JP4067923B2 - Manufacturing method of chip resistor - Google Patents

Manufacturing method of chip resistor Download PDF

Info

Publication number
JP4067923B2
JP4067923B2 JP2002275560A JP2002275560A JP4067923B2 JP 4067923 B2 JP4067923 B2 JP 4067923B2 JP 2002275560 A JP2002275560 A JP 2002275560A JP 2002275560 A JP2002275560 A JP 2002275560A JP 4067923 B2 JP4067923 B2 JP 4067923B2
Authority
JP
Japan
Prior art keywords
electrode
protective layer
forming step
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002275560A
Other languages
Japanese (ja)
Other versions
JP2004111833A (en
Inventor
恭司 小林
尊之 丸山
友規 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2002275560A priority Critical patent/JP4067923B2/en
Publication of JP2004111833A publication Critical patent/JP2004111833A/en
Application granted granted Critical
Publication of JP4067923B2 publication Critical patent/JP4067923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はチップ抵抗器の製造方法に係り、特に、外形寸法が小型化された場合に用いて好適なチップ抵抗器の製造方法に関する。
【0002】
【従来の技術】
図4は従来より一般的に知られているチップ抵抗器の断面図であり、同図に示すチップ抵抗器1はアルミナ等からなる絶縁性基板2を有し、この絶縁性基板2上に抵抗体3と該抵抗体3の両端部に重なり合う一対の表面電極4とが形成されている。抵抗体3はガラスコート層5で覆われ、さらにガラスコート層5はエポキシ系樹脂等からなるオーバーコート層6で覆われている。これらのガラスコート層5とオーバーコート層6は抵抗体3の保護膜として機能している。絶縁性基板2の裏面には表面電極4と対応する両端部に一対の裏面電極7が形成されており、また、絶縁性基板2の両側端面にはそれぞれ表面電極4と裏面電極7とを橋絡する端面電極8が形成されている。表面電極4と裏面電極7は銀(Ag)を主成分とするペーストをスクリーン印刷等によって形成したものであり、端面電極8は例えばニッケルクロム(Ni/Cr)をスパッタ等によって形成したものである。表面電極4と裏面電極7および端面電極8はチップ抵抗器1の下地電極層を構成しており、製造工程の最終段階で該下地電極層をめっき処理することにより、ニッケル(Ni)めっき層9と半田(SN/Pb)めっき層10という二層構造のめっき層によって該下地電極層は被覆される。なお、これらめっき層9,10は、電極くわれの防止や半田付けの信頼性向上を図るためのものであり、半田めっき層の代わりに錫(Sn)めっき層を用いることもある。
【0003】
従来、このように構成されたチップ抵抗器1は、以下に説明する工程によって製造されるようになっている。すなわち、まず各チップ領域を区切る位置に縦横に延びる分割溝が形成された大判基板を準備し、この大判基板に個々のチップ抵抗器1に対応する多数の表面電極4と裏面電極7を形成すると共に、隣接する表面電極4間にそれぞれ抵抗体3を形成した後、各抵抗体3上にガラスコート層5とオーバーコート層6を順次形成する。次いで、大判基板を一方の分割溝に沿って分割(一次分割)して多数の短冊状分割片を得た後、これら短冊状分割片を重ね合わせた状態で各々の長手方向に沿う両端面に端面電極8を形成する。しかる後、各短冊状分割片を他方の分割溝に沿ってチップサイズに分割(二次分割)し、最後にニッケル(Ni)と半田(SN/Pb)めっき層10を施すことにより、図4に示すようなチップ抵抗器1が多数個取りされる。なお、この種の技術に関連する従来例として、例えば特許文献1が挙げられる。
【0004】
【特許文献1】
特開平6−120013号公報(第2−3頁、図1)
【0005】
【発明が解決しようとする課題】
ところで近年、各種電子機器の小型化に伴ってチップ抵抗器も小型化されてきており、例えば平面的な外形寸法を0.6mm×0.3mmとした超小型のチップ抵抗器が実現されており、さらに小型化されたチップ抵抗器も要望されている。
【0006】
しかしながら前述した従来の製造方法では、大判基板を一次分割して得られる短冊状分割片の端面に端面電極を形成しており、端面電極を形成する前工程として大判基板を短冊状に分割する一次分割が必要となるため、チップ抵抗器の小型化に伴って短冊状分割片の幅寸法が非常に小さくなると、大判基板を短冊状分割片に一次分割すること自体が困難となる。また、仮に大判基板から多数の短冊状分割片を得ることができたとしても、幅寸法が小さくなるほど短冊状分割片の機械的強度が低下するため、複数の短冊状分割片を重ね合わせた状態でそれらの両端面に端面電極を形成する際に、短冊状分割片が不用意に割れてしまうという問題が発生する。さらに、チップ抵抗器が小型化されていくと、互いに重ね合わされた複数の短冊状分割片の僅かな位置ズレが端面電極の不良要因となるため、端面電極を高精度に形成することが困難になるという問題も発生する。
【0007】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、外形寸法が小型化されても端面電極を簡単かつ高精度に形成することができるチップ抵抗器を提供することにある。
【0008】
【課題を解決するための手段】
上述した目的を達成するために、本発明によるチップ抵抗器の製造方法では、所定サイズの大判基板の表裏両面に多数の電極をマトリックス状に形成する電極形成工程と、前記大判基板の一面に両端が前記電極に接続された多数の抵抗体を形成する抵抗体形成工程と、前記抵抗体を覆うように保護膜を形成する保護膜形成工程と、この保護膜形成工程後の前記大判基板の表裏両面に少なくとも前記電極を覆うように上部保護層と下部保護層をそれぞれ形成する保護層形成工程と、この保護層形成工程後の前記大判基板を前記下部保護層の粘着力によって支持台上に固定する基板固定工程と、前記支持台上に固定された前記大判基板に前記上部保護層の外側から互いに平行な多数の一次スリットを形成して隣接する前記抵抗体を繋ぐ前記電極を2分割する一次スリット形成工程と、前記一次スリットの内部で表裏両面の前記電極どうしを接続する端面電極をスパッタにより形成する端面電極形成工程と、この端面電極形成工程後の前記大判基板に前記一次スリットと直交する方向に延びる多数の二次スリットを形成する二次スリット形成工程と、この二次スリット形成工程後に前記上部保護層と前記下部保護層を除去することにより前記大判基板を前記支持台から剥離して個々の部品を得る部品分離工程とを具備することとする。
