているので、循環中の粉粒体が分散媒供給配管32へ混入するのを有効に防止して、分散媒3aの汚染や希釈誤差の発生等を有効に回避することができる。その際、閉止位置にある弁体34の内方端34a1が循環流路13を構成する往路配管13aの管路内面に対し略面となるように設定しているため、粉粒体や空気が残留するような不用意な凹凸を作らずに済み、測定精度の低下を好適に回避することが可能となる。   In particular, since the dispersion medium supply pipe 32 can be selectively communicated with the circulation flow path 13 of the suspension circulation system 1 through the opening and closing operation of the valve body 34, the circulating powder particles are dispersed in the dispersion medium. Mixing into the supply pipe 32 can be effectively prevented, and contamination of the dispersion medium 3a, occurrence of dilution errors, and the like can be effectively avoided. At that time, since the inner end 34a1 of the valve body 34 in the closed position is set to be a substantially surface with respect to the inner surface of the outgoing pipe 13a constituting the circulation flow path 13, the powder and air It is not necessary to create inadvertent irregularities that remain, and it is possible to suitably avoid a decrease in measurement accuracy.

なお、各部の具体的構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、分散媒3aが予圧されている場合には、図5に示すように逆止弁に代えて開閉弁134を配置することにより、水道水等も分散媒として有効に利用することができるようになる。この場合でも分散媒供給路3を懸濁液循環系1の最も低い位置におくことで上記と同様の効果が奏される。   For example, when the dispersion medium 3a is preloaded, it is possible to effectively use tap water or the like as the dispersion medium by arranging an on-off valve 134 instead of the check valve as shown in FIG. become. Even in this case, the same effect as described above can be obtained by placing the dispersion medium supply path 3 at the lowest position of the suspension circulation system 1.

また、懸濁液排水経4や分散媒注入系3は、懸濁液循環系1の近寄った位置に集まるため、図6に示すようにこれらを単一の筐体部品である集合配管100によりユニット化することも有効である。   Further, since the suspension drainage 4 and the dispersion medium injection system 3 are gathered at a position close to the suspension circulation system 1, they are collected by a collective pipe 100 as a single casing component as shown in FIG. Unitization is also effective.

このようにすることにより、接続部分に凹凸や段差のない滑らかな状態を得て空気の残留を極力低減するとともに、デッドボリュームの減少、および、部品点数の削減による構造簡素化やコスト削減の効果も得ることができる。100aは懸濁液の排水を制御する排水アクチュエータである。この場合でも、集合配管100において分散媒供給路3を懸濁液循環系1の最も低い位置におくことで上記と同様の効果が奏される。   By doing this, the connection part is smooth and free of unevenness and steps, reducing the residual air as much as possible, reducing dead volume, and reducing the number of parts, simplifying the structure and reducing costs Can also be obtained. A drain actuator 100a controls the drainage of the suspension. Even in this case, the same effect as described above can be obtained by placing the dispersion medium supply path 3 in the lowest position of the suspension circulation system 1 in the collecting pipe 100.

本発明の一実施形態に係る粒子径分布測定装置の概要を示すシステム図。The system diagram which shows the outline | summary of the particle diameter distribution measuring apparatus which concerns on one Embodiment of this invention. 同実施形態における分散媒供給系の接続箇所を明示する図。The figure which specifies the connection location of the dispersion medium supply system in the embodiment. 同実施形態で用いる演算処理装置の機能説明図。Functional explanatory drawing of the arithmetic processing unit used in the embodiment. 同実施形態で用いる逆止弁の概略的な断面図。FIG. 3 is a schematic cross-sectional view of a check valve used in the same embodiment. 本発明の他の実施形態を示す図。The figure which shows other embodiment of this invention. 本発明の更に他の実施形態を示す図。The figure which shows other embodiment of this invention.

符号の説明Explanation of symbols

x…粉粒体
1…懸濁液循環系
1a…懸濁液
2…光学式側定系
3…分散媒供給系
3a…分散媒
4…懸濁液排水系
11…循環バス
12…フローセル
13…循環流路
13x…排水口上流部
13y…管路内面
14…排水口
34a…弁体
34a1…内方端(上面)
100…筐体部品(集合配管)

x ... granular material 1 ... suspension circulation system 1a ... suspension 2 ... optical side fixed system 3 ... dispersion medium supply system 3a ... dispersion medium 4 ... suspension drainage system 11 ... circulation bath 12 ... flow cell 13 ... Circulating flow path 13x ... Drain outlet upstream portion 13y ... Pipe inner surface 14 ... Drain outlet 34a ... Valve element 34a1 ... Inward end (upper surface)
100: Housing parts (collective piping)

Claims (4)

循環バスとフローセルとを循環流路を介し接続して粒子を分散媒中に分散させた懸濁液を循環させるようにした懸濁液循環系と、前記フローセル内を流れる懸濁液に検査光を照射しその回折及び/又は散乱光に基づいて前記懸濁液における試料の粒子径分布を測定する光学式測定系と、前記懸濁液循環系に分散媒を供給する分散媒供給系と、前記循環流路に設けた排水口から懸濁液を排水する懸濁液排水系とを具備してなるものにおいて、
前記分散媒供給系を、前記懸濁液循環系を構成する循環流路の排水口近傍に接続し、当該分散媒供給系から循環流路に分散媒を圧送するようにしたことを特徴とする粒子径分布測定装置。
A suspension circulation system in which a circulation bath and a flow cell are connected via a circulation channel to circulate a suspension in which particles are dispersed in a dispersion medium, and an inspection light is supplied to the suspension flowing in the flow cell. An optical measurement system that measures the particle size distribution of the sample in the suspension based on diffraction and / or scattered light, a dispersion medium supply system that supplies a dispersion medium to the suspension circulation system, In what comprises a suspension drainage system that drains suspension from a drain outlet provided in the circulation channel,
The dispersion medium supply system is connected to the vicinity of a drain outlet of a circulation flow path constituting the suspension circulation system, and the dispersion medium is pumped from the dispersion medium supply system to the circulation flow path. Particle size distribution measuring device.
前記排水口を循環流路の最低位に位置する管路に設け、分散媒供給系をこの管路の排水口上流部に接続している請求項1記載の粒子径分布測定装置。 2. The particle size distribution measuring apparatus according to claim 1, wherein the drain outlet is provided in a pipe located at the lowest position of the circulation flow path, and the dispersion medium supply system is connected to the upstream of the drain outlet of the pipe. 分散媒供給系を弁体の開閉動作を通じて懸濁液循環系に選択的に連通させ得るようにしたものであって、閉止位置にある弁体の内方端が循環流路の管路内面に対し略面一となるように設定している請求項1又は2記載の粒子径分布測定装置。 The dispersion medium supply system can be selectively communicated with the suspension circulation system through the opening and closing operation of the valve body, and the inner end of the valve body in the closed position is connected to the inner surface of the circulation passage. The particle size distribution measuring device according to claim 1 or 2, wherein the particle size distribution measuring device is set so as to be substantially flush with each other. 懸濁液排水系、懸濁液供給系及び循環流路の集合部分を単一の筐体部品によりユニット化している請求項1、2又は3記載の粒子径分布測定装置。
The particle size distribution measuring apparatus according to claim 1 , 2 or 3, wherein the suspension drainage system, the suspension supply system, and the assembly portion of the circulation flow path are unitized by a single casing part.
JP2004249729A 2004-08-30 2004-08-30 Particle size distribution measuring device Expired - Fee Related JP4101217B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004249729A JP4101217B2 (en) 2004-08-30 2004-08-30 Particle size distribution measuring device
US11/213,358 US7230698B2 (en) 2004-08-30 2005-08-26 Particle size distribution measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249729A JP4101217B2 (en) 2004-08-30 2004-08-30 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2006064622A JP2006064622A (en) 2006-03-09
JP4101217B2 true JP4101217B2 (en) 2008-06-18

Family

ID=36111227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249729A Expired - Fee Related JP4101217B2 (en) 2004-08-30 2004-08-30 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4101217B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710553B2 (en) * 2015-05-21 2020-06-17 株式会社堀場製作所 Sample introduction device

Also Published As

Publication number Publication date
JP2006064622A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US8345248B2 (en) Optical cavity enhanced turbidimeter and turbidity measuring method
US7230698B2 (en) Particle size distribution measurement device
JP2015520396A (en) Particle characterization
JP4101217B2 (en) Particle size distribution measuring device
CN104607431A (en) Container cleaning device, discharge member for container cleaning device, and analyzer
CN110088601B (en) Counting of the photosensitive cells
JP3425093B2 (en) Drainage method of sample liquid and cleaning liquid in light scattering type particle size distribution measuring device
WO2018110043A1 (en) Aggregation monitoring method, aggregation monitoring device, aggregation monitoring probe, and aggregation system
JP4153987B2 (en) Particle size distribution measuring device
JP2008249724A (en) Device for measuring particle size distribution
JP3962306B2 (en) Particle size distribution measuring method and apparatus
JPH0587725A (en) Grain size distribution measuring device
JP4074492B2 (en) Particle size distribution measuring device
JP6904917B2 (en) Reaction system and reaction method
JP2007218831A (en) Fish monitoring system
JP3783606B2 (en) Particle size distribution measuring device
JP2006064621A (en) Particle size distribution measuring device
JP3049908B2 (en) Particle size distribution analyzer
JP3422708B2 (en) Particle size distribution measuring device
JP4448264B2 (en) Particle size distribution measuring device
KR20240097887A (en) Method for analyzing water quality
CN206095917U (en) Oil content concentration meter detection loop self - cleaning device
JP2013096962A (en) Cleaning method of particle size distribution measuring apparatus and particle size distribution measuring apparatus using the cleaning method
KR101512654B1 (en) Washing system for chamber contaminated with radioactivity
JP2005140652A (en) Diffusion scrubber type gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees