JP2008134132A - Total reflection absorption spectrum measuring device - Google Patents

Total reflection absorption spectrum measuring device Download PDF

Info

Publication number
JP2008134132A
JP2008134132A JP2006320014A JP2006320014A JP2008134132A JP 2008134132 A JP2008134132 A JP 2008134132A JP 2006320014 A JP2006320014 A JP 2006320014A JP 2006320014 A JP2006320014 A JP 2006320014A JP 2008134132 A JP2008134132 A JP 2008134132A
Authority
JP
Japan
Prior art keywords
atr prism
total reflection
absorption spectrum
atr
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006320014A
Other languages
Japanese (ja)
Inventor
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006320014A priority Critical patent/JP2008134132A/en
Publication of JP2008134132A publication Critical patent/JP2008134132A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total reflection absorption spectrum measuring device equipped with a means capable of switching an ATR observation mode to/from a visual observation mode accurately with a simple mechanism. <P>SOLUTION: This total reflection absorption spectrum measuring device equipped with a reflection object optical system comprising a concave main mirror 2 and a convex sub-mirror 3, and an ATR prism 4 having a total reflection face on a converging point of the optical system, has a constitution wherein a holder 7 for holding the ATR prism 4 is mounted on a rotating shaft 6, and the rotating shaft 6 is formed so as to be rotated around a horizontal line on the sample surface S placed on the under surface of the ATR prism 4, and the ATR prism 4 can be inverted and moved from a sample measuring position to a retracting position on the upside by rotating the rotating shaft 6. The device has a structure wherein a light transmission means (for example, a hole) 11 for allowing passage of measuring light when the ATR prism 4 is on the retracting position is formed on the holder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分子材料などの有機物や、種々の物質の定性分析および固定分析などに広く利用される全反射吸収スペクトル測定装置に関し、殊に、試料の赤外スペクトルを測定する光学系と、試料を可視光によって観察する光学系とを備えた赤外顕微鏡用の全反射吸収スペクトル測定装置に関する。   The present invention relates to a total reflection absorption spectrum measuring apparatus widely used for organic substances such as polymer materials, qualitative analysis and fixed analysis of various substances, and in particular, an optical system for measuring an infrared spectrum of a sample, The present invention relates to a total reflection absorption spectrum measuring apparatus for an infrared microscope provided with an optical system for observing a sample with visible light.

全反射吸収スペクトル測定法(ATR)は、試料面に試料より高屈折率の透明体を接触させ、この高屈折率透明体側から、試料との境界面で全反射がおきる入射角で測定光を入射させ、全反射された光の試料による吸収減光を検出することにより、試料の吸収特性を測定する方法で、従来から赤外光について測定を行う場合、反射光学系によって構成された赤外反射顕微鏡システムを利用した装置が用いられている。   In the total reflection absorption spectrum measurement method (ATR), a transparent body having a higher refractive index than that of the sample is brought into contact with the sample surface, and measurement light is emitted from the high refractive index transparent body side at an incident angle at which total reflection occurs at the interface with the sample. When measuring infrared light with a method of measuring the absorption characteristics of the sample by detecting the absorption attenuation due to the sample of the light that has been incident and totally reflected, the infrared configured by the reflective optical system is used. An apparatus using a reflection microscope system is used.

図5は、従来の赤外反射顕微鏡システムの対物鏡の構造を示す。対物鏡は中央に穴のあいた凹面主鏡12と、この凹面主鏡12と同軸の凸面副鏡13とからなっており、図外の分光器(または干渉計)から出射した単色の測定光(または干渉計により変調された全波長光)が、図5で光軸の右半分を下方の対物鏡光学系に入射され、その光は、凸面副鏡13及び凹面主鏡12で反射されて対物鏡光学系の集光点Pに集光される。集光点PにはP点を中心とする半球形のATRプリズム14が配置されており、試料をそのATRプリズム14の下面に接触させる。こうすると、P点に集光する測定光は、ATRプリズム14では屈曲されず、そのままP点に集光し、試料面で全反射されて対物光学系の光軸の左半分を上行し、検出される。   FIG. 5 shows the structure of an objective mirror of a conventional infrared reflection microscope system. The objective mirror is composed of a concave primary mirror 12 having a hole in the center and a convex secondary mirror 13 coaxial with the concave primary mirror 12, and monochromatic measuring light (or interferometer) emitted from a spectrometer (or interferometer) (not shown). (Or all-wavelength light modulated by the interferometer) is incident on the objective optical system below the right half of the optical axis in FIG. 5, and the light is reflected by the convex secondary mirror 13 and the concave primary mirror 12 to be objective. The light is condensed at a condensing point P of the mirror optical system. A hemispherical ATR prism 14 centered at point P is disposed at the condensing point P, and the sample is brought into contact with the lower surface of the ATR prism 14. In this way, the measurement light focused on the point P is not bent by the ATR prism 14, but is collected directly on the point P, is totally reflected by the sample surface, and goes up the left half of the optical axis of the objective optical system. Is done.

全反射吸収スペクトル測定法(ATR)は、全反射を利用するため、プリズムが焦点位置にあると、全ての光がATRプリズムの底面で反射し、焦点位置にある試料を可視観察することができない。従って可視観察やプリズムを使用しない測定の時にはプリズムを別の場所に移動して、代わりに測定光を集光点に通す必要がある。そこで従来では、図6、図7並びに図8に示すように、軸18を支点として回転するターンテーブル15、若しくはスライドプレート16に、ATRプリズム14と測定光を通すための穴17とを設け、ターンテーブル15又はスライドプレート16を試料に水平な同一平面上で回転若しくはスライドさせて切り替えていた。このターンテーブルによる切り替え方式は、特許文献1の図1にも開示されている。
特開2001−133400号公報
Since the total reflection absorption spectrum measurement method (ATR) uses total reflection, if the prism is at the focal position, all the light is reflected from the bottom surface of the ATR prism, and the sample at the focal position cannot be visually observed. . Therefore, it is necessary to move the prism to another place and to pass the measurement light through the condensing point instead of visible observation or measurement without using the prism. Therefore, conventionally, as shown in FIGS. 6, 7, and 8, the ATR prism 14 and the hole 17 for passing the measurement light are provided in the turntable 15 or the slide plate 16 that rotates around the shaft 18, The turntable 15 or the slide plate 16 is switched by rotating or sliding on the sample on the same horizontal plane. This switching method using a turntable is also disclosed in FIG.
JP 2001-133400 A

このターンテーブルによる回転方式やスライドプレートによるスライド方式は、試料に水平な同一平面上で水平移動するものであるから、ATRプリズムは常に焦点位置と同じ高さに置かれることになる。ATRプリズムが光軸に沿った上下方向、即ちピント方向に移動しないのは、ATRプリズムを使用位置に移動したときの位置再現性には有利であるが、使用者が意図しないのに試料や試料載置台等の他のものに偶然触れてしまい、ATRプリズムや試料に望まぬ圧力がかかり、最悪の場合は破壊してしまうおそれがある。また不使用時にATRプリズムを剥き出しのままにしておくとATRプリズムを傷めることがあるので、プリズムに保護カバーを取り付けたり、或いは使用しないときに完全に取り外す等の対策が講じられることがあるが、操作上大変面倒である。   Since the rotation method by the turntable and the slide method by the slide plate are horizontally moved on the same plane horizontal to the sample, the ATR prism is always placed at the same height as the focal position. The fact that the ATR prism does not move in the vertical direction along the optical axis, that is, the focus direction, is advantageous for the position reproducibility when the ATR prism is moved to the use position, but the sample or the sample is not intended by the user. There is a risk of accidentally touching other things such as a mounting table, applying an undesired pressure to the ATR prism and the sample, and destroying them in the worst case. If the ATR prism is left exposed when not in use, the ATR prism may be damaged, so measures such as attaching a protective cover to the prism or removing it completely when not in use may be taken. It is very troublesome in operation.

そこで本発明は、上記の問題点の解決を図ることを鑑み、簡単な機構で正確にATR観測モードと可視観察モードとを切り替えすることのできる手段を備えた全反射吸収スペクトル測定装置を提供することを目的とする。   Therefore, in view of solving the above problems, the present invention provides a total reflection absorption spectrum measuring apparatus provided with means capable of accurately switching between an ATR observation mode and a visible observation mode with a simple mechanism. For the purpose.

本発明は、上記課題を解決するために、凹面主鏡と凸面副鏡よりなる反射対物光学系と、該光学系の集光点に全反射面を有するATRプリズムを備えた全反射吸収スペクトル測定装置において、前記ATRプリズムを保持するホルダーが回転軸に取り付けられ、該回転軸はATRプリズムの下面に置かれる試料面に水平な線を中心として回転するように形成され、回転軸を回動することによりATRプリズムを試料測定位置から上方の退避位置に反転移動できるように構成されており、ATRプリズムが退避位置にあるときに、測定光の通過を許す光透過手段(例えば穴)が前記ホルダーに形成されている構造とした。   In order to solve the above problems, the present invention provides a total reflection absorption spectrum measurement comprising a reflective objective optical system comprising a concave primary mirror and a convex secondary mirror, and an ATR prism having a total reflection surface at the condensing point of the optical system. In the apparatus, a holder for holding the ATR prism is attached to a rotation shaft, and the rotation shaft is formed to rotate around a horizontal line on a sample surface placed on the lower surface of the ATR prism, and rotates the rotation shaft. Accordingly, the ATR prism can be reversed and moved from the sample measurement position to the upper retracted position. When the ATR prism is in the retracted position, the light transmitting means (for example, a hole) that allows the measurement light to pass therethrough is the holder. It was set as the structure formed in.

ここで、光透過手段としては、穴を形成することが好ましいが、測定光を透過できるようにすれば他の方法(例えば光透過部材を取り付ける等)であってもよい。
ホルダーに形成される測定光通過用の穴は、ホルダーの強度の許す限りできるだけ大きくするのがこのましく、例えば、左右対称的に2個の大きな穴を形成するのがよい。またこの穴は、透明なガラス等の光透過性物質で形成することも可能である。
Here, it is preferable to form a hole as the light transmitting means, but other methods (for example, attaching a light transmitting member) may be used as long as the measuring light can be transmitted.
The hole for passing measurement light formed in the holder is preferably made as large as possible as long as the strength of the holder allows. For example, two large holes should be formed symmetrically. The hole can also be formed of a light transmissive material such as transparent glass.

この発明によれば、可視観察やATRプリズムを使用しない測定を行う場合は、回転軸を回転させることによりATRプリズムを試料測定位置と退避位置とに簡単な操作で容易に切り替えることができると共に、ATRプリズムを退避位置に移動させた時は、反射対物鏡の奥部となる上方に反転させた状態で保持することができるので、使用者の不注意でATRプリズムを傷つけることを極力減らすことができ、またATRプリズムを使用位置に戻すときは試料に対して上方から円軌跡で移動してくるので、水平移動で復帰する場合のような試料やATRプリズムに対する悪影響や破損を未然に防止することができる。また、ATRプリズムの移動は、回転軸の回転によって行われるものであるから、ATRプリズムを使用位置に戻した場合は常に焦点位置が定まっているので、ATRプリズム位置の良好な再現性を得ることができる、といった優れた効果がある。   According to the present invention, when performing a visual observation or measurement without using the ATR prism, the ATR prism can be easily switched between the sample measurement position and the retracted position by a simple operation by rotating the rotation shaft. When the ATR prism is moved to the retracted position, the ATR prism can be held in an inverted state, which is the back of the reflecting objective mirror, so that it is possible to reduce damage to the ATR prism inadvertently by the user. In addition, when returning the ATR prism to the use position, the ATR prism moves with respect to the sample from above with a circular trajectory. Can do. In addition, since the movement of the ATR prism is performed by the rotation of the rotating shaft, the focal position is always determined when the ATR prism is returned to the use position, so that a good reproducibility of the ATR prism position can be obtained. There is an excellent effect of being able to.

(その他の課題を解決するための手段および効果)
上記発明において、前記ATRプリズムが、回転軸の回転軸芯に対して偏芯した位置に取り付けて構成するのがよい。
これにより、簡単な構造でATRプリズムを試料測定位置から上方の退避位置に反転移動できるように形成することができる。
(Means and effects for solving other problems)
In the above invention, the ATR prism is preferably mounted at a position eccentric with respect to the rotation axis of the rotation axis.
Thus, the ATR prism can be formed with a simple structure so as to be able to reversely move from the sample measurement position to the upper retracted position.

上記発明において、前記ATRプリズムを試料測定位置と退避位置とに仮保持する位置決め機構を設けるのがよい。
これにより、正確にATRプリズムを予め設定された試料測定位置と退避位置とで保持することができる。
In the above invention, it is preferable to provide a positioning mechanism for temporarily holding the ATR prism at a sample measurement position and a retracted position.
As a result, the ATR prism can be accurately held at the sample measurement position and the retracted position set in advance.

以下、本発明の実施形態について図面を用いて説明する。尚、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.

図1は本発明の一実施形態である全反射吸収スペクトル測定装置の反射対物鏡の断面図であり、図2はATRプリズム部分の拡大断面図であり、図3はATRプリズムを退避位置に反転移動させた状態を示す図2同様の断面図であり、図4は退避位置に反転移動したときのATRプリズム部分の拡大斜視図であり、図5は従来のターンテーブル式の切り替え手段を備えた反射対物鏡の断面図であり、図6は図5における従来のターンテーブル式の切り替え手段を示す平面図であり、図7は可視観察時の状態を示す図6同様の平面図であり、図8はスライド式の従来の切り替え手段を示す平面図である。   1 is a cross-sectional view of a reflection objective mirror of a total reflection absorption spectrum measuring apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of an ATR prism portion, and FIG. 3 is an inversion of the ATR prism to a retracted position. FIG. 4 is an enlarged perspective view of the ATR prism portion when reversed and moved to the retracted position, and FIG. 5 is provided with a conventional turntable type switching means. 6 is a cross-sectional view of the reflecting objective, FIG. 6 is a plan view showing the conventional turntable type switching means in FIG. 5, and FIG. 7 is a plan view similar to FIG. 8 is a plan view showing a conventional sliding type switching means.

図において符号1は、本発明にかかる全反射吸収スペクトル測定装置の反射対物鏡であって、この対物鏡は、中央に穴のあいた凹面主鏡2と、この凹面主鏡2と同軸の凸面副鏡3と、半球状のATRプリズム4とから構成されている。凹面主鏡2,凸面副鏡3並びにATRプリズム4は図外の分光器または干渉計から出射される測定光5と同一光軸上に配置されており、ATRプリズム4はその曲率中心が凹面主鏡2の集光点Pに位置するように配置されている。ATRプリズム4の下面に接して試料Sが試料ステージ19に載置される。   In the figure, reference numeral 1 denotes a reflection objective mirror of the total reflection absorption spectrum measuring apparatus according to the present invention. The objective mirror includes a concave primary mirror 2 having a hole in the center, and a convex secondary axis coaxial with the concave primary mirror 2. It is composed of a mirror 3 and a hemispherical ATR prism 4. The concave primary mirror 2, the convex secondary mirror 3 and the ATR prism 4 are arranged on the same optical axis as the measurement light 5 emitted from a spectroscope or interferometer (not shown), and the center of curvature of the ATR prism 4 is mainly concave. It arrange | positions so that it may be located in the condensing point P of the mirror 2. FIG. The sample S is placed on the sample stage 19 in contact with the lower surface of the ATR prism 4.

ATRプリズム4は、回転軸6に固定されたホルダー7に保持されている。前記回転軸6は試料面に水平な一線を中心として回転できるように反射対物鏡1のフレイム8に保持されており、外部に露出した一端部には手で回動するためのつまみ9が設けられている。また、前記ホルダー7の中央部は回転軸6の回転軸芯に対して偏芯して形成されており、この偏芯した部分にATRプリズム4が取り付けられている。これにより、つまみ9を操作して回転軸6を図1並びに図2の試料測定位置から図3の退避位置まで180°回転させることができるように構成されている。また、前記ATRプリズムを試料測定位置と退避位置とに夫々安定した姿勢で仮保持できるように位置決め機構10が設けられている。この位置決め機構10は姿勢を保持できるものであればどのようなものであってもよいが、本実施例では、回転軸6の周面の対称位置に設けた凹部10a、10aと、該凹部に選択的に弾性嵌合するラッチ10bとにより形成されている。   The ATR prism 4 is held by a holder 7 fixed to the rotating shaft 6. The rotating shaft 6 is held by a frame 8 of the reflecting objective 1 so that it can rotate around a horizontal line on the sample surface, and a knob 9 for manually rotating is provided at one end exposed to the outside. It has been. The central portion of the holder 7 is formed eccentrically with respect to the rotational axis of the rotary shaft 6, and the ATR prism 4 is attached to the eccentric portion. Thus, the rotary shaft 6 can be rotated 180 ° from the sample measurement position in FIGS. 1 and 2 to the retracted position in FIG. 3 by operating the knob 9. Further, a positioning mechanism 10 is provided so that the ATR prism can be temporarily held in a stable posture at the sample measurement position and the retracted position, respectively. The positioning mechanism 10 may be of any type as long as it can maintain the posture, but in this embodiment, the concave portions 10a and 10a provided at symmetrical positions on the peripheral surface of the rotary shaft 6 and the concave portions The latch 10b is selectively elastically fitted.

更に、ATRプリズム4が図3の退避位置にあるときに、測定光の通過を許す穴11が前記ホルダー7に形成されている。この穴11は、ホルダーの強度の許す限りできるだけ大きくするのがこのましく、例えば、図4に示すように左右対称的に2個の大きな穴を形成するのがよい。またこの穴11は、透明なガラス等の光透過性物質で形成することも可能である。   Further, when the ATR prism 4 is in the retracted position of FIG. 3, a hole 11 that allows the measurement light to pass therethrough is formed in the holder 7. The hole 11 is preferably made as large as possible as the holder strength permits. For example, as shown in FIG. 4, it is preferable to form two large holes symmetrically. The hole 11 can also be formed of a light transmissive material such as transparent glass.

この全反射吸収スペクトル測定装置でATR測定を行う場合、つまみ9を操作してATRプリズム4を図1並びに図2の測定位置に配置する。ATRプリズム4の下面に接触させて試料Sを配置させた状態で、図外の分光器または干渉計から測定光を出射する。例えば図1の光軸の右半分が下方の対物鏡光学系に入射され、その光は、凸面副鏡3及び凹面主鏡2で反射されて対物鏡光学系の集光点Pに集光される。P点に集光する測定光は、ATRプリズム4では屈曲されず、そのままP点に集光し、試料面で全反射されて対物光学系の光軸の左半分を上行し、検出される。
また、可視観察を行う場合は、つまみ9を操作して回転軸6を図1並びに図2の試料測定位置から図3の退避位置まで180°回転させる。この位置において測定光は穴11から集光点に入射されるので反射対物鏡としての機能を損なうことがない。
When performing ATR measurement with this total reflection absorption spectrum measuring apparatus, the knob 9 is operated to place the ATR prism 4 at the measurement position shown in FIGS. In a state where the sample S is placed in contact with the lower surface of the ATR prism 4, measurement light is emitted from a spectroscope or interferometer (not shown). For example, the right half of the optical axis in FIG. 1 is incident on the lower objective mirror optical system, and the light is reflected by the convex secondary mirror 3 and the concave primary mirror 2 and is collected at the focal point P of the objective optical system. The The measurement light focused on the point P is not bent by the ATR prism 4 but is collected at the point P as it is, is totally reflected by the sample surface, and goes up the left half of the optical axis of the objective optical system and is detected.
When visual observation is performed, the knob 9 is operated to rotate the rotary shaft 6 by 180 ° from the sample measurement position shown in FIGS. 1 and 2 to the retracted position shown in FIG. At this position, the measurement light is incident on the condensing point from the hole 11, so that the function as a reflection objective mirror is not impaired.

本発明は、上記実施例の形態に限定されるものでなく、本願発明の構成要件を備え、且つ上記した効果を発揮する範囲内で適宜変更して実施することが可能である。例えばATR測定モードと可視観察モードの切り替えは、つまみによる手動操作に代えて電動によるボタン操作で行うことも可能である。   The present invention is not limited to the embodiment described above, and can be implemented with appropriate modifications within the scope of the constituent features of the present invention and exhibiting the effects described above. For example, switching between the ATR measurement mode and the visible observation mode can be performed by an electric button operation instead of a manual operation by a knob.

本発明の全反射吸収スペクトル測定装置は、高分子材料等の有機物をはじめ、種々の物質の定性分析や固定分析などに使用される測定装置として適用される。   The total reflection absorption spectrum measuring apparatus of the present invention is applied as a measuring apparatus used for qualitative analysis and fixed analysis of various substances including organic substances such as polymer materials.

本発明の一実施形態である全反射吸収スペクトル測定装置の反射対物鏡の断面図。Sectional drawing of the reflective objective mirror of the total reflection absorption spectrum measuring device which is one Embodiment of this invention. 上記反射対物鏡のATRプリズム部分の拡大断面図。The expanded sectional view of the ATR prism part of the said reflective objective mirror. ATRプリズムを退避位置に反転移動させた状態を示す図2同様の断面図。FIG. 3 is a cross-sectional view similar to FIG. 2 showing a state where the ATR prism is reversed and moved to the retracted position. 退避位置に反転移動したときのATRプリズム部分の拡大斜視図。FIG. 4 is an enlarged perspective view of an ATR prism portion when it is reversed and moved to a retracted position. 従来のターンテーブル式の切り替え手段を備えた反射対物鏡の断面図。Sectional drawing of the reflective objective mirror provided with the conventional turntable type switching means. 図5における従来のターンテーブル式の切り替え手段を示す平面図。The top view which shows the conventional turntable type switching means in FIG. 可視観察時の状態を示す図6同様の平面図。The top view similar to FIG. 6 which shows the state at the time of visible observation. スライド式の従来の切り替え手段を示す平面図。The top view which shows the slide-type conventional switching means.

符号の説明Explanation of symbols

1:反射対物鏡
2:凹面主鏡
3:凸面副鏡
4:ATRプリズム
5:測定光
6:回転軸
7:ホルダー
10:位置決め機構
11:光透過手段(穴)
1: Reflective objective mirror 2: Concave primary mirror 3: Convex secondary mirror 4: ATR prism 5: Measuring light 6: Rotating shaft 7: Holder 10: Positioning mechanism 11: Light transmitting means (hole)

Claims (3)

凹面主鏡と凸面副鏡よりなる反射対物光学系と、該光学系の集光点に全反射面を有するATRプリズムを備えた全反射吸収スペクトル測定装置において、前記ATRプリズムを保持するホルダーが回転軸に取り付けられ、該回転軸はATRプリズムの下面に置かれる試料面に水平な線を中心として回転するように形成されていてこの回転軸を回動することによりATRプリズムを試料測定位置から上方の退避位置に反転移動できるように構成されており、ATRプリズムが退避位置にあるときに測定光の通過を許す光透過手段が前記ホルダーに形成されている全反射吸収スペクトル測定装置。   In a total reflection absorption spectrum measuring apparatus comprising a reflection objective optical system composed of a concave primary mirror and a convex secondary mirror and an ATR prism having a total reflection surface at a condensing point of the optical system, a holder for holding the ATR prism is rotated. The rotating shaft is formed to rotate around a horizontal line on the sample surface placed on the lower surface of the ATR prism. By rotating the rotating shaft, the ATR prism is moved upward from the sample measurement position. The total reflection absorption spectrum measuring apparatus is configured such that the light transmitting means is formed on the holder so as to allow the measurement light to pass when the ATR prism is in the retracted position. 前記ATRプリズムが、回転軸の回転軸芯に対して偏芯した位置に取り付けられている請求項1に記載の全反射吸収スペクトル測定装置。   The total reflection absorption spectrum measuring apparatus according to claim 1, wherein the ATR prism is attached at a position eccentric to a rotation axis of a rotation axis. 前記ATRプリズムを試料測定位置と退避位置とに仮保持する位置決め機構を含む請求項1又は請求項2に記載の全反射吸収スペクトル測定装置。   The total reflection absorption spectrum measuring apparatus according to claim 1, further comprising a positioning mechanism that temporarily holds the ATR prism at a sample measurement position and a retracted position.
JP2006320014A 2006-11-28 2006-11-28 Total reflection absorption spectrum measuring device Pending JP2008134132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320014A JP2008134132A (en) 2006-11-28 2006-11-28 Total reflection absorption spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320014A JP2008134132A (en) 2006-11-28 2006-11-28 Total reflection absorption spectrum measuring device

Publications (1)

Publication Number Publication Date
JP2008134132A true JP2008134132A (en) 2008-06-12

Family

ID=39559084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320014A Pending JP2008134132A (en) 2006-11-28 2006-11-28 Total reflection absorption spectrum measuring device

Country Status (1)

Country Link
JP (1) JP2008134132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865190A (en) * 2015-06-15 2015-08-26 武汉大学 Observation geometry automatic adjustment device and method for observing water body apparent spectrum
US10335087B2 (en) 2014-08-27 2019-07-02 Samsung Electronics Co., Ltd. Biosignal processing apparatus and biosignal processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335087B2 (en) 2014-08-27 2019-07-02 Samsung Electronics Co., Ltd. Biosignal processing apparatus and biosignal processing method
CN104865190A (en) * 2015-06-15 2015-08-26 武汉大学 Observation geometry automatic adjustment device and method for observing water body apparent spectrum

Similar Documents

Publication Publication Date Title
TW201514457A (en) Prism-coupling systems and methods for characterizing curved parts
JP2005527780A (en) Optical microscope mid-infrared spectrometer attachment
US10598912B2 (en) Objective optical system for ATR measurement
JP5363199B2 (en) Microscopic total reflection measuring device
US8547555B1 (en) Spectrometer with built-in ATR and accessory compartment
JP2008134132A (en) Total reflection absorption spectrum measuring device
US6700689B2 (en) Adjusting device for adjusting a projecting direction of a view
JP4136911B2 (en) Infrared microscope and measuring position determination method thereof
WO2013124909A1 (en) Objective optical system for atr measurement, and atr measurement device
JPWO2006057033A1 (en) Objective lens and condenser
JP4119207B2 (en) Total reflection prism and total reflection device using the same
JP6759937B2 (en) Lens measuring device
JP3199512U (en) Infrared microscope
JP3207764U (en) Polarizing microscope
JP4058865B2 (en) Total reflection absorption spectrum measuring device
JP2012098184A (en) Probe for measuring raman spectrum
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JP4564762B2 (en) Illumination device and image measuring machine
JPH063262A (en) Microscopic total reflection absorption spectrum measuring device
JP2005189142A (en) Infrared microscopic measuring method and device
CN219758049U (en) Novel light refractive index detector
JPH0618410A (en) Infrared micromeasuring device
JPH1144636A (en) Total reflection absorption spectrum device
KR101732923B1 (en) Tilting microscope
JPS6333155Y2 (en)