【0009】
このような各工程を備えたチップ抵抗器の製造方法によれば、下部保護層の粘着力によって大判基板を支持台上に固定した状態で多数の一次スリットを形成し、これら一次スリット内の空間を利用して端面電極をスパッタにより形成するようにしたので、チップ抵抗器の小型化に伴って各一次スリット間の幅寸法が非常に小さくなったとしても、端面電極を簡単かつ高精度に形成することができる。また、大判基板の表裏両面の電極が上部保護層と下部保護層によって覆われているので、端面電極が大判基板の表裏両面の電極まで回り込むことはなく、この点からも端面電極を高精度に形成することができる。
【0011】
また、上記の構成において、電極と抵抗体はスクリーン印刷等の厚膜形成とスパッタ等の薄膜形成のいずれでも良いが、電極と抵抗体を厚膜形成する場合は、保護層としてワックスを使用すると、一次スリット形成工程で電極の欠けを防止できて好ましい。一方、電極と抵抗体を薄膜形成する場合、抵抗体と接続する電極を被覆する側の保護層としてはレジストでもワックスでも良いが、大判基板を支持台上に固定する側の保護層としては接着テープを使用することが好ましい。
【0012】
また、上記の構成において、一次スリット形成工程で一次スリットの両端が大判基板の周縁部まで達していても良いが、一次スリットの少なくとも一方の端部が繋ぎ部を介して大判基板の周縁部に繋がれているようにすると、隣接する一次スリット間の短冊状部分が支持台上に固定されると共に大判基板の周縁部に繋がれた状態となってより好ましい。
【0013】
また、上記の構成において、一次スリットと二次スリットを形成する加工手段としてレーザやウォータージェットを用いることも可能であるが、これら一次スリットと二次スリットをダイシングにより形成することが好ましい。
【0014】
【発明の実施の形態】
発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係るチップ抵抗器の断面図、図2は該チップ抵抗器の製造工程を示す断面図、図3は該チップ抵抗器の製造工程を示す平面図である。
【0015】
図1に示すチップ抵抗器11は、アルミナ(Al)を主成分とする絶縁性基板12の表面側に、酸化ルテニウム等からなる抵抗体13と、この抵抗体13の両端部に重なり合う一対の表面電極14と、抵抗体13を覆うガラスコート層15およびオーバーコート層16とが形成されている。オーバーコート層16はエポキシ系樹脂等からなり、これらガラスコート層15とオーバーコート層16は抵抗体13の保護膜17として機能する。また、絶縁性基板12の裏面側には表面電極14と対応する両端部に一対の裏面電極18が形成されており、さらに、絶縁性基板12の両側端面にはそれぞれ表面電極14と裏面電極18とを橋絡する端面電極19が形成されている。表面電極14と裏面電極18はAgまたはAg−Pdを主成分とするペーストをスクリーン印刷等を用いて形成したものであり、端面電極19はニッケルクロム(Ni/Cr)をスパッタすることによって形成したものである。表面電極14と裏面電極18および端面電極19はチップ抵抗器11の下地電極層を構成しており、後述する製造工程の最終段階で該下地電極層をめっき処理することにより、ニッケル(Ni)メッキ層20と半田(SN/Pb)めっき層21という二層構造のめっき層22によって該下地電極層は被覆される。なお、該めっき層22(20,21)は、電極くわれの防止や半田付けの信頼性向上を図るためのものであり、半田めっき層の代わりに錫(Sn)めっき層を用いることも可能である。
【0016】
次に、このように構成されたチップ抵抗器11の製造工程を図2と図3に基づいて説明する。
【0017】
まず、図2(a)と図3(a)に示すように、多数個取り用の大判基板12Aを準備する。この大判基板12Aはチップ抵抗器11の絶縁性基板12となるものであり、図2と図3では1個または複数個のチップ領域のみを示してあるが、実際には1つの大判基板12Aから多数のチップ抵抗器11が一括して得られるようになっている。
【0018】
次いで、図2(b)と図3(b)に示すように、大判基板12Aの表裏両面にAgまたはAg−Pdペーストをスクリーン印刷し、これを850°C程度の温度で焼成することにより、個々のチップ抵抗器11に対応する多数の表面電極14と裏面電極18を形成する(電極形成工程)。これら表面電極14と裏面電極18はどちらを先に形成しても良いが、表面電極14は大判基板12Aの表面側にマトリックス状に配列され、裏面電極18も大判基板12Aの裏面側にマトリックス状に配列される。
【0019】
次いで、図2(c)と図3(c)に示すように、大判基板12Aの表面側に酸化ルテニウム等の抵抗体ペーストをスクリーン印刷して焼成することにより、図3(b)のX方向に沿って隣接する一対の表面電極14間にそれぞれ抵抗体13を形成する(抵抗体形成工程)。なお、これら抵抗体13と表面電極14はどちらを先に形成しても良く、要は抵抗体13の両端に隣接する表面電極14が接続されれば良い。
【0020】
次いで、図2(d)と図3(d)に示すように、各抵抗体13を覆うようにガラスペーストをスクリーン印刷して焼成することにより、図3(b)のY方向に沿って帯状に延びるガラスコート層15を形成する。しかる後、図2(e)と図3(e)に示すように、ガラスコート層15上にエポキシ等の樹脂ペーストをスクリーン印刷して加温硬化することにより、ガラスコート層15を覆って帯状に延びるオーバーコート層16を形成し、各抵抗体13を保護する二層構造の保護膜17を形成する(保護膜形成工程)。
【0021】
このように大判基板12Aに多数のチップ抵抗器11に対応する表裏両面電極14,18と抵抗体13および保護膜17(ガラスコート層15とオーバーコート層16)を一括して形成した後、この大判基板12Aの表裏両面に上部保護層23と下部保護層24を形成し(保護層形成工程)、図2(f)と図3(f)に示すように、この下部保護層24の粘着力によって大判基板12Aを支持台25上に固定する(基板固定工程)。これら上部保護層23と下部保護層24はいずれもワックスからなり、大判基板12Aの表裏両面に均一厚に形成される。また、支持台25は例えばアルミナ基板からなるが、アルミナ基板の代わりにガラス基板や樹脂基板を用いることも可能である。
【0022】
次いで、図2(g)と図3(g)に示すように、ダイシングによって大判基板12Aに互いに平行な複数本の一次スリット26を形成し、これら一次スリット26によって表面電極14と裏面電極18の各対を図3(b)のY方向に沿って2分割する(一次スリット形成工程)。これら一次スリット26の両端は大判基板12Aの周縁部まで達しておらず、一次スリット26の両端と大判基板12Aの周縁部との間にスリットのない繋ぎ部27が確保されているため、隣接する一対の一次スリット26で挟まれた短冊状部分28は繋ぎ部27を介して大判基板12Aに保持されている。ただし、この短冊状部分28は下部保護層24の粘着力によって支持台25上に固定されているため、一次スリット26の一端または両端を大判基板12Aの周縁部まで延ばしても良い。
【0023】
次いで、図2(h)に示すように、一次スリット26の内側面にニッケルクロム(Ni/Cr)をスパッタすることにより、一次スリット26内に露出する表面電極14と裏面電極18の端面どうしを橋絡する端面電極19を形成する(端面電極形成工程)。かかる端面電極19の形成時に、表面電極14と裏面電極18はそれぞれ上部保護層23と下部保護層24によって覆われているため、端面電極19が大判基板12Aの表裏両面の表面電極14と裏面電極18まで回り込むことはなく、表面電極14と裏面電極18のスクリーン印刷での寸法精度が維持されたまま端面電極19を高精度に形成することができる。
【0024】
次いで、図3(h)に示すように、ダイシングによって大判基板12Aに各一次スリット26と直交する方向に延びる互いに平行な複数本の二次スリット29を形成し、大判基板12Aを一次スリット26と二次スリット29で囲まれた多数のチップ単体30に細分割する(二次スリット形成工程)。
【0025】
しかる後、上部保護層23と下部保護層24を洗浄することにより、大判基板12Aに設けられた各チップ単体30を支持台25から剥離し(部品分離工程)、最後に、各チップ単体30の下地電極層に電解めっきを施してニッケル(Ni)メッキ層20と半田(SN/Pb)めっき層21を形成することにより、図1に示すようなチップ抵抗器11が多数個取りされる。
【0026】
このようにして製造されるチップ抵抗器11は、所定サイズの大判基板12Aに多数個取りされるチップ抵抗器11に対応する表裏両面電極14,18と抵抗体13および保護膜17(ガラスコート層15とオーバーコート層16)を一括して形成した後、この大判基板12Aの表裏両面に上部保護層23と下部保護層24をそれぞれ形成し、次いでこの下部保護層24の粘着力によって大判基板12Aを支持台25上に固定した状態で多数の一次スリット26を形成し、これら一次スリット26内の空間を利用して端面電極19をスパッタにより形成するようにしたので、チップ抵抗器11の小型化に伴って各一次スリット26間の幅寸法が非常に小さくなったとしても、端面電極19を簡単かつ高精度に形成することができ、しかも、端面電極19の形成時に表面電極14と裏面電極18はそれぞれ上部保護層23と下部保護層24によって覆われているため、端面電極19が大判基板12Aの表裏両面の表面電極14と裏面電極18まで回り込むことはなく、表面電極14と裏面電極18のスクリーン印刷での寸法精度が維持されたまま端面電極19を高精度に形成することができる。
【0027】
また、このチップ抵抗器11は抵抗体13と表面電極14および裏面電極18を厚膜形成したものであるが、上部保護層23と下部保護層24としてワックスを用いているため、ダイシングによって大判基板12Aに一次スリット26を形成する際に懸念される表面電極14と裏面電極18の欠けを防止できる。さらに、一次スリット26の両端が大判基板12Aの周縁部まで達しておらず、一次スリット26の両端と大判基板12Aの周縁部との間にスリットのない繋ぎ部27が確保されているため、一次スリット26で挟まれた短冊状部分28を繋ぎ部27を介して大判基板12Aに確実に保持することができ、この点からも端面電極19の精度を高めることができる。
【0028】
なお、上記実施形態例では、抵抗体13と表面電極14および裏面電極18を厚膜形成した厚膜タイプのチップ抵抗器11について説明したが、これら抵抗体と表面電極および裏面電極をスパッタ等で薄膜形成した薄膜タイプのチップ抵抗器にも適用可能である。この場合、一次スリット26の形成時にダイシングによって表面電極14と裏面電極18が欠ける虞がなくなるため、上部保護層23ととしてワックスの代わりにレジストを用いても良く、また、大判基板12Aを支持台25上に固定する下部保護層24としてワックスの代わりに接着テープを用いることが好ましい。
【0029】
また、上記実施形態例では、一次スリット26と二次スリット29を形成する加工手段としてダイシングを例示したが、ダイシングの代わりにレーザやウォータージェットを用いることも可能である。
【0030】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0031】
所定サイズの大判基板に個々のチップ抵抗器に対応する電極と抵抗体を一括して形成した後、この大判基板の表裏両面に上部保護層と下部保護層をそれぞれ形成すると共に、この下部保護層の粘着力によって大判基板を支持台上に固定した状態で多数の一次スリットを形成し、これら一次スリット内の空間を利用して端面電極をスパッタにより形成するようにしたので、チップ抵抗器の小型化に伴って各一次スリット間の幅寸法が非常に小さくなったとしても、端面電極を簡単かつ高精度に形成することができ、しかも、この端面電極の形成時に大判基板の表裏両面の電極が上部保護層と下部保護層によって覆われているので、端面電極が大判基板の表裏両面の電極まで回り込むことはなく、この点からも端面電極を高精度に形成することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係るチップ抵抗器の断面図である。
【図2】該チップ抵抗器の製造工程を示す断面図である。
【図3】該チップ抵抗器の製造工程を示す平面図である。
【図4】従来例に係るチップ抵抗器の断面図である。
【符号の説明】
11 チップ抵抗器
12 絶縁性基板
12A 大判基板
13 抵抗体
14 表面電極
15 ガラスコート層
16 オーバーコート
17 保護膜
18 裏面電極
19 端面電極
22 めっき層
23 上部保護層
24 下部保護層
25 支持台
26 一次スリット
27 繋ぎ部
28 短冊状部分
29 二次スリット
30 チップ単体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a chip resistor, and more particularly to a method of manufacturing a chip resistor suitable for use when the external dimensions are reduced.
[0002]
[Prior art]
