JP2001133400A - Total reflection/absorption spectrum measuring device - Google Patents

Total reflection/absorption spectrum measuring device

Info

Publication number
JP2001133400A
JP2001133400A JP31243899A JP31243899A JP2001133400A JP 2001133400 A JP2001133400 A JP 2001133400A JP 31243899 A JP31243899 A JP 31243899A JP 31243899 A JP31243899 A JP 31243899A JP 2001133400 A JP2001133400 A JP 2001133400A
Authority
JP
Japan
Prior art keywords
mirror
prism
atr
total reflection
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31243899A
Other languages
Japanese (ja)
Other versions
JP4058865B2 (en
Inventor
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31243899A priority Critical patent/JP4058865B2/en
Publication of JP2001133400A publication Critical patent/JP2001133400A/en
Application granted granted Critical
Publication of JP4058865B2 publication Critical patent/JP4058865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a total reflection/absorption spectrum measuring device capable of providing a clear image of an analysis point of a sample in visual observation. SOLUTION: A total reflection/absorption Cassegrainian reflecting objective mirror 1 is made up of a primary concave mirror 2 having a hole in the middle, a secondary convex mirror 3 coaxial with the concave mirror 2, and an ATR (attenuated total reflection) prism 4. The concave mirror 2 is in a fixed position, and two kinds of secondary convex mirrors 3, 6 and the prism 4 are installed on a turntable 5 for selection. In ATR measurement, the larger mirror 3 and the prism 4 are selected by turning the turntable 5. The incident angle of light coming into the prism 4 can be increased according to the refraction factor of the prism 4, thus easily satisfying the total reflection condition of the incoming light. In visual observation, the smaller mirror 6 is selected to decrease the incident angle of light coming into a focal position, thereby providing a clear image having very small aberration and little distortion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子材料などの
有機物をはじめ、種々の物質の定性分析や同定分析など
に広く利用される全反射吸収スペクトル測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total reflection absorption spectrum measuring apparatus widely used for qualitative analysis and identification analysis of various substances including organic substances such as polymer materials.

【0002】[0002]

【従来の技術】全反射吸収スペクトル測定法(ATR)
は、試料面に試料より高屈折率の透明体(赤外光を用い
る場合は、赤外光に対して透明であればよい)を接触さ
せ、この高屈折透明体側から、試料との境界面で全反射
がおきる入射角で測定光を入射させ、全反射された光の
試料による吸収減光を検出することにより、試料の吸収
特性を測定する方法で、従来から赤外光について測定を
行う場合、反射光学系によって構成された赤外反射顕微
鏡システムを利用した装置が用いられている。
2. Description of the Related Art Total reflection absorption spectrum measuring method (ATR)
Is to bring a transparent body with a higher refractive index than the sample into contact with the sample surface (if infrared light is used, it is only necessary to be transparent to the infrared light). A method for measuring the absorption characteristics of a sample by irradiating the measurement light at an incident angle at which total reflection occurs and detecting absorption extinction by the sample of the totally reflected light, conventionally measuring infrared light In this case, an apparatus using an infrared reflection microscope system constituted by a reflection optical system is used.

【0003】この方法によれば、試料に吸収のない波長
領域の光はそのまま全反射されるが、赤外吸収のある波
長領域では全反射光が吸収されるので、透過光スペクト
ルとほとんど同じスペクトルが得られる。
According to this method, light in a wavelength region where the sample does not absorb light is totally reflected as it is, but in a wavelength region where infrared light is absorbed, the totally reflected light is absorbed, so that the spectrum is almost the same as the transmitted light spectrum. Is obtained.

【0004】しかも、この方法では、不溶、不融、粉砕
困難な弾性、粘性物質の測定が可能であるとともに、他
の測定方法では試料処理が困難であるゴム、プラスチッ
クなどの測定が容易に行えるという特徴を有している。
Moreover, this method can measure insoluble, infusible, elastic and viscous substances which are difficult to pulverize, and can easily measure rubber, plastic, etc., which are difficult to process with other measuring methods. It has the feature of.

【0005】従来のカセグレン式赤外顕微分光光度計の
対物鏡の構造を図3に示す。対物鏡は中央に孔のあいた
凹面主鏡8と、この凹面主鏡8と同軸の凸面副鏡9とよ
りなっており、図外の分光器から出射した単色光が、図
3で光軸の右半分を下方に対物鏡光学系に入射せしめら
れ、その光は凸面副鏡9および凹面主鏡8で反射されて
対物鏡光学系の集光点Pに集光される。集光点PにはP
点を中心とする半球形のATRプリズム10が設置れて
おり、試料SをそのATRプリズム10の下面に接触さ
せる。こうすると、P点に集光する光は、ATRプリズ
ム10では屈折されず、そのままP点に集光し、試料面
で全反射されて、対物光学系の光軸の左半分を上行し、
検出される。
FIG. 3 shows the structure of an objective mirror of a conventional Cassegrain infrared microspectrophotometer. The objective mirror comprises a concave main mirror 8 having a hole at the center and a convex sub-mirror 9 coaxial with the concave main mirror 8. Monochromatic light emitted from a spectroscope (not shown) passes through the optical axis in FIG. The right half is made to enter the objective mirror optical system downward, and the light is reflected by the convex sub-mirror 9 and the concave primary mirror 8, and is condensed at the focal point P of the objective mirror optical system. Focus point P is P
A hemispherical ATR prism 10 centered on a point is provided, and the sample S is brought into contact with the lower surface of the ATR prism 10. In this case, the light condensed at the point P is not refracted by the ATR prism 10, but is condensed as it is at the point P, is totally reflected on the sample surface, and moves up the left half of the optical axis of the objective optical system.
Is detected.

【0006】全反射吸収スペクトル測定法(ATR)
は、全反射を利用するため、プリズムが焦点位置にある
と、すべての光はATRプリズム底面で反射し、焦点位
置にある試料を可視観察することはできない。このた
め、観察時にはATRプリズムを焦点位置から別の位置
に移動させる必要がある。この方法として、光軸に垂直
な面内でプリズムを平行移動させるか、図4および図5
に示すように、先端に半球レンズを用いた対物レンズ系
において、その先端半球レンズの一番上の対物レンズ1
1の周辺部をカセグレン式反射対物光学系の凸面副鏡1
2に利用し、ATR測定時には、図4に示すように、輪
状開口のATR測定用のアパーチャー13を光軸上に配
置し、測定光が凸面副鏡12に照射されるようにし、可
視観察時には、図5に示したように、円形開口を有する
目視用アパーチャー14を光軸上に配置し、測定光が対
物レンズ11に照射されるようにして、試料を対物光学
系で目視できるようにしている。あるいは、図6に示す
ように、ATRプリズム15を可動式にして、目視測定
時には鏡筒を支点にしてレバー16でATRプリズム1
5を光軸方向に持ち上げて、ATRプリズム15を測定
光路から外して、測定光がATRプリズム15を通過し
ないようにした例がある。
[0006] Total reflection absorption spectrum measurement method (ATR)
Uses total reflection, so that when the prism is at the focal position, all light is reflected at the bottom of the ATR prism, and the sample at the focal position cannot be observed visually. Therefore, at the time of observation, it is necessary to move the ATR prism from the focal position to another position. As this method, a prism is translated in a plane perpendicular to the optical axis, or FIG.
As shown in the figure, in an objective lens system using a hemispherical lens at the tip, the objective lens 1 at the top of the hemispherical lens at the tip
The periphery of 1 is a convex sub-mirror 1 of a Cassegrain type reflection objective optical system.
4, the ATR measurement aperture 13 having a ring-shaped aperture is arranged on the optical axis at the time of ATR measurement, so that the measurement light is irradiated to the convex sub-mirror 12, as shown in FIG. As shown in FIG. 5, a viewing aperture 14 having a circular opening is arranged on the optical axis so that the measurement light is irradiated on the objective lens 11 so that the sample can be viewed with the objective optical system. I have. Alternatively, as shown in FIG. 6, the ATR prism 15 is made movable, and at the time of visual measurement, the ATR prism 1 is
There is an example in which the ATR prism 15 is lifted in the optical axis direction to remove the ATR prism 15 from the measurement optical path so that the measurement light does not pass through the ATR prism 15.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図5に
示すように、対物光学系と反射光学系を1つのレンズを
用いて行う場合、特殊レンズの作成およびアパーチャー
切換機構作製が容易ではなく、高価になるという問題点
があった。また、図6に示すように、ATRプリズムを
可動式にした場合、ATRプリズムを光軸方向に動かす
ので、ATR測定の時、ATRプリズムに試料を圧接す
ると、ATRプリズムの位置の再現性が悪いという問題
があった。さらに、ATR測定においては光の全反射を
利用するため、赤外線を透過しかつ赤外線に対して屈折
率の大きな材質で作製されたATRプリズムを用いる必
要があり、ATRプリズムの種類によってはプリズムへ
の入射角を大きくしないと全反射条件を満足しないの
で、大きな入射角で光を入射することが必要となる。こ
のため、大きな凹面主鏡と凸面副鏡が必要となるが、こ
の様な光学系を用いた場合、可視観察時には試料への入
射角が大きいと、収差などの理由により像がぼけるなど
の弊害が発生する。
However, as shown in FIG. 5, when the objective optical system and the reflection optical system are performed by using one lens, it is not easy to manufacture a special lens and an aperture switching mechanism, and it is expensive. There was a problem of becoming. Also, as shown in FIG. 6, when the ATR prism is made movable, the ATR prism is moved in the optical axis direction. Therefore, when the sample is pressed against the ATR prism during ATR measurement, the reproducibility of the position of the ATR prism is poor. There was a problem. Furthermore, in the ATR measurement, since the total reflection of light is used, it is necessary to use an ATR prism made of a material that transmits infrared rays and has a large refractive index with respect to infrared rays. If the incident angle is not increased, the condition of total reflection is not satisfied, so that light must be incident at a large incident angle. For this reason, a large concave primary mirror and a convex secondary mirror are required.However, when such an optical system is used, if the incident angle to the sample is large at the time of visible observation, an adverse effect such as blurring of an image due to aberration or the like is caused. Occurs.

【0008】そこで、本発明は、簡単な機構により可視
観察時に試料の分析点の鮮明な像が得られることを目的
とする。
Accordingly, an object of the present invention is to provide a clear image of an analysis point of a sample during visible observation with a simple mechanism.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、中央に孔のあいた凹面主鏡と、この凹面
主鏡と同軸の凸面副鏡とATRプリズムよりなる全反射
吸収カセグレン反射対物鏡において、凹面主鏡は固定し
ておき、凸面副鏡とATRプリズム部分のみを同時に切
り替え移動させる機構を組み込むことにより、ATR測
定および可視観察の各使用条件に応じて、最適な凸面副
鏡とATRプリズムの組み合わせを選択できるようにし
た。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a concave primary mirror having a hole in the center, a total reflection absorbing Cassegrain comprising a convex secondary mirror coaxial with the concave primary mirror and an ATR prism. In the reflection objective mirror, the concave primary mirror is fixed, and a mechanism for simultaneously switching and moving only the convex secondary mirror and the ATR prism portion is incorporated, so that the optimal convex secondary mirror can be used according to each use condition of ATR measurement and visible observation. A combination of a mirror and an ATR prism can be selected.

【0010】本発明によれば、凹面主鏡は固定されてい
るが、凸面副鏡とATRプリズムは同時に移動可能にな
っているので、可視観察時には小さな凸面副鏡に切り替
え、焦点位置への光の入射角度を小さく制限でき、可視
観察時に鮮明な像を得ることができる。また、ATR測
定の際には大きな凸面副鏡に切り替え、ATRプリズム
に入射する光の入射角度をプリズムの屈折率に応じて大
きくすることができ、入射する光の全反射条件を容易に
満足させることが可能となる。また、屈折率の異なるA
TRプリズムとこれに適した凸面副鏡に切り替え、AT
Rプリズムに対し入射する光の入射角度を変えることに
より、測定試料に対する測定光のもぐり込み深さを変化
させることができるようになり、これにより試料中の異
なった深さ位置におけるATRスペクトルを測定するこ
とが可能になる。
According to the present invention, the concave primary mirror is fixed, but the convex secondary mirror and the ATR prism are movable at the same time. Can be limited to a small angle, and a clear image can be obtained during visible observation. Further, in the case of ATR measurement, it is possible to switch to a large convex sub-mirror and to increase the incident angle of light incident on the ATR prism according to the refractive index of the prism, thereby easily satisfying the condition of total reflection of incident light. It becomes possible. In addition, A having different refractive indices
Switching to TR prism and convex secondary mirror suitable for this, AT
By changing the incident angle of the light incident on the R prism, the penetration depth of the measurement light into the measurement sample can be changed, thereby measuring the ATR spectrum at different depth positions in the sample. It becomes possible to do.

【0011】凸面副鏡とATRプリズムを同時に切り替
える機構例としては、反射対物光学系の光軸と平行な軸
を中心に回動可能な切り替え用ターンテーブルを設置
し、この切り替えターンテーブルを回動させたとき、タ
ーンテーブル上に描かれる上記反射対物光学系の光軸の
通過軌跡上に中心をおいて2種以上の凸面副鏡を設け、
さらにそれぞれの凸面副鏡の光軸上であり凸面副鏡の下
方で凹面主鏡の焦点となる位置にATRプリズムを固定
しておき、凸面副鏡の一方が上記反射対物光学系の光軸
に位置し測定に用いられているとき、他方を反射対物光
学系外に位置させることにより実現できる。
[0011] As an example of a mechanism for simultaneously switching the convex sub-mirror and the ATR prism, a switching turntable that can rotate around an axis parallel to the optical axis of the reflection objective optical system is installed, and this switching turntable is rotated. When this is done, two or more types of convex secondary mirrors are provided with their centers on the path of the optical axis of the reflective objective optical system drawn on the turntable,
Further, an ATR prism is fixed at a position on the optical axis of each convex sub-mirror and below the convex sub-mirror to be the focal point of the concave primary mirror, and one of the convex sub-mirrors is aligned with the optical axis of the reflection objective optical system. This can be realized by positioning the other one outside the reflection objective optical system when it is used for positioning and measurement.

【0012】[0012]

【発明の実施の形態】本発明の全反射吸収スペクトル測
定装置の実施の形態を図面に基づいて説明する。図1は
本発明の実施例であり、全反射吸収スペクトル測定装置
の一実施例の概略を示している。図1(a)は側面断面
図であり、カセグレン反射対物鏡1は中央に孔のあいた
凹面主鏡2と凸面副鏡3と半球形のATRプリズム4と
から構成されている。凹面主鏡2、凸面副鏡3およびA
TRプリズム4は同一光軸上にあり、ATRプリズム4
はその曲率中心が凹面主鏡2の集光点に位置するように
配置されている。凸面副鏡3およびATRプリズム4は
切り替え用ターンテーブル5に設置されている。切り替
え用ターンテーブル5は凹面主鏡2の光軸と平行な軸を
中心に回動可能となっており、固定されている凹面主鏡
2に対して、凸面副鏡3およびATRプリズム4は切り
替え用ターンテーブル5を回動することにより同時に移
動させられるようになっている。図1(b)は図1
(a)を下部から見た図であり、ターンテーブル5には
凸面副鏡3およびATRプリズム4の他に、目視用の凸
面副鏡6が、切り替え用ターンテーブル5を回動させた
とき、ターンテーブル上に描かれる凸面副鏡2の光軸の
通過軌跡上に中心をおいて設置されている。さらに、カ
セグレン反射対物鏡1には位置決めピボット7が配置さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a total reflection absorption spectrum measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention, and schematically shows an embodiment of a total reflection absorption spectrum measuring apparatus. FIG. 1A is a side sectional view. The Cassegrain reflection objective 1 is composed of a concave primary mirror 2 having a hole in the center, a convex secondary mirror 3, and a hemispherical ATR prism 4. Concave primary mirror 2, convex secondary mirror 3 and A
The TR prism 4 is on the same optical axis and the ATR prism 4
Are arranged such that the center of curvature is located at the focal point of the concave primary mirror 2. The convex secondary mirror 3 and the ATR prism 4 are installed on a switching turntable 5. The switching turntable 5 is rotatable about an axis parallel to the optical axis of the concave primary mirror 2, and the convex secondary mirror 3 and the ATR prism 4 switch with respect to the fixed concave primary mirror 2. By turning the turntable 5 for use, it can be moved at the same time. FIG.
FIG. 6A is a view of the turntable 5 when viewed from below, in addition to the convex sub-mirror 3 and the ATR prism 4, the visual convex sub-mirror 6 turns the switching turntable 5. It is installed centered on the locus of the optical axis of the convex sub-mirror 2 drawn on the turntable. Furthermore, a positioning pivot 7 is arranged on the Cassegrain reflecting objective 1.

【0013】この全反射吸収スペクトル測定装置で測定
を行う場合、まず、切り替え用ターンテーブル5を回動
させ、目視観察用の凸面副鏡6の光軸が凹面主鏡2の光
軸と一致する位置に来るよう位置決めピボット7を用い
て凸面副鏡6の位置が固定される。測定干渉光は分光光
度計(図示せず)から射出し、凹面主鏡の孔を通過し光
軸の右半分を下方に対物光学系に入射され、凸面副鏡6
および凹面主鏡2で反射されて集光される。この時、小
さな凸面副鏡6を目視観察用に使用することで、焦点位
置への光の入射角度を小さく制限することができ、可視
観察時に鮮明な像を得ることができる。次に、再び切り
替え用ターンテーブル5を回動させ、位置決めピボット
7を用いて凸面副鏡3およびATRプリズム4の光軸が
凹面主鏡2の光軸と一致する位置に凸面副鏡3およびA
TRプリズム4を固定させ、ATR測定を行う。この
時、凸面副鏡3に大きな凸面副鏡を使用することによ
り、ATRプリズム4に入射する光の入射角度を、AT
Rプリズム4の屈折率に応じて大きくとることが可能と
なり、入射する光の全反射条件を容易に満足させること
ができる。
When the measurement is performed by this total reflection absorption spectrum measuring apparatus, first, the switching turntable 5 is rotated, and the optical axis of the convex secondary mirror 6 for visual observation coincides with the optical axis of the concave primary mirror 2. The position of the convex secondary mirror 6 is fixed using the positioning pivot 7 so as to come to the position. The measurement interference light is emitted from a spectrophotometer (not shown), passes through the hole of the concave primary mirror, enters the objective optical system below the right half of the optical axis, and enters the convex secondary mirror 6.
The light is reflected by the concave primary mirror 2 and collected. At this time, by using the small convex sub-mirror 6 for visual observation, the angle of incidence of light on the focal position can be limited to a small value, and a clear image can be obtained during visible observation. Next, the switching turntable 5 is rotated again, and the positioning auxiliary pivot 7 is used to move the convex sub-mirrors 3 and A to positions where the optical axes of the convex sub-mirror 3 and the ATR prism 4 coincide with the optical axes of the concave main mirror 2.
ATR measurement is performed with the TR prism 4 fixed. At this time, by using a large convex sub-mirror for the convex sub-mirror 3, the incident angle of light incident on the ATR prism 4 can be adjusted to AT
This can be increased according to the refractive index of the R prism 4, and the condition for total reflection of incident light can be easily satisfied.

【0014】図2は図1におけるATRカセグレン反射
対物鏡の側面断面図を示したものである。図2(a)は
目視観察時に用いられるATRカセグレン反射対物鏡で
あり、小さな凸面副鏡6を用いることにより、焦点位置
への光の入射角度が小さくなっていることがわかる。こ
れに対して、図2(b)はATR測定時に用いられる用
いられるATRカセグレン反射対物鏡であり、大きな凸
面副鏡3を使用することにより、ATRプリズム4に入
射する光の入射角度が大きくとれていることがわかる。
FIG. 2 is a side sectional view of the ATR Cassegrain reflecting objective in FIG. FIG. 2A shows an ATR Cassegrain reflection objective used for visual observation. It can be seen that the use of the small convex sub-mirror 6 reduces the angle of incidence of light on the focal position. On the other hand, FIG. 2B shows an ATR Cassegrain reflecting objective mirror used for ATR measurement. By using the large convex sub-mirror 3, the incident angle of light incident on the ATR prism 4 can be made large. You can see that it is.

【0015】切り替え用ターンテーブル5を回動させる
という簡単な動作により、ATR測定および可視観察の
各使用条件に応じて、最適な凸面副鏡とATRプリズム
の組み合わせを容易に選択することができ、ATR測定
時には入射する光の全反射条件を容易に満足させること
が可能となり、可視観察時には収差が非常に小さい歪み
の少ない鮮明な像を得ることが可能となる。さらに、切
り替え用ターンテーブル5に、屈折率の異なる2種類以
上のATRプリズムとこれに適した凸面副鏡を設置し、
ATRプリズムに対し入射する光の入射角度を変えるこ
とを可能にすることにより、測定試料に対する測定光の
もぐり込み深さを変化させることができるようになる。
これにより試料中の異なった深さ位置におけるATRス
ペクトルを測定することが可能になる。
By the simple operation of rotating the switching turntable 5, it is possible to easily select the optimum combination of the convex sub-mirror and the ATR prism in accordance with the use conditions of the ATR measurement and the visual observation. At the time of ATR measurement, it is possible to easily satisfy the condition for total reflection of incident light, and at the time of visible observation, it is possible to obtain a clear image with very small aberration and little distortion. Further, two or more types of ATR prisms having different refractive indices and a convex secondary mirror suitable for the ATR prism are installed on the switching turntable 5,
By making it possible to change the incident angle of light incident on the ATR prism, it becomes possible to change the penetration depth of the measurement light with respect to the measurement sample.
This makes it possible to measure ATR spectra at different depth positions in the sample.

【0016】以上、本発明の実施の形態を説明したが、
本発明は上記実施例に限定されるものではなく、特許請
求の範囲に記載された本発明の要旨の範囲内で種々の変
更を行うことができる。例えば、上記実施の形態におい
ては2種類の凸面副鏡を使用しているが、測定条件によ
り必要に応じて3種類以上の凸面副鏡を用いることがで
きる。また、切り替え用ターンテーブル5として円盤状
のテーブルを用い、これを回転させることにより凸面副
鏡およびATRプリズムを移動させたが、長方形のテー
ブルを用い、凸面副鏡およびATRプリズムを直線上に
配置し、リニアモーターにより移動させてもよい。さら
に、ターンテーブル5の位置決め方法としては、レーザ
ー光の送受光による位置決め方法等、周知の種々の方法
を用いることができる。
The embodiments of the present invention have been described above.
The present invention is not limited to the above embodiments, and various changes can be made within the scope of the present invention described in the appended claims. For example, in the above embodiment, two types of convex sub-mirrors are used, but three or more types of convex sub-mirrors can be used as needed depending on measurement conditions. Further, a disk-shaped table was used as the switching turntable 5, and the convex sub-mirror and the ATR prism were moved by rotating the disk-shaped table. However, a rectangular table was used, and the convex sub-mirror and the ATR prism were arranged on a straight line. Alternatively, it may be moved by a linear motor. Further, as a positioning method of the turntable 5, various well-known methods such as a positioning method by transmitting and receiving laser light can be used.

【0017】[0017]

【発明の効果】本発明によれば、固定された凹面主鏡に
対して、2種以上の凸面副鏡とATRプリズムを切り替
え用ターンテーブルに設置し、切り替え用ターンテーブ
ルを回動することにより、凸面副鏡とATRプリズム部
分を同時に切り替え移動させる機構を組み込むことで、
ATR測定および可視観察の各使用条件に応じて、最適
な凸面副鏡とATRプリズムの組み合わせを容易に選択
することができ、ATR測定時には入射する光の全反射
条件を容易に満足させることが可能となり、可視観察時
には収差が非常に小さい歪みの少ない鮮明な像を得るこ
とが可能となった。この際、凹面主鏡および凸面副鏡は
製作の容易な球面のみの組み合わせで作ることが可能で
ある。また、構造的にも簡単であり、製造コストを低減
することができる。さらに、切り替え用ターンテーブル
に屈折率の異なる2種類以上のATRプリズムとこれに
適した凸面副鏡を設置し、ATRプリズムに対し入射す
る光の入射角度を変え、異なった入射角度のATR測定
を行うことにより、試料中の異なった深さ位置における
ATRスペクトルを測定することが可能になった。
According to the present invention, two or more types of convex sub-mirrors and an ATR prism are installed on a switching turntable with respect to a fixed concave primary mirror, and the switching turntable is rotated. By incorporating a mechanism to switch and move the convex sub-mirror and the ATR prism at the same time,
The optimal combination of convex sub-mirror and ATR prism can be easily selected according to the usage conditions of ATR measurement and visible observation, and the ATR measurement can easily satisfy the condition of total reflection of incident light. This makes it possible to obtain a clear image with very small aberration and little distortion during visible observation. At this time, the concave primary mirror and the convex secondary mirror can be made by a combination of only spherical surfaces which are easy to manufacture. Further, the structure is simple, and the manufacturing cost can be reduced. Furthermore, two or more types of ATR prisms having different refractive indices and a convex sub-mirror suitable for the ATR prism are installed on the switching turntable, and the incident angle of light incident on the ATR prism is changed to perform ATR measurement at different incident angles. By doing so, it became possible to measure ATR spectra at different depth positions in the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全反射吸収スペクトル測定装置の一実
施例の構成図である。 (a)本発明の全反射吸収スペクトル測定装置の側面断
面図である。 (b)本発明の全反射吸収スペクトル測定装置の下部か
ら見た図である。
FIG. 1 is a configuration diagram of an embodiment of a total reflection absorption spectrum measuring apparatus according to the present invention. (A) It is a side sectional view of the total reflection absorption spectrum measuring device of the present invention. (B) It is the figure seen from the lower part of the total reflection absorption spectrum measuring device of the present invention.

【図2】上記実施例のATRカセグレン反射対物鏡の側
面断面図である。 (a)目視観察時に使用されるATRカセグレン反射対
物鏡の側面断面図である。 (b)ATR測定時に使用されるATRカセグレン反射
対物鏡の側面断面図である。
FIG. 2 is a side sectional view of the ATR Cassegrain reflective objective according to the embodiment. (A) It is side sectional drawing of the ATR Cassegrain reflection objective used at the time of visual observation. (B) It is a side sectional view of the ATR Cassegrain reflection objective used at the time of ATR measurement.

【図3】従来例の全反射吸収スペクトル測定装置の側面
断面図である。
FIG. 3 is a side sectional view of a conventional total reflection absorption spectrum measuring apparatus.

【図4】別の従来例の全反射吸収スペクトル測定装置の
側面断面図である。
FIG. 4 is a side sectional view of another conventional total reflection absorption spectrum measuring apparatus.

【図5】上記従来例の目視観察時の側面断面図である。FIG. 5 is a side sectional view at the time of visual observation of the conventional example.

【図6】別の従来例の側面断面図である。FIG. 6 is a side sectional view of another conventional example.

【符号の説明】[Explanation of symbols]

1---カセグレン反射対物鏡 2、8---凹面主鏡 3、6、9、12---凸面副鏡 4、10、15---ATRプリズム 5---切り替えターンテーブル 7---位置決めピボット 11---対物レンズ 13、14---アパーチャー 16---レバー P---集光点 S---試料 1 --- Cassegrain reflection objective mirror 2,8 --- Concave primary mirror 3,6,9,12 --- Convex secondary mirror 4,10,15 --- ATR prism 5 --- Switching turntable 7- -Positioning pivot 11 --- Objective lens 13,14 --- Aperture 16 --- Lever P --- Condensing point S --- Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 凹面主鏡と凸面副鏡よりなる反射対物光
学系と、同光学系の集光点を中心とする半球形ATRプ
リズムを備えた全反射吸収スペクトル測定装置におい
て、2種以上の凸面副鏡を有し、これら凸面副鏡の一つ
を選択的に測定に使用できるように構成したことを特徴
とする全反射吸収スペクトル測定装置。
1. A total reflection absorption spectrum measuring apparatus comprising: a reflecting objective optical system comprising a concave primary mirror and a convex secondary mirror; and a hemispherical ATR prism centered on a focal point of the optical system. A total reflection absorption spectrum measuring apparatus having a convex sub-mirror, wherein one of these convex sub-mirrors is selectively used for measurement.
JP31243899A 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device Expired - Lifetime JP4058865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31243899A JP4058865B2 (en) 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31243899A JP4058865B2 (en) 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device

Publications (2)

Publication Number Publication Date
JP2001133400A true JP2001133400A (en) 2001-05-18
JP4058865B2 JP4058865B2 (en) 2008-03-12

Family

ID=18029213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31243899A Expired - Lifetime JP4058865B2 (en) 1999-11-02 1999-11-02 Total reflection absorption spectrum measuring device

Country Status (1)

Country Link
JP (1) JP4058865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113766A1 (en) * 2006-04-26 2009-11-04 PerkinElmer Singapore Pte. Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113766A1 (en) * 2006-04-26 2009-11-04 PerkinElmer Singapore Pte. Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy
US7935929B2 (en) 2006-04-26 2011-05-03 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy
US8223429B2 (en) 2006-04-26 2012-07-17 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflective (ATR) spectroscopy
US8223430B2 (en) 2006-04-26 2012-07-17 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy
US8400711B2 (en) 2006-04-26 2013-03-19 Perkinelmer Singapore Pte Ltd. Accessory for attenuated total internal reflectance (ATR) spectroscopy
US8743456B2 (en) 2006-04-26 2014-06-03 Perkinelmer Singapore Pte Ltd. Systems and methods for attenuated total internal reflectance (ATR) spectroscopy

Also Published As

Publication number Publication date
JP4058865B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
US5106196A (en) Single adjustment specular reflection accessory for spectroscopy
US5011243A (en) Reflectance infrared microscope having high radiation throughput
US5497234A (en) Inspection apparatus
JP3188295B2 (en) Optical analyzer and optical analysis method
US4758088A (en) Microscope accessory which facilitates radiation transmission measurements in the reflectance mode
US20070263220A1 (en) Optical Measurement System with Simultaneous Multiple Wavelengths, Multiple Angles of Incidence and Angles of Azimuth
GB2186711A (en) Optical system providing low angle illumination and radiation collection
US5864139A (en) Confocal microspectrometer system
JP2003527636A (en) Improved lens for microscopy
KR100272329B1 (en) Video microscope
JPH0797078B2 (en) Infrared microspectrophotometer
JPH11264935A (en) Microscopic infrared device
JP3136576B2 (en) Microscopic total reflection absorption spectrum measurement device
JP4058865B2 (en) Total reflection absorption spectrum measuring device
US5818046A (en) Mid-infrared analysis system
JP4136911B2 (en) Infrared microscope and measuring position determination method thereof
US6288841B1 (en) Optical mechanism for precisely controlling the angle of an incident light beam within a large incident angle range
JPH09250966A (en) Apparatus for measuring reflectivity
JPH04116452A (en) Microscopic infrared atr measuring apparatus
US5239409A (en) Reflectance infrared microscope having high radiation throughput
KR20100033164A (en) Spectroscopic ellipsometer with a microspot module
JPH1144636A (en) Total reflection absorption spectrum device
JP3179136B2 (en) Microscopic infrared ATR measuring device
US5229611A (en) Infrared microscopic spectrometer using the attenuated total reflection method
JPH03172728A (en) Reflectivity measurement device for light-transmissive member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4058865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

EXPY Cancellation because of completion of term