JP4058865B2 - Total reflection absorption spectrum measuring device - Google Patents

Total reflection absorption spectrum measuring device Download PDF

Info

Publication number
JP4058865B2
JP4058865B2 JP31243899A JP31243899A JP4058865B2 JP 4058865 B2 JP4058865 B2 JP 4058865B2 JP 31243899 A JP31243899 A JP 31243899A JP 31243899 A JP31243899 A JP 31243899A JP 4058865 B2 JP4058865 B2 JP 4058865B2
Authority
JP
Japan
Prior art keywords
atr
mirror
convex secondary
total reflection
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31243899A
Other languages
Japanese (ja)
Other versions
JP2001133400A (en
Inventor
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31243899A priority Critical patent/JP4058865B2/en
Publication of JP2001133400A publication Critical patent/JP2001133400A/en
Application granted granted Critical
Publication of JP4058865B2 publication Critical patent/JP4058865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子材料などの有機物をはじめ、種々の物質の定性分析や同定分析などに広く利用される全反射吸収スペクトル測定装置に関する。
【0002】
【従来の技術】
全反射吸収スペクトル測定法(ATR)は、試料面に試料より高屈折率の透明体(赤外光を用いる場合は、赤外光に対して透明であればよい)を接触させ、この高屈折透明体側から、試料との境界面で全反射がおきる入射角で測定光を入射させ、全反射された光の試料による吸収減光を検出することにより、試料の吸収特性を測定する方法で、従来から赤外光について測定を行う場合、反射光学系によって構成された赤外反射顕微鏡システムを利用した装置が用いられている。
【0003】
この方法によれば、試料に吸収のない波長領域の光はそのまま全反射されるが、赤外吸収のある波長領域では全反射光が吸収されるので、透過光スペクトルとほとんど同じスペクトルが得られる。
【0004】
しかも、この方法では、不溶、不融、粉砕困難な弾性、粘性物質の測定が可能であるとともに、他の測定方法では試料処理が困難であるゴム、プラスチックなどの測定が容易に行えるという特徴を有している。
【0005】
従来のカセグレン式赤外顕微分光光度計の対物鏡の構造を図3に示す。対物鏡は中央に孔のあいた凹面主鏡8と、この凹面主鏡8と同軸の凸面副鏡9とよりなっており、図外の分光器から出射した単色光が、図3で光軸の右半分を下方に対物鏡光学系に入射せしめられ、その光は凸面副鏡9および凹面主鏡8で反射されて対物鏡光学系の集光点Pに集光される。集光点PにはP点を中心とする半球形のATRプリズム10が設置れており、試料SをそのATRプリズム10の下面に接触させる。こうすると、P点に集光する光は、ATRプリズム10では屈折されず、そのままP点に集光し、試料面で全反射されて、対物光学系の光軸の左半分を上行し、検出される。
【0006】
全反射吸収スペクトル測定法(ATR)は、全反射を利用するため、プリズムが焦点位置にあると、すべての光はATRプリズム底面で反射し、焦点位置にある試料を可視観察することはできない。このため、観察時にはATRプリズムを焦点位置から別の位置に移動させる必要がある。この方法として、光軸に垂直な面内でプリズムを平行移動させるか、図4および図5に示すように、先端に半球レンズを用いた対物レンズ系において、その先端半球レンズの一番上の対物レンズ11の周辺部をカセグレン式反射対物光学系の凸面副鏡12に利用し、ATR測定時には、図4に示すように、輪状開口のATR測定用のアパーチャー13を光軸上に配置し、測定光が凸面副鏡12に照射されるようにし、可視観察時には、図5に示したように、円形開口を有する目視用アパーチャー14を光軸上に配置し、測定光が対物レンズ11に照射されるようにして、試料を対物光学系で目視できるようにしている。あるいは、図6に示すように、ATRプリズム15を可動式にして、目視測定時には鏡筒を支点にしてレバー16でATRプリズム15を光軸方向に持ち上げて、ATRプリズム15を測定光路から外して、測定光がATRプリズム15を通過しないようにした例がある。
【0007】
【発明が解決しようとする課題】
しかしながら、図5に示すように、対物光学系と反射光学系を1つのレンズを用いて行う場合、特殊レンズの作成およびアパーチャー切換機構作製が容易ではなく、高価になるという問題点があった。また、図6に示すように、ATRプリズムを可動式にした場合、ATRプリズムを光軸方向に動かすので、ATR測定の時、ATRプリズムに試料を圧接すると、ATRプリズムの位置の再現性が悪いという問題があった。さらに、ATR測定においては光の全反射を利用するため、赤外線を透過しかつ赤外線に対して屈折率の大きな材質で作製されたATRプリズムを用いる必要があり、ATRプリズムの種類によってはプリズムへの入射角を大きくしないと全反射条件を満足しないので、大きな入射角で光を入射することが必要となる。このため、大きな凹面主鏡と凸面副鏡が必要となるが、この様な光学系を用いた場合、可視観察時には試料への入射角が大きいと、収差などの理由により像がぼけるなどの弊害が発生する。
【0008】
そこで、本発明は、簡単な機構により可視観察時に試料の分析点の鮮明な像が得られることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために、中央に孔のあいた凹面主鏡と、この凹面主鏡と同軸の凸面副鏡とATRプリズムよりなる全反射吸収カセグレン反射対物鏡において、凹面主鏡は固定しておき、凸面副鏡とATRプリズム部分のみを同時に切り替え移動させる機構を組み込むことにより、ATR測定および可視観察の各使用条件に応じて、最適な凸面副鏡とATRプリズムの組み合わせを選択できるようにした。
【0010】
本発明によれば、凹面主鏡は固定されているが、凸面副鏡とATRプリズムは同時に移動可能になっているので、可視観察時には小さな凸面副鏡に切り替え、焦点位置への光の入射角度を小さく制限でき、可視観察時に鮮明な像を得ることができる。また、ATR測定の際には大きな凸面副鏡に切り替え、ATRプリズムに入射する光の入射角度をプリズムの屈折率に応じて大きくすることができ、入射する光の全反射条件を容易に満足させることが可能となる。また、屈折率の異なるATRプリズムとこれに適した凸面副鏡に切り替え、ATRプリズムに対し入射する光の入射角度を変えることにより、測定試料に対する測定光のもぐり込み深さを変化させることができるようになり、これにより試料中の異なった深さ位置におけるATRスペクトルを測定することが可能になる。
【0011】
凸面副鏡とATRプリズムを同時に切り替える機構例としては、反射対物光学系の光軸と平行な軸を中心に回動可能な切り替え用ターンテーブルを設置し、この切り替えターンテーブルを回動させたとき、ターンテーブル上に描かれる上記反射対物光学系の光軸の通過軌跡上に中心をおいて2種以上の凸面副鏡を設け、さらにそれぞれの凸面副鏡の光軸上であり凸面副鏡の下方で凹面主鏡の焦点となる位置にATRプリズムを固定しておき、凸面副鏡の一方が上記反射対物光学系の光軸に位置し測定に用いられているとき、他方を反射対物光学系外に位置させることにより実現できる。
【0012】
【発明の実施の形態】
本発明の全反射吸収スペクトル測定装置の実施の形態を図面に基づいて説明する。図1は本発明の実施例であり、全反射吸収スペクトル測定装置の一実施例の概略を示している。図1(a)は側面断面図であり、カセグレン反射対物鏡1は中央に孔のあいた凹面主鏡2と凸面副鏡3と半球形のATRプリズム4とから構成されている。凹面主鏡2、凸面副鏡3およびATRプリズム4は同一光軸上にあり、ATRプリズム4はその曲率中心が凹面主鏡2の集光点に位置するように配置されている。凸面副鏡3およびATRプリズム4は切り替え用ターンテーブル5に設置されている。切り替え用ターンテーブル5は凹面主鏡2の光軸と平行な軸を中心に回動可能となっており、固定されている凹面主鏡2に対して、凸面副鏡3およびATRプリズム4は切り替え用ターンテーブル5を回動することにより同時に移動させられるようになっている。図1(b)は図1(a)を下部から見た図であり、ターンテーブル5には凸面副鏡3およびATRプリズム4の他に、目視用の凸面副鏡6が、切り替え用ターンテーブル5を回動させたとき、ターンテーブル上に描かれる凸面副鏡2の光軸の通過軌跡上に中心をおいて設置されている。さらに、カセグレン反射対物鏡1には位置決めピボット7が配置されている。
【0013】
この全反射吸収スペクトル測定装置で測定を行う場合、まず、切り替え用ターンテーブル5を回動させ、目視観察用の凸面副鏡6の光軸が凹面主鏡2の光軸と一致する位置に来るよう位置決めピボット7を用いて凸面副鏡6の位置が固定される。測定干渉光は分光光度計(図示せず)から射出し、凹面主鏡の孔を通過し光軸の右半分を下方に対物光学系に入射され、凸面副鏡6および凹面主鏡2で反射されて集光される。この時、小さな凸面副鏡6を目視観察用に使用することで、焦点位置への光の入射角度を小さく制限することができ、可視観察時に鮮明な像を得ることができる。次に、再び切り替え用ターンテーブル5を回動させ、位置決めピボット7を用いて凸面副鏡3およびATRプリズム4の光軸が凹面主鏡2の光軸と一致する位置に凸面副鏡3およびATRプリズム4を固定させ、ATR測定を行う。この時、凸面副鏡3に大きな凸面副鏡を使用することにより、ATRプリズム4に入射する光の入射角度を、ATRプリズム4の屈折率に応じて大きくとることが可能となり、入射する光の全反射条件を容易に満足させることができる。
【0014】
図2は図1におけるATRカセグレン反射対物鏡の側面断面図を示したものである。図2(a)は目視観察時に用いられるATRカセグレン反射対物鏡であり、小さな凸面副鏡6を用いることにより、焦点位置への光の入射角度が小さくなっていることがわかる。これに対して、図2(b)はATR測定時に用いられる用いられるATRカセグレン反射対物鏡であり、大きな凸面副鏡3を使用することにより、ATRプリズム4に入射する光の入射角度が大きくとれていることがわかる。
【0015】
切り替え用ターンテーブル5を回動させるという簡単な動作により、ATR測定および可視観察の各使用条件に応じて、最適な凸面副鏡とATRプリズムの組み合わせを容易に選択することができ、ATR測定時には入射する光の全反射条件を容易に満足させることが可能となり、可視観察時には収差が非常に小さい歪みの少ない鮮明な像を得ることが可能となる。さらに、切り替え用ターンテーブル5に、屈折率の異なる2種類以上のATRプリズムとこれに適した凸面副鏡を設置し、ATRプリズムに対し入射する光の入射角度を変えることを可能にすることにより、測定試料に対する測定光のもぐり込み深さを変化させることができるようになる。これにより試料中の異なった深さ位置におけるATRスペクトルを測定することが可能になる。
【0016】
以上、本発明の実施の形態を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で種々の変更を行うことができる。例えば、上記実施の形態においては2種類の凸面副鏡を使用しているが、測定条件により必要に応じて3種類以上の凸面副鏡を用いることができる。また、切り替え用ターンテーブル5として円盤状のテーブルを用い、これを回転させることにより凸面副鏡およびATRプリズムを移動させたが、長方形のテーブルを用い、凸面副鏡およびATRプリズムを直線上に配置し、リニアモーターにより移動させてもよい。さらに、ターンテーブル5の位置決め方法としては、レーザー光の送受光による位置決め方法等、周知の種々の方法を用いることができる。
【0017】
【発明の効果】
本発明によれば、固定された凹面主鏡に対して、2種以上の凸面副鏡とATRプリズムを切り替え用ターンテーブルに設置し、切り替え用ターンテーブルを回動することにより、凸面副鏡とATRプリズム部分を同時に切り替え移動させる機構を組み込むことで、ATR測定および可視観察の各使用条件に応じて、最適な凸面副鏡とATRプリズムの組み合わせを容易に選択することができ、ATR測定時には入射する光の全反射条件を容易に満足させることが可能となり、可視観察時には収差が非常に小さい歪みの少ない鮮明な像を得ることが可能となった。この際、凹面主鏡および凸面副鏡は製作の容易な球面のみの組み合わせで作ることが可能である。また、構造的にも簡単であり、製造コストを低減することができる。さらに、切り替え用ターンテーブルに屈折率の異なる2種類以上のATRプリズムとこれに適した凸面副鏡を設置し、ATRプリズムに対し入射する光の入射角度を変え、異なった入射角度のATR測定を行うことにより、試料中の異なった深さ位置におけるATRスペクトルを測定することが可能になった。
【図面の簡単な説明】
【図1】本発明の全反射吸収スペクトル測定装置の一実施例の構成図である。
(a)本発明の全反射吸収スペクトル測定装置の側面断面図である。
(b)本発明の全反射吸収スペクトル測定装置の下部から見た図である。
【図2】上記実施例のATRカセグレン反射対物鏡の側面断面図である。
(a)目視観察時に使用されるATRカセグレン反射対物鏡の側面断面図である。
(b)ATR測定時に使用されるATRカセグレン反射対物鏡の側面断面図である。
【図3】従来例の全反射吸収スペクトル測定装置の側面断面図である。
【図4】別の従来例の全反射吸収スペクトル測定装置の側面断面図である。
【図5】上記従来例の目視観察時の側面断面図である。
【図6】別の従来例の側面断面図である。
【符号の説明】
1---カセグレン反射対物鏡
2、8---凹面主鏡
3、6、9、12---凸面副鏡
4、10、15---ATRプリズム
5---切り替えターンテーブル
7---位置決めピボット
11---対物レンズ
13、14---アパーチャー
16---レバー
P---集光点
S---試料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a total reflection absorption spectrum measuring apparatus widely used for qualitative analysis and identification analysis of various substances including organic substances such as polymer materials.
[0002]
[Prior art]
In the total reflection absorption spectrum measurement method (ATR), a transparent body having a higher refractive index than that of the sample is brought into contact with the sample surface. From the transparent body side, the measurement light is incident at an incident angle where total reflection occurs at the interface with the sample, and the absorption characteristics of the sample are measured by detecting the absorption attenuation due to the sample of the totally reflected light. Conventionally, when measuring infrared light, an apparatus using an infrared reflection microscope system configured by a reflection optical system is used.
[0003]
According to this method, light in a wavelength region that is not absorbed by the sample is totally reflected as it is, but totally reflected light is absorbed in a wavelength region having infrared absorption, so that almost the same spectrum as the transmitted light spectrum is obtained. .
[0004]
In addition, this method can measure insoluble, infusible, elastic and viscous substances that are difficult to grind, and can easily measure rubber, plastic, etc., which are difficult to process with other measurement methods. Have.
[0005]
The structure of the objective mirror of a conventional Cassegrain type infrared microspectrophotometer is shown in FIG. The objective mirror is composed of a concave primary mirror 8 having a hole in the center and a convex secondary mirror 9 coaxial with the concave primary mirror 8. Monochromatic light emitted from a spectroscope (not shown) is shown in FIG. The right half is made to enter the objective mirror optical system downward, and the light is reflected by the convex secondary mirror 9 and the concave primary mirror 8 and focused on the focal point P of the objective optical system. The condensing point P is provided with a hemispherical ATR prism 10 centered on the point P, and the sample S is brought into contact with the lower surface of the ATR prism 10. In this way, the light condensed at the point P is not refracted by the ATR prism 10, but is condensed at the point P as it is, is totally reflected by the sample surface, and goes up the left half of the optical axis of the objective optical system. Is done.
[0006]
Since the total reflection absorption spectrum measurement method (ATR) uses total reflection, when the prism is at the focal position, all the light is reflected at the bottom of the ATR prism, and the sample at the focal position cannot be visually observed. For this reason, it is necessary to move the ATR prism from the focal position to another position during observation. As this method, the prism is moved in a plane perpendicular to the optical axis, or, as shown in FIGS. 4 and 5, in the objective lens system using a hemispheric lens at the tip, the top of the tip hemisphere lens is arranged. The peripheral portion of the objective lens 11 is used for the convex secondary mirror 12 of the Cassegrain reflection objective optical system, and at the time of ATR measurement, as shown in FIG. 4, an ATR measurement aperture 13 having a ring-shaped aperture is arranged on the optical axis, As shown in FIG. 5, a visual aperture 14 having a circular opening is arranged on the optical axis so that the measurement light is irradiated on the convex secondary mirror 12 and the objective lens 11 is irradiated with the measurement light. In this way, the sample can be viewed with an objective optical system. Alternatively, as shown in FIG. 6, the ATR prism 15 is made movable, and at the time of visual measurement, the ATR prism 15 is lifted in the optical axis direction by the lever 16 with the lens barrel as a fulcrum, and the ATR prism 15 is removed from the measurement optical path. There is an example in which the measurement light is prevented from passing through the ATR prism 15.
[0007]
[Problems to be solved by the invention]
However, as shown in FIG. 5, when the objective optical system and the reflective optical system are performed using one lens, there is a problem that the creation of the special lens and the aperture switching mechanism are not easy and expensive. Further, as shown in FIG. 6, when the ATR prism is made movable, the ATR prism is moved in the optical axis direction. Therefore, when the ATR measurement is performed, if the sample is pressed against the ATR prism, the reproducibility of the position of the ATR prism is poor. There was a problem. Furthermore, since ATR measurement uses total reflection of light, it is necessary to use an ATR prism made of a material that transmits infrared rays and has a large refractive index with respect to infrared rays. Depending on the type of ATR prism, Since the total reflection condition is not satisfied unless the incident angle is increased, it is necessary to make light incident at a large incident angle. For this reason, a large concave primary mirror and convex secondary mirror are required. However, when such an optical system is used, if the incident angle to the sample is large during visible observation, the image may be blurred due to aberrations or other reasons. Will occur.
[0008]
Therefore, an object of the present invention is to obtain a clear image of an analysis point of a sample during visible observation by a simple mechanism.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a total reflection absorption cassegrain reflection objective mirror composed of a concave primary mirror having a hole in the center, a convex secondary mirror coaxial with the concave primary mirror, and an ATR prism. By fixing and incorporating a mechanism for switching and moving only the convex secondary mirror and the ATR prism part at the same time, the optimum combination of convex secondary mirror and ATR prism can be selected according to each use condition of ATR measurement and visible observation I did it.
[0010]
According to the present invention, although the concave primary mirror is fixed, the convex secondary mirror and the ATR prism can be moved at the same time. Therefore, during visible observation, switch to a small convex secondary mirror, and the incident angle of light at the focal position. Can be limited, and a clear image can be obtained during visible observation. In addition, the ATR measurement can be switched to a large convex secondary mirror, and the incident angle of light incident on the ATR prism can be increased according to the refractive index of the prism, so that the total reflection condition of incident light can be easily satisfied. It becomes possible. In addition, by switching between an ATR prism having a different refractive index and a convex secondary mirror suitable for this, and changing the incident angle of the light incident on the ATR prism, the penetration depth of the measurement light with respect to the measurement sample can be changed. This makes it possible to measure ATR spectra at different depth positions in the sample.
[0011]
As an example of a mechanism that switches between the convex secondary mirror and the ATR prism at the same time, a switching turntable that can be rotated about an axis parallel to the optical axis of the reflective objective optical system is installed, and this switching turntable is rotated. Two or more types of convex secondary mirrors are provided centered on the path of the optical axis of the reflective objective optical system drawn on the turntable, and further on the optical axis of each convex secondary mirror. An ATR prism is fixed at a position that becomes the focal point of the concave primary mirror below, and when one of the convex secondary mirrors is positioned on the optical axis of the reflective objective optical system and used for measurement, the other is used as the reflective objective optical system. This can be realized by positioning it outside.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a total reflection absorption spectrum measuring apparatus of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention and shows an outline of an embodiment of a total reflection absorption spectrum measuring apparatus. FIG. 1A is a side sectional view, and the Cassegrain reflection objective mirror 1 includes a concave primary mirror 2, a convex secondary mirror 3 and a hemispherical ATR prism 4 having a hole in the center. The concave primary mirror 2, the convex secondary mirror 3 and the ATR prism 4 are on the same optical axis, and the ATR prism 4 is arranged such that the center of curvature is located at the condensing point of the concave primary mirror 2. The convex secondary mirror 3 and the ATR prism 4 are installed on a switching turntable 5. The switching turntable 5 is rotatable about an axis parallel to the optical axis of the concave primary mirror 2, and the convex secondary mirror 3 and the ATR prism 4 are switched with respect to the fixed concave primary mirror 2. The turn table 5 can be moved simultaneously by rotating. FIG. 1 (b) is a view of FIG. 1 (a) as viewed from the bottom. In addition to the convex secondary mirror 3 and the ATR prism 4, a visual convex secondary mirror 6 is provided on the turntable 5 as a switching turntable. When 5 is rotated, it is placed centered on the trajectory of the optical axis of the convex secondary mirror 2 drawn on the turntable. Further, a positioning pivot 7 is disposed in the Cassegrain reflection objective mirror 1.
[0013]
When measurement is performed with this total reflection absorption spectrum measuring apparatus, first, the switching turntable 5 is rotated so that the optical axis of the convex secondary mirror 6 for visual observation coincides with the optical axis of the concave primary mirror 2. The position of the convex secondary mirror 6 is fixed using the positioning pivot 7. The measurement interference light exits from a spectrophotometer (not shown), passes through the hole of the concave primary mirror, enters the objective optical system downward on the right half of the optical axis, and is reflected by the convex secondary mirror 6 and the concave primary mirror 2. And condensed. At this time, by using the small convex sub-mirror 6 for visual observation, the incident angle of light to the focal position can be limited to be small, and a clear image can be obtained during visible observation. Next, the switching turntable 5 is rotated again, and the convex secondary mirror 3 and the ATR are moved to a position where the optical axis of the convex secondary mirror 3 and the ATR prism 4 coincides with the optical axis of the concave primary mirror 2 by using the positioning pivot 7. The prism 4 is fixed and ATR measurement is performed. At this time, by using a large convex secondary mirror for the convex secondary mirror 3, the incident angle of the light incident on the ATR prism 4 can be increased according to the refractive index of the ATR prism 4, and the incident light The total reflection condition can be easily satisfied.
[0014]
FIG. 2 is a side sectional view of the ATR Cassegrain reflection objective mirror in FIG. FIG. 2A shows an ATR Cassegrain reflection objective mirror used at the time of visual observation, and it can be seen that the incident angle of light to the focal position is reduced by using the small convex sub-mirror 6. On the other hand, FIG. 2 (b) shows an ATR Cassegrain reflection objective mirror used at the time of ATR measurement. By using the large convex secondary mirror 3, the incident angle of light incident on the ATR prism 4 can be increased. You can see that
[0015]
With the simple operation of turning the switching turntable 5, the optimum combination of convex secondary mirror and ATR prism can be easily selected according to the use conditions of ATR measurement and visible observation. It is possible to easily satisfy the total reflection conditions of incident light, and it is possible to obtain a clear image with very little aberration and little distortion during visible observation. Furthermore, by providing two or more types of ATR prisms having different refractive indexes and a suitable convex secondary mirror on the switching turntable 5, it is possible to change the incident angle of light incident on the ATR prism. The penetration depth of the measurement light with respect to the measurement sample can be changed. This makes it possible to measure ATR spectra at different depth positions in the sample.
[0016]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. it can. For example, although two types of convex secondary mirrors are used in the above-described embodiment, three or more types of convex secondary mirrors can be used as needed depending on the measurement conditions. Also, a disk-shaped table was used as the switching turntable 5, and the convex secondary mirror and the ATR prism were moved by rotating the table. However, the rectangular secondary table was used and the convex secondary mirror and the ATR prism were arranged on a straight line. However, it may be moved by a linear motor. Furthermore, as a positioning method of the turntable 5, various known methods such as a positioning method by transmitting and receiving laser light can be used.
[0017]
【The invention's effect】
According to the present invention, with respect to a fixed concave primary mirror, two or more types of convex secondary mirrors and an ATR prism are installed on a switching turntable, and the switching turntable is rotated to By incorporating a mechanism to switch and move the ATR prism part at the same time, it is possible to easily select the optimal combination of convex secondary mirror and ATR prism according to the usage conditions of ATR measurement and visible observation. Therefore, it is possible to easily satisfy the total reflection condition of the light to be obtained, and it is possible to obtain a clear image with very small aberration and little distortion during visible observation. At this time, the concave primary mirror and the convex secondary mirror can be made of a combination of only spherical surfaces that are easy to manufacture. In addition, the structure is simple, and the manufacturing cost can be reduced. Furthermore, two or more types of ATR prisms with different refractive indexes and a suitable convex secondary mirror are installed on the switching turntable, and the incident angle of light incident on the ATR prism is changed to perform ATR measurement at different incident angles. By doing so, it was possible to measure ATR spectra at different depth positions in the sample.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of a total reflection absorption spectrum measuring apparatus according to the present invention.
(A) It is side surface sectional drawing of the total reflection absorption spectrum measuring apparatus of this invention.
(B) It is the figure seen from the lower part of the total reflection absorption spectrum measuring apparatus of this invention.
FIG. 2 is a side sectional view of the ATR Cassegrain reflection objective of the above embodiment.
(A) It is side surface sectional drawing of the ATR Cassegrain reflection objective mirror used at the time of visual observation.
(B) It is side surface sectional drawing of the ATR Cassegrain reflective objective mirror used at the time of ATR measurement.
FIG. 3 is a side sectional view of a conventional total reflection absorption spectrum measuring apparatus.
FIG. 4 is a side cross-sectional view of another conventional example of a total reflection absorption spectrum measuring apparatus.
FIG. 5 is a side cross-sectional view during visual observation of the conventional example.
FIG. 6 is a side sectional view of another conventional example.
[Explanation of symbols]
1 --- Cassegrain reflection objective mirror 2, 8 --- concave primary mirror 3, 6, 9, 12 --- convex secondary mirror 4, 10, 15 --- ATR prism 5 --- switching turntable 7-- -Positioning pivot 11-Objective lens 13, 14-Aperture 16-Lever P-Focusing point S-Sample

Claims (1)

凹面主鏡と凸面副鏡よりなる反射対物光学系と、同光学系の集光点を中心とする半球形ATRプリズムを備えた全反射吸収スペクトル測定装置において、2種以上の凸面副鏡を有し、これら凸面副鏡の一つを選択的に測定に使用できるように構成したことを特徴とする全反射吸収スペクトル測定装置。A total reflection absorption spectrum measuring apparatus having a reflective objective optical system composed of a concave primary mirror and a convex secondary mirror and a hemispherical ATR prism centered on the condensing point of the optical system, and having two or more types of convex secondary mirrors And a total reflection absorption spectrum measuring apparatus configured to selectively use one of these convex secondary mirrors for measurement.
JP31243899A 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device Expired - Lifetime JP4058865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31243899A JP4058865B2 (en) 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31243899A JP4058865B2 (en) 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device

Publications (2)

Publication Number Publication Date
JP2001133400A JP2001133400A (en) 2001-05-18
JP4058865B2 true JP4058865B2 (en) 2008-03-12

Family

ID=18029213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31243899A Expired - Lifetime JP4058865B2 (en) 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device

Country Status (1)

Country Link
JP (1) JP4058865B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0608258D0 (en) 2006-04-26 2006-06-07 Perkinelmer Singapore Pte Ltd Spectroscopy using attenuated total internal reflectance (ATR)

Also Published As

Publication number Publication date
JP2001133400A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US4758088A (en) Microscope accessory which facilitates radiation transmission measurements in the reflectance mode
US5497234A (en) Inspection apparatus
JP3188295B2 (en) Optical analyzer and optical analysis method
US20060164633A1 (en) Attenuated-total-reflection measurement apparatus
GB2186711A (en) Optical system providing low angle illumination and radiation collection
US4835389A (en) Internal reflection spectroscopy for deep container immersion
GB2322206A (en) Confocal microspectrometer system
JP4058865B2 (en) Total reflection absorption spectrum measuring device
CN109458939A (en) With the lens center thickness measurement method combined of quickly feeling relieved
JP3136576B2 (en) Microscopic total reflection absorption spectrum measurement device
JP4136911B2 (en) Infrared microscope and measuring position determination method thereof
EP0425882B1 (en) Infrared microscopic spectrometer
JPH04116452A (en) Microscopic infrared atr measuring apparatus
US20040036881A1 (en) Optical configuration for SPR measurement
JPH09250966A (en) Apparatus for measuring reflectivity
US6288841B1 (en) Optical mechanism for precisely controlling the angle of an incident light beam within a large incident angle range
JPH1144636A (en) Total reflection absorption spectrum device
JP3179136B2 (en) Microscopic infrared ATR measuring device
JP4294566B2 (en) Total reflection absorption measurement method using total reflection absorption prism
JP2008134132A (en) Total reflection absorption spectrum measuring device
JPH0694613A (en) Infrared microscopic measuring apparatus
JP3077339B2 (en) Infrared microscope
JPH03172728A (en) Reflectivity measurement device for light-transmissive member
JPH05340870A (en) Total-reflection absorption spectrum measuring instrument
JPH08233728A (en) Microscopic total reflection absorption spectrum measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4058865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

EXPY Cancellation because of completion of term