FIG. 4 is a sectional view of a conventionally known chip resistor. A chip resistor 1 shown in FIG. 4 has an insulating substrate 2 made of alumina or the like, and a resistor is provided on the insulating substrate 2. A body 3 and a pair of surface electrodes 4 overlapping each other on both ends of the resistor 3 are formed. The resistor 3 is covered with a glass coat layer 5, and the glass coat layer 5 is further covered with an overcoat layer 6 made of an epoxy resin or the like. The glass coat layer 5 and the overcoat layer 6 function as a protective film for the resistor 3. A pair of back surface electrodes 7 are formed at both ends corresponding to the front surface electrode 4 on the back surface of the insulating substrate 2, and the front surface electrode 4 and the back surface electrode 7 are respectively bridged on both end surfaces of the insulating substrate 2. An end face electrode 8 is formed. The front electrode 4 and the back electrode 7 are formed by screen printing or the like using a paste mainly composed of silver (Ag), and the end electrode 8 is formed by sputtering nickel chrome (Ni / Cr), for example. . The front electrode 4, the back electrode 7 and the end electrode 8 constitute a base electrode layer of the chip resistor 1, and a nickel (Ni) plating layer 9 is formed by plating the base electrode layer at the final stage of the manufacturing process. The base electrode layer is covered with a two-layered plating layer of a solder (SN / Pb) plating layer 10. The plating layers 9 and 10 are for preventing electrode cracking and improving the reliability of soldering, and a tin (Sn) plating layer may be used instead of the solder plating layer.
[0003]
Conventionally, the chip resistor 1 configured as described above is manufactured by the steps described below. That is, first, a large-sized substrate in which dividing grooves extending vertically and horizontally are formed at positions that divide each chip region, and a large number of front surface electrodes 4 and back surface electrodes 7 corresponding to the individual chip resistors 1 are formed on the large-sized substrate. At the same time, after the resistor 3 is formed between the adjacent surface electrodes 4, the glass coat layer 5 and the overcoat layer 6 are sequentially formed on each resistor 3. Next, after dividing the large substrate along one dividing groove (primary division) to obtain a large number of strip-shaped divided pieces, the strip-shaped divided pieces are stacked on both end surfaces along the respective longitudinal directions. The end face electrode 8 is formed. Thereafter, each strip-shaped divided piece is divided into chip sizes (secondary division) along the other divided grooves, and finally, nickel (Ni) and solder (SN / Pb) plating layer 10 is applied, whereby FIG. A large number of chip resistors 1 as shown in FIG. As a conventional example related to this type of technology, for example, Patent Document 1 is cited.
[0004]
[Patent Document 1]
JP-A-6-120013 (page 2-3, FIG. 1)
[0005]
[Problems to be solved by the invention]
By the way, in recent years, chip resistors have been miniaturized along with miniaturization of various electronic devices. For example, an ultra-small chip resistor having a planar outer dimension of 0.6 mm × 0.3 mm has been realized. There is also a need for miniaturized chip resistors.
[0006]
However, in the above-described conventional manufacturing method, the end face electrode is formed on the end face of the strip-shaped divided piece obtained by first dividing the large-sized substrate, and the primary step of dividing the large-sized substrate into the strip shape as a pre-process for forming the end face electrode. Since division is required, if the width of the strip-shaped divided piece becomes very small as the chip resistor is miniaturized, it becomes difficult to primarily divide the large substrate into strip-shaped divided pieces. In addition, even if a large number of strip-shaped divided pieces can be obtained from a large-sized substrate, the mechanical strength of the strip-shaped divided pieces decreases as the width dimension becomes smaller. Thus, when the end face electrodes are formed on both end faces, there arises a problem that the strip-like divided pieces are carelessly cracked. Further, as chip resistors are miniaturized, slight positional misalignment of a plurality of strip-shaped divided pieces superimposed on each other becomes a cause of defective end face electrodes, making it difficult to form end face electrodes with high accuracy. The problem that becomes.
[0007]
The present invention has been made in view of the actual situation of the prior art, and an object of the present invention is to provide a chip resistor that can easily and highly accurately form an end face electrode even if the external dimensions are reduced. There is.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, in the method of manufacturing a chip resistor according to the present invention, an electrode forming step for forming a large number of electrodes on both the front and back surfaces of a large substrate of a predetermined size, and both ends on one surface of the large substrate. Forming a resistor connected to the electrodes, a protective film forming step of forming a protective film so as to cover the resistor, and the front and back of the large substrate after the protective film forming step a protective layer forming step of forming respectively at least the upper protective layer to cover the electrode and the lower protective layer on both sides, fixing the large substrate after the protective layer forming step on the support base by the adhesive force of the lower protective layer a substrate fixing step of, said electrodes connecting the resistor adjacent to form a number of primary slits parallel to each other from the outside of the upper protective layer in the large-sized substrate, which is fixed on the support table A primary slit forming step for dividing, an end surface electrode forming step for forming end surface electrodes for connecting the electrodes on the front and back surfaces inside the primary slit by sputtering, and the primary slit in the large substrate after the end surface electrode forming step. A secondary slit forming step for forming a number of secondary slits extending in a direction orthogonal to the vertical slit, and removing the upper protective layer and the lower protective layer after the secondary slit forming step to remove the large substrate from the support base. And a component separation step for separating and obtaining individual components.
[0009]
According to the manufacturing method of the chip resistor including each step, a large number of primary slits are formed in a state where the large-sized substrate is fixed on the support base by the adhesive force of the lower protective layer , and spaces in these primary slits are formed. Since the end face electrode is formed by sputtering, the end face electrode is easily and accurately formed even if the width dimension between the primary slits becomes very small as the chip resistor becomes smaller. can do. In addition, since the electrodes on both the front and back sides of the large substrate are covered with the upper protective layer and the lower protective layer, the end surface electrode does not reach the electrodes on the front and back surfaces of the large substrate. Can be formed.
[0011]
In the above configuration, the electrode and resistor may be either thick film formation such as screen printing or thin film formation such as sputtering, but when forming the electrode and resistor thick film, use wax as a protective layer. In the primary slit forming step, the chipping of the electrode can be prevented, which is preferable. On the other hand, when the electrode and the resistor are formed into a thin film, the protective layer on the side covering the electrode to be connected to the resistor may be a resist or a wax, but the protective layer on the side for fixing the large substrate on the support base is bonded. It is preferable to use a tape.
[0012]
In the above configuration, both ends of the primary slit may reach the periphery of the large substrate in the primary slit forming step, but at least one end of the primary slit is connected to the periphery of the large substrate through the connecting portion. It is more preferable that the strips between the adjacent primary slits are fixed on the support base and connected to the peripheral edge of the large-sized substrate.
[0013]
In the above configuration, a laser or a water jet can be used as a processing means for forming the primary slit and the secondary slit, but it is preferable to form the primary slit and the secondary slit by dicing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1 is a cross-sectional view of a chip resistor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a manufacturing process of the chip resistor, and FIG. It is a top view which shows the manufacturing process of this chip resistor.
[0015]
A chip resistor 11 shown in FIG. 1 overlaps a resistor 13 made of ruthenium oxide or the like on both sides of the resistor 13 on the surface side of an insulating substrate 12 mainly composed of alumina (Al 2 O 3 ). A pair of surface electrodes 14 and a glass coat layer 15 and an overcoat layer 16 that cover the resistor 13 are formed. The overcoat layer 16 is made of an epoxy resin or the like, and the glass coat layer 15 and the overcoat layer 16 function as a protective film 17 for the resistor 13. Further, a pair of back surface electrodes 18 are formed on both end portions corresponding to the front surface electrode 14 on the back surface side of the insulating substrate 12, and the front surface electrode 14 and the back surface electrode 18 are respectively formed on both side end surfaces of the insulating substrate 12. Are formed. The front electrode 14 and the back electrode 18 are formed by using a screen printing or the like with a paste mainly composed of Ag or Ag-Pd, and the end electrode 19 is formed by sputtering nickel chrome (Ni / Cr). Is. The front electrode 14, the back electrode 18 and the end electrode 19 constitute a base electrode layer of the chip resistor 11, and nickel (Ni) plating is performed by plating the base electrode layer in the final stage of the manufacturing process described later. The underlying electrode layer is covered with a two-layered plating layer 22 of a layer 20 and a solder (SN / Pb) plating layer 21. The plating layer 22 (20, 21) is for preventing electrode cracking and improving the reliability of soldering, and a tin (Sn) plating layer can be used instead of the solder plating layer. It is.
[0016]
Next, the manufacturing process of the chip resistor 11 configured as described above will be described with reference to FIGS.
[0017]
First, as shown in FIGS. 2 (a) and 3 (a), a large-sized substrate 12A for preparing multiple pieces is prepared. The large substrate 12A serves as the insulating substrate 12 of the chip resistor 11. In FIGS. 2 and 3, only one or a plurality of chip regions are shown. A large number of chip resistors 11 can be obtained collectively.
[0018]
Next, as shown in FIG. 2 (b) and FIG. 3 (b), Ag or Ag-Pd paste is screen-printed on both the front and back surfaces of the large substrate 12A, and this is baked at a temperature of about 850 ° C. A large number of front surface electrodes 14 and back surface electrodes 18 corresponding to the individual chip resistors 11 are formed (electrode formation step). Either the front electrode 14 or the rear electrode 18 may be formed first, but the front electrode 14 is arranged in a matrix on the front side of the large substrate 12A, and the rear electrode 18 is also formed in a matrix on the rear side of the large substrate 12A. Arranged.
[0019]
Next, as shown in FIGS. 2 (c) and 3 (c), a resistor paste such as ruthenium oxide is screen-printed on the surface side of the large substrate 12A and baked, so that the X direction in FIG. 3 (b). Each of the resistors 13 is formed between a pair of surface electrodes 14 adjacent to each other (resistor forming step). It should be noted that either the resistor 13 or the surface electrode 14 may be formed first, and the surface electrode 14 adjacent to both ends of the resistor 13 may be connected.
[0020]
Next, as shown in FIGS. 2 (d) and 3 (d), a glass paste is screen-printed and fired so as to cover each resistor 13, thereby forming a strip shape along the Y direction in FIG. 3 (b). A glass coat layer 15 is formed extending in the direction. Thereafter, as shown in FIGS. 2 (e) and 3 (e), a resin paste such as epoxy is screen-printed on the glass coat layer 15 and heated and cured to cover the glass coat layer 15 and form a belt-like shape. An overcoat layer 16 extending in the direction of 2 is formed, and a protective film 17 having a two-layer structure for protecting each resistor 13 is formed (protective film forming step).
[0021]
Thus, after forming the front and back double-sided electrodes 14 and 18 corresponding to many chip resistors 11, the resistor 13, and the protective film 17 (the glass coat layer 15 and the overcoat layer 16) collectively on the large substrate 12A, An upper protective layer 23 and a lower protective layer 24 are formed on both the front and back sides of the large substrate 12A (protective layer forming step) . As shown in FIGS. 2 (f) and 3 (f), the adhesive strength of the lower protective layer 24 is as follows. Thus, the large substrate 12A is fixed on the support base 25 (substrate fixing step). Both the upper protective layer 23 and the lower protective layer 24 are made of wax, and are formed to have a uniform thickness on both the front and back surfaces of the large substrate 12A. The support base 25 is made of, for example, an alumina substrate, but a glass substrate or a resin substrate may be used instead of the alumina substrate.
[0022]
Next, as shown in FIGS. 2G and 3G, a plurality of primary slits 26 parallel to each other are formed on the large substrate 12A by dicing, and the front electrode 14 and the back electrode 18 are formed by these primary slits 26. Each pair is divided into two along the Y direction in FIG. 3B (primary slit forming step). Both ends of these primary slits 26 do not reach the peripheral edge portion of the large-sized substrate 12A, and a connecting portion 27 having no slit is secured between both ends of the primary slit 26 and the peripheral edge portion of the large-sized substrate 12A. The strip-shaped portion 28 sandwiched between the pair of primary slits 26 is held on the large-sized substrate 12 </ b> A via the connecting portion 27. However, since the strip-like portion 28 is fixed on the support base 25 by the adhesive force of the lower protective layer 24, one end or both ends of the primary slit 26 may be extended to the peripheral portion of the large substrate 12A.
[0023]
Next, as shown in FIG. 2 (h), nickel chromium (Ni / Cr) is sputtered on the inner surface of the primary slit 26, so that the end surfaces of the surface electrode 14 and the back electrode 18 exposed in the primary slit 26 are separated from each other. A bridging end face electrode 19 is formed (end face electrode forming step). When the end face electrode 19 is formed, the front face electrode 14 and the back face electrode 18 are covered with the upper protective layer 23 and the lower protective layer 24, respectively. The end surface electrode 19 can be formed with high accuracy while maintaining the dimensional accuracy of the front surface electrode 14 and the back surface electrode 18 in screen printing.
[0024]
Next, as shown in FIG. 3 (h), a plurality of parallel secondary slits 29 extending in a direction perpendicular to the primary slits 26 are formed on the large substrate 12A by dicing, and the large substrate 12A is formed with the primary slits 26. Subdivided into a large number of single chips 30 surrounded by the secondary slits 29 (secondary slit forming step).
[0025]
Thereafter, by cleaning the upper protective layer 23 and the lower protective layer 24, each chip unit 30 provided on the large substrate 12A is peeled off from the support base 25 (part separation step). By applying electrolytic plating to the base electrode layer to form a nickel (Ni) plating layer 20 and a solder (SN / Pb) plating layer 21, a large number of chip resistors 11 as shown in FIG. 1 are obtained.
[0026]
The chip resistor 11 manufactured in this way has the front and back double-sided electrodes 14 and 18 corresponding to the chip resistor 11 taken in large numbers on a large substrate 12A of a predetermined size, the resistor 13, and the protective film 17 (glass coating layer). 15 and the overcoat layer 16) are collectively formed, and then an upper protective layer 23 and a lower protective layer 24 are formed on both the front and back surfaces of the large substrate 12A , and then the large substrate 12A is formed by the adhesive force of the lower protective layer 24. A large number of primary slits 26 are formed in a state in which the chip resistor 11 is fixed on the support base 25, and the end face electrodes 19 are formed by sputtering using the spaces in the primary slits 26. Therefore, the chip resistor 11 can be reduced in size. Accordingly, even if the width dimension between the primary slits 26 becomes very small, the end face electrode 19 can be formed easily and with high accuracy. Since the surface electrode 14 and the back electrode 18 are covered with the upper protective layer 23 and the lower protective layer 24, respectively, when the electrode 19 is formed, the end face electrode 19 wraps around to the front electrode 14 and the back electrode 18 on both the front and back surfaces of the large substrate 12A. In other words, the end face electrode 19 can be formed with high accuracy while maintaining the dimensional accuracy in screen printing of the front electrode 14 and the back electrode 18.
[0027]
The chip resistor 11 is formed by forming a thick film of the resistor 13, the front electrode 14, and the back electrode 18. Since the upper protective layer 23 and the lower protective layer 24 are made of wax, a large substrate is formed by dicing. It is possible to prevent the front electrode 14 and the back electrode 18 from being chipped when the primary slit 26 is formed in 12A. Further, since both ends of the primary slit 26 do not reach the peripheral edge portion of the large substrate 12A, and a connecting portion 27 without a slit is secured between both ends of the primary slit 26 and the peripheral portion of the large substrate 12A, the primary slit 26 The strip-shaped portion 28 sandwiched between the slits 26 can be reliably held on the large-sized substrate 12A via the connecting portion 27, and the accuracy of the end face electrode 19 can be increased also from this point.
[0028]
In the above embodiment, the thick film type chip resistor 11 in which the resistor 13, the surface electrode 14, and the back electrode 18 are formed thick has been described. However, the resistor, the surface electrode, and the back electrode are formed by sputtering or the like. It can also be applied to a thin film type chip resistor formed into a thin film. In this case, since there is no possibility that the front electrode 14 and the back electrode 18 are lost due to dicing when the primary slit 26 is formed, a resist may be used instead of wax as the upper protective layer 23, and the large-sized substrate 12A is supported on the support base. It is preferable to use an adhesive tape instead of wax as the lower protective layer 24 fixed on the surface 25.
[0029]
In the above embodiment, dicing is exemplified as the processing means for forming the primary slit 26 and the secondary slit 29. However, a laser or a water jet can be used instead of dicing.
[0030]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0031]
After forming electrodes and resistors corresponding to individual chip resistors on a large substrate of a predetermined size, an upper protective layer and a lower protective layer are formed on both the front and back surfaces of the large substrate , respectively. A large number of primary slits were formed with the large-size substrate fixed on the support base by the adhesive force of the end face, and the end face electrodes were formed by sputtering using the space in these primary slits. Even if the width dimension between the primary slits becomes very small as a result of this, the end face electrodes can be formed easily and with high accuracy, and the electrodes on both the front and back sides of the large substrate are formed at the time of forming the end face electrodes. are covered by the upper protective layer and the lower protective layer is not the end surface electrode from flowing to the both sides of the electrodes of the large-area substrate, to form an end face electrode from this point with high precision Kill.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a chip resistor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of the chip resistor.
FIG. 3 is a plan view showing a manufacturing process of the chip resistor.
FIG. 4 is a cross-sectional view of a chip resistor according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Chip resistor 12 Insulating board | substrate 12A Large format board 13 Resistor 14 Front surface electrode 15 Glass coat layer 16 Overcoat 17 Protective film 18 Back surface electrode 19 End surface electrode 22 Plating layer 23 Upper protective layer 24 Lower protective layer 25 Support base 26 Primary slit 27 Connecting portion 28 Strip portion 29 Secondary slit 30 Single chip

Claims (5)

所定サイズの大判基板の表裏両面に多数の電極をマトリックス状に形成する電極形成工程と、
前記大判基板の一面に両端が前記電極に接続された多数の抵抗体を形成する抵抗体形成工程と、
前記抵抗体を覆うように保護膜を形成する保護膜形成工程と、
この保護膜形成工程後の前記大判基板の表裏両面に少なくとも前記電極を覆うように上部保護層と下部保護層をそれぞれ形成する保護層形成工程と、
この保護層形成工程後の前記大判基板を前記下部保護層の粘着力によって支持台上に固定する基板固定工程と、
前記支持台上に固定された前記大判基板に前記上部保護層の外側から互いに平行な多数の一次スリットを形成して隣接する前記抵抗体を繋ぐ前記電極を2分割する一次スリット形成工程と、
前記一次スリットの内部で表裏両面の前記電極どうしを接続する端面電極をスパッタにより形成する端面電極形成工程と、
この端面電極形成工程後の前記大判基板に前記一次スリットと直交する方向に延びる多数の二次スリットを形成する二次スリット形成工程と、
この二次スリット形成工程後に前記上部保護層と前記下部保護層を除去することにより前記大判基板を前記支持台から剥離して個々の部品を得る部品分離工程と、
を具備してなるチップ抵抗器の製造方法。
An electrode forming step of forming a large number of electrodes in a matrix on both front and back surfaces of a large substrate of a predetermined size;
A resistor forming step of forming a large number of resistors whose both ends are connected to the electrodes on one surface of the large substrate,
A protective film forming step of forming a protective film so as to cover the resistor;
A protective layer forming step of forming an upper protective layer and a lower protective layer so as to cover at least the electrodes on both the front and back surfaces of the large substrate after the protective film forming step ;
A substrate fixing step of fixing the large-sized substrate after the protective layer forming step on a support base by an adhesive force of the lower protective layer ;
A primary slit forming step of dividing the electrode connecting the adjacent resistors into two by forming a large number of primary slits parallel to each other from the outside of the upper protective layer on the large substrate fixed on the support;
An end face electrode forming step of forming an end face electrode for connecting the electrodes on both the front and back surfaces by sputtering inside the primary slit;
A secondary slit forming step of forming a number of secondary slits extending in a direction orthogonal to the primary slit in the large substrate after the end face electrode forming step;
A component separation step of removing the upper protective layer and the lower protective layer after the secondary slit forming step to separate the large substrate from the support to obtain individual components,
A method of manufacturing a chip resistor comprising:
請求項1の記載において、前記電極と前記抵抗体が厚膜形成されると共に、前記保護層がワックスであることを特徴とするチップ抵抗器の製造方法。 2. The method of manufacturing a chip resistor according to claim 1 , wherein the electrode and the resistor are formed in a thick film, and the protective layer is a wax. 請求項1の記載において、前記電極と前記抵抗体が薄膜形成されると共に、前記大判基板を前記支持台上に固定する側の前記保護層が接着テープであることを特徴とするチップ抵抗器の製造方法。 2. The chip resistor according to claim 1 , wherein the electrode and the resistor are formed into a thin film, and the protective layer on the side for fixing the large substrate on the support base is an adhesive tape. Production method. 請求項1〜3のいずれかの記載において、前記一次スリットの少なくとも一方の端部が繋ぎ部を介して前記大判基板の周縁部に繋がれていることを特徴とするチップ抵抗器の製造方法。4. The method of manufacturing a chip resistor according to claim 1 , wherein at least one end of the primary slit is connected to a peripheral edge of the large substrate through a connecting portion. 5. 請求項1〜4のいずれかの記載において、前記一次スリットと前記二次スリットがダイシングにより形成されることを特徴とするチップ抵抗器の製造方法。5. The method of manufacturing a chip resistor according to claim 1 , wherein the primary slit and the secondary slit are formed by dicing.
JP2002275560A 2002-09-20 2002-09-20 Manufacturing method of chip resistor Expired - Fee Related JP4067923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275560A JP4067923B2 (en) 2002-09-20 2002-09-20 Manufacturing method of chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275560A JP4067923B2 (en) 2002-09-20 2002-09-20 Manufacturing method of chip resistor

Publications (2)

Publication Number Publication Date
JP2004111833A JP2004111833A (en) 2004-04-08
JP4067923B2 true JP4067923B2 (en) 2008-03-26

Family

ID=32271726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275560A Expired - Fee Related JP4067923B2 (en) 2002-09-20 2002-09-20 Manufacturing method of chip resistor

Country Status (1)

Country Link
JP (1) JP4067923B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081271A1 (en) * 2004-02-19 2005-09-01 Koa Kabushikikaisha Process for fabricating chip resistor
JP2006024767A (en) * 2004-07-08 2006-01-26 Koa Corp Manufacturing method of chip resistor
JP6506636B2 (en) * 2015-06-18 2019-04-24 Koa株式会社 Method of manufacturing chip resistor
JP6506639B2 (en) * 2015-07-01 2019-04-24 Koa株式会社 Method of manufacturing chip resistor

Also Published As

Publication number Publication date
JP2004111833A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
CN101271750B (en) Electronic component and method for manufacturing the same
JP5115968B2 (en) Chip resistor manufacturing method and chip resistor
CN111276305A (en) Chip resistor and method for manufacturing the same
JP4067923B2 (en) Manufacturing method of chip resistor
CN1918675B (en) Process for fabricating chip resistor
JP2005268302A (en) Chip resistor and manufacturing method thereof
JP2000306711A (en) Multiple chip resistor and production thereof
JP4167194B2 (en) Manufacturing method of chip parts
JPH08316002A (en) Electronic component and composite electronic part
JP2005268300A (en) Chip resistor and manufacturing method thereof
JP4295035B2 (en) Manufacturing method of chip resistor
JP2001023864A (en) Multiple electronic part
JP2668375B2 (en) Circuit component electrode manufacturing method
JP2022012055A (en) Resistor
JP2002231120A (en) Chip type electronic component
JP3772270B2 (en) Small electronic component manufacturing method and chip resistor
JP2005078874A (en) Jumper chip component and manufacturing method therefor
JP4504577B2 (en) Manufacturing method of chip resistor
JP2003068505A (en) Chip resistor and method for manufacturing the same
JP2003272901A (en) Thick film resistor and its manufacturing method
JPH11307304A (en) Chip resistor and manufacture of the same
JP4109645B2 (en) Manufacturing method of chip resistor
TW202249038A (en) Chip component
JP2004259773A (en) Method for manufacturing chip resistor
JPH07283060A (en) Fabrication of thin film chip inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees