JP4065714B2 - 1,2−ジクロロエタンの精製方法 - Google Patents
1,2−ジクロロエタンの精製方法 Download PDFInfo
- Publication number
- JP4065714B2 JP4065714B2 JP2002115406A JP2002115406A JP4065714B2 JP 4065714 B2 JP4065714 B2 JP 4065714B2 JP 2002115406 A JP2002115406 A JP 2002115406A JP 2002115406 A JP2002115406 A JP 2002115406A JP 4065714 B2 JP4065714 B2 JP 4065714B2
- Authority
- JP
- Japan
- Prior art keywords
- dichloroethane
- crude
- water
- extraction
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の属する技術分野】
本発明は、鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタンの新規な精製方法に関する。詳しくは、上記粗1,2−ジクロロエタンを、水を抽剤とする鉄成分の抽出除去及びアルカリ洗浄を行い精製するに際し、上記精製を長期間安定して実施することが可能な粗1,2−ジクロロエタンの精製方法である。
【0002】
【従来の技術】
1,2−ジクロロエタンの製造方法として、塩素とエチレンとを鉄系触媒の存在下に反応せしめる方法が行われる。かかる反応によって得られる粗1,2−ジクロロエタンは、1,1,2−トリクロロエタン等の副生物及び鉄系触媒としての塩化第二鉄を含有するため、これらを除去して精製する必要がある。
【0003】
従来、上記精製は、まず、粗1,2−ジクロロエタンより鉄系触媒由来の鉄成分を、水を抽剤として抽出除去し、次いで、残留酸分、有効塩素等をアルカリ洗浄により除去する精製を行った上で、前記副生物を蒸留により分離する方法が一般に採用される。
【0004】
図3は、粗1,2−ジクロロエタンを鉄成分の抽出除去、及びアルカリ洗浄する方法として従来実施されている工程の一例を示す概略図である。先ず、粗1,2−ジクロロエタンは抽出工程において処理される。即ち、粗1,2−ジクロロエタン導入配管1より、抽剤としての水は水導入管2より向流抽出塔に供給され、該向流抽出塔の中間部に形成される液交流部で向流接触せしめられ、鉄成分を含む水は水貯留部4に至り、水取出配管5より連続的に取り出される。また、鉄成分を除去された粗1,2−ジクロロエタンは1,2−ジクロロエタン貯留部6に至り、1,2−ジクロロエタン取出配管7より連続的に取り出される。上記鉄成分を抽出除去された粗1,2−ジクロロエタンは、酸分を含有するため、次いで、アルカリ洗浄工程において処理される。アルカリ洗浄工程では、上記1,2−ジクロロエタン取出配管に接続するアルカリ導入配管8よりアルカリ水溶液が添加され、静止型混合器9により混合されることにより洗浄が行われる。アルカリ水溶液を混合後の粗1,2−ジクロロエタンは、混合液配管10を経てアルカリ分離槽11に供給され、アルカリと1,2−ジクロロエタンとに分離され、アルカリ水溶液はアルカリ取出配管12より取り出され、精製された1,2−ジクロロエタンは1,2−ジクロロエタン取出配管13より取り出される。
【0005】
ところが、上記抽出工程及びアルカリ洗浄工程よりなる1,2−ジクロロエタン精製方法において、粗1,2−ジクロロエタン中の鉄成分を、水を抽剤として抽出後の該粗1,2−ジクロロエタン中の残留塩素等をアルカリ洗浄する場合に、スラッジの発生が起こって装置内に堆積し、長期安定運転を行なう場合に障害となるという問題を有する。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、粗1,2−ジクロロエタンを、水を抽剤とする鉄成分の抽出除去及びアルカリ洗浄を行い精製するに際し、上記精製を長期間安定して実施することが可能な粗1,2−ジクロロエタンの精製方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意研究を重ねた。その結果、従来、アルカリ洗浄工程において再度水溶液と接触させるために特に問題視されていなかった粗1,2−ジクロロエタン中の水分量、特に1,2−ジクロロエタンの溶解度を超えて存在する水分量が、予想に反し、スラッジ発生の重要因子であることの知見を得た。即ち、粗1,2−ジクロロエタンに含有される上記水分中には抽出工程で除去されなかった鉄成分が溶解しており、これがアルカリとの接触によりスラッジとなって析出することが判明した。かかる知見に基づき更に研究を重ねた結果、抽出工程より得られる粗1,2−ジクロロエタン中の水分量を特定の値以下とすることにより、上記スラッジの発生を効果的に防止し、安定した精製を行うことができることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明は、鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタンを抽剤として水を使用して含有される鉄成分を抽出除去する抽出工程、上記抽出工程より得られる粗1,2−ジクロロエタン中に溶解度を超えて存在する水分量が2000ppmw以下となるように調整する水分調整工程、及び水分調整工程より得られる粗1,2−ジクロロエタンをアルカリ水溶液により洗浄するアルカリ洗浄工程を含むことを特徴とする1,2−ジクロロエタンの精製方法である。
【0009】
【発明の実施の形態】
本発明において、精製の対象とされる粗1,2−ジクロロエタンは、鉄系触媒の存在下にエチレンと塩素とを反応させる公知の方法によって得られたものである。この粗1,2−ジクロロエタンは、1,2−ジクロロエタンが主成分であるが、前記したように、副生物の他触媒である鉄成分が溶解しており、蒸留により該副生物を除去する前に、該鉄成分を除去する必要がある。また、副生物として1,1,2−トリクロロエタンと共にこれに伴って発生する塩化水素、また、一部の反応を塩素リッチで行なうために有効塩素が存在する。
【0010】
以下、本発明の精製方法について、その代表的な態様を示す図1及び図2に従って説明するが、本発明はこれらの添付図面に限定されるものではない。
【0011】
本発明において、抽出工程(a)は、前記のようにして製造された粗1,2−ジクロロエタンを抽剤と接触せしめて含有される鉄成分を抽出する工程である。
【0012】
上記抽剤としては、水が使用され、例えば、工業用水、水道水等が一般に使用される。また、上記水と共に、一旦鉄成分の抽出に使用した水や粗1,2−ジクロロエタンと上記水との混合によって得られる混合液(以下、抽剤−粗1,2−ジクロロエタン混合液ともいう。)の一部を循環使用することもできる。
【0013】
また、粗1,2−ジクロロエタンに対する抽剤の使用量は特に限定されるものではないが、1,2−ジクロロエタン1重量部に対して、抽剤である水を0.05〜1.5重量部、好ましくは0.1〜0.8重量部の割合で使用することが好ましい。また、抽剤の使用量は、上記範囲内で、混合液のpHが3以下となるように調整することが望ましい。
【0014】
更に、上記抽出は、公知の装置を使用して行うことができるが、工業的には、連続して抽出処理を行うことが可能な抽出装置が好適である。代表的な抽出装置として、図1に示す連続向流塔が挙げられる。この連続抽出塔は、抽剤である水と粗1,2−ジクロロエタンとを、比重差を利用して向流接触せしめる構造を有するものであり、上下に延在する液向流部3の上部から粗1,2−ジクロロエタンを連続的に供給する粗1,2−ジクロロエタン導入配管1を下部から水を連続的に供給する水供給配管2を有し、供給された液を向流接触せしめ、液向流部を上昇した水を水貯留部4より水取出配管5より、また、液向流部を降下した粗1,2−ジクロロエタンを粗1,2−ジクロロエタン貯留部6より1,2−ジクロロエタン配管7より連続的に取り出すようにした構造を有する。
【0015】
上記した液向流部3における液の向流接触を効果的に行うために、該液向流部中に多孔板よりなる棚を設けたり、充填物を充填した公知の構造が好適に採用される。
【0016】
また、抽出装置の他の態様として、図2に示すような並流抽出方式を採ることも設備が小規模、かつ簡単な構造とすることができるため好ましい態様である。即ち、図2に示す抽出装置は、粗1,2−ジクロロエタンと水とを並流で混合し、該混合液を相分離せしめて鉄成分が除去された粗1,2−ジクロロエタンを取り出すものである。具体的には、1,2−ジクロロエタン導入配管1と水導入配管2との合流後に静止型混合器14を設置し、混合及び抽出を行う。かかる混合は特に限定されないが、両者の接触後できるだけ短時間内に実施するの方法が好ましい。すなわち混合時間が長くなると、混合液のpHが局所的に3を超えて上昇し固形分が発生し易くなる傾向があり、固形分が後の工程で蓄積する恐れがある。上記の瞬時の混合は、10秒以内、特に5秒以内に実施することが好ましい。また、混合手段としては、公知の市販の静止型混合気が何ら制限される事なく使用することができる。具体的には、板状または、カップ状の衝突版式の静止型混合器、およびKenics型、Sulzer型、Etoflo型、Tray Hi−mixer型、Bran&Lubbe型、N−form型、komax型、Lightnin型、Ross ISG型、Prematechnik PMR型の静止型混合器を挙げることができる。特に衝突版式の静止型混合器は瞬時の混合に好ましいことに加え、分散した粗1,2−ジクロロエタン中に分散した抽剤である水の合一が少なく好ましい。こうして得た混合液は混合液配管15により分離塔16に導き、比重差により、上方に鉄成分抽出後の水を下方に鉄成分抽出除去後の粗1,2−ジクロロエタンを相分離せしめ、上記相分離した水は水取出配管5より、粗1,2−ジクロロエタンは、1,2−ジクロロエタン配管7より取り出す。
【0017】
また、上記図2に示す態様において、分離塔16として、前記図1に示す液向流部の構造を採用することに何ら制限はない。
【0018】
本発明の最大の特徴は、上記抽出工程において鉄成分を抽出除去された粗1,2−ジクロロエタンをアルカリ洗浄工程で処理する前に、該抽出工程より得られる1,2−ジクロロエタンに溶解度を超えて存在する水分量を2000ppmw以下、好ましくは、500ppmw以下となるように調整する水分調整工程(b)を設けたことにある。
【0019】
尚、上記1,2−ジクロロエタンに溶解度を超えて存在する水分量は、アルカリ洗浄工程の処理温度においてその溶解度を超えて存在する水分量であり、かかる処理温度は通常30〜60℃である。ここで、1,2−ジクロロエタン中の水の溶解度は、カールフィッシャー、ガスクロマトグラフィーで測定した結果、後記の表1に示すような値となる。また、粗1,2−ジクロロエタン中の全水分量は、粗1,2−ジクロロエタン取出配管から配管流速を超える流速でサンプリングして、全量をカールフィッシャーで分析することで、容易に分析することができるので、該溶解度分を減ずることによって溶解度を超えて存在する水分量を算出することができる。
【0020】
かかる溶解度を超えて1,2−ジクロロエタン中に存在する水は鉄成分を含んだ状態で微分散しているものと推定され、その量が前記範囲を超えるとアルカリ洗浄工程において、スラッジの発生が著しく、短時間で装置の閉塞を招く。
【0021】
従来、抽出工程より得られる粗1,2−ジクロロエタン中の1,2−ジクロロエタンに溶解度を超えて存在する水分量は、後記のアルカリ洗浄工程の処理温度の平均的温度である約50℃の温度において、約3500ppmwが一般的であり、このような粗1,2−ジクロロエタンをそのままアルカリ洗浄工程に供給して処理した場合、多量のスラッジが発生する。
【0022】
本発明において、上記水分調整工程は、図1及び図2に示すように、抽出工程からの粗1,2−ジクロロエタンを水分分離器17によって処理して水を精密に除去するのが一般的であるが、場合によっては、図1の抽出工程の液向流部3、或いは図2の分離塔16における水の分離効率を向上せしめる手段、例えば、分離域の延長によりかかる工程を兼ねることもできる。
【0023】
上記水分分離器17は、粗1,2−ジクロロエタン中に微分散した水分を分離可能なものであれば特に限定されない。一般に、分離する抽剤の液滴径は、一般的に一日以上放置しないと沈降しないようなものであり、一概に言えないが、例えば100ミクロン以下のものである。従って、水分分離器は、重力沈降のみを利用するものでは設備が多大となるため、一般的には、遠心力を用いて微細液滴の比重差から分離する遠心分離器や微分散している微細液滴を、フィルターを通過させて成長促進させ、大きい液滴として分離する方法、一例を挙げれば、ポール社製のアクアセップ(商品名)に代表される液/液コアレッサーと呼ばれる装置等が好適である。
【0024】
上記操作温度は特に限定されないが、一般的に30〜60℃で行なうことが好ましい。
【0025】
上記水分分離器17により分離された水は、水取り出し配管18から取り出され、一方、水分を分離して、溶解度を超えて存在する水分量を2000ppm以下に調整された粗1,2−ジクロロエタンは、粗1,2−ジクロロエタン取出配管19より、次工程のアルカリ洗浄工程に供給される。
【0026】
本発明において、アルカリ洗浄工程(c)は、粗1,2−ジクロロエタンにアルカリ水溶液を接触せしめ、含有される塩化水素等の酸分を除去する工程である。
【0027】
前記水分調整工程(b)より粗1,2−ジクロロエタン取出配管19より取り出された粗1,2−ジクロロエタンは、その配管の途中に設置されたアルカリ導入配管8より、混合後のpHが好ましくは10以上になるようにアルカリ水溶液を導入し、静止型混合器9で混合を行う。かかる混合は特に限定されないが、両者の接触後できるだけ短時間内に実施する方法が好ましい。すなわち混合時間が長くなると、スラッジの付着する恐れがある。上記の瞬時の混合は、10秒以内、特に5秒以内に実施することが好ましい。また、混合手段としては、公知の市販の静止型混合器が何ら制限される事なく使用することができる。具体的には、板状または、カップ状の衝突版式の静止型混合器、およびKenics型、Sulzer型、Etoflo型、Tray Hi−mixer型、Bran&Lubbe型、N−form型、komax型、Lightnin型、Ross ISG型、Prematechnik PMR型の静止型混合器を挙げることができる。特に衝突版式の静止型混合器は瞬時の混合に好ましいことに加え、分散した粗1,2−ジクロロエタン中に分散したアルカリの合一が少なく好ましい。こうして得た混合液は、混合液配管10よりアルカリ分離槽11に導入して比重差による相分離を行わせしめ、1,2−ジクロロエタンは下部の1,2−ジクロロエタン取出配管13より、また、アルカリ水溶液は上部のアルカリ取出配管12により取り出される。
【0028】
ここで、使用するアルカリ水溶液は、粗1,2−ジクロロエタンに含まれる酸分を1ppmw以下、有効塩素分を0.5ppmw以下にできるものであれば良く、使用濃度等も特に制限されず使用できる。アルカリ水溶液を具体的に例示すれば、苛性ソーダ水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液等が挙げられる。
【0029】
本発明の精製方法によって得られた1,2−ジクロロエタンは、必要に応じて、蒸留等の公知の精製方法を適用し、更に精製を行うことができる。
【0030】
【発明の効果】
以上の説明より理解されるように、本発明によれば、粗1,2−ジクロロエタンと抽剤を連続抽出塔に供給して、抽出後の粗1,2−ジクロロエタン中に含まれる水を分離除去することにより、アルカリ洗浄工程におけるスラッジ発生を極めて効果的に抑えることができ、長期間に亘って安定した精製操作を行うことが可能となる。
【0031】
【実施例】
以下、本発明をより具体的に説明するため、実施例を示すが、本発明はこれらの実施例に何ら限定されるものではない。
【0032】
尚、実施例及び比較例において、1,2−ジクロロエタン中への水の溶解度は、下記の測定値を使用した。
【0033】
【表1】
【0034】
実施例1
図1に示す連続向流塔は、下記の仕様のものを用いて行なった。
・液向流部 塔径25mmφ、高さ3000mm
・上部の水貯液部 塔径51mmφ、高さ300mm
・下部の1,2−ジクロロエタン貯留部 塔径51mmφ、高さ300mm
・液向流部設置のプレート 開孔率50%
・液向流部設置のプレート間隔 50mm、56枚設置
・振動のストローク長さ 25mm
・振動回数 300ストローク回数/分
・操作温度 50℃
・1,2−ジクロロエタンへの水溶解度 3500ppmw
上記連続向流塔にFe濃度が25ppmwの1,2−ジクロロエタンを20.0kg/hrで粗1,2−ジクロロエタン導入配管1から、また、工業用水(Fe濃度156ppmw)を3.0kg/hrで水導入配管2からから供給した。抽出後に粗1,2−ジクロロエタン配管7より得られた粗1,2−ジクロロエタン中の全水分は7000ppmw、溶解度を超えて存在する水分量は3500ppw(50℃における溶解度より算出)であり、含まれるFe濃度は0.63ppmwであった。
【0035】
その後、上記粗1,2−ジクロロエタンを孔径10ミクロンのフィルターを積層した水分分離器17を通し、分離された水を水取出配管18より取り出し、粗1,2−ジクロロエタン取出配管19からは全水分5100ppmw、溶解度を超えて存在する水分量が1600ppw(50℃における溶解度より算出)、Fe濃度0.31ppmwの粗1,2−ジクロロエタンを得た。
【0036】
次いで、上記粗1,2−ジクロロエタン取出配管19にアルカリ導入配管8より、10wt%苛性ソーダ水溶液を接触後のpHが11になる量で導入し、アルカリ分離槽11の1,2−ジクロロエタン取出配管13より精製1,2−ジクロロエタンを得た。上記アルカリ水溶液との接触処理における平均温度は、50℃であった。
【0037】
上記アルカリ洗浄工程において、アルカリとの混合により発生するスラッジ量は、10時間で63gと極めて少なく、さらに20日後の混合配管、混合後の1m範囲の総付着量はまったく確認されず、安定した運転を実施することができた。また、該1,2−ジクロロエタンのFe濃度は0.05ppmw以下であった。
【0038】
比較例1
図3に示す工程図に従い、実施例1と同様な粗1,2−ジクロロエタンの精製を行った。即ち、図3に示す工程は、実施例1に示す方法において、抽出工程(a)に続く粗1,2−ジクロロエタンの水分調整工程(b)を実施しない方法である。
【0039】
実施例1と同じ粗1,2−ジクロロエタンを使用し、実施例1と同様にして抽出工程を実施した後、得られた粗該1,2−ジクロロエタンに直接実施例1と同条件でのアルカリ洗浄工程(c)を実施した。
【0040】
その結果、発生するスラッジ量は、10時間で130gであり、さらに20日後の混合配管、混合後の1m範囲の総付着量は、200gであり、長期間の運転における装置の閉塞が懸念された。また、精製された1,2−ジクロロエタンのFe濃度は0.05ppmw以下であった。
【0041】
実施例2
実施例1において、水分調整工程(b)における水分分離器17の除去率を変更し、全水分を3600ppmw、溶解度を超えて存在する水分量を100ppw(50℃における溶解度より算出)、Fe濃度0.07ppmwとした以外は実施例1と同様に粗1,2−ジクロロエタンの精製を行った。
【0042】
上記水分調整工程(b)より得られた粗該1,2−ジクロロエタンに実施例1と同条件でのアルカリ洗浄工程(c)を実施した結果、発生するスラッジ量は、10時間で13gであり、安定した精製を行うことができた。また、精製1,2−ジクロロエタン中のFe濃度は0.05ppmw以下であった。
【0043】
実施例3
図2の工程図に示すように、実施例1における連続抽出塔の形式を、連続向流塔から静止型混合器14と分離塔16とを組み合わせた装置に代えた以外は実施例1と同様にして粗1,2−ジクロロエタンの精製を実施した。
【0044】
水分調整工程(b)から得られる粗1,2−ジクロロエタンの全水分は3600ppmw、溶解度を超えて存在する水分量は100ppw(50℃における溶解度より算出)、Fe濃度は0.07ppmwの粗1,2−ジクロロエタンが得られた。
【0045】
上記水分調整工程(b)より得られた粗該1,2−ジクロロエタンに実施例1と同条件でのアルカリ洗浄工程(c)を実施した結果、発生するスラッジ量は、10時間で13gであり、安定した精製を行うことができた。また、精製1,2−ジクロロエタン中のFe濃度は0.05ppmw以下であった。
【図面の簡単な説明】
【図1】本発明の方法の好適な実施の態様を示す工程図
【図2】本発明の方法の他の好適な実施の態様を示す工程図
【図3】従来の方法の態様を示す工程図
【符号の説明】
1:粗1,2−ジクロロエタン導入配管
2:水導入配管
3:液向流部
4:水貯留部
5:水取出配管
6:粗1,2−ジクロロエタン貯留部
7:粗1,2−ジクロロエタン配管
8:アルカリ導入配管
9:静止型混合器
10:混合液配管
11:アルカリ分離槽
12:アルカリ取出配管
13:粗1,2−ジクロロエタン取出配管
14:静止型混合器
15:混合液配管
16:分離塔
17:水分分離器
18:水取出配管
19:粗1,2−ジクロロエタン取出配管
Claims (1)
- 鉄系触媒の存在下にエチレンと塩素とを反応せしめて得られる粗1,2−ジクロロエタンを抽剤として水を使用して含有される鉄成分を抽出除去する抽出工程、上記抽出工程より得られる粗1,2−ジクロロエタン中に溶解度を超えて存在する水分量が2000ppmw以下となるように調整する水分調整工程、及び水分調整工程より得られる粗1,2−ジクロロエタンをアルカリ水溶液により洗浄するアルカリ洗浄工程を含むことを特徴とする1,2−ジクロロエタンの精製方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002115406A JP4065714B2 (ja) | 2002-04-17 | 2002-04-17 | 1,2−ジクロロエタンの精製方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002115406A JP4065714B2 (ja) | 2002-04-17 | 2002-04-17 | 1,2−ジクロロエタンの精製方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003306456A JP2003306456A (ja) | 2003-10-28 |
JP4065714B2 true JP4065714B2 (ja) | 2008-03-26 |
Family
ID=29396749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002115406A Expired - Fee Related JP4065714B2 (ja) | 2002-04-17 | 2002-04-17 | 1,2−ジクロロエタンの精製方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4065714B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110183304A (zh) * | 2019-05-16 | 2019-08-30 | 江西理文化工有限公司 | 一种甲烷氯化物生产过程中节能碱洗工艺 |
-
2002
- 2002-04-17 JP JP2002115406A patent/JP4065714B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110183304A (zh) * | 2019-05-16 | 2019-08-30 | 江西理文化工有限公司 | 一种甲烷氯化物生产过程中节能碱洗工艺 |
Also Published As
Publication number | Publication date |
---|---|
JP2003306456A (ja) | 2003-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2756585C2 (ru) | Очищение потока отходов в технологическом процессе совместного производства пропиленоксида и стирола | |
US4961918A (en) | Process for production of chlorine dioxide | |
JP5233668B2 (ja) | 作動溶液の再生工程を含む過酸化水素の製造方法 | |
JP2006315931A (ja) | リン酸およびリン酸以外の少なくとも1種の酸を含む金属イオン含有混酸水溶液からリン酸を回収する方法および装置 | |
JP2559903B2 (ja) | カプロラクタム水溶液のイオン交換樹脂精製方法 | |
JP4065714B2 (ja) | 1,2−ジクロロエタンの精製方法 | |
TW201350463A (zh) | 純化由肟之合成部所獲得之有機產物溶液的方法 | |
JP4217465B2 (ja) | 1,2−ジクロロエタンの精製方法 | |
JP5838710B2 (ja) | 塩水の精製方法 | |
CN104039742B (zh) | 用于从烃流股中去除有机胺的方法 | |
EP0034184B1 (en) | Method for recovering bromine contained in a discharge | |
JP3646328B2 (ja) | エチレンジアミン含有廃液の処理方法 | |
US11897794B2 (en) | Processes and systems for treating sour water | |
US4883859A (en) | Process for producing hydroxylated polybutadiene | |
RU2440969C1 (ru) | Способ очистки уксусной кислоты | |
JPS6235837B2 (ja) | ||
JP2004043434A (ja) | 高純度ジメチルスルホキシドと、ジメチルスルホキシドとアミン類の混合物の精製方法 | |
JP6264947B2 (ja) | ジフェニルメタンジアミンとポリフェニレンポリメチレンポリアミンとの混合物の製造方法 | |
JPS6154023B2 (ja) | ||
JP3835488B2 (ja) | 過酸化水素水溶液中の有機不純物の除去方法 | |
JP2009013121A (ja) | シクロヘキシルイソシアネートの精製方法、およびグリピシドの製造方法 | |
JPH0585953A (ja) | タールからのインデン回収法 | |
JPS6044034B2 (ja) | 触媒残渣を含む廃水の処理方法 | |
JPH0657603B2 (ja) | 二酸化塩素の製造方法 | |
JPS635045A (ja) | ポリエ−テルの精製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140111 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |